JP2011206845A - Method for continuously casting steel and method for manufacturing steel sheet - Google Patents

Method for continuously casting steel and method for manufacturing steel sheet Download PDF

Info

Publication number
JP2011206845A
JP2011206845A JP2011050859A JP2011050859A JP2011206845A JP 2011206845 A JP2011206845 A JP 2011206845A JP 2011050859 A JP2011050859 A JP 2011050859A JP 2011050859 A JP2011050859 A JP 2011050859A JP 2011206845 A JP2011206845 A JP 2011206845A
Authority
JP
Japan
Prior art keywords
less
molten steel
slab width
casting speed
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011050859A
Other languages
Japanese (ja)
Other versions
JP4821932B2 (en
Inventor
Yuji Miki
祐司 三木
Hiroyuki Ono
浩之 大野
Takeshi Murai
剛 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011050859A priority Critical patent/JP4821932B2/en
Publication of JP2011206845A publication Critical patent/JP2011206845A/en
Application granted granted Critical
Publication of JP4821932B2 publication Critical patent/JP4821932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel sheet having few defects caused by the entrainment of air bubbles, nonmetallic inclusions and mold flux, and having few blisters.SOLUTION: The method uses a continuous casting machine which includes a pair of upper magnetic poles, a pair of lower magnetic poles, and an immersion nozzle having a molten steel spouting angle of 10° or higher to less than 30°. When continuously casting ultralow carbon steel while controlling the flow of molten steel by direct current magnetic fields applied to the upper magnetic poles and the lower magnetic poles respectively, the chemical composition of the ultralow carbon steel are controlled within specified ranges in consideration of an interfacial tension gradient in a concentration boundary layer formed in the front surface of a solidifying shell. The intensity of the direct current magnetic fields to be applied to the upper magnetic poles and the lower magnetic poles respectively is optimized according to the width of the slab to be cast and the casting speed. Further, the hot rolled steel sheet obtained by rolling the slab cast in the continuous casting method is pickled and cold-rolled under specified conditions.

Description

本発明は、電磁力によって鋳型内の溶鋼流動を制御しながら溶鋼を鋳造する鋼の連続鋳造方法と、この連続鋳造方法で鋳造された鋳片を用いた鋼板の製造方法に関する。   The present invention relates to a steel continuous casting method for casting molten steel while controlling the flow of molten steel in a mold by electromagnetic force, and a method for producing a steel plate using a slab cast by this continuous casting method.

鋼の連続鋳造では、タンディッシュ内に入れられた溶鋼が、タンディッシュ底部に接続された浸漬ノズルを通じて連続鋳造用鋳型内に注入される。この場合、浸漬ノズルの吐出孔から鋳型内に吐出される溶鋼流に、アルミナクラスターなどの非金属介在物や、上ノズルの内壁面から吹き込まれた不活性ガス(アルミナなどの付着・堆積によるノズル閉塞を防止するために吹き込まれる不活性ガス)の気泡が随伴するが、これが凝固シェルに捕捉されると、製品欠陥(介在物性欠陥、気泡性欠陥)となる。また、メニスカスに達した溶鋼上昇流にモールドフラックス(モールドパウダー)が巻き込まれ、これも凝固シェルに捕捉されることにより製品欠陥となる。   In continuous casting of steel, molten steel placed in a tundish is poured into a continuous casting mold through an immersion nozzle connected to the bottom of the tundish. In this case, non-metallic inclusions such as alumina clusters or inert gas blown from the inner wall of the upper nozzle (nozzle due to adhesion / deposition of alumina etc.) into the molten steel flow discharged into the mold from the discharge hole of the immersion nozzle Inert gas blown in order to prevent clogging is accompanied, but if this is trapped by the solidified shell, it becomes a product defect (inclusion property defect, bubble defect). In addition, mold flux (mold powder) is caught in the upward flow of molten steel that has reached the meniscus, and this is also captured by the solidified shell, resulting in a product defect.

従来、溶鋼中の非金属介在物、モールドフラックス、気泡が凝固シェルに捕捉され、製品欠陥となることを防止するために、鋳型内で溶鋼流に磁界を印加し、磁界による電磁気力を利用して溶鋼の流動を制御することが行われており、この技術に関して数多くの提案がなされている。
例えば、特許文献1には、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動する方法が開示されている。この方法は、浸漬ノズルの吐出口から吐出された後、上昇流と下降流に分かれる溶鋼流のうち、下降流を下部の直流磁界で制動し、上昇流を上部の直流磁界で制動することで、溶鋼流に随伴する非金属介在物やモールドフラックスが凝固シェルに捕捉されないようするものである。
Conventionally, in order to prevent non-metallic inclusions, mold flux, and bubbles in molten steel from being trapped in the solidified shell and resulting in product defects, a magnetic field is applied to the molten steel flow in the mold and electromagnetic force generated by the magnetic field is used. The flow of molten steel has been controlled, and many proposals have been made regarding this technology.
For example, Patent Document 1 discloses a method of braking a molten steel flow by a DC magnetic field applied to each of a pair of upper magnetic poles and a pair of lower magnetic poles that are opposed to each other with the long side of the mold interposed therebetween. In this method, after being discharged from the discharge port of the immersion nozzle, the downflow is braked by the lower direct current magnetic field and the upward flow is braked by the upper direct current magnetic field. The non-metallic inclusions and mold flux accompanying the molten steel flow are prevented from being captured by the solidified shell.

また、特許文献2には、特許文献1と同じく鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動するとともに、上部磁極または下部磁極に交流磁界を重畳して印加する方法が開示されている。この方法は、特許文献1と同様の直流磁界による溶鋼流の制動を行うとともに、交流磁界による溶鋼の撹拌により、凝固シェル界面での非金属介在物などの洗浄効果を得ようとするものである。
さらに、特許文献3には、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動する方法において、直流磁界の強度、上部電極と下部電極の直流磁界の強度比を特定の数値範囲とする方法が開示されている。
また、特許文献4,5には、凝固シェル前面での溶鋼中のC、S、N、Oの濃度勾配による表面張力を制御することにより、すなわち、表面張力が所定値以下になるように溶鋼中のC、S、N、Oの濃度を調整することにより、気泡の凝固シェルへの捕捉を抑制する連続鋳造方法が開示されている。
Further, in Patent Document 2, the molten steel flow is braked by a DC magnetic field applied to each of a pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the mold long side portion as in Patent Document 1, and the upper magnetic pole Alternatively, a method of applying an alternating magnetic field on the lower magnetic pole is disclosed. In this method, the molten steel flow is braked by a DC magnetic field similar to Patent Document 1, and the cleaning effect of nonmetallic inclusions and the like at the solidified shell interface is obtained by stirring the molten steel by an AC magnetic field. .
Further, Patent Document 3 discloses a method of braking a molten steel flow by a DC magnetic field applied to each of a pair of upper magnetic poles and a pair of lower magnetic poles that are opposed to each other with a long side of the mold interposed therebetween. A method of setting the intensity ratio of the DC magnetic field between the electrode and the lower electrode within a specific numerical range is disclosed.
In Patent Documents 4 and 5, the molten steel is controlled by controlling the surface tension due to the concentration gradient of C, S, N, and O in the molten steel on the front surface of the solidified shell, that is, the surface tension is reduced to a predetermined value or less. A continuous casting method that suppresses trapping of bubbles in a solidified shell by adjusting the concentration of C, S, N, and O therein is disclosed.

特開平3−142049号公報Japanese Patent Laid-Open No. 3-142049 特開平10−305353号公報JP-A-10-305353 特開2008−200732号公報Japanese Patent Laid-Open No. 2008-200732 特開2003−205349号公報JP 2003-205349 A 特開2003−251438号公報JP 2003-251438 A

最近、自動車外板用鋼板の品質厳格化に伴い、これまで問題にならなかった微小な気泡や非金属介在物、モールドフラックスの巻き込みに起因する欠陥が問題視されるようになりつつあり、特許文献1〜3に示されるような連続鋳造方法では、そのような厳しい品質要求に十分に対応できない。特に、合金化溶融亜鉛めっき鋼板は、溶融めっき後、加熱して母材鋼板の鉄成分を亜鉛めっき層に拡散させるものであり、母材鋼板の表層性状が合金化溶融亜鉛めっき層の品質に大きく影響する。すなわち、母材鋼板の表層に気泡性欠陥や介在物性欠陥或いはモールドフラックス性欠陥があると、小さな欠陥であってもめっき層の厚みにむらが生じ、それが表面に筋状の欠陥として現れ、自動車外板などのような品質要求の厳しい用途には使用できなくなる。   Recently, with the stricter quality of steel plates for automobile outer plates, defects caused by entrainment of minute bubbles, non-metallic inclusions and mold flux that have not been a problem until now are becoming a problem. The continuous casting methods as shown in Documents 1 to 3 cannot sufficiently meet such strict quality requirements. In particular, alloyed hot-dip galvanized steel sheets are heated after hot-dip plating to diffuse the iron component of the base steel sheet into the galvanized layer, and the surface layer properties of the base steel sheet contribute to the quality of the alloyed hot-dip galvanized layer. A big influence. That is, if there is a bubble defect, inclusion property defect or mold flux property defect on the surface layer of the base steel plate, unevenness occurs in the thickness of the plating layer even if it is a small defect, and it appears as a streak defect on the surface, It can no longer be used for quality demanding applications such as automotive skins.

また、特許文献4及び特許文献5では、アルミナクラスターなどのような非金属介在物の凝固シェルへの捕捉に関しては、何ら検討されていない。また、溶鋼成分に応じて気泡の凝固シェルへの捕捉が左右されることは示唆されるものの、気泡の捕捉と溶鋼−凝固シェル界面での溶鋼流速との関係が明らかになっておらず、気泡の捕捉を定量的に把握することができない。これは、実際の鋳型内においては、C、S、N、Oの濃度分布による表面張力(=凝固シェルへの捕捉力)と同時に、溶鋼流速による抗力も働いており、凝固シェルへの気泡や非金属介在物の捕捉を検討する場合には、溶鋼−凝固シェル界面での溶鋼流速による抗力も考慮しなければならないからである。
したがって本発明の目的は、上記のような従来技術の課題を解決し、電磁力を利用して鋳型内の溶鋼流動を制御することにより、従来問題とされてきたような非金属介在物やモールドフラックスによる欠陥だけでなく、微小な気泡や非金属介在物、モールドフラックスの巻き込みによる欠陥が少ない高品質の鋳片を得ることができる極低炭素鋼の連続鋳造方法を提供することにある。
また、本発明の他の目的は、そのような連続鋳造方法で鋳造された鋳片を用い、気泡や非金属介在物、モールドフラックスの巻き込みによる欠陥が少ないだけでなく、ブリスター欠陥が非常に少ない高品質の鋼板を製造することができる鋼板の製造方法を提供することにある。
In Patent Document 4 and Patent Document 5, no consideration is given to trapping non-metallic inclusions such as alumina clusters in a solidified shell. Although it is suggested that the trapping of bubbles in the solidified shell depends on the molten steel component, the relationship between the trapping of bubbles and the molten steel flow velocity at the molten steel-solidified shell interface has not been clarified. Cannot be captured quantitatively. This is because in the actual mold, simultaneously with the surface tension (= capturing force to the solidified shell) due to the concentration distribution of C, S, N, O, the drag due to the molten steel flow velocity also works, This is because the drag due to the molten steel flow velocity at the molten steel-solidified shell interface must also be considered when capturing non-metallic inclusions.
Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and to control the flow of molten steel in the mold by using electromagnetic force. An object of the present invention is to provide a continuous casting method of ultra-low carbon steel that can obtain not only defects due to flux but also high-quality slabs with few defects due to entrapment of fine bubbles, non-metallic inclusions and mold flux.
Another object of the present invention is to use a slab cast by such a continuous casting method and not only have few defects due to entrapment of bubbles, non-metallic inclusions and mold flux, but also very few blister defects. It is providing the manufacturing method of the steel plate which can manufacture a high quality steel plate.

本発明者らは、上記課題を解決するために、電磁力を利用して鋳型内の溶鋼流動を制御する際の諸々の鋳造条件を検討した結果、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、極低炭素鋼の連続鋳造を行う方法において、極低炭素鋼の化学成分を、凝固シェル前面の濃度境界層中の界面張力勾配を考慮した特定の範囲に調整するとともに、鋳造するスラブ幅および鋳造速度に応じて、上部磁極と下部磁極に各々印加する直流磁界の強度を最適化することにより、鋳型内の溶鋼を、非金属介在物や気泡が凝固シェルに捕捉されず且つモールドパウダー巻き込みを生じない適正な流動状態とすることができ、これにより、従来問題とされてきたような非金属介在物やモールドフラックスによる欠陥だけでなく、微小な気泡や非金属介在物、モールドフラックスによる欠陥が少ない高品質の鋳片が得られることを見出した。また、そのような連続鋳造においてより高品質な鋳片を得るために、浸漬ノズルのノズル浸漬深さやノズル内径、スラブ厚さなどに最適範囲があり、その範囲において発明の効果が最も発現しやすいことが判った。   In order to solve the above-mentioned problems, the present inventors have studied various casting conditions when controlling the flow of molten steel in a mold using electromagnetic force. In the method of continuous casting of ultra-low carbon steel while the molten steel flow is damped by a DC magnetic field applied to each of the upper magnetic pole and the pair of lower magnetic poles, The mold is adjusted by adjusting the specific range in consideration of the interfacial tension gradient in the boundary layer, and by optimizing the DC magnetic field strength applied to the upper and lower magnetic poles according to the slab width and casting speed to be cast. The molten steel inside can be brought into a proper flow state in which non-metallic inclusions and bubbles are not trapped in the solidified shell and mold powder is not caught, and as a result, non-metallic inclusions that have been considered a problem in the past And mold Not only defects by Lux, microbubbles and non-metallic inclusions was found that defects due to fewer mold flux high quality cast strip is obtained. Further, in order to obtain a higher quality slab in such continuous casting, there is an optimum range of nozzle immersion depth, nozzle inner diameter, slab thickness, etc. of the immersion nozzle, and the effect of the invention is most easily manifested in that range. I found out.

上部磁極と下部磁極に各々印加される直流磁界によって鋳型内の溶鋼流動を制御しながらスラブを連続鋳造することにより、モールドフラックスの巻き込みに起因するモールドフラックス性欠陥を防止できるとともに、比較的大きいサイズ(通常、1mmφ以上)の気泡や非金属介在物による欠陥を防止できる。しかし、この連続鋳造法では、より微小な気泡や非金属介在物が凝固シェルに捕捉されるのを確実に防止することは難しく、このような微小気泡や介在物の巻き込みに起因する表面欠陥が生じる恐れがある。これに対して、上記のように極低炭素鋼の化学成分を、凝固シェル前面の濃度境界層中の界面張力勾配を考慮した特定の範囲に調整するとともに、鋳造するスラブ幅および鋳造速度に応じて、上部磁極と下部磁極に各々印加する直流磁界の強度を最適化することにより、微小な気泡や非金属介在物が凝固シェルに捕捉されることを抑えることができる。以上により、モールドフラックスの巻き込みを防止するとともに、気泡や非金属介在物の大小を問わず凝固シェルへの捕捉を防止することができ、気泡および非金属介在物やモールドフラックスの巻き込みに起因した表面欠陥が非常に少ない高品質の鋼板を製造することができる。
さらに、以上のような連続鋳造法で鋳造されたスラブを圧延して得られた熱延鋼板を、特定の条件で酸洗および冷間圧延することにより、ブリスターが非常に少ない高品質の鋼板を製造できることが判った。
By continuously casting the slab while controlling the flow of molten steel in the mold by direct current magnetic fields applied to the upper and lower magnetic poles, it is possible to prevent mold flux defects caused by mold flux entrainment and a relatively large size. Defects caused by bubbles (normally 1 mmφ or more) and non-metallic inclusions can be prevented. However, with this continuous casting method, it is difficult to reliably prevent finer bubbles and non-metallic inclusions from being trapped by the solidified shell, and surface defects caused by the inclusion of such fine bubbles and inclusions are difficult. May occur. In contrast, as described above, the chemical composition of the ultra-low carbon steel is adjusted to a specific range in consideration of the interfacial tension gradient in the concentration boundary layer on the front of the solidified shell, and also according to the slab width and casting speed to be cast. Thus, by optimizing the strength of the DC magnetic field applied to each of the upper magnetic pole and the lower magnetic pole, it is possible to suppress trapping of fine bubbles and non-metallic inclusions in the solidified shell. As described above, it is possible to prevent entrainment of mold flux and prevent trapping in the solidified shell regardless of the size of bubbles and non-metallic inclusions, and the surface caused by entrapment of bubbles and non-metallic inclusions or mold flux. High quality steel sheets with very few defects can be manufactured.
Furthermore, high-quality steel sheets with very few blisters can be obtained by pickling and cold rolling hot-rolled steel sheets obtained by rolling slabs cast by the continuous casting method as described above under specific conditions. It was found that it could be manufactured.

本発明は、これらの知見に基づきなされたもので、以下を要旨とするものである。
[1]鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が10°以上30°未満の浸漬ノズルを備え、前記上部磁極の磁場のピーク位置と前記下部磁極の磁場のピーク位置の間に前記溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、Cを0.003質量%以下含有する極低炭素鋼を連続鋳造するに際し、
下記(1)式で定義されるX値がX≦5000を満足する化学成分を有する溶鋼を、
X=24989×[%Ti]+386147×[%S]+853354×[%O] …(1)
但し [%Ti]:溶鋼中のTi含有量(質量%)
[%S] :溶鋼中のS含有量(質量%)
[%O] :溶鋼中のO含有量(質量%)
鋳造速度0.75m/分以上で、下記条件(イ)、(ロ)に従って連続鋳造し、
・条件(イ):鋳造するスラブ幅と鋳造速度が下記(a)〜(i)の場合には、上部磁極に印加する直流磁界の強度を0.03〜0.15T、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(a)スラブ幅950mm未満で且つ鋳造速度2.05未満
(b)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分未満
(c)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分未満
(d)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分未満
(e)スラブ幅1450mm以上1650mm未満で且つ鋳造速度2.15m/分未満
(f)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分未満
(g)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分未満
(h)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分未満
(i)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分未満
・条件(ロ):鋳造するスラブ幅と鋳造速度が下記(j)〜(s)の場合には、上部磁極に印加する直流磁界の強度を0.15T超0.30T以下、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(j)スラブ幅950mm未満で且つ鋳造速度2.05m/分以上3.05m/分以下
(k)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(l)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分以上3.05m/分以下
(m)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(n)スラブ幅1450mm以上1550mm未満で且つ鋳造速度2.15m/分以上3.05m/分以下
(o)スラブ幅1550mm以上1650mm未満で且つ鋳造速度2.15m/分以上2.85m/分以下
(p)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分以上2.65m/分以下
(q)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分以上2.55m/分以下
(r)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分以上2.55m/分以下
(s)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分以上2.55m/分以下
鋳造されたスラブを熱間圧延して熱延鋼板とし、該熱延鋼板を酸洗した後、冷間圧延するに際し、下記(a)式を満足するように、時間t又は/及び鋼板の最高表面温度Tを制御することを特徴とする鋼板の製造方法。
Hc/Ho> exp{−0.002×(T+t/100)} …(a)
但し Ho:酸洗終了直後の鋼板中の水素濃度(質量ppm)
Hc:冷間圧延条件により決まる、ブリスターによる表面品質不良が発生する冷間圧延直前の鋼板中の臨界水素濃度(質量ppm)
t:酸洗終了後、冷間圧延開始までの時間(秒)
T:酸洗終了後、冷間圧延開始前における鋼板の最高表面温度(K)(但し、この鋼板表面温度は、酸洗終了後、冷間圧延前に鋼板を加熱した場合の鋼板表面温度を含む。)
The present invention has been made based on these findings, and has the following gist.
[1] A pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold are provided outside the mold, and the molten steel discharge angle from the horizontal direction of the molten steel discharge hole is 10 ° or more and less than 30 ° Using the continuous casting machine in which the molten steel discharge hole is located between the peak position of the magnetic field of the upper magnetic pole and the peak position of the magnetic field of the lower magnetic pole, When continuously casting an ultra-low carbon steel containing 0.003% by mass or less of C while braking the molten steel flow by a DC magnetic field applied to each of the magnetic poles,
A molten steel having a chemical component with an X value defined by the following formula (1) satisfying X ≦ 5000,
X = 24989 × [% Ti] +386 147 × [% S] + 853354 × [% O] (1)
[% Ti]: Ti content in molten steel (mass%)
[% S]: S content in molten steel (mass%)
[% O]: O content (% by mass) in molten steel
Continuous casting at a casting speed of 0.75 m / min or more according to the following conditions (a) and (b)
Condition (A): When the slab width to be cast and the casting speed are the following (a) to (i), the strength of the DC magnetic field applied to the upper magnetic pole is 0.03 to 0.15 T, and is applied to the lower magnetic pole. The intensity of the DC magnetic field is 0.24 to 0.45T.
(A) Slab width of less than 950 mm and casting speed of less than 2.05 (b) Slab width of 950 mm to less than 1050 mm and casting speed of less than 2.25 m / min (c) Slab width of from 1050 mm to less than 1350 mm and casting speed of 2.35 m (D) Slab width of 1350 mm or more and less than 1450 mm and casting speed of less than 2.25 m / min (e) Slab width of 1450 mm or more and less than 1650 mm and casting speed of less than 2.15 m / min (f) Slab width of 1650 mm or more and less than 1750 mm (G) Slab width of 1750 mm or more and less than 1850 mm and casting speed of less than 1.95 m / min (h) Slab width of 1850 mm or more and less than 1950 mm and casting speed of less than 1.85 m / min (i ) The slab width is 1950 mm or more and less than 2150 mm and the casting speed is 1.75 m / min.・ Condition (b): When the cast slab width and casting speed are the following (j) to (s), the strength of the DC magnetic field applied to the upper magnetic pole is more than 0.15T and less than 0.30T, The strength of the DC magnetic field to be applied is 0.24 to 0.45T.
(J) Slab width of less than 950 mm and casting speed of 2.05 m / min or more and 3.05 m / min or less (k) Slab width of 950 mm or more and less than 1050 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (l ) Slab width of 1050 mm or more and less than 1350 mm and casting speed of 2.35 m / min or more and 3.05 m / min or less (m) Slab width of 1350 mm or more and less than 1450 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (n ) Slab width of 1450 mm to less than 1550 mm and casting speed of 2.15 m / min to 3.05 m / min (o) Slab width of 1550 mm to less than 1650 mm and casting speed of 2.15 m / min to 2.85 m / min (p ) Slab width of 1650 mm or more and less than 1750 mm and casting speed of 2.05 m / min or more and 2.65 m / min or less (q) Slab width 175 mm or more and less than 1850 mm and casting speed of 1.95 m / min or more and 2.55 m / min or less (r) Slab width of 1850 mm or more and less than 1950 mm and casting speed of 1.85 m / min or more and 2.55 m / min or less (s) Slab width 1950 mm or more and less than 2150 mm and casting speed 1.75 m / min or more and 2.55 m / min or less When the cast slab is hot-rolled into a hot-rolled steel sheet, the hot-rolled steel sheet is pickled, and then cold-rolled. The method for producing a steel sheet, wherein the time t or / and the maximum surface temperature T of the steel sheet are controlled so as to satisfy the following expression (a).
Hc / Ho> exp {−0.002 × (T + t / 100)} (a)
However, Ho: Hydrogen concentration (mass ppm) in the steel plate immediately after pickling
Hc: Critical hydrogen concentration (mass ppm) in the steel sheet immediately before cold rolling, which causes surface quality defects due to blisters, determined by cold rolling conditions
t: Time from the end of pickling to the start of cold rolling (seconds)
T: Maximum surface temperature (K) of the steel plate after the end of pickling and before the start of cold rolling (however, the surface temperature of the steel plate is the surface temperature of the steel plate when heated after the end of pickling and before cold rolling) Including)

[2]上記[1]の鋼板の製造方法において、酸洗後、冷間圧延前の熱延鋼板を、酸洗終了直後の鋼板温度よりも高い温度に加熱することを特徴とする鋼板の製造方法。
[3]上記[1]または[2]の鋼板の製造方法において、連続鋳造機の鋳型内の溶鋼は、表面乱流エネルギーが0.0010〜0.0015m/s、表面流速が0.30m/s以下、溶鋼−凝固シェル界面での流速が0.08〜0.15m/sであることを特徴とする鋼板の製造方法。
[4]上記[3]の鋼板の製造方法において、連続鋳造機の鋳型内の溶鋼は、表面流速が0.05〜0.30m/sであることを特徴とする鋼板の製造方法。
[5]上記[3]または[4]の鋼板の製造方法において、連続鋳造機の鋳型内の溶鋼は、溶鋼−凝固シェル界面での流速Aと表面流速Bとの比A/Bが1.0〜2.0であることを特徴とする鋼板の製造方法。
[6]上記[3]〜[5]のいずれかの鋼板の製造方法において、連続鋳造機の鋳型内の溶鋼は、溶鋼−凝固シェル界面での気泡濃度が0.008kg/m以下であることを特徴とする鋼板の製造方法。
[7]上記[6]の鋼板の製造方法において、連続鋳造機で鋳造されるスラブ厚さが220〜300mm、連続鋳造機の浸漬ノズルの内壁面からの不活性ガス吹き込み量が3〜25NL/分であることを特徴とする鋼板の製造方法。
[8]上記[1]〜[7]のいずれかの鋼板の製造方法において、連続鋳造機の浸漬ノズルのノズル浸漬深さを230〜290mmとすることを特徴とする鋼板の製造方法。
[9]上記[1]〜[8]のいずれかの鋼板の製造方法において、連続鋳造機の浸漬ノズルのノズル内径(但し、溶鋼吐出孔の形成位置でのノズル内径)を70〜90mmとすることを特徴とする鋼板の製造方法。
[10]上記[1]〜[9]のいずれかの鋼板の製造方法において、連続鋳造機の浸漬ノズルの各溶鋼吐出孔の開口面積を3600〜8100mmとすることを特徴とする鋼板の製造方法。
[2] In the method for producing a steel plate according to [1], the hot-rolled steel plate after pickling and before cold rolling is heated to a temperature higher than the steel plate temperature immediately after the end of pickling. Method.
[3] In the method for producing a steel sheet according to [1] or [2], the molten steel in the mold of the continuous casting machine has a surface turbulent energy of 0.0010 to 0.0015 m 2 / s 2 and a surface flow velocity of 0.1. 30 m / s or less, The flow rate in a molten steel-solidified shell interface is 0.08-0.15 m / s, The manufacturing method of the steel plate characterized by the above-mentioned.
[4] The method for producing a steel plate according to [3], wherein the molten steel in the mold of the continuous casting machine has a surface flow velocity of 0.05 to 0.30 m / s.
[5] In the method for producing a steel sheet of [3] or [4] above, the molten steel in the mold of the continuous casting machine has a ratio A / B of the flow velocity A at the molten steel-solidified shell interface to the surface flow velocity B of 1. The manufacturing method of the steel plate characterized by being 0-2.0.
[6] In the method for producing a steel sheet according to any one of [3] to [5], the molten steel in the mold of the continuous casting machine has a bubble concentration at the molten steel-solidified shell interface of 0.008 kg / m 3 or less. A method for producing a steel sheet, comprising:
[7] In the method for producing a steel sheet according to [6] above, the slab thickness cast by the continuous casting machine is 220 to 300 mm, and the amount of inert gas blown from the inner wall surface of the immersion nozzle of the continuous casting machine is 3 to 25 NL / The manufacturing method of the steel plate characterized by the above-mentioned.
[8] A method for manufacturing a steel sheet according to any one of the above [1] to [7], wherein a nozzle immersion depth of an immersion nozzle of a continuous casting machine is 230 to 290 mm.
[9] In the method for manufacturing a steel sheet according to any one of [1] to [8] above, the nozzle inner diameter of the immersion nozzle of the continuous casting machine (however, the nozzle inner diameter at the position where the molten steel discharge hole is formed) is 70 to 90 mm. A method for producing a steel sheet, comprising:
[10] In the method for manufacturing a steel plate according to any one of [1] to [9], the opening area of each molten steel discharge hole of the immersion nozzle of the continuous casting machine is 3600 to 8100 mm 2. Method.

