JP2005155975A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine Download PDF

Info

Publication number
JP2005155975A
JP2005155975A JP2003392936A JP2003392936A JP2005155975A JP 2005155975 A JP2005155975 A JP 2005155975A JP 2003392936 A JP2003392936 A JP 2003392936A JP 2003392936 A JP2003392936 A JP 2003392936A JP 2005155975 A JP2005155975 A JP 2005155975A
Authority
JP
Japan
Prior art keywords
heat
heat recovery
exhaust gas
condensate
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003392936A
Other languages
Japanese (ja)
Inventor
Shuji Ishizaki
修司 石崎
Takahiro Kobayashi
崇浩 小林
Hideki Funai
秀樹 府内
Mitsunori Omori
光則 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003392936A priority Critical patent/JP2005155975A/en
Publication of JP2005155975A publication Critical patent/JP2005155975A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the amount of heat recovery from exhaust gas from decreasing, and to minimize the ill effect even if vapor contained in the exhaust gas is condensed. <P>SOLUTION: An absorption refrigerating machine comprises a first heat recovery device 27 for recovering heat in exhaust gas from a gas burner 2 attached to a high-temperature regenerator 1 as an absorption liquid heating means for heating an absorption liquid; a second heat recovery device 28, and the like for heating air for combustion supplied to the gas burner 2 by recovering the heat of exhaust gas from the gas burner 2. The absorption refrigerating machine is connected via the first and second heat recovery devices 27, 28 and a condensate pipe 30, a neutralizing container 29 in which calcium carbonate is inherent is mounted so that condensate in vapor in the exhaust gas generated by condensation in the first heat recovery device 27 and condensate in vapor in the exhaust gas generated by condensation in the second heat recovery device 28 flow in, are discharged through the inside, and are disposed. Then, the area among the first and second heat recovery devices 27, 28, the neutralizing container 29, the neutralizing container 29 in the condensate pipe 30, and the first and second heat recovery devices 27, 29 is formed by a corrosion-resistant material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高温再生器に吸収液加熱手段として燃焼装置が添設され、且つ、その燃焼装置から排出された排ガスが保有する熱を吸収液などに回収する熱回収器を備えた吸収冷凍機に関するものである。   The present invention relates to an absorption refrigerating machine provided with a heat recovery unit that is provided with a combustion device as an absorption liquid heating means in a high-temperature regenerator and that recovers heat held by exhaust gas discharged from the combustion device into an absorption liquid. It is about.

この種の吸収冷凍機としては、例えば図4に示したように、高温再生器1の稀吸収液を加熱沸騰させるガスバーナ2から排出された排ガスを、排気管26により高温熱交換器10と高温再生器1との間に設けた熱回収器27Xと、低温熱交換器9と高温再生器10との間に設けた熱回収器27Yとに送り、吸収液ポンプ14により吸収液管11を介して吸収器7から高温再生器1に送られている稀吸収液の温度を上げ、ガスバーナ2による必要加熱量を削減して、燃料消費量を削減するように工夫した吸収冷凍機100Xが周知である(例えば、特許文献1参照。)。   As this type of absorption refrigerator, for example, as shown in FIG. 4, the exhaust gas discharged from the gas burner 2 that heats and boiles the rare absorbent in the high-temperature regenerator 1 is exchanged with the high-temperature heat exchanger 10 through the exhaust pipe 26. It is sent to a heat recovery device 27X provided between the regenerator 1 and a heat recovery device 27Y provided between the low temperature heat exchanger 9 and the high temperature regenerator 10, and is passed through the absorption liquid pipe 11 by the absorption liquid pump 14. An absorption refrigerator 100X devised to increase the temperature of the rare absorbent sent from the absorber 7 to the high-temperature regenerator 1, reduce the necessary heating amount by the gas burner 2, and reduce the fuel consumption is well known. (For example, refer to Patent Document 1).

なお、特許文献1に記載の吸収冷凍機100Xにおいては、低温熱交換器9を出た稀吸収液が吸収液管11Aに介在する熱回収器27Yを迂回して流れる吸収液管11Bを設けると共に、吸収液管11Bに流量制御弁V7を設け、さらに排気管26の下流部分に設けた温度センサ40が排ガスに含まれる水蒸気の露点より高い所定の温度を計測し続けるように流量制御弁V7の開度を制御するための制御器41を設けるようにしている。
特開2003−130487号
In the absorption refrigerator 100X described in Patent Document 1, an absorption liquid pipe 11B is provided in which the rare absorption liquid that has exited the low-temperature heat exchanger 9 flows around the heat recovery unit 27Y interposed in the absorption liquid pipe 11A. The flow rate control valve V7 is provided in the absorption liquid pipe 11B, and the temperature sensor 40 provided in the downstream portion of the exhaust pipe 26 further measures the predetermined temperature higher than the dew point of the water vapor contained in the exhaust gas. A controller 41 for controlling the opening is provided.
JP 2003-130487 A

特許文献1に提案された吸収冷凍機においては、排ガスに含まれる水蒸気の露点より高い所定の温度を温度センサが計測し続けるように、流量制御弁の開度を制御器により制御するので、排ガスに含まれる水蒸気が凝縮して酸性のドレン水が発生すると云った懸念はないが、排ガスからの熱回収量が減少し、ガスバーナ2で消費する燃料の削減が十分に図れないと云った問題点があった。   In the absorption refrigerator proposed in Patent Document 1, the opening degree of the flow control valve is controlled by the controller so that the temperature sensor continues to measure a predetermined temperature higher than the dew point of water vapor contained in the exhaust gas. There is no concern that the water vapor contained in the water will condense to generate acidic drain water, but the amount of heat recovered from the exhaust gas will decrease, and the fuel consumed by the gas burner 2 will not be sufficiently reduced. was there.

したがって、排ガスからの熱回収量が減少せず、しかも排ガスに含まれる水蒸気が凝縮しても、その悪影響を最小限度に抑えることができるようにする必要があり、それが解決すべき課題となっていた。   Therefore, the amount of heat recovered from the exhaust gas does not decrease, and even if the water vapor contained in the exhaust gas is condensed, it is necessary to minimize the adverse effects, which is a problem to be solved. It was.

