JP2005152954A - Method for continuously casting ultralow carbon steel slab - Google Patents

Method for continuously casting ultralow carbon steel slab Download PDF

Info

Publication number
JP2005152954A
JP2005152954A JP2003395818A JP2003395818A JP2005152954A JP 2005152954 A JP2005152954 A JP 2005152954A JP 2003395818 A JP2003395818 A JP 2003395818A JP 2003395818 A JP2003395818 A JP 2003395818A JP 2005152954 A JP2005152954 A JP 2005152954A
Authority
JP
Japan
Prior art keywords
mold
magnetic field
casting
immersion nozzle
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003395818A
Other languages
Japanese (ja)
Other versions
JP4411945B2 (en
Inventor
Yuji Miki
祐司 三木
Akira Yamauchi
章 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003395818A priority Critical patent/JP4411945B2/en
Priority to US10/921,434 priority patent/US20050045303A1/en
Priority to DE602004026253T priority patent/DE602004026253D1/en
Priority to EP04020281A priority patent/EP1510272B1/en
Priority to TW093125776A priority patent/TWI268820B/en
Priority to CNB2004100748080A priority patent/CN1299855C/en
Priority to KR1020040068352A priority patent/KR100654738B1/en
Publication of JP2005152954A publication Critical patent/JP2005152954A/en
Priority to US11/314,505 priority patent/US20060102316A1/en
Application granted granted Critical
Publication of JP4411945B2 publication Critical patent/JP4411945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably obtain a slab having superior surface quality without performing slab conditioning such as scarfing even if high speed casting is applied at the casting rate of molten steel of ≥2.0 m/min. <P>SOLUTION: When an ultralow carbon steel slab having a C content of ≤0.01 mass% is produced using a continuous casting apparatus where magnetic field application devices each applying a static magnetic field over the whole width of a continuous casting mold to a direction crossing the thickness of the mold are provided at the upper part of the mold and at a position in the lower part by a fixed distance, and molten steel is fed to a space between the magnetic application devices at the upper and lower stages via an immersion nozzle, casting is performed at the casting speed of ≥2.0 m/min using an immersion nozzle satisfying the condition that the ratio(D/d) of a short side of length D of a casting space in a mold of the continuous casting apparatus to a lateral width d of immersion nozzle discharge spouts is 1.5 to 3.0, under the condition that the short side of length D of a casting space in a mold of the continuous casting apparatus is 150 to 240 mm and the immersion depth of the immersion nozzle is 200 to 350 mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、極低炭素鋼のスラブ連続鋳造方法に関し、特に厳格な表面品質が要求される自動車外板等の用途に供して好適な素材スラブの製造技術に関するものである。   The present invention relates to a method for continuously casting slabs of ultra-low carbon steel, and more particularly to a technology for producing a material slab suitable for use in automobile outer plates and the like that require strict surface quality.

自動車の外板等のように、深絞り加工やその他の複雑な変形を伴う加工が施される用途に使用される鋼板には、高い成形性が要求されるため、C含有量を極力低減したいわゆる極低炭素鋼(通常、鋼中のC含有量が0.01mass%以下)が使用されている。このような極低炭素鋼板の中でも特に、自動車外板用の冷延鋼板は、塗装性に加えて外観の美しさが要求される。   Steel sheets used for applications where deep drawing and other complicated deformation processes such as the outer plate of automobiles are applied require high formability, so the C content has been reduced as much as possible. So-called very low carbon steel (usually C content in the steel is 0.01 mass% or less) is used. Among such extremely low carbon steel plates, in particular, cold rolled steel plates for automobile outer plates are required to have a beautiful appearance in addition to the paintability.

ところで、極低炭素鋼は、その精錬過程で酸素を使用して溶鋼中のCを酸化除去する工程が不可欠であるため、この工程で溶鋼中に溶存した酸素をさらにアルミニウム、マグネシウム、チタンなどの脱酸剤で脱酸する工程が必要となる。この脱酸工程において、溶鋼中の酸素は脱酸剤と結合して脱酸生成物であるアルミナ、マグネシア、チタニア等を生じ、これが溶鋼中に非金属介在物として残存する。   By the way, since the process of oxidizing and removing C in molten steel using oxygen in the refining process is indispensable for ultra low carbon steel, oxygen dissolved in the molten steel in this process is further reduced to aluminum, magnesium, titanium, etc. A step of deoxidizing with a deoxidizing agent is required. In this deoxidation step, oxygen in the molten steel combines with a deoxidizer to produce deoxidation products such as alumina, magnesia, titania, etc., which remain as nonmetallic inclusions in the molten steel.

このような非金属介在物がスラブの表面近傍に存在すると、スラブを熱間圧延および冷間圧延して薄鋼板とした場合に、鋼板の表面にヘゲやフクレなどの欠陥を生じるので好ましくない。また、脱酸生成物以外にも、連続鋳造時に鋳型内の溶鋼表面に添加するモールドパウダーや、タンディッシュから鋳型内に溶鋼を供給するための浸漬ノズルの詰まり防止のために供給されるアルゴンガスの気泡が溶鋼中に巻き込まれたものが、気泡単独あるいは脱酸生成物と合体した気泡として溶鋼中に残存しても、上記の脱酸生成物と同様な表面欠陥をもたらすことが知られている。   If such non-metallic inclusions are present in the vicinity of the surface of the slab, when the slab is hot-rolled and cold-rolled to form a thin steel plate, defects such as scabs and blisters occur on the surface of the steel plate, which is not preferable. . Besides deoxidized products, argon gas supplied to prevent clogging of mold powder added to the molten steel surface in the mold during continuous casting and immersion nozzle for supplying molten steel from the tundish into the mold It is known that even if bubbles in the molten steel are entrained in the molten steel and remain in the molten steel as bubbles alone or in combination with the deoxidized product, the same surface defects as the above deoxidized product are caused. Yes.

そこで、従来は、スラブ表面を無手入れで熱延される一般の冷延鋼板用の連続鋳造スラブとは異なり、自動車外板用スラブの場合には、その表面を1〜4mm程度溶削等の手段によって除去し、スラブ表面の脱酸生成物系介在物、気泡、モールドフラックス等の熱延以降で鋼板表面欠陥の原因となる異物を取り除いた上で、熱間圧延および冷間圧延に供していた。
しかしながら、このようなスラブの精整処理は、素材であるスラブの歩留りを低下させる上に、工程の滞留を招くという問題があった。
そこで、連続鋳造設備においてスラブを製造する段階で、上記したような鋼板の表面欠陥の原因となるスラブ表層欠陥の発生を防止する試みがなされている。
Therefore, in the past, unlike a continuous cast slab for a cold-rolled steel sheet in which the surface of the slab is hot-rolled without maintenance, in the case of a slab for an automobile outer sheet, the surface is subjected to about 1 to 4 mm of cutting, etc. After removing the foreign substances that cause steel sheet surface defects after hot rolling such as deoxidation product inclusions, bubbles, mold flux, etc. on the slab surface, it is subjected to hot rolling and cold rolling. It was.
However, such a slab refining process has a problem in that the yield of the slab, which is a raw material, is lowered and the process is retained.
Therefore, attempts have been made to prevent the occurrence of slab surface layer defects that cause surface defects of the steel sheet as described above at the stage of producing slabs in continuous casting equipment.

このような試みの基本的な考え方は、
(1) スラブを大断面化(スラブ幅は圧延時の制約があるので、スラブ厚みを増大することで対応)して鋳造速度(m/min)を下げることにより、生産性を損なわずに鋳型内における溶鋼の滞留時間を長くし、これによって鋳型内での溶鋼中からの脱酸生成物、モールドパウダーあるいは気泡などの異物が浮上する時間を稼ぐ、
(2) 鋳型内での溶鋼中からの脱酸生成物、モールドパウダーあるいは気泡などの浮上・分離を促すために、垂直部を有する連鋳機で鋳造する、
(3) 電磁力により、メニスカス近傍に水平方向の流れを付与し、溶鋼内に浮遊する異物が凝固シェルに捕捉されることを防止する(洗浄効果)、
(4) モールドパウダーの粘度を適正にして、溶鋼中へのモールドパウダーの巻き込みを減少する、
(5) 連続鋳造用鋳型のオシレーション(上下振動)条件を適正化し、鋳型内で形成される凝固シェルの爪の発生(オシレーションに起因して凝固シェルの一部が溶鋼側に倒れ込む現象)を軽減し、この部分への脱酸生成物、モールドパウダー、気泡などのトラップ量を低減する、
(6) 浸漬ノズルから鋳型内に供給される溶鋼吐出流に対し、電磁撹拌や電磁ブレーキを付加して、溶鋼の流れを適正化し、脱酸生成物を伴った溶鋼吐出流が鋳型内の深い位置にまで進入することを防止する、
などがその主流であった。
The basic idea of such an attempt is
(1) The slab has a large cross section (the slab width is restricted during rolling, so it can be handled by increasing the slab thickness) and the casting speed (m / min) is reduced to reduce the mold without sacrificing productivity. Increase the residence time of the molten steel in the inside, thereby gaining time for the deoxidation products, mold powder or bubbles and other foreign matters from the molten steel to rise in the mold,
(2) Casting with a continuous casting machine having a vertical part in order to promote floating and separation of deoxidation products, mold powder or bubbles from molten steel in the mold,
(3) Electromagnetic force provides a horizontal flow in the vicinity of the meniscus to prevent foreign matter floating in the molten steel from being trapped by the solidified shell (cleaning effect).
(4) Reduce mold powder entrainment in molten steel by making mold powder viscosity appropriate.
(5) Optimization of the oscillation (vertical vibration) conditions of the casting mold for continuous casting and generation of claw of the solidified shell formed in the mold (a phenomenon in which a part of the solidified shell falls to the molten steel side due to the oscillation) Reduce the trap amount of deoxidation products, mold powder, bubbles, etc. in this part,
(6) Electromagnetic stirring and electromagnetic brake are added to the molten steel discharge flow supplied from the immersion nozzle into the mold to optimize the flow of the molten steel, and the molten steel discharge flow with deoxidation products is deep in the mold. Prevent entry into position,
Etc. were the mainstream.