[11]鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が10°以上30°未満の浸漬ノズルを備え、前記上部磁極の磁場のピーク位置と前記下部磁極の磁場のピーク位置の間に前記溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、Cを0.003質量%以下含有する極低炭素鋼を連続鋳造する方法であって、
下記(1)式で定義されるX値がX≦5000を満足する化学成分を有する溶鋼を、
X=24989×[%Ti]+386147×[%S]+853354×[%O] …(1)
但し [%Ti]:溶鋼中のTi含有量(質量%)
[%S] :溶鋼中のS含有量(質量%)
[%O] :溶鋼中のO含有量(質量%)
鋳造速度0.75m/分以上で、下記条件(イ)、(ロ)に従って連続鋳造することを特徴とする鋼の連続鋳造方法。
・条件(イ):鋳造するスラブ幅と鋳造速度が下記(a)〜(i)の場合には、上部磁極に印加する直流磁界の強度を0.03〜0.15T、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(a)スラブ幅950mm未満で且つ鋳造速度2.05未満
(b)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分未満
(c)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分未満
(d)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分未満
(e)スラブ幅1450mm以上1650mm未満で且つ鋳造速度2.15m/分未満
(f)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分未満
(g)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分未満
(h)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分未満
(i)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分未満
・条件(ロ):鋳造するスラブ幅と鋳造速度が下記(j)〜(s)の場合には、上部磁極に印加する直流磁界の強度を0.15T超0.30T以下、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(j)スラブ幅950mm未満で且つ鋳造速度2.05m/分以上3.05m/分以下
(k)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(l)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分以上3.05m/分以下
(m)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(n)スラブ幅1450mm以上1550mm未満で且つ鋳造速度2.15m/分以上3.05m/分以下
(o)スラブ幅1550mm以上1650mm未満で且つ鋳造速度2.15m/分以上2.85m/分以下
(p)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分以上2.65m/分以下
(q)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分以上2.55m/分以下
(r)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分以上2.55m/分以下
(s)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分以上2.55m/分以下
[11] A pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold are provided outside the mold, and the molten steel discharge angle from the horizontal direction of the molten steel discharge hole is 10 ° or more and less than 30 ° Using the continuous casting machine in which the molten steel discharge hole is located between the peak position of the magnetic field of the upper magnetic pole and the peak position of the magnetic field of the lower magnetic pole, A method of continuously casting an ultra-low carbon steel containing 0.003% by mass or less of C while braking a molten steel flow by a DC magnetic field applied to each of magnetic poles,
A molten steel having a chemical component with an X value defined by the following formula (1) satisfying X ≦ 5000,
X = 24989 × [% Ti] +386 147 × [% S] + 853354 × [% O] (1)
[% Ti]: Ti content in molten steel (mass%)
[% S]: S content in molten steel (mass%)
[% O]: O content (% by mass) in molten steel
A continuous casting method for steel, characterized by continuous casting at a casting speed of 0.75 m / min or more according to the following conditions (a) and (b).
Condition (A): When the slab width to be cast and the casting speed are the following (a) to (i), the strength of the DC magnetic field applied to the upper magnetic pole is 0.03 to 0.15 T, and is applied to the lower magnetic pole. The intensity of the DC magnetic field is 0.24 to 0.45T.
(A) Slab width of less than 950 mm and casting speed of less than 2.05 (b) Slab width of 950 mm to less than 1050 mm and casting speed of less than 2.25 m / min (c) Slab width of from 1050 mm to less than 1350 mm and casting speed of 2.35 m (D) Slab width of 1350 mm or more and less than 1450 mm and casting speed of less than 2.25 m / min (e) Slab width of 1450 mm or more and less than 1650 mm and casting speed of less than 2.15 m / min (f) Slab width of 1650 mm or more and less than 1750 mm (G) Slab width of 1750 mm or more and less than 1850 mm and casting speed of less than 1.95 m / min (h) Slab width of 1850 mm or more and less than 1950 mm and casting speed of less than 1.85 m / min (i ) The slab width is 1950 mm or more and less than 2150 mm and the casting speed is 1.75 m / min.・ Condition (b): When the cast slab width and casting speed are the following (j) to (s), the strength of the DC magnetic field applied to the upper magnetic pole is more than 0.15T and less than 0.30T, The strength of the DC magnetic field to be applied is 0.24 to 0.45T.
(J) Slab width of less than 950 mm and casting speed of 2.05 m / min or more and 3.05 m / min or less (k) Slab width of 950 mm or more and less than 1050 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (l ) Slab width of 1050 mm or more and less than 1350 mm and casting speed of 2.35 m / min or more and 3.05 m / min or less (m) Slab width of 1350 mm or more and less than 1450 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (n ) Slab width of 1450 mm to less than 1550 mm and casting speed of 2.15 m / min to 3.05 m / min (o) Slab width of 1550 mm to less than 1650 mm and casting speed of 2.15 m / min to 2.85 m / min (p ) Slab width of 1650 mm or more and less than 1750 mm and casting speed of 2.05 m / min or more and 2.65 m / min or less (q) Slab width 175 mm or more and less than 1850 mm and casting speed of 1.95 m / min or more and 2.55 m / min or less (r) Slab width of 1850 mm or more and less than 1950 mm and casting speed of 1.85 m / min or more and 2.55 m / min or less (s) Slab width 1950 mm or more and less than 2150 mm and casting speed 1.75 m / min or more and 2.55 m / min or less

[12]上記[11]の連続鋳造方法において、鋳型内の溶鋼は、表面乱流エネルギーが0.0010〜0.0015m/s、表面流速が0.30m/s以下、溶鋼−凝固シェル界面での流速が0.08〜0.15m/sであることを特徴とする鋼の連続鋳造方法。
[13]上記[12]の連続鋳造方法において、鋳型内の溶鋼は、表面流速が0.05〜0.30m/sであることを特徴とする鋼の連続鋳造方法。
[14]上記[12]または[13]の連続鋳造方法において、鋳型内の溶鋼は、溶鋼−凝固シェル界面での流速Aと表面流速Bとの比A/Bが1.0〜2.0であることを特徴とする鋼の連続鋳造方法。
[15]上記[12]〜[14]のいずれかの連続鋳造方法において、鋳型内の溶鋼は、溶鋼−凝固シェル界面での気泡濃度が0.008kg/m以下であることを特徴とする鋼の連続鋳造方法。
[16]上記[15]の連続鋳造方法において、鋳造されるスラブ厚さが220〜300mm、浸漬ノズルの内壁面からの不活性ガス吹き込み量が3〜25NL/分であることを特徴とする鋼の連続鋳造方法。
[17]上記[11]〜[16]のいずれかの連続鋳造方法において、浸漬ノズルのノズル浸漬深さを230〜290mmとすることを特徴とする鋼の連続鋳造方法。
[18]上記[11]〜[17]のいずれかの連続鋳造方法において、浸漬ノズルのノズル内径(但し、溶鋼吐出孔の形成位置でのノズル内径)を70〜90mmとすることを特徴とする鋼の連続鋳造方法。
[19]上記[11]〜[18]のいずれかの連続鋳造方法において、浸漬ノズルの各溶鋼吐出孔の開口面積を3600〜8100mmとすることを特徴とする鋼の連続鋳造方法。
[12] In the continuous casting method of [11], the molten steel in the mold has a surface turbulent energy of 0.0010 to 0.0015 m 2 / s 2 , a surface flow velocity of 0.30 m / s or less, and a molten steel-solidified shell. A continuous casting method of steel, wherein the flow velocity at the interface is 0.08 to 0.15 m / s.
[13] The continuous casting method of [12], wherein the molten steel in the mold has a surface flow velocity of 0.05 to 0.30 m / s.
[14] In the continuous casting method of [12] or [13] above, the molten steel in the mold has a ratio A / B between the flow velocity A at the molten steel-solidified shell interface and the surface flow velocity B of 1.0 to 2.0. A continuous casting method of steel, characterized in that
[15] In the continuous casting method according to any one of [12] to [14], the molten steel in the mold has a bubble concentration at the molten steel-solidified shell interface of 0.008 kg / m 3 or less. Steel continuous casting method.
[16] The steel according to the above [15], wherein the cast slab thickness is 220 to 300 mm, and the amount of inert gas blown from the inner wall surface of the immersion nozzle is 3 to 25 NL / min. Continuous casting method.
[17] The continuous casting method according to any one of [11] to [16], wherein the nozzle immersion depth of the immersion nozzle is 230 to 290 mm.
[18] In the continuous casting method according to any one of [11] to [17], the nozzle inner diameter of the immersion nozzle (however, the nozzle inner diameter at the position where the molten steel discharge hole is formed) is 70 to 90 mm. Steel continuous casting method.
[19] The continuous casting method according to any one of [11] to [18], wherein an opening area of each molten steel discharge hole of the immersion nozzle is 3600 to 8100 mm 2 .

本発明の鋼の連続鋳造方法によれば、極低炭素鋼の化学成分を、凝固シェル前面の濃度境界層中の界面張力勾配を考慮した特定の範囲に調整するとともに、鋳造するスラブ幅および鋳造速度に応じて、上部磁極と下部磁極に各々印加する直流磁界の強度を最適化することにより、従来問題とされてきたような非金属介在物やモールドフラックスによる欠陥だけでなく、微小な気泡や非金属介在物による欠陥が少ない高品質の鋳片を得ることができる。
また、特に、浸漬ノズルのノズル浸漬深さ、ノズル内径、溶鋼吐出孔の開口面積を最適化することにより、より高品質な鋳片を得ることができる。
また、本発明の鋼板の製造方法によれば、気泡や非金属介在物、モールドフラックスの巻き込みによる欠陥が少ないだけでなく、ブリスターが非常に少ない高品質の鋼板を製造することができる。
According to the continuous casting method of steel of the present invention, the chemical composition of the ultra-low carbon steel is adjusted to a specific range in consideration of the interfacial tension gradient in the concentration boundary layer in front of the solidified shell, and the slab width and casting to be cast are adjusted. By optimizing the strength of the DC magnetic field applied to each of the upper and lower magnetic poles according to the speed, not only defects caused by non-metallic inclusions and mold flux, which have been regarded as problems in the past, but also small bubbles and A high quality slab with few defects due to non-metallic inclusions can be obtained.
In particular, a higher quality slab can be obtained by optimizing the nozzle immersion depth of the immersion nozzle, the nozzle inner diameter, and the opening area of the molten steel discharge hole.
Further, according to the method for producing a steel sheet of the present invention, it is possible to produce a high-quality steel sheet having not only few defects due to entrapment of bubbles, non-metallic inclusions, and mold flux, but also very few blisters.

本発明の実施に供される連続鋳造機の鋳型および浸漬ノズルの一実施形態を示す縦断面図The longitudinal cross-sectional view which shows one Embodiment of the casting_mold | template and immersion nozzle of a continuous casting machine with which implementation of this invention is carried out 図1の実施形態における鋳型および浸漬ノズルの水平断面図Horizontal sectional view of the mold and the immersion nozzle in the embodiment of FIG. 浸漬ノズルの溶鋼吐出角度と表面欠陥の発生率(欠陥指数)との関係を示すグラフGraph showing the relationship between the molten steel discharge angle of the immersion nozzle and the occurrence rate (defect index) of surface defects 溶鋼のX値と、溶鋼−凝固シェル界面での溶鋼流速と、凝固シェルへの非金属介在物の捕捉率との関係を示すグラフGraph showing the relationship between the X value of molten steel, the molten steel flow velocity at the molten steel-solidified shell interface, and the capture rate of non-metallic inclusions in the solidified shell 本発明法において、浸漬ノズルのノズル浸漬深さの影響(モールドフラックス性欠陥および気泡性欠陥に及ぼす影響)を示すグラフIn this invention method, the graph which shows the influence (influence on a mold flux defect and a bubble defect) of the nozzle immersion depth of an immersion nozzle 本発明法において、浸漬ノズルのノズル内径の影響(モールドフラックス性欠陥に及ぼす影響)を示すグラフIn this invention method, the graph which shows the influence (influence on a mold flux property defect) of the nozzle inner diameter of an immersion nozzle 本発明法において、浸漬ノズルの各溶鋼吐出孔の開口面積の影響(モールドフラックス性欠陥および気泡性欠陥に及ぼす影響)を示すグラフIn this invention method, the graph which shows the influence (influence on a mold flux property defect and a bubble defect) of the opening area of each molten steel discharge hole of an immersion nozzle 鋳型内の溶鋼の表面乱流エネルギー、凝固界面流速(溶鋼−凝固シェル界面での流速)、表面流速および凝固界面気泡濃度(溶鋼−凝固シェル界面での気泡濃度)を説明するための概念図Conceptual diagram for explaining the surface turbulent energy, solidification interface flow velocity (flow velocity at the molten steel-solidified shell interface), surface flow velocity and solidification interface bubble concentration (bubble concentration at the molten steel-solidified shell interface) of the molten steel in the mold 鋳型内の溶鋼の表面乱流エネルギーと表面欠陥率(欠陥個数)との関係を示すグラフGraph showing the relationship between surface turbulence energy and surface defect rate (number of defects) of molten steel in mold 鋳型内の溶鋼の表面流速と表面欠陥率(欠陥個数)との関係を示すグラフGraph showing the relationship between the surface flow velocity of molten steel in the mold and the surface defect rate (number of defects) 鋳型内の溶鋼の凝固界面流速(溶鋼−凝固シェル界面での流速)と表面欠陥率(欠陥個数)との関係を示すグラフA graph showing the relationship between the solidification interface flow velocity of molten steel in the mold (flow velocity at the molten steel-solidification shell interface) and the surface defect rate (number of defects). 鋳型内の溶鋼の凝固界面流速Aと表面流速Bとの比A/Bと表面欠陥率(欠陥個数)との関係を示すグラフA graph showing the relationship between the ratio A / B between the solidification interface flow velocity A and the surface flow velocity B of the molten steel in the mold and the surface defect rate (number of defects). 鋳型内の溶鋼の凝固界面気泡濃度(溶鋼−凝固シェル界面での気泡濃度)と表面欠陥率(欠陥個数)との関係を示すグラフGraph showing the relationship between the solidified interface bubble concentration (bubble concentration at the molten steel-solidified shell interface) and the surface defect rate (number of defects) of the molten steel in the mold 熱延鋼板の酸洗減量と酸洗終了直後の鋼板中の水素濃度Hoとの関係を示すグラフThe graph which shows the relationship between the pickling reduction amount of a hot-rolled steel plate, and the hydrogen concentration Ho in the steel plate immediately after the end of pickling Hoを酸洗終了直後における熱延鋼板中の水素濃度、Tを同じく鋼板表面温度とした場合、Ho・exp{−0.002×(T+t/100)}と酸洗終了から時間tを経過した時点での鋼板中の水素濃度Hとの関係を示すグラフThe hydrogen concentration in the hot-rolled steel sheet immediately after pickling ends Ho, when the same steel sheet surface temperature T 0, Ho · exp {-0.002 × (T 0 + t 1/100)} and the time from the pickling finished t 1 Showing the relationship with the hydrogen concentration H 1 in the steel plate at the time of passing 冷間圧延直前の鋼板中の水素濃度Hとブリスター欠陥発生個数との関係を、冷間圧延の仕上げ板厚で整理して示すグラフA graph showing the relationship between the hydrogen concentration H in the steel sheet just before cold rolling and the number of blister defects generated, arranged by the finished thickness of the cold rolling.

本発明の連続鋳造方法は、鋳型外側(鋳型側壁の背面)に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度αが10°以上30°未満の浸漬ノズルを備え、前記上部磁極の磁場のピーク位置と前記下部磁極の磁場のピーク位置の間に前記溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、極低炭素鋼の連続鋳造を行うものである。   The continuous casting method of the present invention includes a pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold on the outer side of the mold (the back side of the mold side wall) and downward from the horizontal direction of the molten steel discharge hole Using a continuous casting machine including an immersion nozzle having a molten steel discharge angle α of 10 ° or more and less than 30 °, wherein the molten steel discharge hole is positioned between the peak position of the magnetic field of the upper magnetic pole and the peak position of the magnetic field of the lower magnetic pole. The continuous casting of ultra-low carbon steel is performed while the molten steel flow is damped by a DC magnetic field applied to each of the pair of upper magnetic poles and the pair of lower magnetic poles.

上記のような連続鋳造方法において、本発明者が数値シミュレーション等により検討した結果、気泡性欠陥、介在物性欠陥およびモールドフラックス性欠陥の発生に関与する因子(一次因子)としては、表面乱流エネルギー(表面近傍での渦流の発生に関与)、溶鋼−凝固シェル界面(以下、単に「凝固界面」という場合がある)の溶鋼流速(以下、単に「凝固界面流速」という場合がある)、表面流速があり、これらが欠陥発生に影響していることが判った。また特に、表面流速、表面乱流エネルギーは、モールドフラックスの巻き込みに影響を与え、凝固界面流速は気泡性欠陥や介在物性欠陥に影響を与えることが判った。そして、これらの知見に基づき、印加される上部直流磁界、下部直流磁界の各々作用について検討した結果、以下の点が明らかとなった。   In the continuous casting method as described above, as a result of investigation by the present inventor through numerical simulation, etc., as a factor (primary factor) involved in generation of bubble defects, inclusion physical defects and mold flux defects, surface turbulent energy (Involved in the generation of eddy currents near the surface), molten steel flow velocity at the molten steel-solidified shell interface (hereinafter sometimes simply referred to as “solidification interface”), and hereinafter referred to as “solidification interface flow velocity”, surface flow velocity It was found that these had an effect on the occurrence of defects. In particular, it was found that the surface flow velocity and the surface turbulent energy affect the entrainment of the mold flux, and the solidification interface flow velocity affects bubble defects and inclusion physical defects. And based on these knowledge, as a result of examining each effect | action of the upper DC magnetic field and lower DC magnetic field which were applied, the following points became clear.

(1)上部電極に直流磁界を作用させると溶鋼の上昇流(溶鋼吐出孔からの噴流がモールド短辺と衝突して反転することで生じる上昇流)が制動され、表面流速および表面乱流エネルギーを低減することができる。但し、このような直流磁界だけでは、表面流速、表面乱流エネルギーおよび凝固界面流速を理想的状態にコントロールすることはできない。
(2)上記の点から、上部磁極において直流磁界を印加することは、気泡性欠陥・介在物性欠陥とモールドフラックス性欠陥の両方を防止するのに有効であると考えられるが、単に直流磁界を印加しただけでは十分な効果は得られず、鋳造条件(鋳造するスラブ幅、鋳造速度)、上部磁極と下部磁極に各々印加する直流磁界の印加条件が相互に関連し、それらに最適範囲が存在する。
(3)特に、微細な非金属介在物などが凝固シェルに捕捉されることを防止するには、溶鋼の化学成分を、溶鋼−凝固シェル界面において非金属介在物などが凝固シェルに捕捉されにくい成分範囲(すなわち、凝固シェル前面の濃度境界層中の界面張力勾配を考慮した特定の範囲)に調整し、その上で、上記のような直流磁界強度の最適化によって凝固界面流速を適正化し、溶鋼流による洗浄効果を得ることが必要である。
(1) When a DC magnetic field is applied to the upper electrode, the upward flow of the molten steel (the upward flow generated when the jet flow from the molten steel discharge hole collides with the mold short side and reverses) is braked, and the surface velocity and surface turbulent energy Can be reduced. However, the surface flow velocity, the surface turbulent energy, and the solidification interface flow velocity cannot be controlled to an ideal state only with such a DC magnetic field.
(2) From the above points, it is considered that applying a DC magnetic field at the upper magnetic pole is effective in preventing both bubble defects, inclusion physical defects and mold flux defects, but simply applying a DC magnetic field. Applying it alone does not provide a sufficient effect. The casting conditions (casting slab width, casting speed), the application conditions of the DC magnetic field applied to the upper and lower magnetic poles are related to each other, and there is an optimum range for them. To do.
(3) In particular, in order to prevent fine non-metallic inclusions from being trapped by the solidified shell, it is difficult for non-metallic inclusions to be trapped by the solidified shell at the molten steel-solidified shell interface. Adjust to the component range (that is, a specific range considering the interfacial tension gradient in the concentration boundary layer in front of the solidified shell), and then optimize the solidification interface flow velocity by optimizing the DC magnetic field strength as described above, It is necessary to obtain a cleaning effect by the molten steel flow.

本発明はこのような知見に基づき、下記条件(A)、(B)により極低炭素鋼の連続鋳造を行うものであり、これにより、気泡性欠陥・介在物性欠陥とモールドフラックス性欠陥の発生をともに効果的に抑制することを可能としたものである。
・条件(A):溶鋼(極低炭素鋼)の化学成分を、凝固シェル前面の濃度境界層中の界面張力勾配を考慮した特定の範囲に調整する。
・条件(B):鋳造するスラブ幅および鋳造速度に応じて、上部磁極と下部磁極に各々印加する直流磁界の強度を最適化する。
Based on such knowledge, the present invention performs continuous casting of ultra-low carbon steel under the following conditions (A) and (B), thereby generating bubble defects, inclusion physical defects and mold flux defects. Both can be effectively suppressed.
Condition (A): The chemical composition of the molten steel (very low carbon steel) is adjusted to a specific range in consideration of the interfacial tension gradient in the concentration boundary layer in front of the solidified shell.
Condition (B): The strength of the DC magnetic field applied to each of the upper magnetic pole and the lower magnetic pole is optimized according to the slab width to be cast and the casting speed.