本発明は上記従来技術の課題を解決するため、吸収液加熱手段としての燃焼装置を備えた高温再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器と、燃焼装置から排出された排ガスと吸収液との熱交換により排ガスが保有する熱を吸収液に回収して吸収液を加熱する熱回収器とを備えた吸収冷凍機において、排ガスに含まれる水蒸気が熱回収器内で凝縮し生成された水蒸気の凝縮液が流れる管路にアルカリ性物質が内在する中和容器を設けたことを主要な特徴とするものである。   In order to solve the above-described problems of the prior art, the present invention discharges from a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, and a combustion device provided with a combustion device as an absorption liquid heating means. In an absorption refrigerator having a heat recovery unit that recovers heat held in the exhaust gas by heat exchange between the exhaust gas and the absorption liquid and heats the absorption liquid, water vapor contained in the exhaust gas is contained in the heat recovery unit. The main feature is that a neutralization container in which an alkaline substance is present is provided in a pipe line through which a condensate of water vapor generated by condensation is flown.

本発明によれば、排ガス中の水蒸気が凝縮して生成された酸性の凝縮液は、アルカリ性物質が内在する中和容器に導かれて中和され、その後に排出されるので、酸性ドレン水が環境に悪影響を及ぼすことはない。   According to the present invention, the acidic condensate produced by the condensation of water vapor in the exhaust gas is neutralized by being guided to the neutralization container in which the alkaline substance is present, and then discharged. There is no negative impact on the environment.

また、排ガス中水蒸気から生成された酸性のドレン水は、アルカリ性物質が内在する中和容器に導かれて中和・排出されるので、吸収液加熱手段である燃焼装置から排出された排ガスが吸収液などと熱交換する際、その保有熱を吸収液などに最大限回収することが可能である。したがって、吸収液加熱手段で消費する燃料の大幅な削減が可能になる。   In addition, the acidic drain water generated from the water vapor in the exhaust gas is guided to the neutralization container containing the alkaline substance and neutralized / discharged, so that the exhaust gas discharged from the combustion device as the absorption liquid heating means absorbs the exhaust water. When exchanging heat with liquid etc., it is possible to recover the retained heat to absorption liquid etc. to the maximum extent. Therefore, the fuel consumed by the absorption liquid heating means can be greatly reduced.

吸収器から高温再生器に流入している吸収液と燃焼装置から排出された排ガスとが流入して熱交換し、排ガスが保有する熱を吸収液に回収する第1の熱回収器と、燃焼装置に供給されている燃焼用空気と燃焼装置から排出された排ガスとが流入して熱交換し、排ガスが保有する熱を燃焼用空気に回収する第2の熱回収器とを備え、吸収液との熱交換により第1の熱回収器において凝縮し生成された排ガス中の水蒸気の凝縮液と、燃焼用空気との熱交換により第2の熱回収器において凝縮し生成された排ガス中の水蒸気の凝縮液とを、アルカリ性物質が内在する同一の中和容器に導入可能に凝縮液管路を設けるようにした吸収冷凍機。   A first heat recovery unit that recovers heat held in the exhaust gas by absorbing heat flowing into the high-temperature regenerator from the absorber and exhaust gas discharged from the combustion apparatus and exchanging heat; and combustion A second heat recovery unit that recovers heat held in the exhaust gas by flowing into the combustion air supplied to the device and the exhaust gas discharged from the combustion device and exchanging heat; The water vapor in the exhaust gas condensed and generated in the second heat recovery unit by heat exchange with the combustion air and the condensate of the water vapor in the exhaust gas condensed and generated in the first heat recovery unit by heat exchange with An absorption refrigerator in which a condensate conduit is provided so that the condensate can be introduced into the same neutralization container in which the alkaline substance is present.

本発明の第1の実施例を、図1と図2に基づいて説明する。なお、理解を容易にするため、これらの図面においても前記図4において説明した部分と同様の機能を有する部分には、同一の符号を付した。   A first embodiment of the present invention will be described with reference to FIGS. In order to facilitate understanding, in these drawings, parts having the same functions as those described with reference to FIG.