しかしながら、上記の技術ではいずれも、自動車外板等の用途に使用される極低炭素鋼スラブの製造に際し、2.0 m/min を超えるような高速鋳造の場合には、未だ、溶削等のスラブ手入れを施す必要なしに高品質のスラブを安定して製造することはできなかった。   However, in all of the above technologies, in the production of ultra-low carbon steel slabs used for automotive skins, etc., in the case of high-speed casting exceeding 2.0 m / min, slabs such as cutting are still used. High quality slabs could not be produced stably without the need for care.

ところで、前記した、鋳型内溶鋼流動を電磁力で制御する技術としては、以下のようなものが提案されている。
例えば、特許文献1には、鋳型長辺を挟み対向する上下2段の磁極を鋳型長辺背面に配置し、(1) 下側に配置した磁極に直流静磁界と交流移動磁界とが重畳された磁界を印加する、あるいは(2) 上側に配置した磁極に直流静磁界と交流移動磁界とが重畳された磁界を印加し、下側に配置した磁極に直流静磁界を印加する鋳型内溶鋼流動の制御方法が開示されている。
特許文献2には、浸漬ノズルから吐出された溶鋼流を包囲する位置に静磁場を印加して流速を低下させると共に、この静磁場よりも下流位置に電磁撹拌装置を設置する電磁撹拌方法が開示されている。
特許文献3には、鋳型上部に移動磁界を形成する磁石( 400〜2000ガウス)を設置し、メニスカス表層部を流れる上昇反転溶鋼流に移動磁場を作用させると共に、メニスカスから 500mm以上下方に静磁場を形成する磁石(1000〜7000ガウス)を投置し、吐出溶鋼流が鋳型短辺に当たって下降する溶鋼流に静磁場を作用させる鋳造方法および装置が開示されている。
特許文献4には、浸漬ノズル下端よりも上部に電磁撹拌用磁石を設置し、浸漬ノズル下端よりも下部に移動磁界、静磁界が印可できる磁石を投置し、鋼種や鋳造速度に応じて静磁場と移動磁場を使い分ける鋳造方法が開示されている。
非特許文献1には、浸漬ノズルからの吐出流に交流移動磁場を作用させることにより、吐出溶鋼流を制動(EMLS)したり加速(EMLA)したりする技術が開示されている。
特許文献5には、鋼の連続鋳造において、モールド上部には電機撹拌装置、モールド下部には電磁ブレーキを設置することにより、浸漬ノズルから出る吐出流を制御する技術が開示されている。
特許文献6には、浸漬ノズル吐出孔の上に置いた磁石により、幅方向全域に静磁界と高周波磁界を重畳して作用させると共に、吐出孔の下方に置いた磁石により、静磁界を作用させる鋼の鋳造方法が開示されている。
特許文献7および特許文献8には、交流振動磁界、あるいはこれと直流磁界を重畳することによって鋳片の表面品質を向上する方法が提案されている。
By the way, the following is proposed as a technique for controlling the molten steel flow in the mold by electromagnetic force.
For example, in Patent Document 1, two upper and lower magnetic poles facing each other across the mold long side are arranged on the back side of the mold long side, and (1) a DC static magnetic field and an AC moving magnetic field are superimposed on the magnetic pole arranged on the lower side. (2) Applying a magnetic field in which a DC static magnetic field and an AC moving magnetic field are superimposed on the upper magnetic pole and applying a DC static magnetic field to the lower magnetic pole A control method is disclosed.
Patent Document 2 discloses an electromagnetic stirring method in which a static magnetic field is applied to a position surrounding a molten steel flow discharged from an immersion nozzle to reduce the flow velocity, and an electromagnetic stirring device is installed at a position downstream of the static magnetic field. Has been.
In Patent Document 3, a magnet (400 to 2000 gauss) that forms a moving magnetic field is installed on the upper part of the mold, and the moving magnetic field is applied to the rising reversal molten steel flow flowing on the surface of the meniscus, and the static magnetic field is at least 500 mm below the meniscus. A casting method and apparatus are disclosed in which a magnet (1000 to 7000 gauss) is formed and a static magnetic field is applied to the molten steel flow that descends when the discharged molten steel flow hits the short side of the mold.
In Patent Document 4, a magnet for electromagnetic stirring is installed above the lower end of the immersion nozzle, and a magnet capable of applying a moving magnetic field and a static magnetic field is placed below the lower end of the immersion nozzle. A casting method that selectively uses a magnetic field and a moving magnetic field is disclosed.
Non-Patent Document 1 discloses a technique for braking (EMLS) or accelerating (EMLA) a discharge molten steel flow by applying an AC moving magnetic field to the discharge flow from an immersion nozzle.
Patent Document 5 discloses a technique for controlling the discharge flow from an immersion nozzle by installing an electric stirrer at the upper part of the mold and an electromagnetic brake at the lower part of the mold in continuous casting of steel.
In Patent Document 6, a static magnetic field and a high-frequency magnetic field are superimposed on the entire width direction by a magnet placed on the immersion nozzle discharge hole, and a static magnetic field is acted on by a magnet placed below the discharge hole. A steel casting method is disclosed.
Patent Document 7 and Patent Document 8 propose a method for improving the surface quality of a slab by superimposing an alternating vibration magnetic field or a direct current magnetic field thereon.

特開平10−305353号公報Japanese Patent Laid-Open No. 10-305353 特開昭61−193755号公報JP 61-193755 A 特許第 2610741号公報Japanese Patent No. 2610741 特開平9−262651号公報JP-A-9-262651 材料とプロセスVol.3(1990), P.256Materials and Processes Vol.3 (1990), P.256 特開昭63−119959号公報Japanese Unexamined Patent Publication No. 63-119959 特開平6−190520号公報JP-A-6-190520 特開平2003−103348号公報Japanese Patent Laid-Open No. 2003-103348 特開平2003−103349号公報Japanese Patent Laid-Open No. 2003-103349

本発明は、上記したような鋳型内溶鋼に対する電磁制御技術を利用して、溶鋼の鋳造速度が 2.0 m/minを超える高速鋳造を適用しても、溶削等のスラブ手入れを施す必要のない表面品質に優れたスラブを安定して得ることができる、極低炭素鋼のスラブ連続鋳造方法を提案することを目的とする。   The present invention uses the electromagnetic control technology for molten steel in the mold as described above, and does not require slab maintenance such as cutting even when high-speed casting with a molten steel casting speed exceeding 2.0 m / min is applied. An object of the present invention is to propose a slab continuous casting method of ultra-low carbon steel that can stably obtain a slab having excellent surface quality.

さて、発明者らは、上記の目的を達成すべく、鋳型内溶鋼に対する印加磁場の種類、浸漬ノズルの浸漬深さ、鋳型形状、浸漬ノズルの形状等について、鋭意研究を重ねた結果、特定の種類の磁場印加の下で、鋳造速度、連鋳造型内鋳造空間の短辺長さ、ノズル浸漬深さおよび前記短辺長さDと浸漬ノズル吐出孔横幅dの比D/d を適正に制御することによって、所期した目的が有利に達成されることの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, in order to achieve the above object, the inventors have conducted intensive research on the type of magnetic field applied to the molten steel in the mold, the immersion depth of the immersion nozzle, the mold shape, the shape of the immersion nozzle, etc. Under various types of magnetic field application, the casting speed, the short side length of the casting space in the continuous casting mold, the nozzle immersion depth, and the ratio D / d of the short side length D and the horizontal width d of the immersion nozzle are controlled appropriately. As a result, it was found that the intended purpose can be advantageously achieved.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.連続鋳造鋳型内の湯面レベルを含む鋳型上部と、これより一定距離下方の位置にそれぞれ、鋳型厚みを横切る方向に鋳型全幅にわたって静磁界を印加する磁場印加装置をそなえ、これら上下二段の磁場印加装置の間に浸漬ノズルを介して溶鋼を供給する連続鋳造設備を用いて、C含有量が0.01mass%以下の極低炭素鋼スラブを製進するに際し、
上記連続鋳造設備の鋳型内鋳造空間の短辺長さ:150 〜240 mm、浸漬ノズルの浸漬深さ:200 〜350 mmの条件下で、上記短辺長さDと浸漬ノズル吐出孔横幅dの比D/dが 1.5〜3.0 を満足する浸漬ノズルを用い、鋳造速度:2.0 m/min 超の速度で鋳造することを特徴とする極低炭素鋼のスラブ連続鋳造方法。
That is, the gist configuration of the present invention is as follows.
1. A magnetic field application device that applies a static magnetic field across the entire width of the mold in a direction transverse to the mold thickness at a position below the mold upper portion including the molten metal level in the continuous casting mold, and these two upper and lower magnetic fields. When a very low carbon steel slab having a C content of 0.01 mass% or less is produced using a continuous casting facility that supplies molten steel through an immersion nozzle between application devices,
Under the conditions of the short side length of the casting space in the mold of the above continuous casting equipment: 150 to 240 mm and the immersion depth of the immersion nozzle: 200 to 350 mm, the short side length D and the immersion nozzle discharge hole lateral width d A slab continuous casting method for ultra-low carbon steel, characterized in that casting is performed at a casting speed of more than 2.0 m / min using an immersion nozzle that satisfies a ratio D / d of 1.5 to 3.0.