図1および図2は、本発明の実施に供される連続鋳造機の鋳型および浸漬ノズルの一実施形態を示すもので、図1は鋳型および浸漬ノズルの縦断面図、図2は同じく水平断面図(図1のII−II線に沿う断面図)である。
図において、1は鋳型であり、この鋳型1は鋳型長辺部10(鋳型側壁)と鋳型短辺部11(鋳型側壁)とにより水平断面矩形状に構成されている。
2は浸漬ノズルであり、この浸漬ノズル2を通じて鋳型1の上方に設置されたタンディッシュ(図示せず)内の溶鋼を鋳型1内に注入する。この浸漬ノズル2は、筒状のノズル本体の下端に底部21を有するとともに、この底部21の直上の側壁部に、両鋳型短辺部11と対向するように1対の溶鋼吐出孔20が貫設されている。
溶鋼中のアルミナなどの非金属介在物が浸漬ノズル2の内壁面に付着・堆積してノズル閉塞を生じることを防止するため、浸漬ノズル2のノズル本体内部や上ノズル(図示せず)の内部に設けられたガス流路にArガスなどの不活性ガスが導入され、この不活性ガスがノズル内壁面からノズル内に吹き込まれる。
1 and 2 show an embodiment of a mold and an immersion nozzle of a continuous casting machine used for carrying out the present invention. FIG. 1 is a longitudinal sectional view of the mold and the immersion nozzle, and FIG. It is a figure (sectional drawing which follows the II-II line of FIG. 1).
In the figure, reference numeral 1 denotes a mold, and the mold 1 is constituted by a mold long side portion 10 (mold side wall) and a mold short side portion 11 (mold side wall) in a rectangular shape in a horizontal section.
Reference numeral 2 denotes an immersion nozzle, and molten steel in a tundish (not shown) installed above the mold 1 is injected into the mold 1 through the immersion nozzle 2. The immersion nozzle 2 has a bottom portion 21 at the lower end of a cylindrical nozzle body, and a pair of molten steel discharge holes 20 penetrates the side wall portion directly above the bottom portion 21 so as to face both mold short side portions 11. It is installed.
In order to prevent non-metallic inclusions such as alumina in the molten steel from adhering to and accumulating on the inner wall surface of the immersion nozzle 2, the inside of the nozzle body of the immersion nozzle 2 and the upper nozzle (not shown) An inert gas such as Ar gas is introduced into the gas flow path provided in the nozzle, and this inert gas is blown into the nozzle from the inner wall surface of the nozzle.

タンディッシュから浸漬ノズル2に流入した溶鋼は、浸漬ノズル2の1対の溶鋼吐出孔20から鋳型1内に吐出される。吐出された溶鋼は、鋳型1内で冷却されて凝固シェル5を形成し、鋳型1の下方に連続的に引き抜かれ鋳片となる。鋳型1内のメニスカス6には、溶鋼の保温剤および凝固シェル5と鋳型1との潤滑剤として、モールドフラックスが添加される。
また、浸漬ノズル2の内壁面や上ノズルの内部から吹き込まれた不活性ガスの気泡は、溶鋼吐出孔20から溶鋼とともに鋳型1内に吐出される。
Molten steel flowing into the immersion nozzle 2 from the tundish is discharged into the mold 1 from a pair of molten steel discharge holes 20 of the immersion nozzle 2. The discharged molten steel is cooled in the mold 1 to form a solidified shell 5 and is continuously drawn below the mold 1 to form a slab. A mold flux is added to the meniscus 6 in the mold 1 as a heat insulating agent for molten steel and a lubricant between the solidified shell 5 and the mold 1.
Inert gas bubbles blown from the inner wall surface of the immersion nozzle 2 or the upper nozzle are discharged into the mold 1 from the molten steel discharge hole 20 together with the molten steel.

鋳型1の外側(鋳型側壁の背面)には、鋳型長辺部を挟んで対向する1対の上部磁極3a,3bと1対の下部磁極4a,4bが設けられ、これら上部磁極3a,3bと下部磁極4a,4bは、それぞれ鋳型長辺部10の幅方向において、その全幅に沿うように配置されている。
上部磁極3a,3bと下部磁極4a,4bは、鋳型1の上下方向において、上部磁極3a,3bの磁場のピーク位置(上下方向でのピーク位置:通常は上部磁極3a,3bの上下方向中心位置)と下部磁極4a,4bの磁場のピーク位置(上下方向でのピーク位置:通常は下部磁極4a,4bの上下方向中心位置)の間に溶鋼吐出孔20が位置するように、配置される。また、1対の上部磁極3a,3bは、通常、メニスカス6をカバーする位置に配置される。
A pair of upper magnetic poles 3a and 3b and a pair of lower magnetic poles 4a and 4b that are opposed to each other with the long side of the mold interposed therebetween are provided on the outer side of the mold 1 (the back side of the mold side wall). The lower magnetic poles 4a and 4b are arranged along the entire width in the width direction of the mold long side portion 10, respectively.
The upper magnetic poles 3a and 3b and the lower magnetic poles 4a and 4b are, in the vertical direction of the mold 1, the peak positions of the magnetic fields of the upper magnetic poles 3a and 3b (peak positions in the vertical direction: usually the vertical center positions of the upper magnetic poles 3a and 3b). ) And the magnetic field peak position of the lower magnetic poles 4a and 4b (the peak position in the vertical direction: usually the vertical central position of the lower magnetic poles 4a and 4b). In addition, the pair of upper magnetic poles 3 a and 3 b is usually disposed at a position covering the meniscus 6.

浸漬ノズル2の溶鋼吐出孔20から鋳型短辺部方向に吐出された溶鋼は、鋳型短辺部11の前面に生成した凝固シェル5に衝突して下降流と上昇流に分かれる。前記1対の上部磁極3a,3bと1対の下部磁極4a,4bには、各々直流磁界が印加されるが、これら磁極による基本的な作用は、直流磁界中を移動する溶鋼に作用する電磁気力を利用して、上部磁極3a,3bに印加される直流磁界で溶鋼上昇流を制動(減速させる)し、下部磁極4a,4bに印加される直流磁界で溶鋼下降流を制動(減速させる)するものである。   The molten steel discharged from the molten steel discharge hole 20 of the immersion nozzle 2 in the direction of the mold short side part collides with the solidified shell 5 generated on the front surface of the mold short side part 11 and is divided into a downward flow and an upward flow. A direct current magnetic field is applied to each of the pair of upper magnetic poles 3a and 3b and the pair of lower magnetic poles 4a and 4b. The basic action of these magnetic poles is electromagnetic acting on molten steel moving in the direct current magnetic field. Using force, the molten steel upward flow is braked (decelerated) by the DC magnetic field applied to the upper magnetic poles 3a and 3b, and the molten steel downward flow is braked (decelerated) by the DC magnetic field applied to the lower magnetic poles 4a and 4b. To do.

本発明法では、溶鋼吐出孔20からの溶鋼吐出角度α、すなわち水平方向から下向きの溶鋼吐出角度αが10°以上30°未満の浸漬ノズルを用いる。溶鋼吐出角度αが10°未満では、上部磁極3a,3bの直流磁界で溶鋼上昇流を制動しても、溶鋼表面の乱れを適切に制御できず、モールドフラックスの巻き込みを生じてしまう。これに対して、溶鋼吐出角度αが大きくなると、非金属介在物や気泡が溶鋼下降流によって鋳型下方に運ばれて凝固シェルに捕捉されやすくなり、一方において、溶鋼吐出角度αが30°未満では、本発明法による直流磁場制御で溶鋼流を最適化できることが判ったので、本発明では溶鋼吐出角度αが30°未満の浸漬ノズル2を用いる。また、以上の観点から、溶鋼吐出角度αのより好ましい下限は15°であり、また、より好ましい上限は25°である。   In the present invention method, an immersion nozzle having a molten steel discharge angle α from the molten steel discharge hole 20, that is, a molten steel discharge angle α downward from the horizontal direction of 10 ° or more and less than 30 ° is used. When the molten steel discharge angle α is less than 10 °, even if the molten steel upward flow is braked by the DC magnetic field of the upper magnetic poles 3a and 3b, the turbulence of the molten steel surface cannot be properly controlled, and mold flux is involved. On the other hand, when the molten steel discharge angle α is increased, non-metallic inclusions and bubbles are easily carried down the mold by the molten steel descending flow and are easily captured by the solidified shell. On the other hand, when the molten steel discharge angle α is less than 30 °, Since it has been found that the molten steel flow can be optimized by direct current magnetic field control according to the method of the present invention, the immersion nozzle 2 having a molten steel discharge angle α of less than 30 ° is used in the present invention. Moreover, from the above viewpoint, the more preferable lower limit of the molten steel discharge angle α is 15 °, and the more preferable upper limit is 25 °.

図3は、浸漬ノズルの溶鋼吐出角度αと表面欠陥の発生率(欠陥指数)との関係を示すもので、溶鋼成分と後述する条件(イ)、(ロ)での磁界強度、鋳造速度およびスラブ幅が本発明範囲を満足する種々の条件で連続鋳造試験を行い、この連続鋳造されたスラブを熱間圧延および冷間圧延して鋼板とし、この鋼板に合金化溶融亜鉛めっき処理を施し、溶鋼吐出角度αが表面欠陥の発生に及ぼす影響を調べたものである。この試験では、合金化溶融亜鉛めっき鋼板について、オンライン表面欠陥計で表面欠陥を連続的に測定し、そのなかから欠陥外観およびSEM分析、ICP分析等により製鋼性欠陥(モールドフラックス性欠陥および気泡性欠陥・介在物性欠陥)を判別し、コイル長さ100m当たりの欠陥個数を下記基準で評価し、表面欠陥指数とした。
3:欠陥個数が0.30個以下
2:欠陥個数が0.30個超、1.00個以下
1:欠陥個数が1.00個超
FIG. 3 shows the relationship between the molten steel discharge angle α of the immersion nozzle and the rate of occurrence of surface defects (defect index). The molten steel components and the magnetic field strength, casting speed and conditions (b) described later A continuous casting test is performed under various conditions in which the slab width satisfies the scope of the present invention. The effect of the molten steel discharge angle α on the occurrence of surface defects was investigated. In this test, surface defects were continuously measured with an on-line surface defect meter for the galvannealed steel sheet, and from that, the defect appearance, SEM analysis, ICP analysis, etc. made steelmaking defects (mold flux defects and bubble properties). (Defects / inclusion physical defects) and the number of defects per 100 m of coil length was evaluated according to the following criteria to obtain a surface defect index.
3: The number of defects is 0.30 or less 2: The number of defects is more than 0.30, 1.00 or less 1: The number of defects is more than 1.00

以下、さきに挙げた条件(A)、(B)について順に説明する。
・条件(A)について
本発明では、C:0.003質量%以下、下記(1)式で定義されるX値がX≦5000を満足する化学成分の溶鋼を鋳造の対象とする。
X=24989×[%Ti]+386147×[%S]+853354×[%O] …(1)
但し [%Ti]:溶鋼中のTi含有量(質量%)
[%S] :溶鋼中のS含有量(質量%)
[%O] :溶鋼中のO含有量(質量%)
Hereinafter, the conditions (A) and (B) mentioned above will be described in order.
-Condition (A) In the present invention, molten steel having a chemical composition satisfying C: 0.003 mass% or less and an X value defined by the following formula (1) satisfying X ≦ 5000 is used as an object of casting.
X = 24989 × [% Ti] +386 147 × [% S] + 853354 × [% O] (1)
[% Ti]: Ti content in molten steel (mass%)
[% S]: S content in molten steel (mass%)
[% O]: O content (% by mass) in molten steel

C含有量が0.003質量%以下であるような極低炭素鋼は、転炉における大気下での脱炭精錬と、RH真空脱ガス装置などの真空脱ガス設備における減圧下での脱炭精錬(以下、「真空脱炭精錬」という)を経て溶製される。脱炭精錬は溶鋼中の溶存酸素濃度が或る程度高くならないと進行せず、したがって、脱炭精錬終了時には溶鋼中に多くの溶存酸素が残留する。このように多くの溶存酸素が残留したままでは鋼の清浄性が劣化するので、極低炭素鋼の溶製工程においては、真空脱炭精錬が終了した後に溶鋼中に金属Alが添加され、溶鋼は脱酸処理される。この脱酸処理により、溶鋼中の溶存酸素濃度は急激に低下し、脱酸生成物としてアルミナが形成される。   An ultra-low carbon steel having a C content of 0.003% by mass or less is used for decarburization refining in the atmosphere in a converter and decarburization under reduced pressure in a vacuum degassing facility such as an RH vacuum degassing apparatus It is refined through refining (hereinafter referred to as “vacuum decarburization refining”). Decarburization refining does not proceed unless the dissolved oxygen concentration in the molten steel is increased to some extent. Therefore, a large amount of dissolved oxygen remains in the molten steel at the end of decarburization refining. In this way, the cleanliness of steel deteriorates when a large amount of dissolved oxygen remains, so in the melting process of ultra-low carbon steel, metal Al is added to the molten steel after the vacuum decarburization refining is completed. Is deoxidized. By this deoxidation treatment, the dissolved oxygen concentration in the molten steel is rapidly lowered, and alumina is formed as a deoxidation product.

このようにして生成したアルミナは、鋳造のために溶鋼が鋳型内に注入されるまでの間に、凝集してアルミナクラスターを形成する。溶鋼中に含まれる非金属介在物(以下、単に「介在物」という)の大半がアルミナクラスターである。このような介在物が溶鋼とともに鋳型内に注入されて鋳片の凝固シェルに捕捉されると、極低炭素鋼鋳片の表面欠陥となり、鋳片の品質が低下する。
本発明者らは、介在物の凝固シェルへの捕捉に及ぼす溶鋼の化学成分及び凝固シェル前面での溶鋼流速の影響について詳細な検討を行い、その結果、溶鋼(C:0.003質量%以下の極低炭素鋼)の化学成分をX値≦5000とし、後述する条件(B)によって溶鋼の流動状態を制御し、凝固界面流速を適正化することにより、介在物などの凝固シェルへの捕捉を効果的に抑制できることを見出した。
The alumina thus produced agglomerates to form alumina clusters until molten steel is injected into the mold for casting. Most of the nonmetallic inclusions (hereinafter simply referred to as “inclusions”) contained in the molten steel are alumina clusters. When such inclusions are poured into the mold together with the molten steel and captured by the solidified shell of the slab, it becomes a surface defect of the ultra-low carbon steel slab and the quality of the slab deteriorates.
The present inventors have conducted a detailed study on the influence of the chemical composition of molten steel on the trapping of inclusions in the solidified shell and the flow rate of molten steel at the front of the solidified shell, and as a result, molten steel (C: 0.003 mass% or less) The chemical composition of the ultra-low carbon steel) is set to an X value ≦ 5000, the flow state of the molten steel is controlled according to the condition (B) described later, and the solidification interface flow velocity is optimized to trap inclusions and the like in the solidified shell. It was found that can be effectively suppressed.

上記X値は、鋳型内の凝固シェル前面に形成される溶質元素(Ti,S,O)の濃度境界層に侵入した介在物に働く、界面張力勾配による凝固シェル方向への引力の尺度を示している。
以下、このX値が導かれた理由を説明する。
刊行物「鉄と鋼 Vol.80(1994)」p.527に示されるように、凝固シェル前面の濃度境界層中の界面張力勾配K、すなわちdσ/dx(σ:界面張力、x:距離)によって介在物が凝固シェル方向に受ける力Fは、下記(2)式で表される。
F=−(8/3)×πRK …(2)
但し F:介在物の受ける力(N)
π:円周率
R:介在物の半径(m)
K:界面張力勾配(N/m
The X value indicates a measure of the attractive force in the direction of the solidified shell due to the interfacial tension gradient acting on the inclusions that have entered the boundary layer of the solute elements (Ti, S, O) formed on the front surface of the solidified shell in the mold. ing.
Hereinafter, the reason why the X value is derived will be described.
As shown in the publication “Iron and Steel Vol.80 (1994)” p.527, the interfacial tension gradient K in the concentration boundary layer in front of the solidified shell, that is, dσ / dx (σ: interfacial tension, x: distance) The force F received by the inclusions in the direction of the solidified shell is expressed by the following equation (2).
F = − (8/3) × πR 2 K (2)
F: Force received by inclusions (N)
π: Pi ratio
R: radius of inclusion (m)
K: Interfacial tension gradient (N / m 2 )

界面張力勾配Kは、下記(3)式に示すように、界面張力の溶質元素濃度による変化と成分の濃度勾配との積である。
K=dσ/dx=(dσ/dc)×(dc/dx) …(3)
但し σ:溶鋼と介在物の界面張力(N/m)
x:凝固界面からの距離(m)
dσ/dc:界面張力の溶質元素濃度による変化(N/m/質量%)
dc/dx:成分の濃度勾配(質量%/m)
凝固理論から、鋳型内のような溶鋼流速が存在する条件下での成分の濃度勾配dc/dxは下記(4)式で表される。
dc/dx=−C×(1−K)×(V/D)×exp[−V×(x−δ)/D] …(4)
但し C:鋳造前の溶鋼中の溶質元素濃度(質量%)
:溶質元素の分配係数(−)
:凝固速度(m/s)
D:溶鋼中での溶質元素の拡散係数(m/s)
δ:濃度境界層の厚み(m)
The interfacial tension gradient K is the product of the change in interfacial tension due to the solute element concentration and the concentration gradient of the component, as shown in the following equation (3).
K = dσ / dx = (dσ / dc) × (dc / dx) (3)
Where σ: Interfacial tension between molten steel and inclusions (N / m)
x: Distance from the solidification interface (m)
dσ / dc: change in interfacial tension due to solute element concentration (N / m / mass%)
dc / dx: component concentration gradient (mass% / m)
From the solidification theory, the concentration gradient dc / dx of the component under the condition where the molten steel flow velocity exists in the mold is expressed by the following equation (4).
dc / dx = −C O × (1−K O ) × (V S / D) × exp [−V S × (x−δ) / D] (4)
However, CO : Solute element concentration (mass%) in the molten steel before casting
K 2 O : Partition coefficient of solute element (−)
V S : solidification rate (m / s)
D: Diffusion coefficient of solute element in molten steel (m 2 / s)
δ: Concentration boundary layer thickness (m)

上記(4)式において、x=δを代入すると、x=δでの濃度勾配(dc/dx)は下記(5)式で求められる。
dc/dx=−C×(1−K)×(V/D) …(5)
この(5)式を上記(3)式に代入することにより、介在物が濃度境界層に侵入した直後に作用する力の尺度を示す界面張力勾配Kを下記(6)式により求めることができる。
K=(dσ/dc)×[−C×(1−K)×(V/D)] …(6)
In the above equation (4), when x = δ is substituted, the concentration gradient (dc / dx) at x = δ is obtained by the following equation (5).
dc / dx = -C O × ( 1-K O) × (V S / D) ... (5)
By substituting this equation (5) into the above equation (3), the interfacial tension gradient K indicating the scale of the force acting immediately after the inclusion enters the concentration boundary layer can be obtained by the following equation (6). .
K = (dσ / dc) × [−C O × (1-K O ) × (V S / D)] (6)

ここで、上記(6)式に示すdσ/dcは、刊行物「溶鉄と溶滓の物性値便覧」(日本鉄鋼協会編,1972年)などに示されており、極低炭素鋼の化学成分元素のなかで界面張力勾配Kの値に大きな影響を及ぼす元素は、Ti(チタン)、S(硫黄)、O(酸素=溶存酸素)であり、これらの活性元素だけで計算した界面張力勾配Kの値を用いても、介在物の凝固シェルへの捕捉を検討する上で問題ないことが判った。
また、溶質元素の分配係数Kは、例えば、刊行物「第3版
鉄鋼便覧I基礎」(日本鉄鋼協会編,1981年)p.194などに記載されているが、上記各溶質元素の分配係数Kは刊行物「鉄と鋼 Vol.80(1994)」p.534に記載の値を用いた。
拡散係数Dは、例えば、刊行物「溶鉄・溶滓の物性値便覧」(日本鉄鋼協会編,1992年)などに記載されているが、OとSについては刊行物「鉄と鋼 Vol.80(1994)」p.534に記載の値を用い、Tiについては刊行物「鉄と鋼 Vol.83(1997)」p.566に記載の値を用いた。
また、凝固速度Vは伝熱計算から求めることができる。Vは0.0002m/sを用いて計算した。
Here, dσ / dc shown in the above equation (6) is shown in the publication “Handbook of Physical Properties of Molten Iron and Hot Metal” (edited by the Japan Iron and Steel Institute, 1972), and the like. Among the elements, elements that greatly affect the value of the interfacial tension gradient K are Ti (titanium), S (sulfur), and O (oxygen = dissolved oxygen), and the interfacial tension gradient K calculated using only these active elements. It was found that there is no problem in considering the trapping of inclusions in the solidified shell even if the value of is used.
In addition, the distribution coefficient K O of the solute elements, for example, publications, "Third Edition Steel Handbook I basis" (Iron and Steel Institute of Japan, 1981) has been described in, for example, p.194, the distribution of each of the above solute element coefficient K O was used values described in the publication "iron and steel Vol.80 (1994)" P.534.
The diffusion coefficient D is described, for example, in the publication “Handbook of Physical Properties of Molten Iron / Hot Metal” (edited by the Iron and Steel Institute of Japan, 1992), but for O and S, the publication “Iron and Steel Vol. (1994) ”p. 534 was used, and for Ti, the value described in the publication“ Iron and Steel Vol. 83 (1997) ”p. 566 was used.
The solidification rate V S can be obtained from heat transfer calculation. V S was calculated using 0.0002 m / s.

Ti(チタン)、S(硫黄)、O(酸素=溶存酸素)のdσ/dc、K、D、Vsは、表1の値を使用した。

Figure 2011206845
したがって、上記それぞれの溶質元素の界面張力の溶質元素濃度による変化dσ/dc、分配係数K、拡散係数D、鋳型内における凝固速度Vを上記(6)式に代入することにより、濃度境界層においてアルミナクラスターに働く、Ti、S及びOによる界面張力勾配Kとして、24989×[%Ti]、386147×[%S]、853354×[%O]がそれぞれ得られ、これら界面張力勾配Kの総和がX値となる。 The values in Table 1 were used for dσ / dc, K 2 O , D, and Vs of Ti (titanium), S (sulfur), and O (oxygen = dissolved oxygen).
Figure 2011206845
Therefore, by substituting the change dσ / dc, the distribution coefficient K O , the diffusion coefficient D, and the solidification rate V S in the mold with the solute element concentration of the interfacial tension of each solute element, the concentration boundary 24989 × [% Ti], 386147 × [% S], and 853354 × [% O] are obtained as interfacial tension gradients K due to Ti, S, and O acting on the alumina clusters in the layers, respectively. The sum is the X value.

種々の組成の溶鋼を使用した鋳造試験により、上記X値と介在物の凝固シェルへの捕捉率との関係を調べた。この試験では、鋳型内の凝固界面流速が0.01m/s、0.08m/s、0.10m/s、0.15m/sである場合について、それぞれの凝固界面流速におけるX値と介在物の捕捉率との関係を調べた。ここで、介在物の捕捉率とは、下記(7)式に示すように、凝固シェルでの介在物指数を溶鋼中での介在物指数で除算した値であり、単位介在物濃度あたりの捕捉の頻度を示す値である。
α=I/A …(7)
但し α:介在物の捕捉率(−)
I:凝固シェルでの介在物指数(−)
A:溶鋼中での介在物指数(−)
The relationship between the X value and the trapping rate of inclusions in the solidified shell was examined by a casting test using molten steel having various compositions. In this test, when the solidification interface flow velocity in the mold is 0.01 m / s, 0.08 m / s, 0.10 m / s, and 0.15 m / s, the X value and inclusions at the respective solidification interface flow rates. The relationship with the capture rate was investigated. Here, the inclusion capture rate is the value obtained by dividing the inclusion index in the solidified shell by the inclusion index in the molten steel, as shown in the following formula (7), and the trapping per unit inclusion concentration: Is a value indicating the frequency of
α = I / A (7)
Where α: Inclusion trapping rate (-)
I: Inclusion index (−) in the solidified shell
A: Inclusion index in molten steel (-)

なお、介在物指数とは、介在物の長軸及び短軸を光学顕微鏡で測定して、楕円体としての面積を算出し、観測された介在物の面積を総和した値を、測定面積で除算した値であり、単位測定面積中に介在物がどの程度含まれているかを示す指標である。溶鋼中での介在物指数は、溶鋼から採取した試料中の介在物を測定することで算出できる。
上記の試験結果を図4に示すが、X値≦5000であれば、或る程度の凝固界面流速を与えることにより、凝固シェルへの介在物の捕捉が抑えられることが判る。また、そのような効果はX値≦4000、特にX値≦3000で大きい。したがって、溶鋼の化学成分をX値≦5000(好ましくはX値≦4000、特に好ましくはX値≦3000)とし、後述する条件(B)によって凝固界面流速を与えることにより、介在物(特に、微小な介在物)などの凝固シェルへの捕捉を適切に防止することができる。なお、溶鋼(極低炭素鋼)の化学成分上の制約から、通常、X値は2000程度が実質的な下限となる。
The inclusion index is a measurement of the major and minor axes of inclusions with an optical microscope to calculate the area as an ellipsoid, and the total sum of the observed inclusion areas is divided by the measured area. This is an index indicating how much inclusions are included in the unit measurement area. The inclusion index in the molten steel can be calculated by measuring the inclusion in the sample collected from the molten steel.
The above test results are shown in FIG. 4, and it can be seen that when the X value ≦ 5000, trapping of inclusions in the solidified shell can be suppressed by giving a certain solidification interface flow velocity. Further, such an effect is significant when the X value ≦ 4000, particularly the X value ≦ 3000. Therefore, by setting the chemical composition of the molten steel to an X value ≦ 5000 (preferably X value ≦ 4000, particularly preferably X value ≦ 3000), and providing a solidification interface flow velocity under the condition (B) described later, inclusions (particularly, minute Trapping in the solidified shell, etc., can be appropriately prevented. In addition, from the restriction | limiting on the chemical composition of molten steel (ultra-low carbon steel), about 2000 X value becomes a substantial minimum normally.