図中1は、例えば都市ガスを燃料とするガスバーナ2の火力によって吸収液を加熱して冷媒を蒸発分離するように構成された高温再生器、3は低温再生器、4は凝縮器、5は低温再生器3と凝縮器4が収納されている高温胴、6は蒸発器、7は吸収器、8は蒸発器6と吸収器7が収納されている低温胴、9は低温熱交換器、10は高温熱交換器、11〜13は吸収液管、14、15は吸収液ポンプ、16〜18は冷媒管、19は冷媒ポンプ、20は冷/温水管、21は冷却水管、22は冷暖切替弁V3が介在して冷/温水管20と冷却水管21とを連結している連通管、23はガスバーナ2に供給する燃料の都市ガスが流れる燃料供給管、24はファン25によって供給される燃焼用空気をガスバーナ2に供給するための空気供給管、26はガスバーナ2から出る排ガスが通る排気管、27は吸収液管11A内を流れる吸収液と排気管26内を流れる排ガスとが流入して熱交換し、排ガスが保有する熱を吸収液に回収して吸収液を加熱するための第1の熱回収器、28は空気供給管24内を流れる燃焼用空気と排気管26内を流れる排ガスとが流入して熱交換し、排ガスが保有する熱を燃焼用空気に回収して燃焼用空気を加熱するための第2の熱回収器、29はアルカリ性物質、例えば炭酸カルシウムが内在する中和容器であり、第1の熱回収器27および第2の熱回収器28と凝縮液管30を介して連結され、吸収液との熱交換により第1の熱回収器27において凝縮し生成された排ガス中の水蒸気の凝縮液と、燃焼用空気との熱交換により第2の熱回収器28において凝縮し生成された排ガス中の水蒸気の凝縮液とが流入し、内部を通過して吐出し、廃棄されるように取り付けられている。   In the figure, reference numeral 1 denotes a high-temperature regenerator configured to evaporate and separate the refrigerant by heating the absorbing liquid by the heating power of a gas burner 2 using, for example, city gas, 3 is a low-temperature regenerator, 4 is a condenser, A high temperature cylinder in which the low temperature regenerator 3 and the condenser 4 are accommodated, 6 is an evaporator, 7 is an absorber, 8 is a low temperature cylinder in which the evaporator 6 and the absorber 7 are accommodated, 9 is a low temperature heat exchanger, 10 is a high-temperature heat exchanger, 11 to 13 are absorption liquid pipes, 14 and 15 are absorption liquid pumps, 16 to 18 are refrigerant pipes, 19 is a refrigerant pump, 20 is a cold / hot water pipe, 21 is a cooling water pipe, and 22 is cooling / heating. A communication pipe connecting the cold / hot water pipe 20 and the cooling water pipe 21 through the switching valve V3, 23 is a fuel supply pipe through which city gas of fuel supplied to the gas burner 2 flows, and 24 is supplied by a fan 25. An air supply pipe 26 for supplying combustion air to the gas burner 2, The exhaust pipe 27 through which the exhaust gas from the sburner 2 passes, and the absorption liquid flowing through the absorption liquid pipe 11A and the exhaust gas flowing through the exhaust pipe 26 flow in to exchange heat, and the heat held by the exhaust gas is recovered in the absorption liquid. A first heat recovery unit 28 for heating the absorbing liquid, the combustion air flowing in the air supply pipe 24 and the exhaust gas flowing in the exhaust pipe 26 flow in to exchange heat, and the heat held by the exhaust gas is burned. A second heat recovery unit 29 for recovering the combustion air and heating the combustion air, 29 is a neutralization container in which an alkaline substance, for example, calcium carbonate is contained, and the first heat recovery unit 27 and the second heat Heat exchange between the condensate of water vapor in the exhaust gas, which is connected to the recovery unit 28 via the condensate tube 30 and condensed in the first heat recovery unit 27 by heat exchange with the absorption liquid, and combustion air. Condenses in the second heat recovery unit 28 And condensate and flows of water vapor in the exhaust gas, discharged through the inside, is mounted to be disposed.

中和容器29は、例えば図2に示したように複数枚の邪魔板31が内部に配設された構成となっている。したがって、入口29Aから中和容器29に流入した排ガス中水蒸気の凝縮液は、複数枚の邪魔板31により進路が度々変更され、出口29Bから排出されるまでの蛇行により、器内に充填された図示しない炭酸カルシウムとの接触機会が増大し、出口29Bから排出されるまでに酸性の凝縮液は中和される。   The neutralization container 29 has a configuration in which a plurality of baffle plates 31 are disposed inside, for example, as shown in FIG. Therefore, the condensate of the water vapor in the exhaust gas flowing into the neutralization vessel 29 from the inlet 29A is filled in the vessel by meandering until the path is frequently changed by the plurality of baffle plates 31 and discharged from the outlet 29B. The chance of contact with calcium carbonate (not shown) is increased, and the acidic condensate is neutralized before being discharged from the outlet 29B.

なお、第1の熱回収器27と、第2の熱回収器28と、中和容器29と、凝縮液管30の中和容器29と第1、第2の熱回収器27、28との間は、SUS−304などの耐食性材料(非鉄金属、合成樹脂などであっても良い)により形成され、酸性の凝縮液による腐食が防止できるようになっている。   The first heat recovery device 27, the second heat recovery device 28, the neutralization vessel 29, the neutralization vessel 29 of the condensate tube 30, and the first and second heat recovery devices 27, 28 are provided. The space is formed of a corrosion-resistant material such as SUS-304 (which may be a non-ferrous metal, a synthetic resin, or the like), and can be prevented from being corroded by an acidic condensate.

また、吸収器7から高温再生器1に稀吸収液を搬送するための吸収液管11は、上流部分に吸収液ポンプ14を備え、低温熱交換器9と高温熱交換器10とを経由した後に、第1の熱回収器27と冷暖切替弁V4が介在する吸収液管11Aと、冷暖切替弁V5が介在する吸収液管11Bとに分岐し、その後合流して高温再生器1に至っている。   Moreover, the absorption liquid pipe | tube 11 for conveying a rare absorption liquid from the absorber 7 to the high temperature regenerator 1 is equipped with the absorption liquid pump 14 in the upstream part, and passed through the low temperature heat exchanger 9 and the high temperature heat exchanger 10. Later, it branches into an absorption liquid pipe 11A in which the first heat recovery device 27 and the cooling / heating switching valve V4 are interposed, and an absorption liquid pipe 11B in which the cooling / heating switching valve V5 is interposed, and then merges to reach the high temperature regenerator 1. .

吸収液管12は一端が高温再生器1の液相部分に連結され、他端は低温再生器3に至る吸収液管12Aと、吸収器7に至る吸収液管12Bとに分岐し、吸収液管12Aには高温熱交換器10が介在し、吸収液管12Bには冷暖切替弁V2が介在している。   One end of the absorption liquid pipe 12 is connected to the liquid phase portion of the high temperature regenerator 1, and the other end is branched into an absorption liquid pipe 12A reaching the low temperature regenerator 3 and an absorption liquid pipe 12B reaching the absorber 7. A high temperature heat exchanger 10 is interposed in the pipe 12A, and a cooling / heating switching valve V2 is interposed in the absorbing liquid pipe 12B.

吸収液管13は一端が低温再生器3の液相部分に連結され、途中部分が冷媒ポンプ15と低温熱交換器9が介在する吸収液管13Aと、機器の介在がない吸収液管13Bとに分岐し、その後合流して吸収器7に至っている。   One end of the absorption liquid pipe 13 is connected to the liquid phase part of the low-temperature regenerator 3, and an intermediate part is an absorption liquid pipe 13A in which the refrigerant pump 15 and the low-temperature heat exchanger 9 are interposed, and an absorption liquid pipe 13B in which no equipment is interposed And then merge to reach the absorber 7.