2.連続鋳造鋳型内の湯面レベルを含む鋳型上部に、鋳型厚みを横切る方向に鋳型全幅にわたって静磁界と交流磁界を重畳印加する磁場印加装置をそなえ、この磁場印加装置の下方に浸漬ノズルを介して溶鋼を供給する連続鋳造設備を用いて、C含有量が0.01mass%以下の極低炭素鋼スラブを製進するに際し、
上記連続鋳造設備の鋳型内鋳造空間の短辺長さ:150 〜240 mm、浸漬ノズルの浸漬深さ:200 〜350 mmの条件下で、上記短辺長さDと浸漬ノズル吐出孔横幅dの比D/dが 1.5〜3.0 を満足する浸漬ノズルを用い、鋳造速度:2.0 m/min 超の速度で鋳造することを特徴とする極低炭素鋼のスラブ連続鋳造方法。
2. A magnetic field application device that superimposes and applies a static magnetic field and an alternating magnetic field over the entire width of the mold in a direction transverse to the mold thickness is provided on the upper part of the mold including the molten metal surface level in the continuous casting mold, and an immersion nozzle is provided below the magnetic field application device. When making a very low carbon steel slab with a C content of 0.01 mass% or less using a continuous casting facility that supplies molten steel,
Under the conditions of the short side length of the casting space in the mold of the above continuous casting equipment: 150 to 240 mm and the immersion depth of the immersion nozzle: 200 to 350 mm, the short side length D and the immersion nozzle discharge hole lateral width d A slab continuous casting method for ultra-low carbon steel, characterized in that casting is performed at a casting speed of more than 2.0 m / min using an immersion nozzle that satisfies a ratio D / d of 1.5 to 3.0.

3.連続鋳造鋳型内の湯面レベルを含む鋳型上部に、鋳型厚みを横切る方向に鋳型全幅にわたって静磁界と交流磁界を重畳印加する磁場印加装置をそなえ、かつこれより一定距離下方の位置に、同じく鋳型全幅にわたって静磁界を印加する磁場印加装置をそなえ、これら上下二段の磁場印加装置の間に浸漬ノズルを介して溶鋼を供給する連続鋳造設備を用いて、C含有量が0.01mass%以下の極低炭素鋼スラブを製進するに際し、
上記連続鋳造設備の鋳型内鋳造空間の短辺長さ:150 〜240 mm、浸漬ノズルの浸漬深さ:200 〜350 mmの条件下で、上記短辺長さDと浸漬ノズル吐出孔横幅dの比D/dが 1.5〜3.0 を満足する浸漬ノズルを用い、鋳造速度:2.0 m/min 超の速度で鋳造することを特徴とする極低炭素鋼のスラブ連続鋳造方法。
3. A magnetic field application device that superimposes and applies a static magnetic field and an alternating magnetic field across the entire width of the mold in the direction transverse to the mold thickness is provided on the upper part of the mold including the surface level in the continuous casting mold. A pole having a C content of 0.01 mass% or less using a continuous casting facility that includes a magnetic field application device that applies a static magnetic field over the entire width, and supplies molten steel through an immersion nozzle between the upper and lower magnetic field application devices. In making low carbon steel slabs,
Under the conditions of the short side length of the casting space in the mold of the above continuous casting equipment: 150 to 240 mm and the immersion depth of the immersion nozzle: 200 to 350 mm, the short side length D and the immersion nozzle discharge hole lateral width d A slab continuous casting method for ultra-low carbon steel, characterized in that casting is performed at a casting speed of more than 2.0 m / min using an immersion nozzle that satisfies a ratio D / d of 1.5 to 3.0.

4.前記鋳造速度を 2.4 m/min以上とすることを特徴とする上記1〜3のいずれかに記載の極低炭素鋼のスラブ連続鋳造方法。 4). 4. The ultra low carbon steel slab continuous casting method according to any one of 1 to 3 above, wherein the casting speed is 2.4 m / min or more.

5.前記スラブ厚みDと浸漬ノズル吐出孔横幅dの比D/dが 2.1〜2.9 を満足する浸漬ノズルを使用して鋳造することを特徴とする上記1〜4のいずれかに記載の極低炭素鋼のスラブ連続鋳造方法。 5). The ultra-low carbon steel according to any one of the above 1 to 4, wherein casting is performed using an immersion nozzle in which a ratio D / d between the slab thickness D and the immersion nozzle discharge hole width d satisfies 2.1 to 2.9. Slab continuous casting method.

6.前記極低炭素鋼スラブが、自動車外板向けの冷延鋼板用素材であることを特徴とする上記1〜5のいずれかに記載の極低炭素鋼のスラグ連続鋳造方法。 6). 6. The ultra-low carbon steel slag continuous casting method according to any one of the above 1 to 5, wherein the ultra-low carbon steel slab is a material for a cold-rolled steel sheet for an automobile outer plate.

本発明によれば、磁場印加装置による鋳型内溶鋼の適切な流動制御の下で、鋳型内鋳造空間の短辺長さ(スラブになったときのスラブ厚み)を従来よりも小さい 150〜240 mmとし、一方で鋳造速度を従来よりも大きい 2.0 m/min超え(好ましくは 2.4 m/min以上)とすることにより、鋳型内長辺に沿った溶鋼の流速が高速化し、これにより、
1)鋳型内で生成する長辺側凝固シェルにトラップされようとする介在物や気泡の洗浄効果が向上するだけでなく、
2)長辺側凝固シェルそのものが薄くなって、たとえこのシェルに幾分かの介在物や気泡がトラップされたとしても、熱間圧延前のスラブ加熱の際にスケールとともに効果的に除去される
結果、自動車外板用向け冷延鋼板のように表面品質が著しく厳しい極低炭素鋼板用の素材として最適な、捕捉される気泡や非金属介在物、モールドフラックスなどに起因した表面欠陥や内部介在物の少ないスラブを、安定して製造することが可能になる。
また、鋳造速度が大きくても、短辺長さが小さいので、短辺における凝固シェル厚の不均一を防止でき、短辺バルジングを防止することができる。
According to the present invention, under the proper flow control of molten steel in a mold by a magnetic field application device, the short side length of the casting space in the mold (slab thickness when it becomes a slab) is 150 to 240 mm smaller than the conventional one. On the other hand, by setting the casting speed to 2.0 m / min, which is higher than before (preferably 2.4 m / min or more), the flow velocity of the molten steel along the long side in the mold is increased.
1) In addition to improving the cleaning effect of inclusions and bubbles that are trapped in the long-side solidified shell generated in the mold,
2) Even if the long side solidified shell itself becomes thin and some inclusions or bubbles are trapped in this shell, it is effectively removed together with the scale during slab heating before hot rolling. As a result, surface defects and internal inclusions caused by trapped bubbles, non-metallic inclusions, mold flux, etc., ideal as a material for extremely low carbon steel sheets with extremely severe surface quality, such as cold rolled steel sheets for automobile outer plates It is possible to stably manufacture a slab with few objects.
Even if the casting speed is high, the short side length is small, so that the thickness of the solidified shell on the short side can be prevented from being uneven, and short side bulging can be prevented.

以下、本発明を具体的に説明する。
図1(a) 〜(c) に、本発明に用いて好適な磁場印加装置を備える連続鋳造用鋳型を模式で示す。
同図(a) は、湯面レベルを含む鋳型上部と、これより一定距離下方の位置にそれぞれ、上下二段にわたって静磁界を印加する磁場印加装置1を配置した場合、同図(b) は、湯面レベルを含む鋳型上部のみに、静磁界と交流磁界を重畳印加する磁場印加装置2を配置した場合、同図(c) は、湯面レベルを含む鋳型上部には交流磁界を印加する磁場印加装置2を、一方これより一定距離下方の位置には静磁界を印加する磁場印加装置1をそれぞれ配置した場合である。
The present invention will be specifically described below.
1 (a) to 1 (c) schematically show a continuous casting mold provided with a magnetic field application device suitable for use in the present invention.
Fig. 11 (a) shows the case where the magnetic field application device 1 for applying a static magnetic field over two upper and lower stages is arranged at the upper part of the mold including the molten metal level and at a position below a certain distance, respectively. When the magnetic field applying device 2 for applying a static magnetic field and an alternating magnetic field is applied only to the upper part of the mold including the molten metal surface level, FIG. 5 (c) applies an alternating magnetic field to the upper part of the mold including the molten metal surface level. This is a case where the magnetic field application device 2 is arranged, and the magnetic field application device 1 for applying a static magnetic field is disposed at a position below a certain distance.