本発明が鋳造する溶鋼の化学成分は、C含有量が0.003質量%以下で且つX値≦5000であれば、含有元素に特別な制限はないが、本発明の効果を特に有効に得るという観点からは、C以外の化学成分として、Si:0.05質量%以下、Mn:1.0質量%以下、P:0.05質量%以下、S:0.015質量%以下、Al:0.010〜0.075質量%、Ti:0.005〜0.05質量%を含有し、さらに必要に応じて、Nb:0.005〜0.05質量%を含有し、残部がFe及び不可避的不純物からなる化学成分が好ましい。   The chemical composition of the molten steel cast by the present invention is not particularly limited as long as the C content is 0.003% by mass or less and the X value ≦ 5000, but the effect of the present invention is obtained particularly effectively. From the viewpoint, as chemical components other than C, Si: 0.05% by mass or less, Mn: 1.0% by mass or less, P: 0.05% by mass or less, S: 0.015% by mass or less, Al: 0.010-0.075 mass%, containing Ti: 0.005-0.05 mass%, and further containing Nb: 0.005-0.05 mass%, with the balance being Fe and Chemical components consisting of inevitable impurities are preferred.

以下、上記化学成分の限定理由を説明する。
Cは、その含有量が高くなると薄鋼板の加工性を劣化させる。このため、TiやNbなどの炭化物形成元素を添加したときに、IF鋼(Interstitial-Free steel)として優れた伸びと深絞り性を得ることができる0.003質量%以下とした。
Siは固溶強化元素であり、含有量が多いと薄鋼板の加工性が劣化する。また、表面処理への影響も考慮し、0.05質量%を上限とすることが好ましい。
Mnは固溶強化元素であり、鋼の強度を増加させるが、一方において加工性を低下させるので、1.0質量%を上限とすることが好ましい。
Hereinafter, the reasons for limiting the chemical components will be described.
C deteriorates the workability of the thin steel sheet when its content increases. For this reason, when carbide forming elements such as Ti and Nb are added, the elongation and deep drawability excellent as IF steel (Interstitial-Free steel) can be obtained to 0.003 mass% or less.
Si is a solid solution strengthening element, and if the content is large, the workability of the thin steel sheet deteriorates. In consideration of the influence on the surface treatment, it is preferable to set the upper limit to 0.05% by mass.
Mn is a solid solution strengthening element and increases the strength of the steel, but on the other hand, it lowers the workability, so it is preferable that the upper limit is 1.0% by mass.

Pは固溶強化元素であり、鋼の強度を増加させるが、0.05質量%を超えると加工性や溶接性が劣化するため、0.05質量%を上限とすることが好ましい。
Sは熱間圧延時に割れの原因となり、また、薄鋼板の加工性を低下させるA系介在物を生成するので、その含有量は可能な限り低減することが好ましく、このため0.015質量%を上限とすることが好ましい。
Alは脱酸剤として機能し、脱酸効果を得るためには0.010質量%以上含有させることが好ましが、必要以上のAl添加はコストアップを招くので、その含有量は0.010〜0.075質量%とすることが好ましい。
Tiは、鋼中のC、N、Sを析出物として固定し、加工性や深絞り性を向上させるが、含有量が0.005質量%未満では、その効果が乏しい。一方、Tiは析出強化元素でもあるため、含有量が0.05質量%を超えると鋼板が硬くなり、加工性が劣化する。このためTi含有量は0.005〜0.05質量%とすることが好ましい。
P is a solid solution strengthening element and increases the strength of the steel. However, if it exceeds 0.05 mass%, workability and weldability deteriorate, so 0.05 mass% is preferable as the upper limit.
S causes cracking during hot rolling and generates A-based inclusions that lower the workability of the thin steel sheet. Therefore, the content is preferably reduced as much as possible. For this reason, 0.015% by mass Is preferably the upper limit.
Al functions as a deoxidizing agent, and it is preferable to contain 0.010% by mass or more in order to obtain a deoxidizing effect. However, since adding Al more than necessary causes an increase in cost, its content is 0.010%. It is preferable to set it as -0.075 mass%.
Ti fixes C, N, and S in the steel as precipitates and improves workability and deep drawability, but the effect is poor when the content is less than 0.005 mass%. On the other hand, since Ti is also a precipitation strengthening element, if the content exceeds 0.05 mass%, the steel sheet becomes hard and workability deteriorates. For this reason, it is preferable that Ti content shall be 0.005-0.05 mass%.

Nbは、Tiと同様に鋼中のC、N、Sを析出物として固定し、加工性や深絞り性を向上させるが、含有量が0.005質量%未満では、その効果が乏しい。一方、Nbは析出強化元素であるため、含有量が0.05質量%を超えると鋼板が硬くなり、加工性の劣化が生じる。このためNb含有量は0.005〜0.05質量%とすることが好ましい。   Nb fixes C, N, and S in the steel as precipitates and improves workability and deep drawability in the same manner as Ti, but its effect is poor when the content is less than 0.005 mass%. On the other hand, since Nb is a precipitation strengthening element, if the content exceeds 0.05% by mass, the steel sheet becomes hard and workability deteriorates. For this reason, it is preferable that Nb content shall be 0.005-0.05 mass%.

・条件(B)について
上述した化学成分(X値≦5000)を有する溶鋼の鋳造では、鋳造するスラブ幅および鋳造速度に応じて、上部磁極と下部磁極に各々印加する直流磁界の強度を、基本的に次の(I),(II)のように最適化すればよいことが判った。
(I)各スラブ幅に対応して設定される鋳造速度が相対的に小さい「スラブ幅−鋳造速度」領域: スループット量が相対的に少ないので、浸漬ノズルの溶鋼吐出孔からの噴流速度も相対的に小さい。このため上昇流(反転流)も小さくなるので、上昇流を制動するための上部磁極の直流磁界の強度を相対的に小さくする。一方、下降流に随伴する介在物や気泡が下方向に潜り込むことを抑制するとともに、下向きの溶鋼の流れを上向きに変え、下部磁界よりも上の領域での凝固界面流速を増加させることで、介在物や気泡が凝固シェルに捕捉されないようにするため、下部磁極の直流磁界の強度を十分に大きくする。溶鋼の化学成分をX値≦5000とする条件下で、以上のような直流磁界を印加することにより、表面乱流エネルギー、凝固界面流速および表面流速を適正範囲に制御し、気泡性欠陥・介在物性欠陥およびモールドフラックス性欠陥の発生を防止する。
-Regarding condition (B) In casting of molten steel having the above-described chemical component (X value ≤ 5000), the strength of the DC magnetic field applied to each of the upper magnetic pole and the lower magnetic pole is basically determined according to the slab width and casting speed to be cast. In particular, it has been found that optimization should be performed as in the following (I) and (II).
(I) "Slab width-casting speed" region in which casting speed set corresponding to each slab width is relatively small: Since the throughput amount is relatively small, the jet velocity from the molten steel discharge hole of the immersion nozzle is also relative. Small. For this reason, since the upward flow (reversal flow) is also reduced, the strength of the DC magnetic field of the upper magnetic pole for braking the upward flow is relatively reduced. On the other hand, by suppressing the inclusions and bubbles accompanying the downward flow from diving downward, changing the flow of downward molten steel upward, increasing the solidification interface flow velocity in the region above the lower magnetic field, In order to prevent inclusions and bubbles from being trapped by the solidified shell, the DC magnetic field strength of the lower magnetic pole is sufficiently increased. By applying a DC magnetic field as described above under the condition that the chemical composition of the molten steel is X value ≦ 5000, the surface turbulence energy, solidification interface flow velocity and surface flow velocity are controlled within the appropriate ranges, and bubble defects and intervening Prevents the occurrence of physical property defects and mold flux property defects.

(II)各スラブ幅に対応して設定される鋳造速度が相対的に大きい「スラブ幅−鋳造速度」領域: スループット量が相対的に大きいので、浸漬ノズルの溶鋼吐出孔からの噴流速度も相対的に大きい。このため上昇流(反転流)も大きくなるので、上昇流を制動するための上部磁極の直流磁界の強度を相対的に大きくする。一方、上記(I)と同様に、下降流に随伴する非金属介在物や気泡が下方向に潜り込むことを抑制するとともに、下向きの溶鋼の流れを上向きに変え、下部磁界よりも上の領域での凝固界面流速を増加させることで、非金属介在物や気泡が凝固シェルに捕捉されないようにするため、下部磁極の直流磁界の強度を十分に大きくする。溶鋼の化学成分をX値≦5000とする条件下で、以上のような直流磁界を印加することにより、表面乱流エネルギー、凝固界面流速および表面流速を適正範囲に制御し、気泡性欠陥およびモールドフラックス性欠陥の発生を防止する。 (II) "Slab width-casting speed" region where casting speed set corresponding to each slab width is relatively large: Since the throughput amount is relatively large, the jet velocity from the molten steel discharge hole of the immersion nozzle is also relative It ’s big. For this reason, since the upward flow (reversal flow) also increases, the strength of the DC magnetic field of the upper magnetic pole for braking the upward flow is relatively increased. On the other hand, similarly to the above (I), non-metallic inclusions and bubbles accompanying the downward flow are suppressed from entering in the downward direction, and the downward flow of the molten steel is changed upward, in the region above the lower magnetic field. In order to prevent non-metallic inclusions and bubbles from being trapped by the solidified shell, the strength of the DC magnetic field of the lower magnetic pole is sufficiently increased. By applying the DC magnetic field as described above under the condition that the chemical composition of the molten steel is X value ≦ 5000, the surface turbulence energy, the solidification interface flow velocity and the surface flow velocity are controlled within the proper ranges, and the bubble defects and mold Prevents the occurrence of flux defects.

本発明法では、生産性の観点から鋳造速度を0.75m/分以上とするが、さらに、鋳造するスラブ幅と鋳造速度に応じて、上部磁極3a,3bと下部磁極4a,4bに各々印加する直流磁界の強度を、下記条件(イ)、(ロ)のように最適化することにより、モールドフラックス性欠陥および気泡性欠陥・介在物性欠陥の原因となる、凝固シェル5へのモールドフラックスの巻き込み捕捉と、同じく微小気泡(主に浸漬ノズル内壁面から吹き込まれた不活性ガスの気泡)や介在物の捕捉を抑制するものである。   In the method of the present invention, the casting speed is set to 0.75 m / min or more from the viewpoint of productivity, and further applied to the upper magnetic poles 3a and 3b and the lower magnetic poles 4a and 4b according to the slab width to be cast and the casting speed. By optimizing the strength of the direct current magnetic field as shown in the following conditions (a) and (b), the mold flux to the solidified shell 5 that causes mold flux defects, bubble defects, and inclusion physical defects In the same way, the trapping of entrainment and the trapping of microbubbles (mainly bubbles of inert gas blown from the inner wall surface of the immersion nozzle) and inclusions are suppressed.

条件(イ): 鋳造するスラブ幅と鋳造速度が下記(a)〜(i)の場合には、上部磁極に印加する直流磁界の強度を0.03〜0.15T、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(a)スラブ幅950mm未満で且つ鋳造速度2.05未満
(b)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分未満
(c)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分未満
(d)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分未満
(e)スラブ幅1450mm以上1650mm未満で且つ鋳造速度2.15m/分未満
(f)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分未満
(g)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分未満
(h)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分未満
(i)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分未満
Condition (A): When the slab width to be cast and the casting speed are the following (a) to (i), the strength of the DC magnetic field applied to the upper magnetic pole is 0.03 to 0.15 T, and the DC applied to the lower magnetic pole The strength of the magnetic field is 0.24 to 0.45T.
(A) Slab width of less than 950 mm and casting speed of less than 2.05 (b) Slab width of 950 mm to less than 1050 mm and casting speed of less than 2.25 m / min (c) Slab width of from 1050 mm to less than 1350 mm and casting speed of 2.35 m (D) Slab width of 1350 mm or more and less than 1450 mm and casting speed of less than 2.25 m / min (e) Slab width of 1450 mm or more and less than 1650 mm and casting speed of less than 2.15 m / min (f) Slab width of 1650 mm or more and less than 1750 mm (G) Slab width of 1750 mm or more and less than 1850 mm and casting speed of less than 1.95 m / min (h) Slab width of 1850 mm or more and less than 1950 mm and casting speed of less than 1.85 m / min (i ) The slab width is 1950 mm or more and less than 2150 mm and the casting speed is 1.75 m / min. Mitsuru

浸漬ノズル2から吐出した溶鋼流が鋳型短辺部側の凝固シェルに衝突し、上方側への反転流と下方側への下降流が生じるが、上記(a)〜(i)のように各スラブ幅に対応して設定される鋳造速度が相対的に小さい場合(条件(ロ)と比較して)には、スループット量が相対的に少ないので、浸漬ノズルの溶鋼吐出孔からの噴流速度も相対的に小さい。このため上昇流(反転流)も小さくなるので、上昇流を制動するための上部磁極3a,3bの直流磁界の強度を相対的に小さくする。一方、下降流に随伴する非金属介在物や気泡が下方向に潜り込むことを抑制するとともに、下向きの溶鋼の流れを上向きに変え、下部磁界よりも上の領域での凝固界面流速を増加させることで、非金属介在物や気泡が凝固シェルに捕捉されないようにするため、下部磁極4a,4bの直流磁界の強度を十分に大きくする。特に、溶鋼の化学成分をX値≦5000とする条件下で、以上のような直流磁界を印加し、溶鋼に凝固界面流速を付与することにより、微細な介在物や気泡であっても凝固シェルへの捕捉を適切に防止できる。   Although the molten steel flow discharged from the immersion nozzle 2 collides with the solidified shell on the short side of the mold, a reversal flow upward and a downward flow occur, but each of the above-described (a) to (i) When the casting speed set corresponding to the slab width is relatively small (compared to the condition (b)), the throughput rate is relatively small, so the jet velocity from the molten steel discharge hole of the immersion nozzle is also Relatively small. For this reason, since the upward flow (reversal flow) is also reduced, the strength of the DC magnetic field of the upper magnetic poles 3a and 3b for braking the upward flow is relatively reduced. On the other hand, non-metallic inclusions and bubbles accompanying the downward flow are suppressed from entering the downward direction, and the flow of the molten steel is changed upward to increase the solidification interface flow velocity in the region above the lower magnetic field. Thus, in order to prevent non-metallic inclusions and bubbles from being trapped by the solidified shell, the strength of the DC magnetic field of the lower magnetic poles 4a and 4b is sufficiently increased. In particular, by applying a DC magnetic field as described above under the condition that the chemical composition of the molten steel is an X value ≦ 5000 and imparting a solidification interface flow velocity to the molten steel, a solidified shell is obtained even for fine inclusions and bubbles. Can be prevented appropriately.

上記(a)〜(i)の場合、上部磁極3a、3bの直流磁界の強度が0.03T未満では、その直流磁界による溶鋼上昇流の制動効果が不十分で湯面変動が大きく、モールドフラックスの巻き込みが生じやすい。一方、強度が0.15Tを超えると、溶鋼上昇流による洗浄効果が低下するため非金属介在物や気泡が凝固シェルに捕捉されやすくなる。
また、下部磁極4a,4bの直流磁界の強度が0.24T未満では、その直流磁界による溶鋼下降流の制動効果が不十分であるため、溶鋼下降流に随伴する非金属介在物や気泡が下方向に潜り込み、凝固シェルに捕捉されやすくなる。一方、強度が0.45Tを超えると、溶鋼下降流による洗浄効果が低下するため非金属介在物や気泡が凝固シェルに捕捉されやすくなる。
In the above cases (a) to (i), when the strength of the DC magnetic field of the upper magnetic poles 3a and 3b is less than 0.03T, the effect of braking the molten steel upward flow by the DC magnetic field is insufficient and the molten metal surface fluctuation is large. Entrainment is likely to occur. On the other hand, when the strength exceeds 0.15 T, the cleaning effect due to the molten steel ascending flow decreases, so that non-metallic inclusions and bubbles are easily trapped by the solidified shell.
Further, when the strength of the DC magnetic field of the lower magnetic poles 4a and 4b is less than 0.24T, the braking effect of the molten steel descending flow due to the DC magnetic field is insufficient, so that non-metallic inclusions and bubbles associated with the molten steel descending flow are lowered. It will sink in the direction and will be easily captured by the solidified shell. On the other hand, when the strength exceeds 0.45 T, the cleaning effect due to the molten steel descending flow is reduced, so that non-metallic inclusions and bubbles are easily captured by the solidified shell.

条件(ロ): 鋳造するスラブ幅と鋳造速度が下記(j)〜(s)の場合には、上部磁極に印加する直流磁界の強度を0.15T超0.30T以下、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(j)スラブ幅950mm未満で且つ鋳造速度2.05m/分以上3.05m/分以下
(k)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(l)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分以上3.05m/分以下
(m)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(n)スラブ幅1450mm以上1550mm未満で且つ鋳造速度2.15m/分以上3.05m/分以下
(o)スラブ幅1550mm以上1650mm未満で且つ鋳造速度2.15m/分以上2.85m/分以下
(p)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分以上2.65m/分以下
(q)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分以上2.55m/分以下
(r)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分以上2.55m/分以下
(s)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分以上2.55m/分以下
Condition (b): When the slab width to be cast and the casting speed are the following (j) to (s), the strength of the DC magnetic field applied to the upper magnetic pole is more than 0.15T and not more than 0.30T and applied to the lower magnetic pole. The intensity of the DC magnetic field is 0.24 to 0.45T.
(J) Slab width of less than 950 mm and casting speed of 2.05 m / min or more and 3.05 m / min or less (k) Slab width of 950 mm or more and less than 1050 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (l ) Slab width of 1050 mm or more and less than 1350 mm and casting speed of 2.35 m / min or more and 3.05 m / min or less (m) Slab width of 1350 mm or more and less than 1450 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (n ) Slab width of 1450 mm to less than 1550 mm and casting speed of 2.15 m / min to 3.05 m / min (o) Slab width of 1550 mm to less than 1650 mm and casting speed of 2.15 m / min to 2.85 m / min (p ) Slab width of 1650 mm or more and less than 1750 mm and casting speed of 2.05 m / min or more and 2.65 m / min or less (q) Slab width 175 mm or more and less than 1850 mm and casting speed of 1.95 m / min or more and 2.55 m / min or less (r) Slab width of 1850 mm or more and less than 1950 mm and casting speed of 1.85 m / min or more and 2.55 m / min or less (s) Slab width 1950 mm or more and less than 2150 mm and casting speed 1.75 m / min or more and 2.55 m / min or less

上記(j)〜(s)のように各スラブ幅に対応して設定される鋳造速度が相対的に大きい場合(条件(イ)と比較して)には、必然的にスループット量が相対的に多くなるので、浸漬ノズルの溶鋼吐出孔からの噴流速度も相対的に大きい。このため上昇流(反転流)も大きくなるので、したがって、上昇流を制動するための上部磁極3a,3bの直流磁界の強度を相対的に大きくする。一方、条件(イ)の場合と同様に、下降流に随伴する非金属介在物や気泡が下方向に潜り込むことを抑制するとともに、下向きの溶鋼の流れを上向きに変え、下部磁界よりも上の領域での凝固界面流速を増加させることで、非金属介在物や気泡が凝固シェルに捕捉されないようにするため、下部磁極4a,4bの直流磁界の強度を十分に大きくする。特に、溶鋼の化学成分をX値≦5000とする条件下で、以上のような直流磁界を印加し、溶鋼に凝固界面流速を付与することにより、微細な介在物や気泡であっても凝固シェルへの捕捉を適切に防止できる。   When the casting speed set corresponding to each slab width is relatively large as compared with (j) to (s) above (compared with the condition (A)), the throughput amount is inevitably relative. Therefore, the jet velocity from the molten steel discharge hole of the immersion nozzle is relatively high. For this reason, the upward flow (reversal flow) also increases, and therefore the strength of the DC magnetic field of the upper magnetic poles 3a and 3b for braking the upward flow is relatively increased. On the other hand, as in the case of condition (b), non-metallic inclusions and bubbles accompanying the downward flow are prevented from entering downward, the downward flow of molten steel is changed upward, and above the lower magnetic field. By increasing the solidification interface flow velocity in the region, the strength of the DC magnetic field of the lower magnetic poles 4a and 4b is sufficiently increased so that non-metallic inclusions and bubbles are not trapped by the solidified shell. In particular, by applying a DC magnetic field as described above under the condition that the chemical composition of the molten steel is an X value ≦ 5000 and imparting a solidification interface flow velocity to the molten steel, a solidified shell is obtained even for fine inclusions and bubbles. Can be prevented appropriately.

上記(j)〜(s)の場合、上部磁極3a、3bの直流磁界の強度が0.15T以下では、その直流磁界による溶鋼上昇流の制動効果が不十分で湯面変動が大きく、モールドフラックスの巻き込みが生じやすい。一方、強度が0.30Tを超えると、溶鋼上昇流による洗浄効果が低下するため非金属介在物や気泡が凝固シェルに捕捉されやすくなる。
また、下部磁極4a,4bの直流磁界の強度が0.24T未満では、その直流磁界による溶鋼下降流の制動効果が不十分であるため、溶鋼下降流に随伴する非金属介在物や気泡が下方向に潜り込み、凝固シェルに捕捉されやすくなる。一方、強度が0.45Tを超えると、溶鋼下降流による洗浄効果が低下するため非金属介在物や気泡が凝固シェルに捕捉されやすくなる。
In the above cases (j) to (s), when the strength of the DC magnetic field of the upper magnetic poles 3a and 3b is 0.15T or less, the braking effect of the molten steel upward flow due to the DC magnetic field is insufficient and the molten metal surface fluctuation is large. Entrainment is likely to occur. On the other hand, when the strength exceeds 0.30 T, the cleaning effect due to the molten steel ascending flow is reduced, so that nonmetallic inclusions and bubbles are easily trapped by the solidified shell.
Further, when the strength of the DC magnetic field of the lower magnetic poles 4a and 4b is less than 0.24T, the braking effect of the molten steel descending flow due to the DC magnetic field is insufficient, so that non-metallic inclusions and bubbles associated with the molten steel descending flow are lowered. It will sink in the direction and will be easily captured by the solidified shell. On the other hand, when the strength exceeds 0.45 T, the cleaning effect due to the molten steel descending flow is reduced, so that non-metallic inclusions and bubbles are easily captured by the solidified shell.