冷媒管16は一端が高温再生器1の気相部分に連結され、他端は低温再生器3の内側底部分を経由して凝縮器4の下部側に至る冷媒管16Aと、吸収器7に至る冷媒管16Bとに分岐し、冷媒管16Bには冷暖切替弁V1が介在している。   One end of the refrigerant pipe 16 is connected to the gas phase part of the high temperature regenerator 1, and the other end is connected to the refrigerant pipe 16 </ b> A that reaches the lower side of the condenser 4 via the inner bottom part of the low temperature regenerator 3 and the absorber 7. The refrigerant pipe 16B is branched, and a cooling / heating switching valve V1 is interposed in the refrigerant pipe 16B.

冷媒管18は一端が蒸発器6の液相部分に連結され、上流部分に冷媒ポンプ19を備え、その下流部分は蒸発器6の上部に設けられた散布器に至る冷媒管18Aと、吸収器7の下部側に至る冷媒管18Bとに分岐し、冷媒管18Bには開閉弁V6が介在している。   One end of the refrigerant pipe 18 is connected to the liquid phase part of the evaporator 6, the refrigerant pipe 19 is provided in the upstream part, and the downstream part thereof has the refrigerant pipe 18 </ b> A leading to the sprayer provided in the upper part of the evaporator 6, and the absorber. 7 branches to a refrigerant pipe 18B that reaches the lower side of the No. 7, and an open / close valve V6 is interposed in the refrigerant pipe 18B.

上記構成の本発明の吸収冷凍機100を冷房などの冷却作用に供する際の動作について先ず説明する。吸収液管11Aに介在する冷暖切替弁V4のみを開弁し、他の全ての弁を閉弁させた状態で、ガスバーナ2で燃料の都市ガスを燃焼させて高温再生器1で稀吸収液を加熱沸騰させると、稀吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった中間吸収液とが高温再生器1において得られる。   First, the operation when the absorption refrigerator 100 of the present invention having the above configuration is subjected to a cooling action such as cooling will be described. With only the cooling / heating switching valve V4 interposed in the absorption liquid pipe 11A opened and all other valves closed, the city gas of the fuel is burned by the gas burner 2 and the high-temperature regenerator 1 supplies the rare absorption liquid. When heated and boiled, the high-temperature regenerator 1 obtains the refrigerant vapor evaporated and separated from the rare absorption liquid and the intermediate absorption liquid in which the concentration of the absorption liquid is increased by separating the refrigerant vapor.

高温再生器1で生成された高温の冷媒蒸気は、冷媒管16・16Aを通って低温再生器3に入り、高温再生器1で生成され吸収液管12・12Aにより高温熱交換器10を経由して低温再生器3に入った中間吸収液を加熱して放熱凝縮し、凝縮器4に入る。   The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 3 through the refrigerant tubes 16 and 16A, and is generated in the high-temperature regenerator 1 and passes through the high-temperature heat exchanger 10 through the absorption liquid tubes 12 and 12A. Then, the intermediate absorption liquid that has entered the low-temperature regenerator 3 is heated and condensed by heat dissipation, and enters the condenser 4.

また、低温再生器3で加熱されて中間吸収液から蒸発分離した冷媒は凝縮器4へ入り、冷却水管21内を流れる水と熱交換して凝縮液化し、冷媒管16・16Aから凝縮して供給される冷媒と一緒になって冷媒管17を通って蒸発器6に入る。   Further, the refrigerant heated by the low temperature regenerator 3 and evaporated and separated from the intermediate absorption liquid enters the condenser 4, and exchanges heat with water flowing in the cooling water pipe 21 to be condensed and liquefied and condensed from the refrigerant pipes 16 and 16 </ b> A. Together with the supplied refrigerant, it enters the evaporator 6 through the refrigerant pipe 17.

蒸発器6に入って冷媒液溜まりに溜まった冷媒液は、冷/温水管20に接続された伝熱管20Aの上に冷媒ポンプ19によって散布され、冷/温水管20を介して供給される水と熱交換して蒸発し、伝熱管20Aの内部を流れる水を冷却する。   The refrigerant liquid that has entered the evaporator 6 and accumulated in the refrigerant liquid reservoir is sprayed by the refrigerant pump 19 on the heat transfer pipe 20A connected to the cold / hot water pipe 20 and supplied through the cold / hot water pipe 20. The water flowing through the heat transfer tube 20A is cooled by evaporating with heat.

蒸発器6で蒸発した冷媒は吸収器7に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち吸収液管13Aに介在する吸収液ポンプ15の運転により低温熱交換器9を経由して吸収液管13・13Aから供給され、上方から散布される濃吸収液に吸収される。   The refrigerant evaporated in the evaporator 6 enters the absorber 7 and is heated in the low-temperature regenerator 3 to evaporate and separate the refrigerant, so that the absorption liquid having a further increased concentration of the absorption liquid, that is, the absorption liquid pump interposed in the absorption liquid pipe 13A. 15 is supplied from the absorption liquid pipes 13 and 13A via the low-temperature heat exchanger 9 and is absorbed by the concentrated absorption liquid sprayed from above.

そして、吸収器7で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ14の運転により、低温熱交換器9・高温熱交換器10・第1の熱回収器27それぞれで加熱されて高温再生器1に送られる。   Then, the absorption liquid whose concentration has been reduced by absorbing the refrigerant by the absorber 7, that is, the rare absorption liquid, is operated by the absorption liquid pump 14 so that the low-temperature heat exchanger 9, the high-temperature heat exchanger 10, and the first heat recovery device. 27 is heated and sent to the high-temperature regenerator 1.

上記のように本発明の吸収冷凍機100の運転が行われると、蒸発器6の内部に配管された伝熱管20Aにおいて冷媒の気化熱によって冷却された冷水が、冷/温水管20を介して図示しない負荷に循環供給できるので、冷房などの冷却運転が行える。   When the operation of the absorption refrigerator 100 of the present invention is performed as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 20A piped inside the evaporator 6 passes through the cold / hot water pipe 20. Since it can be circulated and supplied to a load (not shown), cooling operation such as cooling can be performed.