上記した各種磁場印加装置のうち、静磁界を印加する磁場印加装置を用いる場合には、直流磁界の大きさ(磁束密度)は1000〜7000ガウス程度とすることが望ましい。この数値は、上限二段にわたって設ける場合でも、下段のみに設ける場合でも同じである。   Of the various magnetic field application devices described above, when a magnetic field application device that applies a static magnetic field is used, the magnitude of the DC magnetic field (magnetic flux density) is preferably about 1000 to 7000 gauss. This numerical value is the same whether it is provided over the upper limit two stages or only in the lower stage.

また、交流磁界には、交流振動磁界と交流移動磁界の2種類があるが、本発明では、どちらも好適に使用することができる。
ここに、交流振動磁界とは、図2に示すように、隣り合うコイルに位相が実質的に逆の交流電流を通電するか、あるいはコイルの巻線方向を逆にして同位相の交流電流を通電して、隣り合うコイルに発生する磁界を実質的に反転させた磁界のことである。そして、この交流振動磁界と直流磁界を重畳させることにより、鋳型内溶鋼に局所的な流動を誘起させることができる。図中、番号3が直流コイル、4が交流コイル、5が鋳型、6が溶鋼(斜線部分は低速流域)である。
In addition, there are two types of AC magnetic fields, an AC oscillating magnetic field and an AC moving magnetic field, but both can be used preferably in the present invention.
Here, the AC oscillating magnetic field means that, as shown in FIG. 2, an AC current having substantially the opposite phase is applied to adjacent coils, or an AC current having the same phase is reversed by reversing the coil winding direction. It is a magnetic field obtained by energizing and substantially reversing the magnetic field generated in the adjacent coil. Then, by superimposing the AC oscillating magnetic field and the DC magnetic field, local flow can be induced in the molten steel in the mold. In the figure, reference numeral 3 is a DC coil, 4 is an AC coil, 5 is a mold, and 6 is molten steel (the hatched portion is a low-speed flow region).

一方、交流移動磁界とは、任意の隣接するN個のコイルに 360°/Nずつ位相をずらした交流電流を通電して得られる磁界のことで、通常は、図3に示すようなN=3(位相差 120°)が高効率ゆえに用いられる。やはり、この交流移動磁界と直流磁界を重畳させることにより、鋳型内溶鋼に局所的な流動を誘起させることができる。   On the other hand, the AC moving magnetic field is a magnetic field obtained by energizing an AC current that is shifted in phase by 360 ° / N to any adjacent N coils, and normally N = N as shown in FIG. 3 (phase difference 120 °) is used because of its high efficiency. Again, local flow can be induced in the molten steel in the mold by superimposing the AC moving magnetic field and the DC magnetic field.

かような、交流磁界を印加する磁場印加装置を用いる場合には、交流磁界の磁束密度は100 〜1000ガウス程度、また振動磁界の周波数は1〜10Hz程度とすることが望ましい。
さらに、静磁界と交流磁界を重畳印加する磁場印加装置を用いる場合には、直流磁界の大きさは1000〜7000ガウス程度、また交流磁界の磁束密度は 100〜1000ガウス程度とすることが望ましい。
When using such a magnetic field applying device that applies an alternating magnetic field, it is desirable that the magnetic flux density of the alternating magnetic field be about 100 to 1000 gauss and the frequency of the oscillating magnetic field be about 1 to 10 Hz.
Furthermore, when using a magnetic field application device that applies a static magnetic field and an alternating magnetic field in a superimposed manner, the magnitude of the direct magnetic field is preferably about 1000 to 7000 gauss, and the magnetic flux density of the alternating magnetic field is preferably about 100 to 1000 gauss.

さて、本発明では、上記したような磁場印加装置を用いた溶鋼の電磁流動制御の下で、連続鋳造を実施するわけであるが、以下、かような連続鋳造において、鋳型内で生じる現象についての新規知見を、本発明における製造条件の限定理由と共に説明する。なお、以後、介在物や気泡等は異物と称する。   Now, in the present invention, continuous casting is performed under the electromagnetic flow control of molten steel using the magnetic field application device as described above. Hereinafter, the phenomenon occurring in the mold in such continuous casting will be described. These new findings will be described together with the reasons for limiting the production conditions in the present invention. Hereinafter, inclusions and bubbles are referred to as foreign matters.

(1) 異物捕捉場所の減少
鋳造速度Vc を速くすることにより、メニスカス部初期凝固シェル、いわゆる「爪」の生成が著しく抑制される。これは、湯面下同一深さでの凝固シェル厚がVc の増加につれてより薄くなるため、溶鋼静圧の影響で鋳型側に押しつけられる力が、凝固シェル厚に依存するシェルの熱収縮により溶鋼側へ爪が倒れ込もうとする力よりも大きくなるためである。また、スラブ厚みが薄くなると、厚み方向のシェル収縮量の絶対値(=スラブ厚×温度差×線膨張係数) が小さくなるので、溶鋼側への倒れ込みがより一層抑制され、その結果、爪の倒れ込み抑制効果が一層顕著になる。
(1) Decrease in foreign matter trapping locations By increasing the casting speed Vc, the formation of meniscus initial solidified shells, so-called “nails”, is remarkably suppressed. This is because the solidified shell thickness at the same depth below the molten metal surface becomes thinner as Vc increases, so the force pressed against the mold side due to the influence of the molten steel static pressure is due to the heat shrinkage of the shell depending on the solidified shell thickness. This is because the nail is larger than the force of the nail to fall to the side. In addition, as the slab thickness decreases, the absolute value of shell shrinkage in the thickness direction (= slab thickness x temperature difference x linear expansion coefficient) decreases, so that the collapse to the molten steel side is further suppressed. The fall-suppressing effect becomes even more pronounced.

(2) 異物吸着の抑制
凝固に伴い、凝固界面に濃化する溶質の偏析に起因して界面張力勾配が発生し、この力により、凝固シェル界面に異物が吸引・捕捉され易くなる現象が生じる。このため、異物を吸引・捕捉する力を大きくする溶質元素として特に影響の大きいSやTi等の濃度を低下させる試みも実施されている。しかしながら、成分を操作することは、コストアップ(低S化)や材質劣化(Ti低減)につながるという問題がある。
本発明では、鋳造速度Vcをより大きくすることにより、異物の凝固シェルへの吸引・捕捉する力の増大を抑制する。すなわち、(1) のような高速鋳造では、メニスカス部の凝固量がより減少するため、偏析量も減少し、よって、異物の吸引力となる界面張力勾配も小さくなる。その結果、凝固シェル側に吸着・捕捉される異物の量も抑制されるのである。
(2) Suppression of foreign matter adsorption Along with solidification, a gradient of interfacial tension occurs due to segregation of solute concentrated at the solidification interface, and this force causes a phenomenon that foreign matter is easily attracted and trapped at the solidified shell interface. . For this reason, attempts have been made to reduce the concentration of S, Ti, etc., which have a particularly large influence as a solute element that increases the force for attracting and capturing foreign matter. However, there is a problem that manipulating the components leads to cost increase (lower S) and material deterioration (Ti reduction).
In the present invention, by increasing the casting speed Vc, it is possible to suppress an increase in the force for sucking / capturing foreign matter into the solidified shell. That is, in the high-speed casting as in (1), the amount of solidification of the meniscus portion is further reduced, so that the amount of segregation is also reduced, and hence the interfacial tension gradient that is a suction force for foreign matters is also reduced. As a result, the amount of foreign matter adsorbed and captured on the solidified shell side is also suppressed.

(3) 異物捕捉厚みの減少
本発明の条件で連続鋳造を行うと、異物は湯面下20mm以内でシェルに捕捉され、さらに鋳造速度の増加につれて捕捉深さは浅くなり、鋳造速度Vc >2.0 m/min では、スラブ表面からの捕捉深さhは1mm以下となる。
この深さ以下になると、異物がシェルに捕捉されても、その後の熱延→冷延工程を経て製品になる過程で、異物は鋳片表面の酸化スケールと共に脱落・除去される。従って、スラブ手入れを行うことなしに、無欠陥の製品とすることができる。なお、鋳造速度が 2.4m/min 以上では爪深さが 0.7mm以下、つまり異物捕捉厚みhもそれ以下となるので、鋳造速度は 2.4 m/min以上とすることがより好適である。
(3) Decrease in trapping thickness of foreign matter When continuous casting is performed under the conditions of the present invention, foreign matter is trapped by the shell within 20 mm below the molten metal surface, and the trapping depth becomes shallower as the casting speed increases, and the casting speed Vc> 2.0. At m / min, the capture depth h from the slab surface is 1 mm or less.
Below this depth, even if the foreign matter is trapped by the shell, the foreign matter is dropped and removed together with the oxide scale on the surface of the slab in the process of becoming a product through the subsequent hot rolling → cold rolling process. Therefore, it is possible to obtain a defect-free product without performing slab maintenance. Note that when the casting speed is 2.4 m / min or more, the claw depth is 0.7 mm or less, that is, the foreign matter capturing thickness h is also less, so the casting speed is more preferably 2.4 m / min or more.