なお、以上述べた本発明の連続鋳造方法は、スラブ幅と鋳造速度に応じて規定される、下記(i)、(ii)のような2つの連続鋳造方法として捉えることもできる。
(i) 鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が10°以上30°未満の浸漬ノズルを備え、前記上部磁極の磁場のピーク位置と前記下部磁極の磁場のピーク位置の間に前記溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、Cを0.003質量%以下含有する極低炭素鋼を連続鋳造する方法であって、
下記(1)式で定義されるX値がX≦5000を満足する化学成分を有する溶鋼を、
X=24989×[%Ti]+386147×[%S]+853354×[%O] …(1)
但し [%Ti]:溶鋼中のTi含有量(質量%)
[%S] :溶鋼中のS含有量(質量%)
[%O] :溶鋼中のO含有量(質量%)
鋳造速度0.75m/分以上で、スラブ幅と鋳造速度を下記(a)〜(i)のいずれかの条件とし、上部磁極に印加する直流磁界の強度を0.03〜0.15T、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとして連続鋳造することを特徴とする鋼の連続鋳造方法。
(a)スラブ幅950mm未満で且つ鋳造速度2.05未満
(b)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分未満
(c)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分未満
(d)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分未満
(e)スラブ幅1450mm以上1650mm未満で且つ鋳造速度2.15m/分未満
(f)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分未満
(g)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分未満
(h)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分未満
(i)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分未満
In addition, the continuous casting method of the present invention described above can be regarded as two continuous casting methods such as the following (i) and (ii) that are defined according to the slab width and the casting speed.
(I) A pair of upper magnetic poles and a pair of lower magnetic poles facing each other with the long side of the mold interposed therebetween are provided outside the mold, and the molten steel discharge angle downward from the horizontal direction of the molten steel discharge hole is 10 ° or more and less than 30 °. Using the continuous casting machine in which the molten steel discharge hole is located between the peak position of the magnetic field of the upper magnetic pole and the peak position of the magnetic field of the lower magnetic pole, A method of continuously casting an ultra-low carbon steel containing 0.003% by mass or less of C while braking a molten steel flow by a DC magnetic field applied to each of magnetic poles,
A molten steel having a chemical component with an X value defined by the following formula (1) satisfying X ≦ 5000,
X = 24989 × [% Ti] +386 147 × [% S] + 853354 × [% O] (1)
[% Ti]: Ti content in molten steel (mass%)
[% S]: S content in molten steel (mass%)
[% O]: O content (% by mass) in molten steel
The casting speed is 0.75 m / min or more, the slab width and casting speed are any of the following conditions (a) to (i), the strength of the DC magnetic field applied to the upper magnetic pole is 0.03 to 0.15 T, the lower part A continuous casting method for steel, characterized in that continuous casting is performed by setting the strength of a DC magnetic field applied to a magnetic pole to 0.24 to 0.45 T.
(A) Slab width of less than 950 mm and casting speed of less than 2.05 (b) Slab width of 950 mm to less than 1050 mm and casting speed of less than 2.25 m / min (c) Slab width of from 1050 mm to less than 1350 mm and casting speed of 2.35 m (D) Slab width of 1350 mm or more and less than 1450 mm and casting speed of less than 2.25 m / min (e) Slab width of 1450 mm or more and less than 1650 mm and casting speed of less than 2.15 m / min (f) Slab width of 1650 mm or more and less than 1750 mm (G) Slab width of 1750 mm or more and less than 1850 mm and casting speed of less than 1.95 m / min (h) Slab width of 1850 mm or more and less than 1950 mm and casting speed of less than 1.85 m / min (i ) The slab width is 1950 mm or more and less than 2150 mm and the casting speed is 1.75 m / min. Mitsuru

(ii) 鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が10°以上30°未満の浸漬ノズルを備え、前記上部磁極の磁場のピーク位置と前記下部磁極の磁場のピーク位置の間に前記溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、Cを0.003質量%以下含有する極低炭素鋼を連続鋳造する方法であって、
下記(1)式で定義されるX値がX≦5000を満足する化学成分を有する溶鋼を、
X=24989×[%Ti]+386147×[%S]+853354×[%O] …(1)
但し [%Ti]:溶鋼中のTi含有量(質量%)
[%S] :溶鋼中のS含有量(質量%)
[%O] :溶鋼中のO含有量(質量%)
鋳造速度0.75m/分以上で、スラブ幅と鋳造速度を下記(j)〜(s)のいずれかの条件とし、上部磁極に印加する直流磁界の強度を0.15T超0.30T以下、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとして連続鋳造することを特徴とする鋼の連続鋳造方法。
(j)スラブ幅950mm未満で且つ鋳造速度2.05m/分以上3.05m/分以下
(k)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(l)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分以上3.05m/分以下
(m)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(n)スラブ幅1450mm以上1550mm未満で且つ鋳造速度2.15m/分以上3.05m/分以下
(o)スラブ幅1550mm以上1650mm未満で且つ鋳造速度2.15m/分以上2.85m/分以下
(p)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分以上2.65m/分以下
(q)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分以上2.55m/分以下
(r)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分以上2.55m/分以下
(s)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分以上2.55m/分以下
(Ii) A pair of upper magnetic poles and a pair of lower magnetic poles facing each other with the long side of the mold interposed therebetween are provided outside the mold, and the molten steel discharge angle downward from the horizontal direction of the molten steel discharge hole is 10 ° or more and less than 30 °. Using the continuous casting machine in which the molten steel discharge hole is located between the peak position of the magnetic field of the upper magnetic pole and the peak position of the magnetic field of the lower magnetic pole, A method of continuously casting an ultra-low carbon steel containing 0.003% by mass or less of C while braking a molten steel flow by a DC magnetic field applied to each of magnetic poles,
A molten steel having a chemical component with an X value defined by the following formula (1) satisfying X ≦ 5000,
X = 24989 × [% Ti] +386 147 × [% S] + 853354 × [% O] (1)
[% Ti]: Ti content in molten steel (mass%)
[% S]: S content in molten steel (mass%)
[% O]: O content (% by mass) in molten steel
The casting speed is 0.75 m / min or more, the slab width and the casting speed are any one of the following conditions (j) to (s), the strength of the DC magnetic field applied to the upper magnetic pole is more than 0.15 T and not more than 0.30 T, A continuous casting method of steel, characterized in that continuous casting is performed with the strength of the DC magnetic field applied to the lower magnetic pole being 0.24 to 0.45 T.
(J) Slab width of less than 950 mm and casting speed of 2.05 m / min or more and 3.05 m / min or less (k) Slab width of 950 mm or more and less than 1050 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (l ) Slab width of 1050 mm or more and less than 1350 mm and casting speed of 2.35 m / min or more and 3.05 m / min or less (m) Slab width of 1350 mm or more and less than 1450 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (n ) Slab width of 1450 mm to less than 1550 mm and casting speed of 2.15 m / min to 3.05 m / min (o) Slab width of 1550 mm to less than 1650 mm and casting speed of 2.15 m / min to 2.85 m / min (p ) Slab width of 1650 mm or more and less than 1750 mm and casting speed of 2.05 m / min or more and 2.65 m / min or less (q) Slab width 175 mm or more and less than 1850 mm and casting speed of 1.95 m / min or more and 2.55 m / min or less (r) Slab width of 1850 mm or more and less than 1950 mm and casting speed of 1.85 m / min or more and 2.55 m / min or less (s) Slab width 1950 mm or more and less than 2150 mm and casting speed 1.75 m / min or more and 2.55 m / min or less

以下、本発明法において、発明の効果が最も発現しやすい、特に好ましい鋳造条件について説明する。
まず、浸漬ノズル2のノズル浸漬深さは230〜290mmとすることが好ましい。ここで、ノズル浸漬深さとは、メニスカス6から溶鋼吐出孔20上端までの距離をいう。
このノズル浸漬深さが、本発明の効果に影響を及ぼすのは、ノズル浸漬深さが大きすぎても、小さすぎても、浸漬ノズル2から吐出される溶鋼の流動量や流速が変化したときに、鋳型内での溶鋼の流動状態が大きく変化するため、溶鋼流の適切な制御が難しくなるためである。すなわち、ノズル浸漬深さが230mm未満では、浸漬ノズル2から吐出される溶鋼の流動量や流速が変化したときに、ダイレクトに溶鋼表面(メニスカス)が変動し、表面の乱れが大きくなってモールドフラックスの巻き込みが起こり易くなり、一方、290mmを超えると、溶鋼の流動量などが変動したときに、下方への流速が大きくなって非金属系介在物や気泡の潜り込みが大きくなる傾向がある。
Hereinafter, particularly preferable casting conditions in which the effects of the invention are most easily manifested in the method of the present invention will be described.
First, the nozzle immersion depth of the immersion nozzle 2 is preferably 230 to 290 mm. Here, the nozzle immersion depth refers to the distance from the meniscus 6 to the upper end of the molten steel discharge hole 20.
This nozzle immersion depth affects the effect of the present invention when the flow rate and flow rate of the molten steel discharged from the immersion nozzle 2 change even if the nozzle immersion depth is too large or too small. Moreover, since the flow state of the molten steel in the mold is greatly changed, it is difficult to appropriately control the molten steel flow. That is, when the nozzle immersion depth is less than 230 mm, the molten steel surface (meniscus) directly fluctuates when the flow rate or flow velocity of the molten steel discharged from the immersion nozzle 2 changes, and the surface disturbance increases, and the mold flux On the other hand, if it exceeds 290 mm, when the flow rate of molten steel fluctuates, the flow rate downwards tends to increase, and the non-metallic inclusions and bubbles tend to become deeper.

図5は、本発明法において、浸漬ノズル2のノズル浸漬深さの影響(モールドフラックス性欠陥および気泡性欠陥に及ぼす影響)を調べた結果を示すものであり、浸漬ノズルの溶鋼吐出孔の溶鋼吐出角度α:15°、スラブ幅:1200mm、スラブ厚さ:260mm、鋳造速度:1.8m/分、上部磁極の直流磁界の強度:0.12T、下部磁極の直流磁界の強度:0.38Tの鋳造条件による試験結果を示している。その他の鋳造条件は、浸漬ノズル内径:80mm、浸漬ノズルの各溶鋼吐出孔の開口面積:4900mm(70mm*70mm)、浸漬ノズル内壁面からの不活性ガス吹き込み量:12L/min、使用したモールドフラックスの粘度(1300℃):0.6cpである。
鋳造されたスラブについて、超音波探傷装置を用い、スラブ表層2〜3mmの深さ位置に存在する粒径が概ね80μm以上の気泡性欠陥およびモールドフラックス性欠陥の個数を測定し、欠陥発生の程度を指数化したものである。図5によれば、本発明法において、特に、浸漬ノズル2のノズル浸漬深さを230〜290mmとすることにより、気泡性欠陥、モールドフラックス性欠陥がより効果的に低減していることが判る。
FIG. 5 shows the result of investigating the influence of the nozzle immersion depth of the immersion nozzle 2 (influence on mold flux defects and bubble defects) in the method of the present invention, and shows the molten steel in the molten steel discharge hole of the immersion nozzle. Discharge angle α: 15 °, slab width: 1200 mm, slab thickness: 260 mm, casting speed: 1.8 m / min, DC magnetic field strength of upper magnetic pole: 0.12 T, DC magnetic field strength of lower magnetic pole: 0.38 T The test results according to the casting conditions are shown. Other casting conditions are: immersion nozzle inner diameter: 80 mm, opening area of each molten steel discharge hole of the immersion nozzle: 4900 mm 2 (70 mm * 70 mm), amount of inert gas blown from the inner wall of the immersion nozzle: 12 L / min, mold used Flux viscosity (1300 ° C.): 0.6 cp.
About the cast slab, using an ultrasonic flaw detector, measure the number of bubble defects and mold flux defects having a particle size of approximately 80 μm or more present at a depth of 2 to 3 mm on the surface of the slab, and the degree of defect occurrence Is indexed. According to FIG. 5, it can be seen that, in the method of the present invention, in particular, by setting the nozzle immersion depth of the immersion nozzle 2 to 230 to 290 mm, bubble defects and mold flux defects are more effectively reduced. .

また、浸漬ノズル2のノズル内径、すなわち溶鋼吐出孔20の位置でのノズル内径は70〜90mmとすることが好ましい。浸漬ノズル2の内側にアルミナなどが部分的に付着した場合に、浸漬ノズル2から吐出する溶鋼に偏流(幅方向での流速の対称性が悪くなる)が生じることがあり、ノズル内径が70mm未満では、そのような場合に偏流が極端に大きくなる恐れがある。このような極端な偏流が生じると、鋳型内での溶鋼流の制御が適切に行えなくなる。一方、浸漬ノズル2に流れる溶鋼量の調整は、浸漬ノズル2の上方のスライディングノズルの開度調整により行われるが、ノズル内径が90mmを超えるとノズル内部に溶鋼が充填されない部分が生じる恐れがあり、この場合も上記と同じような極端な偏流が生じ、鋳型内での溶鋼流の制御が適切に行えなくなる恐れがある。   The nozzle inner diameter of the immersion nozzle 2, that is, the nozzle inner diameter at the position of the molten steel discharge hole 20 is preferably 70 to 90 mm. When alumina or the like partially adheres to the inner side of the immersion nozzle 2, drift may occur in the molten steel discharged from the immersion nozzle 2 (symmetry of the flow velocity in the width direction is worse), and the inner diameter of the nozzle is less than 70 mm. Then, in such a case, there is a possibility that the drift becomes extremely large. When such an extreme drift occurs, the molten steel flow in the mold cannot be properly controlled. On the other hand, the amount of molten steel flowing through the immersion nozzle 2 is adjusted by adjusting the opening of the sliding nozzle above the immersion nozzle 2, but if the nozzle inner diameter exceeds 90 mm, there may be a portion where the molten steel is not filled inside the nozzle. In this case, too, an extreme drift similar to the above occurs, and there is a possibility that the molten steel flow in the mold cannot be properly controlled.

図6は、本発明法において、浸漬ノズル2のノズル内径の影響(モールドフラックス性欠陥に及ぼす影響)を調べた結果を示すものであり、浸漬ノズルの溶鋼吐出孔の溶鋼吐出角度α:15°、スラブ幅:1300mm、スラブ厚さ:260mm、鋳造速度:2.5m/分、上部磁極の直流磁界の強度:0.16T、下部磁極の直流磁界の強度:0.38Tの鋳造条件による試験結果を示している。その他の鋳造条件は、浸漬ノズルのノズル浸漬深さ:260mm、浸漬ノズルの各溶鋼吐出孔の開口面積:4900mm(70mm*70mm)、浸漬ノズル内壁面からの不活性ガス吹き込み量:12L/min、使用したモールドフラックスの粘度(1300℃):0.6cpである。
鋳造されたスラブについて、超音波探傷装置を用い、スラブ表層2〜3mmの深さ位置に存在する粒径が概ね80μm以上のモールドフラックス性欠陥の個数を測定し、欠陥発生の程度を指数化したものである。図6によれば、本発明法において、特に、浸漬ノズル2のノズル内径を70〜90mmとすることにより、モールドフラックス性欠陥がより効果的に低減していることが判る。
FIG. 6 shows the results of investigating the influence of the nozzle inner diameter of the immersion nozzle 2 (influence on the mold flux property defect) in the method of the present invention. , Slab width: 1300 mm, slab thickness: 260 mm, casting speed: 2.5 m / min, DC magnetic field strength of upper magnetic pole: 0.16 T, DC magnetic field strength of lower magnetic pole: 0.38 T Is shown. Other casting conditions are: nozzle immersion depth of the immersion nozzle: 260 mm, opening area of each molten steel discharge hole of the immersion nozzle: 4900 mm 2 (70 mm * 70 mm), amount of inert gas blown from the inner wall surface of the immersion nozzle: 12 L / min The viscosity of the mold flux used (1300 ° C.): 0.6 cp.
For the cast slab, an ultrasonic flaw detector was used to measure the number of mold flux defects having a particle size of approximately 80 μm or more present at a depth of 2 to 3 mm on the surface of the slab, and the degree of defect occurrence was indexed. Is. According to FIG. 6, in the method of the present invention, it can be seen that mold flux defects are more effectively reduced by setting the inner diameter of the immersion nozzle 2 to 70 to 90 mm.

また、浸漬ノズル2の各溶鋼吐出孔20の開口面積は3600〜8200mmとすることが好ましい。この溶鋼吐出孔20の開口面積が、本発明の効果に影響を及ぼすのは、溶鋼吐出孔20の開口面積が小さすぎると溶鋼吐出孔20から吐出される溶鋼流速が大きくなりすぎ、逆に開口面積が大きすぎると溶鋼流速が小さすぎ、いずれの場合も鋳型内の溶鋼流の流速を適正化しにくくなるからである。
図7は、本発明法において、浸漬ノズル2の各溶鋼吐出孔の開口面積の影響(モールドフラックス性欠陥および気泡性欠陥に及ぼす影響)を調べた結果を示すものであり、浸漬ノズルの溶鋼吐出孔の溶鋼吐出角度α:15°、スラブ幅:1300mm、スラブ厚さ:260mm、鋳造速度:2.0m/分、上部磁極の直流磁界の強度:0.14T、下部磁極の直流磁界の強度:0.38Tの鋳造条件による試験結果を示している。その他の鋳造条件は、浸漬ノズルのノズル浸漬深さ:260mm、浸漬ノズル内径:80mm、浸漬ノズル内壁面からの不活性ガス吹き込み量:12L/min、使用したモールドフラックスの粘度(1300℃):0.6cpである。
The opening area of each molten steel discharge hole 20 of the immersion nozzle 2 is preferable to be 3600~8200Mm 2. The opening area of the molten steel discharge hole 20 affects the effect of the present invention. If the opening area of the molten steel discharge hole 20 is too small, the flow velocity of the molten steel discharged from the molten steel discharge hole 20 becomes too large and the opening is reversed. This is because if the area is too large, the molten steel flow velocity is too small, and in any case, it becomes difficult to optimize the flow velocity of the molten steel flow in the mold.
FIG. 7 shows the results of examining the influence of the opening area of each molten steel discharge hole of the immersion nozzle 2 (influence on mold flux property defect and bubble defect) in the method of the present invention. Molten steel discharge angle α: 15 °, slab width: 1300 mm, slab thickness: 260 mm, casting speed: 2.0 m / min, DC magnetic field strength of upper magnetic pole: 0.14 T, DC magnetic field strength of lower magnetic pole: The test result by the casting condition of 0.38T is shown. The other casting conditions were: nozzle immersion depth of the immersion nozzle: 260 mm, immersion nozzle inner diameter: 80 mm, amount of inert gas blown from the inner wall surface of the immersion nozzle: 12 L / min, viscosity of the mold flux used (1300 ° C.): 0 .6 cp.

鋳造されたスラブについて、超音波探傷装置を用い、スラブ表層2〜3mmの深さ位置に存在する粒径が概ね80μm以上の気泡性欠陥およびモールドフラックス性欠陥の個数を測定し、欠陥発生の程度を指数化したものである。図7によれば、本発明法において、特に、浸漬ノズル2の各溶鋼吐出孔20の開口面積を3600〜8200mmとすることにより、気泡性欠陥、モールドフラックス性欠陥がより効果的に低減していることが判る。 About the cast slab, using an ultrasonic flaw detector, measure the number of bubble defects and mold flux defects having a particle size of approximately 80 μm or more present at a depth of 2 to 3 mm on the surface of the slab, and the degree of defect occurrence Is indexed. According to FIG. 7, in the method of the present invention, in particular, by setting the opening area of each molten steel discharge hole 20 of the immersion nozzle 2 to 3600 to 8200 mm 2 , bubble defects and mold flux defects are more effectively reduced. You can see that

また、その他の好ましい鋳造条件は以下のとおりである。
使用するモールドフラックスは、1300℃での粘度が0.4〜10cpのものが好ましい。モールドフラックスの粘度が高すぎると、円滑な鋳造に支障をきたす恐れがあり、一方、モールドフラックスの粘度が低すぎるとモールドフラックスの巻き込みが生じやすくなる。
本発明を実施するには、制御用コンピュータを用い、鋳造するスラブ幅、鋳造速度、浸漬ノズルの溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度などに基づき、上部磁極及び下部磁極の各直流磁場用コイルに通電すべき直流電流値を、予め設定された対照表または数式により求め、その直流電流を通電することにより、上部磁極および下部磁極に各印加する直流磁界の強度を自動制御することが好ましい。また、上記電流値を求める基礎とする鋳造条件には、浸漬ノズルの浸漬深さ(但し、メニスカスから溶鋼吐出孔上端までの距離)、スラブ厚や浸漬ノズルの内壁面からの不活性ガス吹き込み量を加えてもよい。
Other preferable casting conditions are as follows.
The mold flux used preferably has a viscosity at 1300 ° C. of 0.4 to 10 cp. If the viscosity of the mold flux is too high, smooth casting may be hindered. On the other hand, if the viscosity of the mold flux is too low, the mold flux is likely to be caught.
In order to carry out the present invention, each DC magnetic field of the upper magnetic pole and the lower magnetic pole is determined using a control computer based on the slab width to be cast, the casting speed, the molten steel discharge angle downward from the horizontal direction of the molten steel discharge hole of the immersion nozzle, etc. The direct current value to be applied to the coil is obtained from a preset comparison table or mathematical expression, and the direct current is applied to the upper magnetic pole and the lower magnetic pole to automatically control the intensity of the direct current magnetic field. preferable. The casting conditions used as the basis for obtaining the above current values include the immersion nozzle immersion depth (however, the distance from the meniscus to the top of the molten steel discharge hole), the slab thickness, and the amount of inert gas blown from the inner wall of the immersion nozzle. May be added.

図8は、鋳型内溶鋼の表面乱流エネルギー、凝固界面流速(溶鋼−凝固シェル界面での流速)、表面流速、凝固界面気泡濃度(溶鋼−凝固シェル界面での気泡濃度)を示す概念図である。
溶鋼の表面乱流エネルギーは、下式で求められるk値の空間平均値であり、流体力学で定義される3次元k-εモデルによる数値解析の流動シミュレーションによって定義される。このとき、浸漬ノズルの溶鋼吐出角度、ノズル浸漬深さ、体積膨張を考慮した不活性ガス(例えば、Ar)吹き込み速度を考慮すべきである。例えば、不活性ガス吹き込み速度が15NL/分のときの体積膨張率は6倍となる。すなわち、数値解析モデルとは、運動量、連続の式、乱流k−εモデルと磁場ローレンツ力をカップリングし、ノズル吹き込みリフト効果を考慮したモデルである。(文献:「数値流体力学ハンドブック」(平成15年3月31日発行)のp.129〜の2方程式モデルの記載に基づく)
FIG. 8 is a conceptual diagram showing surface turbulent energy, solidification interface flow velocity (flow velocity at the molten steel-solidified shell interface), surface flow velocity, and solidification interface bubble concentration (bubble concentration at the molten steel-solidified shell interface) of the molten steel in the mold. is there.
The surface turbulent energy of molten steel is a spatial average value of k values obtained by the following equation, and is defined by a flow simulation of numerical analysis by a three-dimensional k-ε model defined by fluid dynamics. At this time, an inert gas (for example, Ar) blowing speed in consideration of the molten steel discharge angle of the immersion nozzle, the nozzle immersion depth, and volume expansion should be considered. For example, the volume expansion rate is 6 times when the inert gas blowing rate is 15 NL / min. That is, the numerical analysis model is a model that takes into account the nozzle blowing lift effect by coupling the momentum, the continuity equation, the turbulent k-ε model, and the magnetic Lorentz force. (Reference: Based on the description of the two-equation model on p.129- of the “Computational Fluid Dynamics Handbook” (issued on March 31, 2003))

Figure 2011206845
Figure 2011206845

凝固界面流速(溶鋼−凝固シェル界面での溶鋼流速)は、メニスカスの下方50mmで且つ固相率fs=0.5の位置での溶鋼流速の空間平均値とする。ここで、凝固界面流速については、凝固潜熱、伝熱を考慮し、さらに溶鋼粘度の温度依存性をも考慮すべきである。本発明者等による詳細な計算によると、固相率fs=0.5の凝固界面流速はデンドライト傾角測定(fs=0)の1/2の流速に相当することが判った。すなわち、計算上でfs=0.5で凝固界面流速0.1m/sであれば、鋳片のデンドライト傾角(fs=0)の凝固界面流速は0.2m/sとなる。なお、鋳片のデンドライト傾角(fs=0)の凝固界面流速は、凝固前面の固相率fs=0の位置の凝固界面流速を測定していることになる。ここで、デンドライト傾角とは、鋳片表面に対する法線方向に対し、表面から厚み方向に伸びているデンドライトの一次枝の傾角である。(文献:鉄と鋼,第61年(1975),第14号「連続鋳片の大型介在物と柱状晶成長方向との関係」,p.2982−2990)   The solidification interface flow velocity (molten steel flow velocity at the molten steel-solidified shell interface) is the spatial average value of the molten steel flow velocity at a position 50 mm below the meniscus and at a solid fraction fs = 0.5. Here, regarding the solidification interface flow velocity, the solidification latent heat and heat transfer should be taken into consideration, and the temperature dependence of the molten steel viscosity should be taken into consideration. According to detailed calculations by the present inventors, it was found that the solidification interface flow rate at a solid phase ratio of fs = 0.5 corresponds to a flow rate of 1/2 in dendrite inclination measurement (fs = 0). That is, if fs = 0.5 in calculation and the solidification interface flow rate is 0.1 m / s, the solidification interface flow rate of the slab dendrite inclination angle (fs = 0) is 0.2 m / s. The solidification interface flow velocity at the dendrite inclination angle (fs = 0) of the slab is the measurement of the solidification interface flow velocity at the position of the solid phase ratio fs = 0 on the solidification front surface. Here, the dendrite tilt angle is the tilt angle of the primary branch of dendrites extending in the thickness direction from the surface with respect to the normal direction to the slab surface. (Reference: Iron and steel, 61st year (1975), No.14 "Relationship between large inclusions in continuous slab and columnar crystal growth direction", p.2982-2990)

表面流速は、溶鋼表面(浴面)での溶鋼流速の空間平均値とする。これも前述の3次元数値解析モデルで定義される。ここで、表面流速は浸漬棒による抗力測定値と一致するが、本定義ではこれの面積平均位置となるので、数値計算より算出できる。
具体的には、表面乱流エネルギー、凝固界面流速及び表面流速の数値解析は、以下により実施できる。すなわち、数値解析モデルとして、磁場解析及びガス気泡分布に連成させた運動量、連続の式、乱流モデル(k−εモデル)を考慮したモデルを用い、例えば、汎用流体解析プログラムFluent等により計算を行って求めることができる。(文献:Fluent6.3のユーザーマニュアル(Fluent Inc.USA)の記載に基づく)
The surface flow velocity is a spatial average value of the molten steel flow velocity on the molten steel surface (bath surface). This is also defined by the aforementioned three-dimensional numerical analysis model. Here, the surface flow velocity coincides with the drag measurement value by the dip rod, but in this definition, it is the area average position, and can be calculated by numerical calculation.
Specifically, numerical analysis of surface turbulent energy, solidification interface flow velocity and surface flow velocity can be performed as follows. In other words, as a numerical analysis model, a model that takes into account the momentum, continuity equation, and turbulence model (k-ε model) coupled to magnetic field analysis and gas bubble distribution is used. Can be obtained. (Reference: Based on Fluent 6.3 User Manual (Fluent Inc. USA))

表面乱流エネルギーは、モールドフラックスの巻き込みに大きな影響を与え、表面乱流エネルギーが増加するとモールドフラックスの巻き込みが生じやすくなり、モールドフラックス性欠陥が増加する。一方、表面乱流エネルギーが小さすぎると、モールドフラックスの滓化が不十分となる。図9は、表面乱流エネルギーと表面欠陥率(後述する実施例と同様の手法で測定されたコイル長さ1m当たりの欠陥個数)との関係を示すものであり、他の条件は、凝固界面流速:0.08〜0.15m/s、表面流速:0.05〜0.30m/s、凝固界面気泡濃度:0.008kg/m以下とした。図9によれば、表面乱流エネルギーが0.0010〜0.0015m/sの範囲において、モールドフラックスの巻き込みが効果的に抑えられ、且つモールドフラックスの滓化も問題がない。 The surface turbulent energy greatly affects the entrainment of the mold flux. When the surface turbulent energy increases, the entrainment of the mold flux is likely to occur, and the mold flux property defect increases. On the other hand, if the surface turbulent energy is too small, the mold flux is not sufficiently hatched. FIG. 9 shows the relationship between the surface turbulent energy and the surface defect rate (the number of defects per 1 m of coil length measured by the same method as in the examples described later). Flow velocity: 0.08 to 0.15 m / s, surface flow velocity: 0.05 to 0.30 m / s, coagulation interface bubble concentration: 0.008 kg / m 3 or less. According to FIG. 9, when the surface turbulent energy is in the range of 0.0010 to 0.0015 m 2 / s 2 , the entrainment of the mold flux is effectively suppressed, and there is no problem with the mold flux hatching.