そして、上記構成の吸収冷凍機100においては、吸収液ポンプ14により吸収器7から高温再生器1に搬送される稀吸収液は、低温熱交換器9・高温熱交換器10・第1の熱回収器27それぞれにおいて加熱されるので、高温再生器1に流入するときの稀吸収液の温度は第1の熱回収器27が介在しないときより上昇し、ガスバーナ2で消費する燃料を削減することができる。   And in the absorption refrigerator 100 of the said structure, the rare absorption liquid conveyed from the absorber 7 to the high temperature regenerator 1 by the absorption liquid pump 14 is the low temperature heat exchanger 9, the high temperature heat exchanger 10, and the 1st heat. Since each of the recovery units 27 is heated, the temperature of the rare absorbent when flowing into the high-temperature regenerator 1 is higher than when the first heat recovery unit 27 is not interposed, and the fuel consumed by the gas burner 2 is reduced. Can do.

また、空気供給管24を通ってガスバーナ2に供給される燃焼用空気は、ガスバーナ2から排出される排ガスと第2の熱回収器28で熱交換して加熱され、その後にガスバーナ2に供給されるので、ガスバーナ2における発熱量が増大し、高温再生器1内にある吸収液を加熱する作用効果が増加すると共に、排気管26に設けられた第1の熱回収器27、第2の熱回収器28における加熱作用も増す。したがって、燃料供給管23を介してガスバーナ2に供給する燃料ガスの供給を減少させる作用効果がこの部分でもある。   The combustion air supplied to the gas burner 2 through the air supply pipe 24 is heated by exchanging heat with the exhaust gas discharged from the gas burner 2 by the second heat recovery device 28 and then supplied to the gas burner 2. As a result, the amount of heat generated in the gas burner 2 is increased, the effect of heating the absorbing liquid in the high-temperature regenerator 1 is increased, and the first heat recovery device 27 and the second heat provided in the exhaust pipe 26 are increased. The heating action in the collector 28 is also increased. Therefore, this part also has the effect of reducing the supply of fuel gas supplied to the gas burner 2 through the fuel supply pipe 23.

しかも、高温再生器1に添設されたガスバーナ2から冷房などの冷却運転中に排出され、第1の熱回収器27において吸収液と熱交換して吸収液により熱回収され、その際に凝縮した排ガス中水蒸気の凝縮液と、第2の熱回収器28において燃焼用空気と熱交換して燃焼用空気により熱回収され、その際に凝縮した排ガス中水蒸気の凝縮液とは、上記したように耐食性鋼により形成された凝縮液管30を経由して中和容器29に導入され、器内の炭酸カルシウムにより中和して廃棄されるので、環境に悪影響を及ぼすことはない。   Moreover, it is discharged from the gas burner 2 attached to the high-temperature regenerator 1 during the cooling operation such as cooling, and is heat-recovered by the absorbing liquid by exchanging heat with the absorbing liquid in the first heat recovery unit 27, and condensed at that time. The condensate of the water vapor in the exhaust gas and the heat condensate of the water vapor in the exhaust gas condensed by heat exchange with the combustion air in the second heat recovery unit 28 as described above are as described above. Since it is introduced into the neutralization vessel 29 via the condensate tube 30 formed of corrosion-resistant steel and neutralized with the calcium carbonate in the vessel and discarded, it does not adversely affect the environment.

次に、上記構成の吸収冷凍機100を、暖房などの加熱作用に供する際の動作について説明する。吸収液管11Aに介在する冷暖切替弁V4と、冷媒管18Bに介在する開閉弁V6とを閉弁し、他の全ての弁を開弁させ、冷却水管21に冷却水を流すことなく、ガスバーナ2で燃料の都市ガスを燃焼させて高温再生器1で稀吸収液を加熱沸騰させると、稀吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった濃吸収液とが高温再生器1において得られる。   Next, an operation when the absorption refrigerator 100 having the above configuration is subjected to a heating action such as heating will be described. The gas burner can be used without closing the cooling / heating switching valve V4 interposed in the absorbing liquid pipe 11A and the on-off valve V6 interposed in the refrigerant pipe 18B, opening all other valves, and flowing cooling water through the cooling water pipe 21. When the city gas of fuel is burned in 2 and the rare absorbent is heated and boiled in the high-temperature regenerator 1, the refrigerant vapor evaporated and separated from the rare absorbent and the refrigerant vapor are separated to increase the concentration of the absorbent. Absorption liquid is obtained in the high temperature regenerator 1.

高温再生器1で生成された高温の冷媒蒸気は、高温胴5と低温胴8との圧力差の関係から冷媒管16・16Bを経由して低温胴の吸収器7に入る。また、高温再生器1で生成された濃吸収液も、吸収液管12・12Bを経由して低温胴8内の吸収器7に入る。   The high-temperature refrigerant vapor generated by the high-temperature regenerator 1 enters the low-temperature cylinder absorber 7 via the refrigerant pipes 16 and 16B due to the pressure difference between the high-temperature cylinder 5 and the low-temperature cylinder 8. Further, the concentrated absorbent produced in the high temperature regenerator 1 also enters the absorber 7 in the low temperature cylinder 8 via the absorbent liquid pipes 12 and 12B.

そして、低温胴8内においては伝熱管20Aを備えた蒸発器6が吸収器7に並設されており、冷/温水管20を介して循環供給される水が伝熱管20A内を流れる際に、高温再生器1から冷媒管16・冷媒管16Bを介して供給される冷媒蒸気の潜熱と、吸収液管12・12Bを介して供給される濃吸収液が保有する顕熱とで加熱される。   An evaporator 6 having a heat transfer tube 20A is arranged in parallel with the absorber 7 in the low temperature drum 8, and when water circulated and supplied through the cold / hot water tube 20 flows in the heat transfer tube 20A. The latent heat of the refrigerant vapor supplied from the high-temperature regenerator 1 through the refrigerant pipe 16 and the refrigerant pipe 16B and the sensible heat held by the concentrated absorbent supplied through the absorption liquid pipes 12 and 12B are heated. .