(4) 異物捕捉確率の減少
異物が凝固シェルに捕捉され易い湯面下20mm以内における凝固シェルの滞留時間は、鋳造速度の増加につれて短くなる。従って、異物の量が同じでも、凝固シェルに捕捉される確率は小さくなる。例えば、Vc =3.0 m/min の場合には、Vc =1.5 m/min の場合に比べて、異物が捕捉される確率は半分になる。
(4) Decrease in foreign matter trapping probability The residence time of the solidified shell within 20 mm below the molten metal surface where foreign matter is easily trapped by the solidified shell becomes shorter as the casting speed increases. Therefore, even if the amount of foreign matter is the same, the probability of being trapped by the solidified shell is reduced. For example, in the case of Vc = 3.0 m / min, the probability of trapping foreign matter is halved compared to the case of Vc = 1.5 m / min.

そこで、本発明では、鋳造速度Vc を 2.0 m/min超、好ましくは 2.4 m/min以上に限定したのである。   Therefore, in the present invention, the casting speed Vc is limited to more than 2.0 m / min, preferably 2.4 m / min or more.

(5) ノズル浸漬深さ(溶鋼表面から吐出孔上端までの距離)
ノズル浸漬深さの違いによって鋳型内溶鋼の循環流の情況が変化する。特に、高速鋳造下では注入速度が大きいために、浸漬深さを最適化する必要がある。すなわち、ノズルが浅すぎると溶鋼の表面の流速が大きくなり、フラックスの巻き込みを助長する。一方、深すぎると溶鋼表面の流速が下がりすぎて凝固界面の洗浄効果が低下し、気泡・介在物の捕足が助長されることになる。
(5) Nozzle immersion depth (distance from molten steel surface to top of discharge hole)
The situation of the circulating flow of molten steel in the mold changes depending on the nozzle immersion depth. In particular, since the injection speed is high under high-speed casting, it is necessary to optimize the immersion depth. In other words, if the nozzle is too shallow, the flow velocity on the surface of the molten steel increases, which facilitates flux entrainment. On the other hand, if the depth is too deep, the flow velocity on the surface of the molten steel will be too low, the cleaning effect on the solidification interface will be reduced, and the trapping of bubbles and inclusions will be promoted.

そこで、これらを勘案して、ノズル浸漬深さの最適値について検討したところ、ノズル浸漬深さは 200mm以上、 350mm以下とする必要があることが究明されたのである。   Therefore, considering these, the optimum value of the nozzle immersion depth was examined, and it was found that the nozzle immersion depth should be 200 mm or more and 350 mm or less.

なお、かような浸漬ノズルの材質は、一般的に使用されているアルミナ−グラファイト質などが好ましいが、これだけに限定されるものではない。
また、浸漬ノズルの形状は、円筒形のノズル(いわゆるストレートノズル)あるいは先端を閉止し、両短辺方向に向けて大略円形の吐出孔を設けた2孔ノズルが一般的に使用できる。吐出孔の断面形状は、丸形、正方形、長方形(横長、縦長)等限定されるものでなく、その最大幅dが、後述する本発明の条件に合致していればよい。
The material of such an immersion nozzle is preferably alumina-graphite, which is generally used, but is not limited to this.
As the shape of the immersion nozzle, a cylindrical nozzle (so-called straight nozzle) or a two-hole nozzle in which the tip is closed and a substantially circular discharge hole is provided in both short side directions can be generally used. The cross-sectional shape of the discharge hole is not limited to a round shape, a square shape, a rectangular shape (horizontally long or vertically long), and the maximum width d only needs to meet the conditions of the present invention described later.

(6) 鋳型内鋳造空間の短辺長さDと浸漬ノズル吐出孔横幅dの比D/dの最適化
浸漬ノズル吐出口から噴出した溶鋼は、短辺シェルに衝突するまでにその幅が広がると共に、減速されるが、その程度や鋳型短辺シェルに衝突する溶鋼噴流の速度分布は、スラブ幅W、鋳造速度Vc およびD/d比に依存する。鋳型内鋳造空間の短辺長さ(スラブ厚み)Dに対して浸漬ノズル吐出口幅dが小さすぎる(D/dが大きすぎる)と、D,Vc,Wの増大につれて、短辺シェルに衝突する噴流流速の大きい領域幅のスラブ厚み(短辺幅)に占める割合が減少するため、凝固シェルの成長が不均一で、かつ阻害され易く、極端に凝固シェルが薄くなると、ブレークアウトにつながる。一方、鋳型内鋳造空間の短辺長さ(スラブ厚み)Dに対して浸漬ノズル吐出口dが大きすぎる(D/dが小さすぎる)と、噴流が短辺に衝突する前に長辺側のシェルに衝突して長辺側凝固シェルの成長が阻害され、横割れや斜め割れが発生し、極端に凝固シェルが薄くなると、やはりブレークアウトにつながる。いずれの場合も、スラブ幅の影響は殆どない。
また、短辺に衝突後の流れが上昇後に長辺側湯面に沿って流れる際、D/d比が最適値から外れると、スラブ厚み方向の溶鋼流速の偏りのため、メニスカス流速変動の一因にもなり、モールドフラックスの巻き込み量が増える。
(6) Optimization of the ratio D / d between the short side length D of the casting space in the mold and the horizontal width d of the submerged nozzle discharge hole The molten steel ejected from the submerged nozzle discharge port widens before colliding with the short side shell. The speed distribution of the molten steel jet colliding with the mold short side shell depends on the slab width W, the casting speed Vc and the D / d ratio. If the immersion nozzle discharge port width d is too small (D / d is too large) with respect to the short side length (slab thickness) D of the casting space in the mold, it collides with the short side shell as D, Vc, and W increase. Since the ratio of the region width of the large jet flow velocity to the slab thickness (short side width) decreases, the growth of the solidified shell is uneven and easily inhibited, and if the solidified shell becomes extremely thin, breakout occurs. On the other hand, if the submerged nozzle discharge port d is too large (D / d is too small) with respect to the short side length (slab thickness) D of the casting space in the mold, the long side side before the jet collides with the short side. If the solidified shell collides with the shell and the growth of the solidified shell on the long side is inhibited, transverse cracks and oblique cracks occur, and the solidified shell becomes extremely thin, it will also lead to a breakout. In either case, there is almost no influence of the slab width.
Further, when the D / d ratio deviates from the optimum value when the flow after the collision on the short side flows along the long side side molten metal after rising, if the molten steel flow rate is biased in the slab thickness direction, the meniscus flow rate fluctuation This also increases the amount of mold flux entrained.

そこで、D/d 比が製品品質に及ばす影響について調査した結果、D/d の範囲は 1.5〜3.8 が好適であることが突き止められた。
なお、製品品質に加えて、最適スラブ厚み、浸漬ノズル耐久性および必要流量を加味すると、2.1 〜2.9 の範囲がより好適である。
Therefore, as a result of investigating the influence of the D / d ratio on the product quality, it was found that the D / d range of 1.5 to 3.8 is suitable.
In addition to the product quality, the range of 2.1 to 2.9 is more suitable when the optimum slab thickness, the immersion nozzle durability and the required flow rate are taken into account.