表面流速もモールドフラックスの巻き込みに大きな影響を与え、表面流速が大きくなるとモールドフラックスの巻き込みが生じやすくなり、モールドフラックス性欠陥が増加する。図10は、表面流速と表面欠陥率(後述する実施例と同様の手法で測定されたコイル長さ1m当たりの欠陥個数)との関係を示すものであり、他の条件は、表面乱流エネルギー:0.0010〜0.0015m/s、凝固界面流速:0.08〜0.15m/s、凝固界面気泡濃度:0.008kg/m以下とした。図10によれば、表面流速が0.30m/s以下において、モールドフラックスの巻き込みが効果的に抑えられている。したがって、表面流速は0.30m/s以下であることが好ましい。なお、表面流速が小さすぎると、溶鋼表面の温度が低下する領域が発生し、モールドフラックスの溶融不足によるノロカミや溶鋼の部分的凝固を助長するため操業が困難となる。このため、表面流速は0.05m/s以上であることが好ましい。 The surface flow rate also has a great influence on the mold flux entrainment. When the surface flow rate is increased, mold flux entrainment tends to occur, and mold flux defects increase. FIG. 10 shows the relationship between the surface flow velocity and the surface defect rate (the number of defects per 1 m of coil length measured by a method similar to the example described later). Other conditions are the surface turbulent energy. : 0.0010 to 0.0015 m 2 / s 2 , solidification interface flow velocity: 0.08 to 0.15 m / s, solidification interface bubble concentration: 0.008 kg / m 3 or less. According to FIG. 10, when the surface flow velocity is 0.30 m / s or less, the entrainment of mold flux is effectively suppressed. Therefore, the surface flow velocity is preferably 0.30 m / s or less. If the surface flow velocity is too small, a region in which the temperature of the molten steel decreases is generated, and the operation becomes difficult because it promotes partial solidification of the wolf and the molten steel due to insufficient melting of the mold flux. For this reason, it is preferable that the surface flow velocity is 0.05 m / s or more.

凝固界面流速は、凝固シェルによる気泡や介在物の捕捉に大きな影響を与え、凝固界面流速が小さいと気泡や介在物が凝固シェルに捕捉されやすくなり、気泡性欠陥などが増加する。一方、凝固界面流速が大きすぎると、生成した凝固シェルの再溶解が起こり凝固シェルの成長を阻害する。最悪の場合はブレークアウトに繋がり操業の停止により生産性に致命的な問題を引き起こす。図11は、凝固界面流速と表面欠陥率(後述する実施例と同様の手法で測定されたコイル長さ1m当たりの欠陥個数)との関係を示すものであり、他の条件は、表面乱流エネルギー:0.0010〜0.0015m/s、表面流速:0.05〜0.30m/s、凝固界面気泡濃度:0.008kg/m以下とした。図11によれば、凝固界面流速が0.08〜0.15m/sの範囲において、凝固シェルによる気泡の捕捉が効果的に抑えられ、且つ凝固シェルの成長阻害によるブレークアウト等の生産性の問題を生じない。 The solidification interface flow rate has a great influence on the trapping of bubbles and inclusions by the solidified shell. When the solidification interface flow rate is small, the bubbles and inclusions are easily trapped by the solidification shell, and bubble defects and the like increase. On the other hand, if the solidification interface flow rate is too large, the generated solidified shell is re-dissolved and inhibits the growth of the solidified shell. In the worst case, it leads to a breakout, and the suspension of operations causes a fatal problem in productivity. FIG. 11 shows the relationship between the solidification interface flow velocity and the surface defect rate (the number of defects per 1 m of coil length measured by the same method as in the examples described later). Energy: 0.0010 to 0.0015 m 2 / s 2 , surface flow velocity: 0.05 to 0.30 m / s, coagulation interface bubble concentration: 0.008 kg / m 3 or less. According to FIG. 11, when the solidification interface flow rate is in the range of 0.08 to 0.15 m / s, trapping of bubbles by the solidified shell is effectively suppressed, and productivity such as breakout due to growth inhibition of the solidified shell is achieved. Does not cause a problem.

凝固界面流速Aと表面流速Bとの比A/Bは、気泡の捕捉とモールドフラックスの巻き込み両方に影響を与え、比A/Bが小さいと気泡や介在物が凝固シェルに捕捉されやすくなり気泡性欠陥などが増加する。一方、比A/Bが大きすぎるとモールドパウダーの巻き込みが生じやすくなり、モールドフラックス性欠陥が増加する。図12は、比A/Bと表面欠陥率(後述する実施例と同様の手法で測定されたコイル長さ1m当たりの欠陥個数)との関係を示すものであり、他の条件は、表面乱流エネルギー:0.0010〜0.0015m/s、表面流速:0.05〜0.30m/s、凝固界面流速:0.08〜0.15m/s、凝固界面気泡濃度:0.008kg/m以下とした。図12によれば、比A/Bが1.0〜2.0で表面品質欠陥が特に良好となる。したがって、凝固界面流速Aと表面流速Bとの比A/Bは1.0〜2.0であることが好ましい。 The ratio A / B between the solidification interface flow velocity A and the surface flow velocity B affects both the trapping of the bubbles and the entrainment of the mold flux. Sexual defects increase. On the other hand, if the ratio A / B is too large, the mold powder is likely to be entrained, and mold flux defects increase. FIG. 12 shows the relationship between the ratio A / B and the surface defect rate (the number of defects per 1 m of coil length measured by the same method as in the examples described later). Flow energy: 0.0010 to 0.0015 m 2 / s 2 , surface flow velocity: 0.05 to 0.30 m / s, solidification interface flow velocity: 0.08 to 0.15 m / s, solidification interface bubble concentration: 0.008 kg / M 3 or less. According to FIG. 12, the surface quality defect becomes particularly good when the ratio A / B is 1.0 to 2.0. Therefore, the ratio A / B between the solidification interface flow velocity A and the surface flow velocity B is preferably 1.0 to 2.0.

以上述べた点から、鋳型内の溶鋼の流動状態は、表面乱流エネルギー:0.0010〜0.0015m/s、表面流速:0.30m/s以下、溶鋼−凝固シェル界面での流速:0.08〜0.15m/sであることが好ましい。表面流速は0.05〜0.30m/sであることがより好ましく、また、凝固界面流速Aと表面流速Bとの比A/Bは1.0〜2.0であることが好ましい。
また、気泡性欠陥の発生に関与する他の因子としは、溶鋼−凝固シェル界面の気泡濃度(以下、単に「凝固界面気泡濃度」という)があり、この凝固界面気泡濃度が適正に制御されることにより、気泡の凝固界面での捕捉がより適切に抑えられる。
凝固界面気泡濃度は、メニスカスの下方50mmで且つ固相率fs=0.5の位置での直径1mmの気泡の濃度とし、前述の数値計算により定義される。ここで、計算上のノズルへの吹き込み気泡個数NはN=AD−5とし、Aは吹き込みガス速度、Dは気泡径で計算できる(文献:ISIJ Int. Vol.43(2003),No.10,p.1548−1555)。吹き込みガス速度は、一般には5〜20Nl/minである。
From the above mentioned point, the molten steel in a fluid state in the mold, the surface turbulent energy: 0.0010~0.0015m 2 / s 2, the surface flow rate: 0.30 m / s or less, molten steel - flow velocity in the solidified shell interface : It is preferable that it is 0.08-0.15 m / s. The surface flow velocity is more preferably 0.05 to 0.30 m / s, and the ratio A / B between the solidification interface flow velocity A and the surface flow velocity B is preferably 1.0 to 2.0.
Another factor involved in the generation of bubble defects is the bubble concentration at the molten steel-solidified shell interface (hereinafter simply referred to as “solidified interface bubble concentration”), and this solidified interface bubble concentration is appropriately controlled. As a result, the trapping of the bubbles at the solidification interface is more appropriately suppressed.
The coagulation interface bubble concentration is defined as the above-described numerical calculation, with the bubble concentration having a diameter of 1 mm at a position 50 mm below the meniscus and the solid phase ratio fs = 0.5. Here, the calculated number N of bubbles to be blown into the nozzle is N = AD −5 , A is the blowing gas velocity, and D is the bubble diameter (reference: ISIJ Int. Vol. 43 (2003), No. 10). , P. 1548-1555). The blowing gas speed is generally 5 to 20 Nl / min.

凝固界面気泡濃度は、気泡の捕捉に大きな影響を与え、気泡濃度が高いと凝固シェルに捕捉される気泡量が増加する。図13は、凝固界面気泡濃度と表面欠陥率(後述する実施例と同様の手法で測定されたコイル長さ1m当たりの欠陥個数)との関係を示すものであり、他の条件は、表面乱流エネルギー:0.0010〜0.0015m/s、表面流速:0.05〜0.30m/s、凝固界面流速:0.08〜0.15m/sとした。図13によれば、凝固界面気泡濃度が0.008kg/m以下において、凝固シェルに捕捉される気泡量が低レベルに抑えられている。したがって、凝固界面気泡濃度は0.008kg/m以下であることが好ましい。
凝固界面気泡濃度は、鋳造するスラブ厚さと浸漬ノズルの内壁面からの不活性ガス吹き込み量により制御でき、鋳造されるスラブ厚さを220mm以上、浸漬ノズルの内壁面からの不活性ガス吹き込み量を25NL/分以下とすることが好ましい。
The solidification interface bubble concentration has a great influence on the trapping of bubbles, and when the bubble concentration is high, the amount of bubbles trapped in the solidification shell increases. FIG. 13 shows the relationship between the solidification interface bubble concentration and the surface defect rate (the number of defects per 1 m of coil length measured by the same method as in the examples described later). Flow energy: 0.0010 to 0.0015 m 2 / s 2 , surface flow velocity: 0.05 to 0.30 m / s, solidification interface flow velocity: 0.08 to 0.15 m / s. According to FIG. 13, when the solidification interface bubble concentration is 0.008 kg / m 3 or less, the amount of bubbles trapped in the solidification shell is suppressed to a low level. Therefore, the solidification interface bubble concentration is preferably 0.008 kg / m 3 or less.
The solidification interface bubble concentration can be controlled by the slab thickness to be cast and the amount of inert gas blown from the inner wall surface of the immersion nozzle. It is preferable to be 25 NL / min or less.

浸漬ノズル2の溶鋼吐出孔20から吐出される溶鋼は気泡を随伴しており、スラブ厚さが小さすぎると、溶鋼吐出孔20から吐出される溶鋼流が鋳型長辺部側の凝固シェル5に近づき、凝固界面気泡濃度が高くなり、凝固シェル界面に気泡が捕捉されやすくなる。特に、スラブ厚さが220mm未満では、本発明のような溶鋼流の電磁流動制御を実施しても、上記のような理由により気泡分布の制御が難しくなる。一方、スラブ厚さが300mmを超えると、熱延工程の生産性が低くなる難点がある。このため鋳造されるスラブ厚さは220〜300mmとすることが好ましい。   The molten steel discharged from the molten steel discharge hole 20 of the immersion nozzle 2 is accompanied by bubbles, and if the slab thickness is too small, the molten steel flow discharged from the molten steel discharge hole 20 is directed to the solidified shell 5 on the long side of the mold. Approaching, the solidification interface bubble concentration becomes high, and the bubbles are easily trapped at the solidification shell interface. In particular, when the slab thickness is less than 220 mm, even if the electromagnetic flow control of the molten steel flow as in the present invention is performed, it is difficult to control the bubble distribution for the reasons described above. On the other hand, when the slab thickness exceeds 300 mm, the productivity of the hot rolling process is lowered. For this reason, it is preferable that the slab thickness cast is 220-300 mm.

浸漬ノズル2の内壁面からの不活性ガス吹き込み量が多くなると、凝固界面気泡濃度が高くなり、凝固シェル界面に気泡が捕捉されやすくなる。特に、不活性ガス吹き込み量が20NL/分を超えると、本発明のような溶鋼流の電磁流動制御を実施しても、上記のような理由により気泡分布の制御が難しくなる。一方、不活性ガス吹き込み量が少なすぎるとノズル閉塞を起こしやすく、却って偏流を大きくするために流速の制御が困難となる。このため、浸漬ノズル2の内壁面からの不活性ガス吹き込み量は3〜25NL/分とすることが好ましい。   When the amount of inert gas blown from the inner wall surface of the immersion nozzle 2 increases, the concentration of bubbles in the solidified interface increases, and bubbles are easily trapped at the solidified shell interface. In particular, when the inert gas blowing rate exceeds 20 NL / min, even if the electromagnetic flow control of the molten steel flow as in the present invention is performed, it is difficult to control the bubble distribution for the reasons described above. On the other hand, if the amount of inert gas blown is too small, nozzle clogging is likely to occur, and on the contrary, the flow rate is difficult to control because the drift is increased. For this reason, it is preferable that the amount of inert gas blown from the inner wall surface of the immersion nozzle 2 is 3 to 25 NL / min.

次に、以上述べた本発明の連続鋳造法で鋳造されたスラブを用いた鋼板の製造方法について説明する。
さきに述べたように、ブリスターと呼ばれる冷延鋼板の欠陥は、熱間圧延後の酸洗時に鋼板に侵入し、冷間圧延後に鋼板内の非金属介在物、気泡、偏析、内部割れなどの部位に滞留している水素が、焼鈍時の加熱とともに体積膨張して圧力を高め、加熱により軟化した鋼板を変形させたふくれ状の表面欠陥である。
本発明者らは、このようなブリスターの発生と熱延鋼板の酸洗条件および冷間圧延条件との関係について、さらには使用するスラブについて検討した結果、以下のような知見を得た。
Next, the manufacturing method of the steel plate using the slab cast by the continuous casting method of the present invention described above will be described.
As mentioned earlier, cold rolled steel sheet defects called blisters penetrate into the steel sheet during pickling after hot rolling, and after cold rolling, non-metallic inclusions, bubbles, segregation, internal cracks, etc. in the steel sheet. Hydrogen staying at the site is a blister-like surface defect that deforms a steel sheet softened by heating by volume expansion with heating during annealing to increase pressure.
As a result of studying the relationship between the generation of such blisters and the pickling conditions and cold rolling conditions of the hot-rolled steel sheet and the slab to be used, the following knowledge was obtained.

(1)酸洗終了直後の熱延鋼板中の水素濃度Hoは熱延鋼板の酸洗減量と良い相関があり、このため、酸洗減量に基づいて酸洗終了直後の熱延鋼板中の水素濃度Hoを求めることができる。
(2)酸洗終了後、時間t(秒)を経過した時点pでの熱延鋼板中の水素濃度H(質量ppm)は、酸洗終了直後の熱延鋼板中の水素濃度Ho(質量ppm)と、酸洗終了後、当該時点pまでの鋼板の最高表面温度T(K)との関係で、下記(i)式により表すことができる。したがって、下記(i)式の時間tを「酸洗終了後、冷間圧延開始までの時間t」とし、最高表面温度Tを「酸洗終了後、冷間圧延開始前における鋼板の最高表面温度T」とすれば、冷間圧延直前の鋼板中の水素濃度Hを求めることができる。
=Ho・exp{−0.002×(T+t/100)} …(i)
(1) The hydrogen concentration Ho in the hot-rolled steel sheet immediately after the end of pickling has a good correlation with the pickling reduction amount of the hot-rolled steel sheet. The concentration Ho can be determined.
(2) The hydrogen concentration H 1 (mass ppm) in the hot-rolled steel sheet at the time point p when time t 1 (seconds) has elapsed after the end of pickling is the hydrogen concentration Ho ( (Ppm by mass) and the maximum surface temperature T 1 (K) of the steel sheet up to the time point p after the end of pickling can be expressed by the following equation (i). Therefore, the time t 1 in the following formula (i) is set as “time t from the end of pickling to the start of cold rolling”, and the maximum surface temperature T 1 is set to “the maximum of the steel sheet after the end of pickling and before the start of cold rolling”. If the surface temperature is T ”, the hydrogen concentration H in the steel sheet immediately before cold rolling can be obtained.
H 1 = Ho · exp {-0.002 × (T 1 + t 1/100)} ... (i)

(3)ブリスターによる鋼板の表面品質不良が発生するか否かは、冷間圧延直前の鋼板中の水素濃度Hと冷間圧延条件(圧下条件)で決まり、冷間圧延条件に応じて、ブリスターによる表面品質不良(表面品質不合格)が発生する「冷間圧延直前の鋼板中の臨界水素濃度Hc」が決まる。
(4)以上のことから、上記(i)式で求められる冷間圧延直前の鋼板中の水素濃度Hが臨界水素濃度Hcにならないように、酸洗終了後から冷間圧延開始までの時間t又/及び鋼板の最高表面温度Tを制御することにより、ブリスターの発生を抑制し、ブリスターによる表面品質欠陥不良(表面品質不合格)の発生を防止することができる。
(3) Whether or not the surface quality of the steel sheet due to blistering occurs is determined by the hydrogen concentration H in the steel sheet immediately before cold rolling and the cold rolling conditions (reducing conditions). Depending on the cold rolling conditions, the blister The “critical hydrogen concentration Hc in the steel sheet immediately before cold rolling” at which surface quality failure (failed surface quality) occurs due to is determined.
(4) From the above, the time t from the end of pickling to the start of cold rolling so that the hydrogen concentration H in the steel sheet immediately before cold rolling determined by the above formula (i) does not become the critical hydrogen concentration Hc. Also, by controlling the maximum surface temperature T of the steel sheet, it is possible to suppress the generation of blisters and prevent the occurrence of surface quality defects (surface quality failure) due to blisters.

(5)上述した本発明の連続鋳造方法でスラブを鋳造することにより、非金属介在物やモールドフラックスの巻き込みによる欠陥(所謂スリバー欠陥)を少なくできるとともに、微小な気泡の巻き込みによる欠陥も少なくすることができるが、より微小な気泡(例えば、気泡径5mm以下のもの)や介在物の巻き込みを確実に防止することは難しく、このような微小気泡や介在物が内部まで潜り込んで、これを起点として水素(H)による膨れ状欠陥(ブリスター欠陥)を引き起こす。このような課題に対して、本発明の連続鋳造法と上記(4)の方法を組み合わせること、すなわち、上述した本発明の連続鋳造法で鋳造されたスラブを圧延して得られた熱延鋼板を、上記(4)の条件で酸洗および冷間圧延することにより、極めて微小な気泡や介在物の巻き込みに起因するブリスターを含む、気泡および介在物やモールドフラックスの巻き込みに起因した表面欠陥が非常に少ない高品質の鋼板を製造することができる。 (5) By casting the slab by the above-described continuous casting method of the present invention, defects caused by the inclusion of non-metallic inclusions and mold flux (so-called sliver defects) can be reduced, and the defects caused by the inclusion of minute bubbles are also reduced. However, it is difficult to surely prevent entrapment of finer bubbles (for example, those having a bubble diameter of 5 mm or less) and inclusions. Causes blistering defects (blister defects) due to hydrogen (H 2 ). For such problems, a hot-rolled steel sheet obtained by combining the continuous casting method of the present invention with the method of (4) above, that is, rolling a slab cast by the above-described continuous casting method of the present invention. By pickling and cold rolling under the conditions of (4) above, surface defects caused by entrapment of bubbles, inclusions and mold flux, including extremely fine bubbles and inclusions of inclusions, are caused. Very few high quality steel sheets can be produced.

このような知見に基づく本発明の鋼板の製造法は、上述した本発明の連続鋳造法で鋳造されたスラブを熱間圧延して熱延鋼板とし、この熱延鋼板を酸洗した後、冷間圧延するに際し、下記(a)式を満足するように、時間t又は/及び鋼板の最高表面温度Tを制御するものである。
Hc/Ho> exp{−0.002×(T+t/100)} …(a)
但し Ho:酸洗終了直後の鋼板中の水素濃度(質量ppm)
Hc:冷間圧延条件により決まる、ブリスターによる表面品質不良が発生する冷間圧延直前の鋼板中の臨界水素濃度(質量ppm)
t:酸洗終了後、冷間圧延開始までの時間(秒)
T:酸洗終了後、冷間圧延開始前における鋼板の最高表面温度T(K)(但し、この鋼板表面温度は、酸洗終了後、冷間圧延前に鋼板を加熱した場合の鋼板表面温度を含む。)
以上のような鋼板の製造方法は、特に、酸洗〜冷間圧延を連続して行う酸洗・冷間圧延連続ライン(PPCMライン,PPCM;Pickling and Profile-Control Cold Mill)で実施される場合に効果的である。これは、このようなPPCMラインにおいて製造される鋼板に、特にブリスターが生じやすいからである。
The manufacturing method of the steel sheet of the present invention based on such knowledge is a hot-rolled steel sheet obtained by hot rolling the slab cast by the continuous casting method of the present invention described above, and after pickling the hot-rolled steel sheet, In the hot rolling, the time t or / and the maximum surface temperature T of the steel sheet are controlled so as to satisfy the following formula (a).
Hc / Ho> exp {−0.002 × (T + t / 100)} (a)
However, Ho: Hydrogen concentration (mass ppm) in the steel plate immediately after pickling
Hc: Critical hydrogen concentration (mass ppm) in the steel sheet immediately before cold rolling, which causes surface quality defects due to blisters, determined by cold rolling conditions
t: Time from the end of pickling to the start of cold rolling (seconds)
T: Maximum surface temperature T (K) of the steel sheet after the end of pickling and before the start of cold rolling (however, this steel sheet surface temperature is the surface temperature of the steel sheet when the steel sheet is heated after the end of pickling and before cold rolling) including.)
The steel sheet manufacturing method as described above is particularly carried out in a pickling and cold rolling continuous line (PPCM line, PPCM; Pickling and Profile-Control Cold Mill) in which pickling and cold rolling are continuously performed. It is effective. This is because blisters are particularly likely to occur in the steel sheet produced in such a PPCM line.

以下の説明において、鋼板の水素濃度の実測値は、鋼板を800℃まで昇温し、鋼板から放出された水素を質量分析装置で分析した値である。
表2は、5つの酸洗槽が直列に配置された酸洗設備において、熱延鋼板を種々の条件で酸洗し、鋼板の酸洗減量と酸洗終了直後の鋼板中の水素濃度Hoを調べた結果を示している。図14は、その結果に基づき、酸洗減量と酸洗終了直後の鋼板中の水素濃度Hoとの関係を示したものである。酸洗条件には酸濃度、酸洗温度・時間があるが、表2に示すように、酸洗条件による酸洗減量の依存性は見られない。これは、酸洗前の鋼板の表面状態(スケール厚み等)によって酸洗減量が変わるためであると考えられる。一方、酸洗終了直後の鋼板中の水素濃度Hoは、図14に示すように、酸洗減量と良い相関が見られる。したがって、酸洗減量に基づいて酸洗終了直後の鋼板中の水素濃度Hoを求めることができる。
In the following description, the actual measurement value of the hydrogen concentration of the steel plate is a value obtained by heating the steel plate to 800 ° C. and analyzing hydrogen released from the steel plate with a mass spectrometer.
Table 2 shows that in a pickling facility in which five pickling tanks are arranged in series, the hot-rolled steel sheet is pickled under various conditions, the amount of pickling reduction of the steel sheet and the hydrogen concentration Ho in the steel sheet immediately after the end of pickling. The result of the investigation is shown. FIG. 14 shows the relationship between the pickling loss and the hydrogen concentration Ho in the steel sheet immediately after the end of pickling based on the results. The pickling conditions include acid concentration, pickling temperature and time, but as shown in Table 2, the dependency of pickling loss by pickling conditions is not observed. This is presumably because the pickling loss changes depending on the surface condition (scale thickness, etc.) of the steel sheet before pickling. On the other hand, the hydrogen concentration Ho in the steel sheet immediately after the end of the pickling shows a good correlation with the pickling reduction as shown in FIG. Therefore, the hydrogen concentration Ho in the steel sheet immediately after the end of pickling can be obtained based on the pickling loss.