冷媒管16・冷媒管16Bを介して高温再生器1から供給され、伝熱管20A内を流れる水に放熱して凝縮した冷媒液は、吸収液管12・12Bを介して高温再生器1から供給される濃吸収液と混合されて稀吸収液となり、吸収液ポンプ14の運転により、低温熱交換器9・高温熱交換器10それぞれで加熱されて高温再生器1に送られる。   The refrigerant liquid supplied from the high-temperature regenerator 1 through the refrigerant pipe 16 and the refrigerant pipe 16B and radiated and condensed to the water flowing in the heat transfer pipe 20A is supplied from the high-temperature regenerator 1 through the absorption liquid pipes 12 and 12B. The concentrated absorbent is mixed to become a rare absorbent, which is heated by the low temperature heat exchanger 9 and the high temperature heat exchanger 10 by the operation of the absorption liquid pump 14 and sent to the high temperature regenerator 1.

上記のように吸収冷凍機100の運転が行われると、蒸発器6の内部に配管された伝熱管20Aにおいて冷媒の凝縮潜熱と、吸収液の顕熱とによって加熱された温水が、冷/温水管20を介して図示しない負荷に循環供給できるので、暖房などの加熱運転が行える。   When the operation of the absorption refrigerator 100 is performed as described above, the hot water heated by the latent heat of condensation of the refrigerant and the sensible heat of the absorption liquid in the heat transfer tube 20A piped inside the evaporator 6 is cooled / warm water. Since it can be circulated and supplied to a load (not shown) through the pipe 20, a heating operation such as heating can be performed.

そして、暖房などの加熱運転時にも空気供給管24を介してガスバーナ2に供給される燃焼用空気は、ガスバーナ2から排出される排ガスと第2の熱回収器28で熱交換して加熱され、その後にガスバーナ2に供給されるので、ガスバーナ2における発熱量が増大し、高温再生器1内にある吸収液を加熱する作用効果が増加すると共に、排気管26に設けられた第2の熱回収器28における加熱作用も増大し、燃料供給管23を介してガスバーナ2に供給する燃料ガスの供給を減少させる作用効果が大きい。   The combustion air supplied to the gas burner 2 through the air supply pipe 24 even during a heating operation such as heating is heated by exchanging heat between the exhaust gas discharged from the gas burner 2 and the second heat recovery device 28, After that, since it is supplied to the gas burner 2, the amount of heat generated in the gas burner 2 increases, the effect of heating the absorbing liquid in the high-temperature regenerator 1 increases, and the second heat recovery provided in the exhaust pipe 26. The heating action in the vessel 28 also increases, and the effect of reducing the supply of fuel gas supplied to the gas burner 2 via the fuel supply pipe 23 is great.

しかも、暖房などの加熱運転中に高温再生器1に添設されたガスバーナ2から排出され、第1の熱回収器27において吸収液と熱交換して吸収液により熱回収され、その際に凝縮した排ガス中水蒸気の凝縮液と、第2の熱回収器28において燃焼用空気と熱交換して燃焼用空気により熱回収され、その際に凝縮した排ガス中水蒸気の凝縮液も、上記したように耐食性鋼により形成された凝縮液管30を経由して中和容器29に導入され、器内の炭酸カルシウムにより中和して廃棄されるので、環境に悪影響を及ぼすことはない。   Moreover, it is discharged from the gas burner 2 attached to the high-temperature regenerator 1 during a heating operation such as heating, and is heat-recovered by the absorbing liquid by exchanging heat with the absorbing liquid in the first heat recovery unit 27, and condensed at that time. As described above, the condensate of the water vapor in the exhaust gas and the condensate of the water vapor in the exhaust gas condensed at that time by heat exchange with the combustion air in the second heat recovery unit 28 and heat recovered by the combustion air. Since it is introduced into the neutralization vessel 29 via the condensate tube 30 formed of corrosion-resistant steel, and neutralized with the calcium carbonate in the vessel and discarded, it does not adversely affect the environment.

本発明の第2の実施例を、図3に基づいて説明する。なお、理解を容易にするため、図3においても前記図面において説明した部分と同様の機能を有する部分には、同一の符号を付した。   A second embodiment of the present invention will be described with reference to FIG. In order to facilitate understanding, in FIG. 3, the same reference numerals are given to the portions having the same functions as those described in the drawings.

図3に示した第2の実施例の吸収冷凍機100においては、図1に示した第1の実施例の吸収冷凍機100が備えていた中和容器29に代えて、希釈容器29Aを設置すると共に、その希釈容器29Aに給水管32を接続し、給水管32を介して実質的に中性の水、例えば工業用水などを希釈容器29Aに流し、第1の熱回収器27と第2の熱回収器28とから凝縮液管30を介して供給される排ガス中水蒸気の酸性の凝縮液を、中性の多量の水で薄めて、Ph6強の実質的に中性の水にして廃棄するように構成してある。   In the absorption refrigerator 100 of the second embodiment shown in FIG. 3, a dilution container 29A is installed in place of the neutralization container 29 provided in the absorption refrigerator 100 of the first embodiment shown in FIG. At the same time, a water supply pipe 32 is connected to the dilution container 29A, and substantially neutral water, for example, industrial water is allowed to flow through the water supply pipe 32 to the dilution container 29A. The acidic condensate of the water vapor in the exhaust gas supplied from the heat recovery unit 28 through the condensate tube 30 is diluted with a large amount of neutral water to be discarded as a neutral water of slightly over Ph6. It is comprised so that it may do.