(7) 短辺バルジング防止(鋳型内鋳造空間の短辺長さの上限規制理由)
本発明で規定した鋳型内鋳造空間の短辺長さ(スラブ厚み)Dと浸漬ノズル吐出孔横幅dの比D/dが適正範囲を満足する浸漬ノズルを使用しても、短辺長さが厚くなりすぎると、鋳造速度Vc が 2.0m/min 超えの場合には、短辺バルジングに起因したスラブ形状不良やブレークアウトの問題が発生する。この点、短辺厚みが小さい場合やVc が小さい場合には、鋳型を出てからのスラブ短辺の溶鋼静圧によるバルジングが小さく抑えられ、ブレークアウト発生の危険性は低い。
しかしながら、短辺長さ(すなわちスラブ厚み)が 240mm超えにおいては、鋳造速度が 2.4 m/minでもスラブ厚み増加による浸漬ノズル吐出孔からの溶鋼噴流速度の増加により、電磁ブレーキ制動による二次流速増加のため、短辺シェル成長の遅れを抑えることが困難になり、鋳型下端での短辺バルジングが顕著になり、ブレークアウトの危険性(バルジング量≧10mm)が増大する。
また、短辺長さ(すなわちスラブ厚み)が 240mm超えの場合には、上と同様の理由で、溶鋼噴流の短辺からの反転流や二次流が湯面の乱れを助長するため、モールドフラックスの巻き込みや噛み込みも発生し易くなり、またスラブ厚みの増加は、メニスカス部の特に浸漬ノズル近傍での溶鋼のよどみも発生し易くなる傾向にあるため、スラブ表面欠陥および製品欠陥が増大する。
(7) Short-side bulging prevention (reason for upper limit on short-side length of casting space in mold)
Even if an immersion nozzle in which the ratio D / d of the short side length (slab thickness) D of the casting space in the mold defined in the present invention and the horizontal width d of the immersion nozzle satisfies the appropriate range is used, the short side length is If the thickness is too thick, when the casting speed Vc exceeds 2.0 m / min, a slab shape defect or breakout due to short side bulging occurs. In this regard, when the short side thickness is small or Vc is small, bulging due to the molten steel static pressure on the short slab after exiting the mold is suppressed, and the risk of occurrence of breakout is low.
However, when the short side length (ie, slab thickness) exceeds 240 mm, the secondary flow rate increases due to electromagnetic brake braking due to the increase in the molten steel jet velocity from the immersion nozzle discharge hole due to the increase in the slab thickness even when the casting speed is 2.4 m / min Therefore, it becomes difficult to suppress the delay in the growth of the short side shell, the short side bulging at the lower end of the mold becomes remarkable, and the risk of breakout (bulging amount ≧ 10 mm) increases.
If the short side length (ie, slab thickness) exceeds 240mm, the reverse flow or secondary flow from the short side of the molten steel jet will promote disturbance of the molten metal surface for the same reason as above. Flux entrainment and biting are likely to occur, and the increase in slab thickness tends to cause stagnation of molten steel in the meniscus area, particularly in the vicinity of the immersion nozzle, increasing slab surface defects and product defects. .

(7) 鋳型内鋳造空間の短辺長さの下限規制理由
鋳型内鋳造空間の短辺長さ(スラブ厚み)Dが150 mm未満では、下記の理由で好ましくない。
すなわち、スラブ断面積が小さくなりすぎると、湯面制御性の問題から、同じ鋳造量の変動に対して、湯面の変動量が大きくなり、湯じわに起因した深さ:1mm以上の爪の発生頻度が増加し、上記(1) の効果が得られなくなる。また、湯面の変動に起因して、モールドフラックスの巻き込みや噛み込みも発生し易くなる。さらに、一般の浸漬ノズルの外径は、耐久性から定まる壁厚み(20mm〜)、スループット:5.4 t/min(150 mm厚、2200mm幅、Vc :2.1 m/min 〜)〜14.5 t/min(240 mm厚、2200mm幅、Vc :〜3.5 m/min )を確保する観点から決まる内径(70〜130 mm)の和で決定される。ここで、短辺長さ(スラブ厚み)Dが小さすぎると、浸漬ノズル外壁と長辺凝固シェルとの距離が狭くなりすぎ(<20mm)、この間での流動が不均一になり、縦割れの原因となる。極端な場合、凝固シェルがノズルに接触・固着し、ブレークアウトにつながる。よって、短辺長さ(スラブ厚み)Dは、 150mm(内径:70mm+外壁総厚:40mm(20×2)+浸漬ノズル外壁と長辺凝固シェルの距離:40mm(20×2))以上とする必要がある。
(7) Reason for the lower limit of the short side length of the casting space in the mold If the short side length (slab thickness) D of the casting space in the mold is less than 150 mm, it is not preferable for the following reasons.
That is, if the slab cross-sectional area becomes too small, the amount of fluctuation of the molten metal surface becomes large for the same variation of casting amount due to the problem of molten metal surface controllability, and the nail depth of 1 mm or more caused by the water wrinkles The occurrence frequency of (1) cannot be obtained. In addition, the mold flux is likely to be caught or bitten due to the fluctuation of the molten metal surface. Furthermore, the outer diameter of general immersion nozzles is determined by the wall thickness (20 mm or more) determined by durability, throughput: 5.4 t / min (150 mm thickness, 2200 mm width, Vc: 2.1 m / min or more) to 14.5 t / min ( 240 mm thickness, 2200 mm width, Vc: up to 3.5 m / min). Here, if the short side length (slab thickness) D is too small, the distance between the outer wall of the immersion nozzle and the long side solidified shell becomes too narrow (<20 mm), the flow between them becomes uneven, and vertical cracks occur. Cause. In extreme cases, the solidified shell contacts and adheres to the nozzle, leading to breakout. Therefore, the short side length (slab thickness) D is 150 mm (inner diameter: 70 mm + outer wall total thickness: 40 mm (20 × 2) + distance between the outer wall of the immersion nozzle and the long side solidified shell: 40 mm (20 × 2)) or more. There is a need.

そこで、本発明では、鋳型内鋳造空間の短辺長さ(スラブ厚み)は、 150〜240 mmの範囲に限定したのである。   Therefore, in the present invention, the short side length (slab thickness) of the casting space in the mold is limited to the range of 150 to 240 mm.

なお、鋳型内鋳造空間の長辺長さ(スラブ幅)は、特に制限されるものではなく、通常の冷延鋼板(とくに自動重用冷延鋼板)向けの長さであればよく、 900〜2200mm程度とするのが好ましい。
また、鋳型の上下方向の高さは、特に規定しないが、鋳造速度:2.0m/min 超の条件で鋳造した場合においても、鋳型内を抜けた鋳片がバルジングしない程度の厚みの凝固シェルを生成させる必要があることから、800mm から1000mm程度とするのが好ましい。
In addition, the long side length (slab width) of the casting space in the mold is not particularly limited, and may be a length for a normal cold-rolled steel sheet (particularly automatic heavy-duty cold-rolled steel sheet). It is preferable to set the degree.
The height of the mold in the vertical direction is not specified, but a solidified shell with a thickness sufficient to prevent bulging of the slab that has passed through the mold even when cast at a casting speed of more than 2.0 m / min. Since it needs to be generated, it is preferable that the thickness is about 800 mm to 1000 mm.

また、本発明が対象とする鋼種は、C含有量が0.01mass%以下のいわゆる極低炭素鋼である。C以外の成分に関しては特に規定するものではないが、自動車外板などの深絞り加工用途に適するものであることが好ましい。本発明は、とりわけ介在物欠陥を嫌う用途向け鋼種について、スラブの表層下でスケールオフしない厚み範囲に介在物等を存在させないことを意図しており、精錬過程で脱酸生成物としてアルミナ等の非金属介在物が発生し易い極低炭素鋼が、本発明の利益を最も享受するからである。
ちなみに、C以外の極低炭素鋼の代表組成を掲げると、次のとおりである。
Si:0.01〜0.04mass%,Mn:0.08〜0.20mass%,P:0.008 〜0.020 mass%,S:0.003〜0.008 mass%,Al:0.015 〜0.060 mass%,Ti:0.03〜0.08mass%,Nb:0.002 〜0.017 mass%.B:0 〜0.0007mass%。
Further, the steel type targeted by the present invention is a so-called ultra-low carbon steel having a C content of 0.01 mass% or less. Components other than C are not particularly specified, but are preferably suitable for deep drawing applications such as automobile outer plates. The present invention intends not to include inclusions, etc. in a thickness range that does not scale off under the surface layer of the slab, especially for steel grades for applications that dislike inclusion defects, and as a deoxidation product such as alumina in the refining process This is because the ultra-low carbon steel that easily generates non-metallic inclusions enjoys the benefits of the present invention.
Incidentally, the typical composition of ultra-low carbon steel other than C is as follows.
Si: 0.01 to 0.04 mass%, Mn: 0.08 to 0.20 mass%, P: 0.008 to 0.020 mass%, S: 0.003 to 0.008 mass%, Al: 0.015 to 0.060 mass%, Ti: 0.03 to 0.08 mass%, Nb: 0.002 to 0.017 mass%. B: 0 to 0.0007 mass%.

転炉溶製−RH処理によって得た、C:0.0015mass%、Si:0.02mass%、Mn:0.08mass%、P:0.015mass%、S:0.004mass%、Al:0.04mass%およびTi:0.04mass%を含有し、残部はFeおよび不可避的不純物の組成になる溶鋼(約300ton)を、図1(a) 〜(c) に示す磁場印加装置をそなえる連続鋳造用鋳型を用いて連続鋳造し、スラブとした。
この時の製造条件を表1に示す。なお、浸漬ノズルとしては、吐出孔が角形で、吐出角度が下向き15°の2孔ノズルを用いた。
かくして、得られたスラブの表面偏析、非金属介在物量および冷延圧延後のモールドフラックスに起因した表面欠陥について調べた結果を、表2に示す。
Converter melting-obtained by RH treatment, C: 0.0015 mass%, Si: 0.02 mass%, Mn: 0.08 mass%, P: 0.015 mass%, S: 0.004 mass%, Al: 0.04 mass% and Ti: 0.04 Continuous casting of molten steel (about 300 tons) containing a mass% with the balance of Fe and inevitable impurities using a continuous casting mold equipped with a magnetic field application device shown in Figs. 1 (a) to (c) And slab.
The production conditions at this time are shown in Table 1. As the immersion nozzle, a two-hole nozzle having a rectangular discharge hole and a downward discharge angle of 15 ° was used.
Table 2 shows the results of examining surface segregation of the slab thus obtained, the amount of nonmetallic inclusions, and surface defects caused by mold flux after cold rolling.