酸洗終了直後における熱延鋼板中の水素濃度Hoと、同じく鋼板表面温度Tをそれぞれ測定するとともに、この熱延鋼板が酸洗終了から時間tを経過した時点での鋼板中の水素濃度Hを測定したところ、表3の結果が得られた。この表3の結果から、酸洗を終了した熱延鋼板からは経時的に水素が放出され、熱延鋼板中の水素濃度Ho(質量ppm)、同じく水素濃度H(質量ppm)、時間t(秒)及び鋼板表面温度T(K)には、近似的に下記(ii)式の関係があることが判った。図15に、Ho・exp{−0.002×(T+t/100)}と酸洗終了から時間tを経過した時点での鋼板中の水素濃度Hとの関係を示す。ここで、鋼板中の水素濃度Hが、時間tだけでなく、酸洗終了直後における鋼板表面温度Tにも影響を受ける理由は、水素の放出量は鋼板温度、特に到達最高温度に影響(支配)され、上記試験条件では、酸洗終了直後が最も高い鋼板温度(到達最高温度)であったことによる。
=Ho・exp{−0.002×(T+t/100)} …(ii)
したがって、酸洗終了後、冷間圧延開始前に、鋼板を酸洗終了直後の鋼板温度よりも高い温度に加熱した場合には、上記(ii)式の鋼板表面温度Tは、その加熱時の鋼板表面温度(到達最高温度)ということになる。上記のとおり、酸洗を終了した熱延鋼板からの水素の放出量は鋼板の到達最高温度に影響(支配)されるためである。
The hydrogen concentration Ho in the hot-rolled steel sheet immediately after the end of pickling and the steel sheet surface temperature T 0 are measured, and the hydrogen concentration in the steel sheet at the time when time t 1 has passed since the end of pickling. was measured H 1, the results in Table 3 were obtained. From the results in Table 3, hydrogen was released over time from the hot-rolled steel sheet that had been pickled, and the hydrogen concentration Ho (mass ppm) in the hot-rolled steel sheet, also the hydrogen concentration H 1 (mass ppm), time t It was found that 1 (second) and the steel sheet surface temperature T 0 (K) are approximately related by the following equation (ii). Figure 15 shows the relationship between the hydrogen concentration H 1 in the steel sheet at the time has elapsed Ho · exp {-0.002 × (T 0 + t 1/100)} and the time from the pickling finished t 1. Here, the reason why the hydrogen concentration H 1 in the steel sheet is influenced not only by the time t 1 but also by the steel sheet surface temperature T 0 immediately after the end of the pickling is that the amount of hydrogen released depends on the steel sheet temperature, particularly the highest temperature reached. It is influenced (dominated), and under the above test conditions, the steel sheet temperature (the highest temperature reached) was the highest immediately after the end of pickling.
H 1 = Ho · exp {-0.002 × (T 0 + t 1/100)} ... (ii)
Therefore, when the steel sheet is heated to a temperature higher than the steel sheet temperature immediately after the end of the pickling after the end of the pickling and before the start of cold rolling, the steel sheet surface temperature T 0 of the above formula (ii) This is the steel plate surface temperature (attainable maximum temperature). This is because the amount of hydrogen released from the hot-rolled steel sheet that has been pickled is influenced (dominated) by the maximum temperature reached by the steel sheet as described above.

以上のことから、酸洗終了後、時間t(秒)を経過した時点pでの熱延鋼板中の水素濃度H(質量ppm)は、酸洗終了直後の熱延鋼板中の水素濃度Ho(質量ppm)と、酸洗終了後〜当該時点p間における鋼板の最高表面温度T(K)との関係で、下記(i)式により表せることが判った。したがって、下記(i)式の時間tを「酸洗終了後、冷間圧延開始までの時間t」とし、最高表面温度Tを「酸洗終了後、冷間圧延開始前における鋼板の最高表面温度T」とすれば、冷間圧延直前の鋼板中の水素濃度Hを求めることができる。
=Ho・exp{−0.002×(T+t/100)} …(i)
From the above, the hydrogen concentration H 1 (mass ppm) in the hot-rolled steel sheet at the time point p after time t 1 (seconds) has elapsed after the end of pickling is the hydrogen concentration in the hot-rolled steel sheet immediately after the end of pickling. The relationship between Ho (ppm by mass) and the maximum surface temperature T 1 (K) of the steel sheet between the end of pickling and the time point p was found to be expressed by the following equation (i). Therefore, the time t 1 in the following formula (i) is set as “time t from the end of pickling to the start of cold rolling”, and the maximum surface temperature T 1 is set to “the maximum of the steel sheet after the end of pickling and before the start of cold rolling”. If the surface temperature is T ”, the hydrogen concentration H in the steel sheet immediately before cold rolling can be obtained.
H 1 = Ho · exp {-0.002 × (T 1 + t 1/100)} ... (i)

一方、ブリスターによる表面品質不良が発生するか否かは、冷間圧延直前の鋼板中の水素濃度Hと冷間圧延条件(圧下条件)で決まり、冷間圧延条件に応じて、ブリスターによる表面品質不良(表面品質不合格)が発生する「冷間圧延直前の鋼板中の臨界水素濃度Hc」が決まることが判った。
板厚4mmの熱延鋼板を冷間圧延で種々の仕上げ板厚(冷間圧延の最終板厚)に圧延した場合について、冷間圧延直前の鋼板中の水素濃度Hと、冷間圧延での仕上げ板厚と、ブリスター欠陥発生個数を調査したところ、表4に示す結果が得られた。この結果に基づき、冷間圧延直前の鋼板中の水素濃度Hとブリスター欠陥発生個数との関係を、冷間圧延の仕上げ板厚で整理したものが図16である。
On the other hand, whether or not surface quality defects due to blisters occur depends on the hydrogen concentration H in the steel sheet immediately before cold rolling and the cold rolling conditions (reduction conditions). Depending on the cold rolling conditions, the surface quality due to blisters It was found that the “critical hydrogen concentration Hc in the steel sheet immediately before cold rolling” at which a defect (failed surface quality) occurs was determined.
When a hot-rolled steel sheet having a thickness of 4 mm is rolled into various finished sheet thicknesses (final sheet thickness of cold rolling) by cold rolling, the hydrogen concentration H in the steel sheet immediately before cold rolling and the cold rolling When the finished plate thickness and the number of blister defects were investigated, the results shown in Table 4 were obtained. Based on this result, FIG. 16 shows the relationship between the hydrogen concentration H in the steel sheet immediately before cold rolling and the number of blister defects generated by the finished thickness of the cold rolling.

これによれば、冷間圧延直前の鋼板中の水素濃度Hがある値を超えると、ブリスター欠陥は急激に増加することが判る。また、冷間圧延の仕上げ板厚が小さくなるほど(つまり、冷間圧延の圧下量が大きくなるほど)、ブリスター欠陥が急激に増加する上記水素濃度Hの値は小さくなることが判る。これは、冷間圧延直前の鋼板中の水素濃度Hが高いほど、また、冷間圧延での圧下量が大きいほど、鋼板内に滞留した水素の内部圧力の上昇が大きくなるためであると考えられる。ここで、一般に、ブリスター欠陥個数が0.0350×10−2個/m程度を超えるとブリスター欠陥による表面品質不良が顕在化するようになるので、「ブリスターによる表面品質不良の発生」(表面品質不合格)の指標を、例えば、ブリスター欠陥個数:0.0350×10−2個/m超とすることができる。 According to this, when the hydrogen concentration H in the steel plate immediately before cold rolling exceeds a certain value, it can be seen that blister defects rapidly increase. It can also be seen that the smaller the finished thickness of the cold rolling (that is, the larger the amount of cold rolling reduction), the smaller the value of the hydrogen concentration H at which blister defects increase rapidly. This is considered to be because the higher the hydrogen concentration H in the steel plate immediately before the cold rolling, and the larger the reduction amount in the cold rolling, the greater the increase in the internal pressure of the hydrogen retained in the steel plate. It is done. Here, in general, when the number of blister defects exceeds about 0.0350 × 10 −2 / m, surface quality defects due to blister defects become apparent, so “occurrence of surface quality defects due to blisters” (surface quality) For example, the number of blister defects can be more than 0.0350 × 10 −2 / m.

以上の点から、ブリスターによる表面品質不良が発生する「冷間圧延直前の鋼板中の臨界水素濃度Hc」を、冷間圧延条件(圧下条件)に応じて決めることが可能であることが判った。具体的には、冷間圧延の圧下率で決まる仕上げ板厚に応じて、冷間圧延直前の鋼板中の臨界水素濃度Hcを決めることができる。例えば、熱延鋼板の板厚が4mmの場合には、図16の結果に基づいて、冷間圧延での各仕上げ板厚に応じて鋼板中の臨界水素濃度Hcを以下のように定めることができる。
冷間圧延での仕上げ板厚 鋼板中の臨界水素濃度Hc
1.8mm 0.030質量ppm
1.5mm 0.025質量ppm
1.2mm 0.020質量ppm
From the above points, it was found that the “critical hydrogen concentration Hc in the steel sheet immediately before cold rolling” in which surface quality defects due to blisters occur can be determined according to the cold rolling conditions (reduction conditions). . Specifically, the critical hydrogen concentration Hc in the steel sheet immediately before the cold rolling can be determined according to the finished sheet thickness determined by the cold rolling reduction ratio. For example, when the thickness of the hot-rolled steel sheet is 4 mm, the critical hydrogen concentration Hc in the steel sheet can be determined as follows according to each finished sheet thickness in the cold rolling based on the result of FIG. it can.
Finished sheet thickness in cold rolling Critical hydrogen concentration Hc in steel sheet
1.8mm 0.030 mass ppm
1.5mm 0.025 mass ppm
1.2mm 0.020 mass ppm

以上のことから、冷間圧延条件に応じて、冷間圧延直前の鋼板中の水素濃度が臨界水素濃度Hcにならないように、酸洗終了後、冷間圧延開始までの時間tや鋼板の最高表面温度Tを制御することにより、ブリスターによる表面品質不良の発生を防止できることになる。このため本発明では、熱延鋼板を酸洗した後、冷間圧延するに際し、下記(a)式を満足するように、時間t又は/及び鋼板の最高表面温度Tを制御するものである。
Hc/Ho> exp{−0.002×(T+t/100)} …(a)
但し Ho:酸洗終了直後の鋼板中の水素濃度(質量ppm)
Hc:冷間圧延条件により決まる、ブリスターによる表面品質不良が発生する冷間圧延直前の鋼板中の臨界水素濃度(質量ppm)
t:酸洗終了後、冷間圧延開始までの時間(秒)
T:酸洗終了後、冷間圧延開始前における鋼板の最高表面温度T(K)(但し、この鋼板表面温度は、酸洗終了後、冷間圧延前に鋼板を加熱した場合の鋼板表面温度を含む。)
このような本発明法では、上述のようにして、冷間圧延条件(圧下条件)に応じた「冷間圧延直前の鋼板中の臨界水素濃度Hc」を予め定めておく必要がある。また、酸洗量と酸洗終了直後の鋼板中の水素濃度Hoとの関係についても、予め求めておくことが好ましい。
また、後述する実施例に示されるように、Hc値に対してHo・exp{−0.002×(T+t/100)}値が小さいほど、ブリスター欠陥発生の改善効果が大きく、とりわけ、両者の差(=Hc値−Ho・exp{−0.002×(T+t/100)}値)が0.005以上のものは、ブリスター欠陥の発生が特に顕著に抑えられるので、Hc値−Ho・exp{−0.002×(T+t/100)}値を0.005以上とすることが特に好ましい。
From the above, according to the cold rolling conditions, the time t from the end of pickling to the start of cold rolling and the maximum of the steel plate so that the hydrogen concentration in the steel plate immediately before cold rolling does not become the critical hydrogen concentration Hc. By controlling the surface temperature T, the occurrence of surface quality defects due to blisters can be prevented. For this reason, in this invention, when pickling a hot-rolled steel plate and cold-rolling, time t or / and the maximum surface temperature T of a steel plate are controlled so that the following (a) Formula may be satisfied.
Hc / Ho> exp {−0.002 × (T + t / 100)} (a)
However, Ho: Hydrogen concentration (mass ppm) in the steel plate immediately after pickling
Hc: Critical hydrogen concentration (mass ppm) in the steel sheet immediately before cold rolling, which causes surface quality defects due to blisters, determined by cold rolling conditions
t: Time from the end of pickling to the start of cold rolling (seconds)
T: Maximum surface temperature T (K) of the steel sheet after the end of pickling and before the start of cold rolling (however, this steel sheet surface temperature is the surface temperature of the steel sheet when the steel sheet is heated after the end of pickling and before cold rolling) including.)
In such a method of the present invention, as described above, it is necessary to predetermine the “critical hydrogen concentration Hc in the steel sheet immediately before cold rolling” according to the cold rolling conditions (reducing conditions). Moreover, it is preferable to obtain | require in advance also about the relationship between the amount of pickling and the hydrogen concentration Ho in the steel plate immediately after the end of pickling.
Further, as shown in the examples described later, the smaller the Ho · exp {−0.002 × (T + t / 100)} value with respect to the Hc value, the greater the effect of improving blister defect occurrence. = Hc value−Ho · exp {−0.002 × (T + t / 100)} value) of 0.005 or more, the occurrence of blister defects is particularly remarkably suppressed. Therefore, the Hc value−Ho · exp {−0.002 × The (T + t / 100)} value is particularly preferably 0.005 or more.

熱延鋼板としては、上述した本発明の連続鋳造法で鋳造されたスラブを熱間圧延したものを用いるが、さきに(5)で述べたような理由により、極めて微小な気泡や介在物の巻き込みに起因するブリスターを含む、気泡および介在物やモールドフラックスの巻き込みに起因した表面欠陥が非常に少ない高品質の鋼板を製造することができる。   As the hot-rolled steel sheet, a hot-rolled slab cast by the above-described continuous casting method of the present invention is used. For the reason described in (5) above, extremely fine bubbles and inclusions are used. It is possible to manufacture a high-quality steel sheet that includes blisters caused by entrainment and has very few surface defects caused by entrainment of bubbles and inclusions or mold flux.

本発明法を実施するには、例えば、酸洗後の鋼板をコイルの状態で室温で放置し、上記(a)式を満足する時間t後に冷間圧延を行う。また、酸洗後の熱延鋼板を加熱して鋼板の最高表面温度Tを高めれば、上記(a)式を満足する時間tを短縮できるので、PPCMラインにも適用でき、生産性の向上を図ることができる。熱延鋼板の加熱には、ガスバーナー加熱、電気ヒーター加熱、高周波誘導加熱などを適用できるが、その後冷間圧延を行うので、加熱は酸素分圧が制御された不活性ガス雰囲気中で行うことが好ましい。また、PPCMラインに適用する場合は、ロール間距離を変えられるルーパーを用いればラインスピードの調整は可能である。   In order to carry out the method of the present invention, for example, the pickled steel sheet is left in a coiled state at room temperature, and cold rolling is performed after a time t that satisfies the above formula (a). Moreover, if the hot-rolled steel sheet after pickling is heated to increase the maximum surface temperature T of the steel sheet, the time t that satisfies the above formula (a) can be shortened, so that it can be applied to the PPCM line, improving productivity. Can be planned. For heating the hot-rolled steel sheet, gas burner heating, electric heater heating, high-frequency induction heating, etc. can be applied, but since cold rolling is performed thereafter, heating should be performed in an inert gas atmosphere in which the oxygen partial pressure is controlled. Is preferred. In addition, when applied to a PPCM line, the line speed can be adjusted by using a looper that can change the distance between rolls.

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

[実施例1]
図1および図2に示すような連続鋳造機、すなわち、鋳型外側(鋳型側壁の背面側)に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備え、上部磁極の磁場のピーク位置と下部磁極の磁場のピーク位置の間に浸漬ノズルの溶鋼吐出孔が位置する連続鋳造機を用い、1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動する連続鋳造方法により、約300トンのアルミキルド極低炭素鋼を鋳造した。
[Example 1]
A continuous casting machine as shown in FIG. 1 and FIG. 2, that is, a pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold on the outside of the mold (on the back side of the mold side wall) Using a continuous casting machine in which the molten steel discharge hole of the immersion nozzle is located between the peak position of the magnetic field of the magnetic pole and the peak position of the magnetic field of the lower magnetic pole, a direct current magnetic field applied to each of the pair of upper magnetic poles and the pair of lower magnetic poles About 300 tons of aluminum killed ultra-low carbon steel was cast by a continuous casting method that brakes the molten steel flow.

浸漬ノズルからの吹き込み不活性ガスにはArガスを使用し、このArガスの吹き込み量は、ノズル閉塞が起こらないようにスライディングノズルの開度に応じて、5〜12NL/minの範囲内で調整した。連続鋳造機の仕様および他の鋳造条件は以下のとおりである。
連続鋳造機の仕様および他の鋳造条件は以下のとおりである。
・浸漬ノズルの溶鋼吐出孔の溶鋼吐出角度α:15°
・浸漬ノズルの浸漬深さ:230mm
・浸漬ノズルの溶鋼吐出孔の形状:サイズ70mm×80mmの長方形状
・浸漬ノズル内径:80mm
・浸漬ノズルの各溶鋼吐出孔の開口面積:5600mm
・使用したモールドフラックスの粘度(1300℃):2.5cp
Ar gas is used as the inert gas blown from the immersion nozzle, and the amount of Ar gas blown is adjusted within a range of 5 to 12 NL / min according to the opening of the sliding nozzle so that the nozzle is not blocked. did. The specifications of the continuous casting machine and other casting conditions are as follows.
The specifications of the continuous casting machine and other casting conditions are as follows.
-Molten steel discharge angle α of the molten steel discharge hole of the immersion nozzle: 15 °
・ Immersion depth of immersion nozzle: 230 mm
-Shape of molten steel discharge hole of immersion nozzle: rectangular shape of size 70mm x 80mm-Immersion nozzle inner diameter: 80mm
-Opening area of each molten steel discharge hole of the immersion nozzle: 5600 mm 2
-Viscosity of mold flux used (1300 ° C): 2.5 cp

表5に示す化学成分の溶鋼を、表6〜表15に示すような条件で連続鋳造した。
溶鋼の化学成分は、RH真空脱ガス装置での精錬終了時に溶鋼から採取した試料の分析値を用い、溶鋼のトータル酸素濃度は、鋳型への注入開始前にタンディッシュ内の溶鋼から試料を採取し、この試料の化学分析値を使用した。
連続鋳造されたスラブを熱間圧延および冷間圧延して鋼板とし、この鋼板に合金化溶融亜鉛めっき処理を施した。この合金化溶融亜鉛めっき鋼板について、オンライン表面欠陥計で表面欠陥を連続的に測定し、そのなかから欠陥形態(外観)あるいはSEM分析、ICP分析等によりスリバー欠陥(モールドフラックス性欠陥、気泡性欠陥、介在物性欠陥)およびブリスター欠陥を判別し、コイル長さ1m当たりの欠陥個数に基づき、Znめっき後欠陥を下記基準で評価した。その結果を、表6〜表15に併せて示す。
○:欠陥個数0.01個以下
△:欠陥個数0.01個超、0.05個以下
×:欠陥個数0.05個超、0.10個以下
××:欠陥個数0.10個超
なお、スラブ幅が1700mmを超えるスラブを鋳造する実施例については、実機の結果に基づくシミュレーションによるデータを示した。
Molten steel having chemical components shown in Table 5 was continuously cast under the conditions shown in Tables 6 to 15.
The chemical composition of the molten steel is the analysis value of the sample taken from the molten steel at the end of refining in the RH vacuum degassing unit. The total oxygen concentration of the molten steel is collected from the molten steel in the tundish before the injection into the mold. The chemical analysis value of this sample was used.
The continuously cast slab was hot-rolled and cold-rolled into a steel plate, and this steel plate was subjected to alloying hot-dip galvanizing treatment. About this alloyed hot-dip galvanized steel sheet, surface defects are continuously measured with an on-line surface defect meter, and sliver defects (mold flux defects, bubble defects) by defect morphology (appearance), SEM analysis, ICP analysis, etc. , Inclusion physical property defects) and blister defects were determined, and the defects after Zn plating were evaluated according to the following criteria based on the number of defects per 1 m of coil length. The results are also shown in Tables 6 to 15.
○: Defect number 0.01 or less △: Defect number over 0.01, 0.05 or less ×: Defect number over 0.05, 0.10 or less XX: Defect number over 0.10 For the examples in which a slab having a slab width exceeding 1700 mm was cast, data by simulation based on the results of an actual machine was shown.

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

Figure 2011206845
Figure 2011206845

[実施例2]
実施例1と同様の設備および方法(連続鋳造機、Arガス吹き込み条件、モールドフラックス条件など)で、表5のNo.2の化学成分の溶鋼を表16に示すような条件で連続鋳造した。
連続鋳造されたスラブを熱間圧延、酸洗および冷間圧延して鋼板とし、この鋼板に合金化溶融亜鉛めっき処理を施した。表16に示す実施例のうち、No.1〜No.3、No.9〜No.11の実施例では、酸洗終了後、同表に示す時間tの間そのまま室温で放置した後、冷間圧延を行った。一方、その他の実施例では、酸洗設備と冷間圧延設備との間に電気ヒーター式の加熱炉が設置されたPPCMラインを用い、酸洗終了後、Arガス雰囲気とした前記加熱炉で鋼板表面温度Tまで加熱し、その後、冷間圧延を行った。
[Example 2]
Using the same equipment and method as in Example 1 (continuous casting machine, Ar gas blowing conditions, mold flux conditions, etc.), the molten steel of No. 2 chemical component in Table 5 was continuously cast under the conditions shown in Table 16.
The continuously cast slab was hot-rolled, pickled and cold-rolled into a steel plate, and this steel plate was subjected to alloying hot-dip galvanizing treatment. Among the examples shown in Table 16, in the examples No. 1 to No. 3 and No. 9 to No. 11, after the pickling, the sample was allowed to stand at room temperature for the time t shown in the table, and then cooled. Hot rolling was performed. On the other hand, in other examples, a PPCM line in which an electric heater type heating furnace is installed between the pickling equipment and the cold rolling equipment is used. It heated to surface temperature T, and cold-rolled after that.

製造された合金化溶融亜鉛めっき鋼板について、オンライン表面欠陥計で表面欠陥を連続的に測定し、そのなかから欠陥形態(外観)あるいはSEM分析、ICP分析等によりスリバー欠陥(モールドフラックス性欠陥、気泡性欠陥、介在物性欠陥)およびブリスター欠陥を判別し、コイル長さ1m当たりの欠陥個数に基づき、Znめっき後欠陥(トータルのZnめっき後欠陥)を[実施例1]と同じ基準で評価した。また、Znめっき後欠陥のうちブリスター欠陥を下記基準で評価した。それらの結果を表16に併せて示す。
◎:ブリスター欠陥個数が0.0200×10−2個以下
○:ブリスター欠陥個数が0.0200×10−2個超、0.0250×10−2個以下
△:ブリスター欠陥個数が0.0250×10−2個超、0.0350×10−2個以下
×:ブリスター欠陥個数が0.0350×10−2個超
The manufactured alloyed hot-dip galvanized steel sheet is continuously measured for surface defects using an on-line surface defect meter, and from that, sliver defects (mold flux defects, bubbles, etc.) are determined by defect morphology (appearance), SEM analysis, ICP analysis, etc. Discriminating defects, inclusion physical property defects) and blister defects, and the defects after Zn plating (total defects after Zn plating) were evaluated on the same basis as in [Example 1] based on the number of defects per 1 m of coil length. Moreover, the blister defect was evaluated on the following reference | standard among the defects after Zn plating. The results are also shown in Table 16.
A: The number of blister defects is 0.0200 × 10 −2 or less ○: The number of blister defects is more than 0.0200 × 10 −2 , 0.0250 × 10 −2 or less Δ: The number of blister defects is 0.0250 × More than 10 −2 , 0.0350 × 10 −2 or less ×: The number of blister defects exceeds 0.0350 × 10 −2

Figure 2011206845
Figure 2011206845

本実施例のNo.1〜No.16は、いずれも本発明の連続鋳造条件を満足している。一方、No.2、No.3、No.5、No.7、No.8、No.10、No.11、No.13、No.15、No.16は、本発明の鋼板の製造条件である(a)式を満足しているのに対し、No.1、No.4、No.6、No.9、No.12、No.14は(a)式を満足していない。本実施例によれば、本発明の鋼板の製造条件である(a)式を満足するものは、ブリスター欠陥の発生がより効果的に抑えられることが判る。
また、Hc値に対してHo・exp{−0.002×(T+t/100)}値が小さいほど、ブリスター欠陥発生の改善効果が大きく、とりわけ、Hc値とHo・exp{−0.002×(T+t/100)}値との差が0.005以上のものは、ブリスター欠陥の発生が特に顕著に抑えられていることが判る。
No. 1 to No. 16 in this example satisfy the continuous casting conditions of the present invention. On the other hand, No.2, No.3, No.5, No.7, No.8, No.10, No.11, No.13, No.15, No.16 are the production conditions of the steel sheet of the present invention. While No. 1, No. 4, No. 6, No. 9, No. 12, and No. 14 do not satisfy the formula (a). According to this example, it can be seen that those satisfying the formula (a) which is the production condition of the steel sheet of the present invention can more effectively suppress the occurrence of blister defects.
In addition, the smaller the Ho · exp {−0.002 × (T + t / 100)} value relative to the Hc value, the greater the effect of improving blister defect generation. In particular, the Hc value and Ho · exp {−0.002 × (T + t / 100) )} Value is 0.005 or more, it can be seen that the occurrence of blister defects is particularly suppressed.