したがって、図3に示した第2の実施例の吸収冷凍機100においても、ガスバーナ2から出る排ガス中の水蒸気が凝縮して生成された酸性の凝縮液は、希釈容器29Aに導入され、そこに給水管32を介して供給される実質的に中性の水、例えば工業用水などにより希釈されて排出されるので、酸性ドレン水が環境に悪影響を及ぼすことはない。   Therefore, also in the absorption refrigerator 100 of the second embodiment shown in FIG. 3, the acidic condensate produced by condensation of the water vapor in the exhaust gas from the gas burner 2 is introduced into the dilution vessel 29A, where Since it is diluted and discharged by substantially neutral water supplied through the water supply pipe 32, for example, industrial water, the acid drain water does not adversely affect the environment.

なお、この第2の実施例の吸収冷凍機100においても、第1の熱回収器27と、第2の熱回収器28と、希釈容器29Aと、凝縮液管30の希釈容器29Aと第1、第2の熱回収器27、28との間は、SUS−304などの耐食性材料(非鉄金属、合成樹脂などであっても良い)により形成され、酸性の凝縮液による腐食が防止可能となっている。   In the absorption refrigerator 100 of the second embodiment, the first heat recovery device 27, the second heat recovery device 28, the dilution container 29A, the dilution container 29A of the condensate tube 30 and the first heat recovery device 28 are also used. The space between the second heat recovery units 27 and 28 is formed of a corrosion-resistant material such as SUS-304 (may be non-ferrous metal, synthetic resin, etc.), and corrosion due to acidic condensate can be prevented. ing.

本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   Since the present invention is not limited to the above-described embodiment, various modifications can be made without departing from the spirit described in the claims.

例えば、図1、図2に示した第1の実施例の吸収冷凍機100においては、炭酸カルシウムなどのアルカリ性物質が内在する中和容器29は、入口29Aから器内に流入した排ガス中水蒸気の凝縮液が左右方向と共に、上下方向にも大きく蛇行して出口29Bに至るように、上部側と下部側が交互に開口するように邪魔板31を器内に配設しても良い。   For example, in the absorption refrigerating machine 100 of the first embodiment shown in FIGS. 1 and 2, the neutralization container 29 containing an alkaline substance such as calcium carbonate is used for the water vapor in the exhaust gas flowing into the vessel from the inlet 29A. The baffle plate 31 may be arranged in the container so that the upper side and the lower side are alternately opened so that the condensate meanders in the vertical direction as well as the horizontal direction and reaches the outlet 29B.

また、図3に示した第2の実施例の吸収冷凍機100においては、希釈容器29Aを設けず、給水管32を凝縮液管30に直接接続して、給水管32を介して供給される多量の実質的に中性の水、例えば工業用水などにより、第1の熱回収器27と第2の熱回収器28とから供給される排ガス中水蒸気の酸性の凝縮液を給水管32内で薄めて、Ph6強の実質的に中性の水にして廃棄できるようにすることも可能である。   Further, in the absorption refrigerator 100 of the second embodiment shown in FIG. 3, the dilution container 29 </ b> A is not provided, and the water supply pipe 32 is directly connected to the condensate liquid pipe 30 and supplied through the water supply pipe 32. An acidic condensate of water vapor in the exhaust gas supplied from the first heat recovery device 27 and the second heat recovery device 28 by a large amount of substantially neutral water, for example, industrial water or the like, is supplied in the water supply pipe 32. It is also possible to dilute it so that it can be discarded in the form of substantially neutral water of Ph6.

また、冷暖切替弁V5が介在する吸収液管11Bと、吸収液管11Aの冷暖切替弁V4の設置を省略し、冷房などの冷却運転時だけでなく、暖房などの加熱運転時も、吸収器7から高温再生器1に供給される吸収液が第1の熱回収器27を通過して、ガスバーナ2から出る排ガスの熱が吸収液により回収されるように構成することも可能である。   Further, the absorption liquid pipe 11B in which the cooling / heating switching valve V5 is interposed and the cooling / heating switching valve V4 of the absorption liquid pipe 11A are omitted, and the absorber is used not only during cooling operation such as cooling but also during heating operation such as heating. It is also possible to configure so that the absorbing liquid supplied from 7 to the high-temperature regenerator 1 passes through the first heat recovery device 27 and the heat of the exhaust gas emitted from the gas burner 2 is recovered by the absorbing liquid.

実施例1の説明図である。2 is an explanatory diagram of Embodiment 1. FIG. 天板を取り外して内部の状態を示した中和容器の説明図である。It is explanatory drawing of the neutralization container which removed the top plate and showed the internal state. 実施例2の説明図である。FIG. 6 is an explanatory diagram of Example 2. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art.

符号の説明Explanation of symbols

1 高温再生器
2 ガスバーナ
3 低温再生器
4 凝縮器
5 高温胴
6 蒸発器
7 吸収器
8 高温胴
9 低温熱交換器
10 高温熱交換器
11〜13 吸収液管
14、15 吸収液ポンプ
16〜18 冷媒管
19 冷媒ポンプ
20 冷/温水管
21 冷却水管
22 連通管
23 燃料供給管
24 空気供給管
25 ファン
26 排気管
27 第1の熱回収器
28 第2の熱回収器
29 中和容器
29A 希釈容器
30 凝縮液管
31 邪魔板
32 給水管
V1〜V5 冷暖切替弁
V6 開閉弁
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Gas burner 3 Low temperature regenerator 4 Condenser 5 High temperature cylinder 6 Evaporator 7 Absorber 8 High temperature cylinder 9 Low temperature heat exchanger 10 High temperature heat exchanger 11-13 Absorption liquid pipes 14, 15 Absorption liquid pumps 16-18 Refrigerant pipe 19 Refrigerant pump 20 Cold / hot water pipe 21 Cooling water pipe 22 Communication pipe 23 Fuel supply pipe 24 Air supply pipe 25 Fan 26 Exhaust pipe 27 First heat recovery device 28 Second heat recovery device 29 Neutralization vessel 29A Dilution vessel 30 Condensate pipe 31 Baffle plate 32 Water supply pipe V1 to V5 Cooling / heating switching valve V6 On-off valve

Claims (6)