なお、スラブの表面偏析は、スラブ研削後、エッチングを行い、目視観察によって1m2当たりの偏析個数を調査した。また、非金属介在物量は、鋳片の1 /4 厚みの位置からスライム抽出法によって介在物を抽出後、重量を測定した。さらに、冷間圧延後のコイルの表面欠陥を、目視検査し、欠陥サンプルを採取後、欠陥部を分析することによってモールドフラックスによる欠陥個数を調査した。なお、表面偏析、介在物量およびモールドフラックス欠陥とも、指数化に際しては、全条件のうち最も悪かったものを10とし、それに対する線形な比で表示した。 As for surface segregation of the slab, etching was performed after slab grinding, and the number of segregation per 1 m 2 was examined by visual observation. The amount of non-metallic inclusions was measured after extracting inclusions by a slime extraction method from a 1/4 thickness position of the slab. Furthermore, the surface defect of the coil after cold rolling was visually inspected, and after collecting a defect sample, the number of defects due to mold flux was investigated by analyzing the defect portion. The surface segregation, the amount of inclusions, and the mold flux defect were indexed with the worst of all conditions as 10 and displayed as a linear ratio.

Figure 2005152954
Figure 2005152954

Figure 2005152954
Figure 2005152954

表2から明らかなように、本発明に従い、鋳型内溶鋼の適切な電磁流動制御の下で、鋳造速度、連鋳造型内鋳造空間の短辺長さ、ノズル浸漬深さおよび前記短辺長さDと浸漬ノズル吐出孔横幅dの比D/d を適正に制御することにより、表面偏析、非金属介在物量およびモールドフラックスに起因した欠陥を低減することができた。
なお、振動磁界の強度が強すぎると、溶湯表面のフラックスの巻き込みが大きくなって、表面品質を悪化させ、周波数が高すぎると、磁界に溶湯が追随できなくなって、凝固界面の洗浄効果が低下し、気泡、介在物欠陥の増加を招いた。
As is apparent from Table 2, according to the present invention, under appropriate electromagnetic flow control of the molten steel in the mold, the casting speed, the short side length of the casting space in the continuous casting mold, the nozzle immersion depth, and the short side length By properly controlling the ratio D / d between the width D of the submerged nozzle and the discharge nozzle discharge hole d, defects due to surface segregation, the amount of non-metallic inclusions and mold flux could be reduced.
If the intensity of the oscillating magnetic field is too strong, the flux entrainment on the surface of the molten metal will increase and the surface quality will deteriorate, and if the frequency is too high, the molten metal will not be able to follow the magnetic field and the solidification interface cleaning effect will decrease However, bubbles and inclusion defects were increased.

本発明に用いて好適な磁場印加装置を備える連続鋳造用鋳型の模式図である。It is a schematic diagram of the casting mold for continuous casting provided with the suitable magnetic field application apparatus used for this invention. 交流振動磁界の印加要領の一例を示す図である。It is a figure which shows an example of the application procedure of an alternating oscillating magnetic field. 交流移動磁界の印加要領の一例を示す図である。It is a figure which shows an example of the application procedure of an alternating current magnetic field.

符号の説明Explanation of symbols

1 静磁界を印加する磁場印加装置
2 静磁界と交流磁界を重畳印加する磁場印加装置
3 直流コイル
4 交流コイル
5 鋳型
6 溶鋼
DESCRIPTION OF SYMBOLS 1 Magnetic field application apparatus which applies a static magnetic field 2 Magnetic field application apparatus which superimposes and applies a static magnetic field and an alternating magnetic field 3 DC coil 4 AC coil 5 Mold 6 Molten steel

Claims (6)

連続鋳造鋳型内の湯面レベルを含む鋳型上部と、これより一定距離下方の位置にそれぞれ、鋳型厚みを横切る方向に鋳型全幅にわたって静磁界を印加する磁場印加装置をそなえ、これら上下二段の磁場印加装置の間に浸漬ノズルを介して溶鋼を供給する連続鋳造設備を用いて、C含有量が0.01mass%以下の極低炭素鋼スラブを製進するに際し、
上記連続鋳造設備の鋳型内鋳造空間の短辺長さ:150 〜240 mm、浸漬ノズルの浸漬深さ:200 〜350 mmの条件下で、上記短辺長さDと浸漬ノズル吐出孔横幅dの比D/dが 1.5〜3.0 を満足する浸漬ノズルを用い、鋳造速度:2.0 m/min 超の速度で鋳造することを特徴とする極低炭素鋼のスラブ連続鋳造方法。
A magnetic field application device that applies a static magnetic field across the entire width of the mold in a direction transverse to the mold thickness at a position below the mold upper portion including the molten metal level in the continuous casting mold, and these two upper and lower magnetic fields. When a very low carbon steel slab having a C content of 0.01 mass% or less is produced using a continuous casting facility that supplies molten steel through an immersion nozzle between application devices,
Under the conditions of the short side length of the casting space in the mold of the above continuous casting equipment: 150 to 240 mm and the immersion depth of the immersion nozzle: 200 to 350 mm, the short side length D and the immersion nozzle discharge hole lateral width d A slab continuous casting method for ultra-low carbon steel, characterized in that casting is performed at a casting speed of more than 2.0 m / min using an immersion nozzle that satisfies a ratio D / d of 1.5 to 3.0.
連続鋳造鋳型内の湯面レベルを含む鋳型上部に、鋳型厚みを横切る方向に鋳型全幅にわたって静磁界と交流磁界を重畳印加する磁場印加装置をそなえ、この磁場印加装置の下方に浸漬ノズルを介して溶鋼を供給する連続鋳造設備を用いて、C含有量が0.01mass%以下の極低炭素鋼スラブを製進するに際し、
上記連続鋳造設備の鋳型内鋳造空間の短辺長さ:150 〜240 mm、浸漬ノズルの浸漬深さ:200 〜350 mmの条件下で、上記短辺長さDと浸漬ノズル吐出孔横幅dの比D/dが 1.5〜3.0 を満足する浸漬ノズルを用い、鋳造速度:2.0 m/min 超の速度で鋳造することを特徴とする極低炭素鋼のスラブ連続鋳造方法。
A magnetic field application device that superimposes and applies a static magnetic field and an alternating magnetic field over the entire width of the mold in a direction transverse to the mold thickness is provided on the upper part of the mold including the molten metal surface level in the continuous casting mold, and an immersion nozzle is provided below the magnetic field application device. When making a very low carbon steel slab with a C content of 0.01 mass% or less using a continuous casting facility that supplies molten steel,
Under the conditions of the short side length of the casting space in the mold of the above continuous casting equipment: 150 to 240 mm and the immersion depth of the immersion nozzle: 200 to 350 mm, the short side length D and the immersion nozzle discharge hole lateral width d A slab continuous casting method for ultra-low carbon steel, characterized in that casting is performed at a casting speed of more than 2.0 m / min using an immersion nozzle that satisfies a ratio D / d of 1.5 to 3.0.
連続鋳造鋳型内の湯面レベルを含む鋳型上部に、鋳型厚みを横切る方向に鋳型全幅にわたって静磁界と交流磁界を重畳印加する磁場印加装置をそなえ、かつこれより一定距離下方の位置に、同じく鋳型全幅にわたって静磁界を印加する磁場印加装置をそなえ、これら上下二段の磁場印加装置の間に浸漬ノズルを介して溶鋼を供給する連続鋳造設備を用いて、C含有量が0.01mass%以下の極低炭素鋼スラブを製進するに際し、
上記連続鋳造設備の鋳型内鋳造空間の短辺長さ:150 〜240 mm、浸漬ノズルの浸漬深さ:200 〜350 mmの条件下で、上記短辺長さDと浸漬ノズル吐出孔横幅dの比D/dが 1.5〜3.0 を満足する浸漬ノズルを用い、鋳造速度:2.0 m/min 超の速度で鋳造することを特徴とする極低炭素鋼のスラブ連続鋳造方法。
A magnetic field application device that superimposes and applies a static magnetic field and an alternating magnetic field across the entire width of the mold in the direction transverse to the mold thickness is provided on the upper part of the mold including the surface level in the continuous casting mold. A pole having a C content of 0.01 mass% or less using a continuous casting facility that includes a magnetic field application device that applies a static magnetic field over the entire width, and supplies molten steel through an immersion nozzle between the upper and lower magnetic field application devices. In making low carbon steel slabs,
Under the conditions of the short side length of the casting space in the mold of the above continuous casting equipment: 150 to 240 mm and the immersion depth of the immersion nozzle: 200 to 350 mm, the short side length D and the immersion nozzle discharge hole lateral width d A slab continuous casting method for ultra-low carbon steel, characterized in that casting is performed at a casting speed of more than 2.0 m / min using an immersion nozzle that satisfies a ratio D / d of 1.5 to 3.0.
前記鋳造速度を 2.4 m/min以上とすることを特徴とする請求項1〜3のいずれかに記載の極低炭素鋼のスラブ連続鋳造方法。   The slab continuous casting method for ultra-low carbon steel according to any one of claims 1 to 3, wherein the casting speed is 2.4 m / min or more. 前記スラブ厚みDと浸漬ノズル吐出孔横幅dの比D/dが 2.1〜2.9 を満足する浸漬ノズルを使用して鋳造することを特徴とする請求項1〜4のいずれかに記載の極低炭素鋼のスラブ連続鋳造方法。   5. The ultra-low carbon according to claim 1, wherein casting is performed using an immersion nozzle in which a ratio D / d between the slab thickness D and the immersion nozzle discharge hole width d satisfies 2.1 to 2.9. Steel slab continuous casting method. 前記極低炭素鋼スラブが、自動車外板向けの冷延鋼板用素材であることを特徴とする請求項1〜5のいずれかに記載の極低炭素鋼のスラグ連続鋳造方法。   6. The ultra-low carbon steel slag continuous casting method according to claim 1, wherein the ultra-low carbon steel slab is a material for a cold rolled steel sheet for an automobile outer plate.
JP2003395818A 2003-08-29 2003-11-26 Slab continuous casting method for ultra-low carbon steel Expired - Lifetime JP4411945B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003395818A JP4411945B2 (en) 2003-11-26 2003-11-26 Slab continuous casting method for ultra-low carbon steel
US10/921,434 US20050045303A1 (en) 2003-08-29 2004-08-19 Method for producing ultra low carbon steel slab
EP04020281A EP1510272B1 (en) 2003-08-29 2004-08-26 Method for producing ultra low carbon steel slab
DE602004026253T DE602004026253D1 (en) 2003-08-29 2004-08-26 Process for producing ultra-low carbon steel slabs
TW093125776A TWI268820B (en) 2003-08-29 2004-08-27 Method for producing ultra low carbon steel slab
CNB2004100748080A CN1299855C (en) 2003-08-29 2004-08-30 Method for producing ultra low carbon steel slab
KR1020040068352A KR100654738B1 (en) 2003-08-29 2004-08-30 Method for producing ultra low carbon steel slab
US11/314,505 US20060102316A1 (en) 2003-08-29 2005-12-21 Method for producing ultra low carbon steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395818A JP4411945B2 (en) 2003-11-26 2003-11-26 Slab continuous casting method for ultra-low carbon steel