1 鋳型
2 浸漬ノズル
3a,3b 上部磁極
4a,4b 下部磁極
5 凝固シェル
6 メニスカス
10 鋳型長辺部
11 鋳型短辺部
20 溶鋼吐出孔
21 底部
DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3a, 3b Upper magnetic pole 4a, 4b Lower magnetic pole 5 Solidified shell 6 Meniscus 10 Mold long side 11 Mold short side 20 Molten steel discharge hole 21 Bottom

Claims (19)

鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が10°以上30°未満の浸漬ノズルを備え、前記上部磁極の磁場のピーク位置と前記下部磁極の磁場のピーク位置の間に前記溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、Cを0.003質量%以下含有する極低炭素鋼を連続鋳造するに際し、
下記(1)式で定義されるX値がX≦5000を満足する化学成分を有する溶鋼を、
X=24989×[%Ti]+386147×[%S]+853354×[%O] …(1)
但し [%Ti]:溶鋼中のTi含有量(質量%)
[%S] :溶鋼中のS含有量(質量%)
[%O] :溶鋼中のO含有量(質量%)
鋳造速度0.75m/分以上で、下記条件(イ)、(ロ)に従って連続鋳造し、
・条件(イ):鋳造するスラブ幅と鋳造速度が下記(a)〜(i)の場合には、上部磁極に印加する直流磁界の強度を0.03〜0.15T、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(a)スラブ幅950mm未満で且つ鋳造速度2.05未満
(b)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分未満
(c)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分未満
(d)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分未満
(e)スラブ幅1450mm以上1650mm未満で且つ鋳造速度2.15m/分未満
(f)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分未満
(g)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分未満
(h)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分未満
(i)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分未満
・条件(ロ):鋳造するスラブ幅と鋳造速度が下記(j)〜(s)の場合には、上部磁極に印加する直流磁界の強度を0.15T超0.30T以下、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(j)スラブ幅950mm未満で且つ鋳造速度2.05m/分以上3.05m/分以下
(k)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(l)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分以上3.05m/分以下
(m)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(n)スラブ幅1450mm以上1550mm未満で且つ鋳造速度2.15m/分以上3.05m/分以下
(o)スラブ幅1550mm以上1650mm未満で且つ鋳造速度2.15m/分以上2.85m/分以下
(p)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分以上2.65m/分以下
(q)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分以上2.55m/分以下
(r)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分以上2.55m/分以下
(s)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分以上2.55m/分以下
鋳造されたスラブを熱間圧延して熱延鋼板とし、該熱延鋼板を酸洗した後、冷間圧延するに際し、下記(a)式を満足するように、時間t又は/及び鋼板の最高表面温度Tを制御することを特徴とする鋼板の製造方法。
Hc/Ho> exp{−0.002×(T+t/100)} …(a)
但し Ho:酸洗終了直後の鋼板中の水素濃度(質量ppm)
Hc:冷間圧延条件により決まる、ブリスターによる表面品質不良が発生する冷間圧延直前の鋼板中の臨界水素濃度(質量ppm)
t:酸洗終了後、冷間圧延開始までの時間(秒)
T:酸洗終了後、冷間圧延開始前における鋼板の最高表面温度(K)(但し、この鋼板表面温度は、酸洗終了後、冷間圧延前に鋼板を加熱した場合の鋼板表面温度を含む。)
A submerged nozzle having a pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold on the outside of the mold, and having a molten steel discharge angle of 10 ° or more and less than 30 ° downward from the horizontal direction of the molten steel discharge hole Using the continuous casting machine in which the molten steel discharge hole is located between the peak position of the magnetic field of the upper magnetic pole and the peak position of the magnetic field of the lower magnetic pole, and each of the pair of upper magnetic poles and the pair of lower magnetic poles. While continuously casting ultra-low carbon steel containing 0.003% by mass or less of C while braking the molten steel flow by the applied DC magnetic field,
A molten steel having a chemical component with an X value defined by the following formula (1) satisfying X ≦ 5000,
X = 24989 × [% Ti] +386 147 × [% S] + 853354 × [% O] (1)
[% Ti]: Ti content in molten steel (mass%)
[% S]: S content in molten steel (mass%)
[% O]: O content (% by mass) in molten steel
Continuous casting at a casting speed of 0.75 m / min or more according to the following conditions (a) and (b)
Condition (A): When the slab width to be cast and the casting speed are the following (a) to (i), the strength of the DC magnetic field applied to the upper magnetic pole is 0.03 to 0.15 T, and is applied to the lower magnetic pole. The intensity of the DC magnetic field is 0.24 to 0.45T.
(A) Slab width of less than 950 mm and casting speed of less than 2.05 (b) Slab width of 950 mm to less than 1050 mm and casting speed of less than 2.25 m / min (c) Slab width of from 1050 mm to less than 1350 mm and casting speed of 2.35 m (D) Slab width of 1350 mm or more and less than 1450 mm and casting speed of less than 2.25 m / min (e) Slab width of 1450 mm or more and less than 1650 mm and casting speed of less than 2.15 m / min (f) Slab width of 1650 mm or more and less than 1750 mm (G) Slab width of 1750 mm or more and less than 1850 mm and casting speed of less than 1.95 m / min (h) Slab width of 1850 mm or more and less than 1950 mm and casting speed of less than 1.85 m / min (i ) The slab width is 1950 mm or more and less than 2150 mm and the casting speed is 1.75 m / min.・ Condition (b): When the cast slab width and casting speed are the following (j) to (s), the strength of the DC magnetic field applied to the upper magnetic pole is more than 0.15T and less than 0.30T, The strength of the DC magnetic field to be applied is 0.24 to 0.45T.
(J) Slab width of less than 950 mm and casting speed of 2.05 m / min or more and 3.05 m / min or less (k) Slab width of 950 mm or more and less than 1050 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (l ) Slab width of 1050 mm or more and less than 1350 mm and casting speed of 2.35 m / min or more and 3.05 m / min or less (m) Slab width of 1350 mm or more and less than 1450 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (n ) Slab width of 1450 mm to less than 1550 mm and casting speed of 2.15 m / min to 3.05 m / min (o) Slab width of 1550 mm to less than 1650 mm and casting speed of 2.15 m / min to 2.85 m / min (p ) Slab width of 1650 mm or more and less than 1750 mm and casting speed of 2.05 m / min or more and 2.65 m / min or less (q) Slab width 175 mm or more and less than 1850 mm and casting speed of 1.95 m / min or more and 2.55 m / min or less (r) Slab width of 1850 mm or more and less than 1950 mm and casting speed of 1.85 m / min or more and 2.55 m / min or less (s) Slab width 1950 mm or more and less than 2150 mm and casting speed 1.75 m / min or more and 2.55 m / min or less When the cast slab is hot-rolled into a hot-rolled steel sheet, the hot-rolled steel sheet is pickled, and then cold-rolled. The method for producing a steel sheet, wherein the time t or / and the maximum surface temperature T of the steel sheet are controlled so as to satisfy the following expression (a).
Hc / Ho> exp {−0.002 × (T + t / 100)} (a)
However, Ho: Hydrogen concentration (mass ppm) in the steel plate immediately after pickling
Hc: Critical hydrogen concentration (mass ppm) in the steel sheet immediately before cold rolling, which causes surface quality defects due to blisters, determined by cold rolling conditions
t: Time from the end of pickling to the start of cold rolling (seconds)
T: Maximum surface temperature (K) of the steel plate after the end of pickling and before the start of cold rolling (however, the surface temperature of the steel plate is the surface temperature of the steel plate when heated after the end of pickling and before cold rolling) Including)
酸洗後、冷間圧延前の熱延鋼板を、酸洗終了直後の鋼板温度よりも高い温度に加熱することを特徴とする請求項1に記載の鋼板の製造方法。   The method for producing a steel sheet according to claim 1, wherein after hot pickling, the hot rolled steel sheet before cold rolling is heated to a temperature higher than the steel sheet temperature immediately after the end of pickling. 連続鋳造機の鋳型内の溶鋼は、表面乱流エネルギーが0.0010〜0.0015m/s、表面流速が0.30m/s以下、溶鋼−凝固シェル界面での流速が0.08〜0.15m/sであることを特徴とする請求項1または2に記載の鋼板の製造方法。 The molten steel in the mold of the continuous casting machine has a surface turbulent energy of 0.0010 to 0.0015 m 2 / s 2 , a surface flow velocity of 0.30 m / s or less, and a flow velocity at the molten steel-solidified shell interface of 0.08 to It is 0.15 m / s, The manufacturing method of the steel plate of Claim 1 or 2 characterized by the above-mentioned. 連続鋳造機の鋳型内の溶鋼は、表面流速が0.05〜0.30m/sであることを特徴とする請求項3に記載の鋼板の製造方法。   The method for producing a steel sheet according to claim 3, wherein the molten steel in the mold of the continuous casting machine has a surface flow velocity of 0.05 to 0.30 m / s. 連続鋳造機の鋳型内の溶鋼は、溶鋼−凝固シェル界面での流速Aと表面流速Bとの比A/Bが1.0〜2.0であることを特徴とする請求項3または4に記載の鋼板の製造方法。   The molten steel in the mold of the continuous casting machine is characterized in that the ratio A / B of the flow velocity A and the surface flow velocity B at the molten steel-solidified shell interface is 1.0 to 2.0. The manufacturing method of the steel plate of description. 連続鋳造機の鋳型内の溶鋼は、溶鋼−凝固シェル界面での気泡濃度が0.008kg/m以下であることを特徴とする請求項3〜5のいずれかに記載の鋼板の製造方法。 The method for producing a steel sheet according to any one of claims 3 to 5, wherein the molten steel in the mold of the continuous casting machine has a bubble concentration at the molten steel-solidified shell interface of 0.008 kg / m 3 or less. 連続鋳造機で鋳造されるスラブ厚さが220〜300mm、連続鋳造機の浸漬ノズルの内壁面からの不活性ガス吹き込み量が3〜25NL/分であることを特徴とする請求項6に記載の鋼板の製造方法。   The slab thickness cast by the continuous casting machine is 220 to 300 mm, and the amount of inert gas blown from the inner wall surface of the immersion nozzle of the continuous casting machine is 3 to 25 NL / min. A method of manufacturing a steel sheet. 連続鋳造機の浸漬ノズルのノズル浸漬深さを230〜290mmとすることを特徴とする請求項1〜7のいずれかに記載の鋼板の製造方法。   The method for producing a steel sheet according to any one of claims 1 to 7, wherein the nozzle immersion depth of the immersion nozzle of the continuous casting machine is 230 to 290 mm. 連続鋳造機の浸漬ノズルのノズル内径(但し、溶鋼吐出孔の形成位置でのノズル内径)を70〜90mmとすることを特徴とする請求項1〜8のいずれかに記載の鋼板の製造方法。   The method for producing a steel sheet according to any one of claims 1 to 8, wherein the nozzle inner diameter of the immersion nozzle of the continuous casting machine (however, the nozzle inner diameter at the position where the molten steel discharge hole is formed) is 70 to 90 mm. 連続鋳造機の浸漬ノズルの各溶鋼吐出孔の開口面積を3600〜8100mmとすることを特徴とする請求項1〜9のいずれかに記載の鋼板の製造方法。 Method for producing a steel sheet according to any one of claims 1 to 9 the opening area of each molten steel discharge hole of the immersion nozzle of a continuous casting machine, characterized in that the 3600~8100mm 2. 鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が10°以上30°未満の浸漬ノズルを備え、前記上部磁極の磁場のピーク位置と前記下部磁極の磁場のピーク位置の間に前記溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、Cを0.003質量%以下含有する極低炭素鋼を連続鋳造する方法であって、
下記(1)式で定義されるX値がX≦5000を満足する化学成分を有する溶鋼を、
X=24989×[%Ti]+386147×[%S]+853354×[%O] …(1)
但し [%Ti]:溶鋼中のTi含有量(質量%)
[%S] :溶鋼中のS含有量(質量%)
[%O] :溶鋼中のO含有量(質量%)
鋳造速度0.75m/分以上で、下記条件(イ)、(ロ)に従って連続鋳造することを特徴とする鋼の連続鋳造方法。
・条件(イ):鋳造するスラブ幅と鋳造速度が下記(a)〜(i)の場合には、上部磁極に印加する直流磁界の強度を0.03〜0.15T、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(a)スラブ幅950mm未満で且つ鋳造速度2.05未満
(b)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分未満
(c)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分未満
(d)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分未満
(e)スラブ幅1450mm以上1650mm未満で且つ鋳造速度2.15m/分未満
(f)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分未満
(g)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分未満
(h)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分未満
(i)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分未満
・条件(ロ):鋳造するスラブ幅と鋳造速度が下記(j)〜(s)の場合には、上部磁極に印加する直流磁界の強度を0.15T超0.30T以下、下部磁極に印加する直流磁界の強度を0.24〜0.45Tとする。
(j)スラブ幅950mm未満で且つ鋳造速度2.05m/分以上3.05m/分以下
(k)スラブ幅950mm以上1050mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(l)スラブ幅1050mm以上1350mm未満で且つ鋳造速度2.35m/分以上3.05m/分以下
(m)スラブ幅1350mm以上1450mm未満で且つ鋳造速度2.25m/分以上3.05m/分以下
(n)スラブ幅1450mm以上1550mm未満で且つ鋳造速度2.15m/分以上3.05m/分以下
(o)スラブ幅1550mm以上1650mm未満で且つ鋳造速度2.15m/分以上2.85m/分以下
(p)スラブ幅1650mm以上1750mm未満で且つ鋳造速度2.05m/分以上2.65m/分以下
(q)スラブ幅1750mm以上1850mm未満で且つ鋳造速度1.95m/分以上2.55m/分以下
(r)スラブ幅1850mm以上1950mm未満で且つ鋳造速度1.85m/分以上2.55m/分以下
(s)スラブ幅1950mm以上2150mm未満で且つ鋳造速度1.75m/分以上2.55m/分以下
A submerged nozzle having a pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold on the outside of the mold, and having a molten steel discharge angle of 10 ° or more and less than 30 ° downward from the horizontal direction of the molten steel discharge hole Using the continuous casting machine in which the molten steel discharge hole is located between the peak position of the magnetic field of the upper magnetic pole and the peak position of the magnetic field of the lower magnetic pole, and each of the pair of upper magnetic poles and the pair of lower magnetic poles. A method of continuously casting an ultra-low carbon steel containing 0.003% by mass or less of C while braking a molten steel flow by an applied DC magnetic field,
A molten steel having a chemical component with an X value defined by the following formula (1) satisfying X ≦ 5000,
X = 24989 × [% Ti] +386 147 × [% S] + 853354 × [% O] (1)
[% Ti]: Ti content in molten steel (mass%)
[% S]: S content in molten steel (mass%)
[% O]: O content (% by mass) in molten steel
A continuous casting method for steel, characterized by continuous casting at a casting speed of 0.75 m / min or more according to the following conditions (a) and (b).
Condition (A): When the slab width to be cast and the casting speed are the following (a) to (i), the strength of the DC magnetic field applied to the upper magnetic pole is 0.03 to 0.15 T, and is applied to the lower magnetic pole. The intensity of the DC magnetic field is 0.24 to 0.45T.
(A) Slab width of less than 950 mm and casting speed of less than 2.05 (b) Slab width of 950 mm to less than 1050 mm and casting speed of less than 2.25 m / min (c) Slab width of from 1050 mm to less than 1350 mm and casting speed of 2.35 m (D) Slab width of 1350 mm or more and less than 1450 mm and casting speed of less than 2.25 m / min (e) Slab width of 1450 mm or more and less than 1650 mm and casting speed of less than 2.15 m / min (f) Slab width of 1650 mm or more and less than 1750 mm (G) Slab width of 1750 mm or more and less than 1850 mm and casting speed of less than 1.95 m / min (h) Slab width of 1850 mm or more and less than 1950 mm and casting speed of less than 1.85 m / min (i ) The slab width is 1950 mm or more and less than 2150 mm and the casting speed is 1.75 m / min.・ Condition (b): When the cast slab width and casting speed are the following (j) to (s), the strength of the DC magnetic field applied to the upper magnetic pole is more than 0.15T and less than 0.30T, The strength of the DC magnetic field to be applied is 0.24 to 0.45T.
(J) Slab width of less than 950 mm and casting speed of 2.05 m / min or more and 3.05 m / min or less (k) Slab width of 950 mm or more and less than 1050 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (l ) Slab width of 1050 mm or more and less than 1350 mm and casting speed of 2.35 m / min or more and 3.05 m / min or less (m) Slab width of 1350 mm or more and less than 1450 mm and casting speed of 2.25 m / min or more and 3.05 m / min or less (n ) Slab width of 1450 mm to less than 1550 mm and casting speed of 2.15 m / min to 3.05 m / min (o) Slab width of 1550 mm to less than 1650 mm and casting speed of 2.15 m / min to 2.85 m / min (p ) Slab width of 1650 mm or more and less than 1750 mm and casting speed of 2.05 m / min or more and 2.65 m / min or less (q) Slab width 175 mm or more and less than 1850 mm and casting speed of 1.95 m / min or more and 2.55 m / min or less (r) Slab width of 1850 mm or more and less than 1950 mm and casting speed of 1.85 m / min or more and 2.55 m / min or less (s) Slab width 1950 mm or more and less than 2150 mm and casting speed 1.75 m / min or more and 2.55 m / min or less
鋳型内の溶鋼は、表面乱流エネルギーが0.0010〜0.0015m/s、表面流速が0.30m/s以下、溶鋼−凝固シェル界面での流速が0.08〜0.15m/sであることを特徴とする請求項11に記載の鋼の連続鋳造方法。 The molten steel in the mold has a surface turbulent energy of 0.0010 to 0.0015 m 2 / s 2 , a surface flow velocity of 0.30 m / s or less, and a flow velocity at the molten steel-solidified shell interface of 0.08 to 0.15 m / s. It is s, The continuous casting method of steel of Claim 11 characterized by the above-mentioned. 鋳型内の溶鋼は、表面流速が0.05〜0.30m/sであることを特徴とする請求項12に記載の鋼の連続鋳造方法。   The continuous casting method of steel according to claim 12, wherein the molten steel in the mold has a surface flow velocity of 0.05 to 0.30 m / s. 鋳型内の溶鋼は、溶鋼−凝固シェル界面での流速Aと表面流速Bとの比A/Bが1.0〜2.0であることを特徴とする請求項12または13に記載の鋼の連続鋳造方法。   14. The steel according to claim 12, wherein the molten steel in the mold has a ratio A / B of the flow velocity A at the molten steel-solidified shell interface to the surface flow velocity B of 1.0 to 2.0. Continuous casting method. 鋳型内の溶鋼は、溶鋼−凝固シェル界面での気泡濃度が0.008kg/m以下であることを特徴とする請求項12〜14のいずれかに記載の鋼の連続鋳造方法。 The continuous casting method for steel according to any one of claims 12 to 14, wherein the molten steel in the mold has a bubble concentration at the molten steel-solidified shell interface of 0.008 kg / m 3 or less. 鋳造されるスラブ厚さが220〜300mm、浸漬ノズルの内壁面からの不活性ガス吹き込み量が3〜25NL/分であることを特徴とする請求項15に記載の鋼の連続鋳造方法。   The continuous casting method of steel according to claim 15, wherein the slab thickness to be cast is 220 to 300 mm, and the amount of inert gas blown from the inner wall surface of the immersion nozzle is 3 to 25 NL / min. 浸漬ノズルのノズル浸漬深さを230〜290mmとすることを特徴とする請求項11〜16のいずれかに記載の鋼の連続鋳造方法。   The continuous casting method for steel according to any one of claims 11 to 16, wherein the immersion depth of the immersion nozzle is 230 to 290 mm. 浸漬ノズルのノズル内径(但し、溶鋼吐出孔の形成位置でのノズル内径)を70〜90mmとすることを特徴とする請求項11〜17のいずれかに記載の鋼の連続鋳造方法。   The continuous casting method of steel according to any one of claims 11 to 17, wherein a nozzle inner diameter of the immersion nozzle (however, a nozzle inner diameter at a position where a molten steel discharge hole is formed) is 70 to 90 mm. 浸漬ノズルの各溶鋼吐出孔の開口面積を3600〜8100mmとすることを特徴とする請求項11〜18のいずれかに記載の鋼の連続鋳造方法。 The continuous casting method of steel according to claim 11, wherein an opening area of each molten steel discharge hole of the immersion nozzle is 3600 to 8100 mm 2 .
JP2011050859A 2010-03-10 2011-03-08 Steel continuous casting method and steel plate manufacturing method Active JP4821932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050859A JP4821932B2 (en) 2010-03-10 2011-03-08 Steel continuous casting method and steel plate manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010053869 2010-03-10
JP2010053869 2010-03-10
JP2011050859A JP4821932B2 (en) 2010-03-10 2011-03-08 Steel continuous casting method and steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2011206845A true JP2011206845A (en) 2011-10-20
JP4821932B2 JP4821932B2 (en) 2011-11-24

Family

ID=44938524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050859A Active JP4821932B2 (en) 2010-03-10 2011-03-08 Steel continuous casting method and steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP4821932B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170563A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing slab
WO2020170836A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Control method for continuous casting machine, control device for continuous casing machine, and manufacturing method for cast slab
CN111998892A (en) * 2020-07-23 2020-11-27 麦特勒智能科技(张家港)有限公司 Mixed steel model system based on flow field and concentration field numerical simulation calculation
TWI743686B (en) * 2019-02-19 2021-10-21 日商Jfe鋼鐵股份有限公司 Control method of continuous casting machine, control device of continuous casting machine, and manufacturing method of cast piece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142049A (en) * 1989-10-30 1991-06-17 Kawasaki Steel Corp Method and apparatus for continuously casting steel using static magnetic field
JPH0577007A (en) * 1991-09-25 1993-03-30 Kawasaki Steel Corp Method for continuously casting steel slab using static magnetic field
JP2005152954A (en) * 2003-11-26 2005-06-16 Jfe Steel Kk Method for continuously casting ultralow carbon steel slab
JP2008200732A (en) * 2007-02-22 2008-09-04 Jfe Steel Kk Continuous casting method of steel, and manufacturing method of hot-dip galvanized steel sheet
JP4569715B1 (en) * 2009-11-10 2010-10-27 Jfeスチール株式会社 Steel continuous casting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142049A (en) * 1989-10-30 1991-06-17 Kawasaki Steel Corp Method and apparatus for continuously casting steel using static magnetic field
JPH0577007A (en) * 1991-09-25 1993-03-30 Kawasaki Steel Corp Method for continuously casting steel slab using static magnetic field
JP2005152954A (en) * 2003-11-26 2005-06-16 Jfe Steel Kk Method for continuously casting ultralow carbon steel slab
JP2008200732A (en) * 2007-02-22 2008-09-04 Jfe Steel Kk Continuous casting method of steel, and manufacturing method of hot-dip galvanized steel sheet
JP4569715B1 (en) * 2009-11-10 2010-10-27 Jfeスチール株式会社 Steel continuous casting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170563A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing slab
WO2020170836A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Control method for continuous casting machine, control device for continuous casing machine, and manufacturing method for cast slab
JPWO2020170836A1 (en) * 2019-02-19 2021-03-11 Jfeスチール株式会社 Continuous casting machine control method, continuous casting machine control device, and slab manufacturing method
CN113423521A (en) * 2019-02-19 2021-09-21 杰富意钢铁株式会社 Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing cast slab
TWI743686B (en) * 2019-02-19 2021-10-21 日商Jfe鋼鐵股份有限公司 Control method of continuous casting machine, control device of continuous casting machine, and manufacturing method of cast piece
CN113423521B (en) * 2019-02-19 2023-12-01 杰富意钢铁株式会社 Control method for continuous casting machine, control device for continuous casting machine, and method for producing cast piece
US11890671B2 (en) 2019-02-19 2024-02-06 Jfe Steel Corporation Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting
CN111998892A (en) * 2020-07-23 2020-11-27 麦特勒智能科技(张家港)有限公司 Mixed steel model system based on flow field and concentration field numerical simulation calculation

Also Published As

Publication number Publication date
JP4821932B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
RU2500500C1 (en) Method of steel continuous casting
JP4569715B1 (en) Steel continuous casting method
WO2011111858A1 (en) Method for continuously casting steel and process for producing steel sheet
JP4821932B2 (en) Steel continuous casting method and steel plate manufacturing method
JPWO2018051483A1 (en) Continuous casting method
JP5217785B2 (en) Steel continuous casting method
JP5245800B2 (en) Continuous casting mold and steel continuous casting method
JP4821933B2 (en) Steel plate manufacturing method
JP5354179B2 (en) Continuous casting method for steel slabs
JP2010058148A (en) Continuous casting method of steel
JP5217784B2 (en) Steel continuous casting method
JP5458779B2 (en) Continuous casting method for steel slabs
JP5454664B2 (en) Steel continuous casting method
JP5304297B2 (en) Continuous casting method for steel slabs
JP2010058147A (en) Continuous casting method of steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250