吸収液加熱手段としての燃焼装置を備えた高温再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器と、燃焼装置から排出された排ガスと吸収液との熱交換により排ガスが保有する熱を吸収液に回収して吸収液を加熱する熱回収器とを備えた吸収冷凍機において、排ガス中の水蒸気が熱回収器内で凝縮し生成された水蒸気の凝縮液が流れる凝縮液管路に、アルカリ性物質が内在する中和容器を設けたことを特徴とする吸収冷凍機。 Exhaust gas is generated by heat exchange between the high-temperature regenerator equipped with the combustion device as the absorption liquid heating means, the low-temperature regenerator, the condenser, the evaporator, the absorber, the exhaust gas discharged from the combustion device and the absorption liquid. Condensate in which water vapor in the exhaust gas is condensed in the heat recovery unit and the water vapor condensate is generated in an absorption refrigeration machine equipped with a heat recovery unit that recovers the retained heat to the absorption liquid and heats the absorption liquid An absorption refrigerator comprising a neutralization container containing an alkaline substance in a pipeline. 熱回収器として、吸収器から高温再生器に流入している吸収液と燃焼装置から排出された排ガスとが流入して熱交換し、排ガスが保有する熱を吸収液に回収する第1の熱回収器と、燃焼装置に供給されている燃焼用空気と燃焼装置から排出された排ガスとが流入して熱交換し、排ガスが保有する熱を燃焼用空気に回収する第2の熱回収器とが設けられ、吸収液との熱交換により第1の熱回収器において凝縮し生成された排ガス中の水蒸気の凝縮液と、燃焼用空気との熱交換により第2の熱回収器において凝縮し生成された排ガス中の水蒸気の凝縮液とが同一の中和容器に導入可能に凝縮液管路が設けられたことを特徴とする請求項1記載の吸収冷凍機。 As the heat recovery device, the first heat that recovers the heat held in the exhaust gas by absorbing heat flowing from the absorber into the high-temperature regenerator and the exhaust gas discharged from the combustion device and exchanging heat. A second heat recovery unit that recovers heat stored in the exhaust gas by inflowing heat exchange between the combustion air supplied to the combustion device and the exhaust gas discharged from the combustion device; And is condensed and generated in the second heat recovery unit by heat exchange with the condensate of water vapor in the exhaust gas generated by condensation in the first heat recovery unit by heat exchange with the absorption liquid and combustion air. The absorption refrigerating machine according to claim 1, wherein a condensate conduit is provided so that the condensate of water vapor in the exhaust gas is introduced into the same neutralization vessel. 排ガスが流れる管路が、燃焼装置から第1の熱回収器を経由して第2の熱回収器に至るように設けられたことを特徴とする請求項2記載の吸収冷凍機。 The absorption refrigerating machine according to claim 2, wherein a pipe line through which the exhaust gas flows is provided so as to reach the second heat recovery device from the combustion device via the first heat recovery device. 中和容器の設置に代えて、凝縮液管路に実質的に中性な水の供給が可能な給水管路が連結されたことを特徴とする請求項1〜3何れかに記載の吸収冷凍機。 The absorption refrigeration according to any one of claims 1 to 3, wherein a water supply pipe capable of supplying substantially neutral water is connected to the condensate pipe instead of installing the neutralization container. Machine. 熱回収器と、中和容器と、熱回収器と中和容器との間の凝縮液管路とが耐食性材料により形成されたことを特徴とする請求項1〜3何れかに記載の吸収冷凍機。 The absorption refrigeration according to any one of claims 1 to 3, wherein the heat recovery unit, the neutralization vessel, and the condensate conduit between the heat recovery unit and the neutralization vessel are formed of a corrosion-resistant material. Machine. 熱回収器と、凝縮液管路の熱回収器と給水管路連結部との間が耐食性材料により形成されたことを特徴とする請求項4記載の吸収冷凍機。 The absorption refrigerator according to claim 4, wherein a space between the heat recovery unit, the heat recovery unit of the condensate line, and the water supply line connection part is formed of a corrosion-resistant material.
JP2003392936A 2003-11-21 2003-11-21 Absorption refrigerating machine Pending JP2005155975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392936A JP2005155975A (en) 2003-11-21 2003-11-21 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392936A JP2005155975A (en) 2003-11-21 2003-11-21 Absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JP2005155975A true JP2005155975A (en) 2005-06-16

Family

ID=34719480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392936A Pending JP2005155975A (en) 2003-11-21 2003-11-21 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2005155975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957090A (en) * 2009-09-19 2011-01-26 李华玉 Recuperative double-effect and multi-effect second-type absorbing heat pump
JP2014092315A (en) * 2012-11-02 2014-05-19 Gastar Corp Combustion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957090A (en) * 2009-09-19 2011-01-26 李华玉 Recuperative double-effect and multi-effect second-type absorbing heat pump
CN101957090B (en) * 2009-09-19 2012-08-15 李华玉 Recuperative double-effect and multi-effect second-type absorbing heat pump
JP2014092315A (en) * 2012-11-02 2014-05-19 Gastar Corp Combustion device

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2002147885A (en) Absorption refrigerating machine
JP5384072B2 (en) Absorption type water heater
JP2005155975A (en) Absorption refrigerating machine
KR101660706B1 (en) Apparatus for Heat Recovery of Exhaust Gas in High Efficiency Absorption Chiller-Heater
JP3883894B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP4315855B2 (en) Absorption refrigerator
JP3889655B2 (en) Absorption refrigerator
KR100493598B1 (en) Absorption Type Refrigerator
JP4334319B2 (en) Operation method of absorption refrigerator
JP3851837B2 (en) Waste heat recovery type absorption refrigerator
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JP2001174100A (en) Waste heat recovery absorption hot and chilled water generator
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP6653444B2 (en) Absorption refrigerator
JP4073219B2 (en) Absorption chiller / heater
JP2005300126A (en) Absorption type refrigerating machine
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
KR100858776B1 (en) Apparatus for supplying warm water during cooling mode or operation stop in absorption water cooler and heater
JP4322997B2 (en) Absorption refrigerator
JP3133635B2 (en) Cooling device safety device
JP2001124429A (en) Absorption type refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303