Publications (2)

Publication Number Publication Date
JP2005152954A true JP2005152954A (en) 2005-06-16
JP4411945B2 JP4411945B2 (en) 2010-02-10

Family

ID=34721483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395818A Expired - Lifetime JP4411945B2 (en) 2003-08-29 2003-11-26 Slab continuous casting method for ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JP4411945B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301609A (en) * 2006-05-12 2007-11-22 Jfe Steel Kk Continuous casting method for steel
JP2008137031A (en) * 2006-11-30 2008-06-19 Jfe Steel Kk Method and equipment for continuous casting of steel
JP2008188644A (en) * 2007-02-06 2008-08-21 Jfe Steel Kk Continuous casting method for steel, equipment, and method for producing surface treated steel sheet
JP4569715B1 (en) * 2009-11-10 2010-10-27 Jfeスチール株式会社 Steel continuous casting method
WO2011058769A1 (en) * 2009-11-10 2011-05-19 Jfeスチール株式会社 Method of continuous casting of steel
WO2011111858A1 (en) * 2010-03-10 2011-09-15 Jfeスチール株式会社 Method for continuously casting steel and process for producing steel sheet
JP2011206846A (en) * 2010-03-10 2011-10-20 Jfe Steel Corp Method for producing steel sheet
JP2011206845A (en) * 2010-03-10 2011-10-20 Jfe Steel Corp Method for continuously casting steel and method for manufacturing steel sheet
CN108723316A (en) * 2018-08-30 2018-11-02 湖南中科电气股份有限公司 A kind of continuous casting end has the electromagnetic stirring system of heating function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310701B1 (en) 2019-12-27 2021-10-08 주식회사 포스코 Casting apparatus and casting method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301609A (en) * 2006-05-12 2007-11-22 Jfe Steel Kk Continuous casting method for steel
JP2008137031A (en) * 2006-11-30 2008-06-19 Jfe Steel Kk Method and equipment for continuous casting of steel
JP2008188644A (en) * 2007-02-06 2008-08-21 Jfe Steel Kk Continuous casting method for steel, equipment, and method for producing surface treated steel sheet
CN102413964A (en) * 2009-11-10 2012-04-11 杰富意钢铁株式会社 Method of continuous casting of steel
CN102413964B (en) * 2009-11-10 2013-05-01 杰富意钢铁株式会社 Method of continuous casting of steel
WO2011058770A1 (en) * 2009-11-10 2011-05-19 Jfeスチール株式会社 Method of continuous casting of steel
JP2011121115A (en) * 2009-11-10 2011-06-23 Jfe Steel Corp Continuous casting method of steel
JP2011121114A (en) * 2009-11-10 2011-06-23 Jfe Steel Corp Continuous casting method of steel
RU2505377C1 (en) * 2009-11-10 2014-01-27 ДжФЕ СТИЛ КОРПОРЕЙШН Method of continuous steel casting
CN102413963B (en) * 2009-11-10 2013-05-01 杰富意钢铁株式会社 Method of continuous casting of steel
WO2011058769A1 (en) * 2009-11-10 2011-05-19 Jfeスチール株式会社 Method of continuous casting of steel
CN102413963A (en) * 2009-11-10 2012-04-11 杰富意钢铁株式会社 Method of continuous casting of steel
JP4569715B1 (en) * 2009-11-10 2010-10-27 Jfeスチール株式会社 Steel continuous casting method
KR101168195B1 (en) 2009-11-10 2012-07-27 제이에프이 스틸 가부시키가이샤 Method of continuous casting of steel
KR101176816B1 (en) 2009-11-10 2012-08-24 제이에프이 스틸 가부시키가이샤 Method of continuous casting of steel
US8397793B2 (en) 2009-11-10 2013-03-19 Jfe Steel Corporation Steel continuous casting method
US8376028B2 (en) 2009-11-10 2013-02-19 Jfe Steel Corporation Steel continuous casting method
CN102791400A (en) * 2010-03-10 2012-11-21 杰富意钢铁株式会社 Method for continuously casting steel and process for producing steel sheet
KR101250101B1 (en) 2010-03-10 2013-04-03 제이에프이 스틸 가부시키가이샤 Method for continuously casting steel and process for producing steel sheet
JP2011206845A (en) * 2010-03-10 2011-10-20 Jfe Steel Corp Method for continuously casting steel and method for manufacturing steel sheet
JP2011206846A (en) * 2010-03-10 2011-10-20 Jfe Steel Corp Method for producing steel sheet
US8596334B2 (en) 2010-03-10 2013-12-03 Jfe Steel Corporation Continuous casting method for steel and method for manufacturing steel sheet
WO2011111858A1 (en) * 2010-03-10 2011-09-15 Jfeスチール株式会社 Method for continuously casting steel and process for producing steel sheet
RU2520891C2 (en) * 2010-03-10 2014-06-27 ДжФЕ СТИЛ КОРПОРЕЙШН Method of steel continuous casting and method of sheet steel production
EP2546008A4 (en) * 2010-03-10 2015-04-08 Jfe Steel Corp Method for continuously casting steel and process for producing steel sheet
CN108723316A (en) * 2018-08-30 2018-11-02 湖南中科电气股份有限公司 A kind of continuous casting end has the electromagnetic stirring system of heating function
CN108723316B (en) * 2018-08-30 2024-01-30 湖南中科电气股份有限公司 Electromagnetic stirring system with heating function at continuous casting tail end

Also Published As

Publication number Publication date
JP4411945B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
US20060102316A1 (en) Method for producing ultra low carbon steel slab
RU2718442C1 (en) Continuous casting method
JP4411945B2 (en) Slab continuous casting method for ultra-low carbon steel
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
JP7035872B2 (en) Melting method of high-clean steel
JP2006035272A (en) Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP2007105745A (en) Continuous casting method of steel
JP5245800B2 (en) Continuous casting mold and steel continuous casting method
JP5413277B2 (en) Continuous casting method for steel slabs
JP5044981B2 (en) Steel continuous casting method
JP4259232B2 (en) Slab continuous casting method for ultra-low carbon steel
JP4203167B2 (en) Continuous casting method for molten steel
JP5125663B2 (en) Continuous casting method of slab slab
JP5791234B2 (en) Continuous casting method for steel slabs
JP2010099704A (en) Continuous casting method for steel cast slab
JP7200811B2 (en) Steel continuous casting method
JP2010227944A (en) Continuous casting method for steel cast slab
JP6287901B2 (en) Steel continuous casting method
JP7035870B2 (en) Melting method of high-clean steel
JP2011212723A (en) Continuous casting method of steel cast slab
JP5458779B2 (en) Continuous casting method for steel slabs
JP5359653B2 (en) Steel continuous casting method
JP2005205441A (en) Method for continuously casting slab
JP2001300705A (en) Method for continuously casting molten steel excellent in quality characteristic
JP2005014047A (en) Method and device for removing inclusion in molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4411945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term