JP2010227944A - Continuous casting method for steel cast slab - Google Patents
Continuous casting method for steel cast slab Download PDFInfo
- Publication number
- JP2010227944A JP2010227944A JP2009075487A JP2009075487A JP2010227944A JP 2010227944 A JP2010227944 A JP 2010227944A JP 2009075487 A JP2009075487 A JP 2009075487A JP 2009075487 A JP2009075487 A JP 2009075487A JP 2010227944 A JP2010227944 A JP 2010227944A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- solidified shell
- mass
- slab
- flow velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000009749 continuous casting Methods 0.000 title claims abstract description 26
- 229910000831 Steel Inorganic materials 0.000 title claims description 170
- 239000010959 steel Substances 0.000 title claims description 170
- 238000005266 casting Methods 0.000 claims abstract description 27
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims abstract description 14
- 238000009826 distribution Methods 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 238000007711 solidification Methods 0.000 claims description 58
- 230000008023 solidification Effects 0.000 claims description 58
- 239000000126 substance Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 35
- 230000007547 defect Effects 0.000 abstract description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 8
- 239000002344 surface layer Substances 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 238000007654 immersion Methods 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000009849 vacuum degassing Methods 0.000 description 4
- 238000005261 decarburization Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000003141 isotope labeling method Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、鋼鋳片の連続鋳造方法に関し、詳しくは、鋳型内で鋳片表層部に捕捉されるアルミナクラスターの少ない鋼鋳片を鋳造するための連続鋳造方法に関するものである。 The present invention relates to a continuous casting method of a steel slab, and more particularly, to a continuous casting method for casting a steel slab having a small number of alumina clusters captured by a slab surface layer in a mold.
自動車用鋼板などの極低炭素鋼を製造する場合、溶鋼をAlで脱酸処理することから、精錬終了時に溶鋼中へのアルミナ(Al2O3)の混入は避けられず、脱酸生成物として生成した溶鋼中のアルミナは、輸送用容器内や連続鋳造設備のタンディッシュ内で凝集し、アルミナのクラスラーを形成する。このアルミナクラスターは、溶鋼の連続鋳造の際に、溶鋼とともにタンディッシュから鋳型内に流入し、鋳片の凝固殻に捕捉されて鋳片の表面欠陥となり、厳格な表面品質が要求される極低炭素鋼鋳片の品質を著しく低下させる。 When manufacturing ultra-low carbon steel such as steel sheets for automobiles, the molten steel is deoxidized with Al, so mixing of alumina (Al 2 O 3 ) into the molten steel is inevitable at the end of refining. As a result, the alumina in the molten steel is agglomerated in a transport container or a tundish of a continuous casting facility to form an alumina clasler. During continuous casting of molten steel, this alumina cluster flows into the mold together with the molten steel from the tundish, and is trapped by the solidified shell of the slab and becomes a surface defect of the slab. The quality of carbon steel slabs is significantly reduced.
従って、鋳造後の鋳片に表面欠陥が存在する場合には、表面欠陥の存在する部位を溶削して除去する作業、所謂「手入れ作業」が行われている。しかしながら、この手入れ作業では、鋼歩留りの低下によるコスト上昇や作業処理費によるコスト上昇が生ずるのみならず、製造工程が延長されて効率的な生産体制が阻害されるという問題も発生する。 Therefore, when there is a surface defect in the cast slab, a work for removing the portion where the surface defect exists by welding, a so-called “care work” is performed. However, this maintenance work not only causes an increase in cost due to a decrease in steel yield and an increase in work processing cost, but also causes a problem that the manufacturing process is extended and the efficient production system is hindered.
そこで、鋳片の品質を向上させるために、鋳型背面に設置した電磁攪拌装置により、凝固殻前面の溶鋼に流速を付与するなどして、凝固殻に付着するアルミナクラスターなどの非金属介在物を洗浄し、それにより、鋳片表層部のアルミナクラスターなどの非金属介在物を低減する方法が多数提案されている(例えば、特許文献1などを参照)。 Therefore, in order to improve the quality of the slab, non-metallic inclusions such as alumina clusters adhering to the solidified shell can be obtained by applying a flow velocity to the molten steel in front of the solidified shell using an electromagnetic stirring device installed on the back of the mold. Many methods have been proposed for cleaning and thereby reducing non-metallic inclusions such as alumina clusters in the slab surface layer (see, for example, Patent Document 1).
しかしながら、電磁攪拌装置によって凝固殻前面の溶鋼に流速を付与する方法では、必要以上の流速を溶鋼に付与する場合が発生し、このような場合には、鋳型内溶鋼湯面上に添加したモールドパウダーの巻き込みが発生し、却って鋳片表層部の品質を劣化させるのみならず、電気消費量の不要な増大によるエネルギー浪費を招くという問題が発生する。 However, in the method of applying a flow rate to the molten steel in front of the solidified shell using an electromagnetic stirrer, a flow rate higher than necessary may be applied to the molten steel. In such a case, the mold added on the molten steel surface in the mold The entrainment of powder occurs, and on the contrary, the quality of the slab surface layer is deteriorated, and there is a problem that energy is wasted due to an unnecessary increase in electric consumption.
その他の対策として、特許文献2及び特許文献3には、凝固殻前面での溶鋼中のC、S、N、Oの濃度勾配による表面張力を制御することにより、気泡の凝固殻への捕捉を抑制する方法、つまり、表面張力が所定値以下になるように、溶鋼中のC、S、N、Oの濃度を予め調整してから連続鋳造する方法が提案されている。 As other countermeasures, Patent Document 2 and Patent Document 3 capture bubbles in the solidified shell by controlling the surface tension due to the concentration gradient of C, S, N, and O in the molten steel in front of the solidified shell. A method of suppressing casting, that is, a method of continuous casting after adjusting the concentrations of C, S, N, and O in the molten steel in advance so that the surface tension becomes a predetermined value or less has been proposed.
しかしながら、特許文献2及び特許文献3では、アルミナクラスターの凝固殻への捕捉に関しては検討していない。また、溶鋼成分に応じて気泡の凝固殻への捕捉が左右されることを示唆するものの、気泡の捕捉と凝固界面での溶鋼流速との関係が明らかになっておらず、気泡の捕捉を定量的に把握することができない。これは、実際の鋳型内においては、C、S、N、Oの濃度分布による表面張力(=凝固殻への捕捉力)と同時に、溶鋼流速による抗力もはたらいており、凝固殻への気泡や非金属介在物の捕捉を検討する場合には、溶鋼流速による抗力も考慮しなければならないからである。 However, Patent Document 2 and Patent Document 3 do not discuss the trapping of alumina clusters in the solidified shell. In addition, although it is suggested that the trapping of bubbles in the solidified shell depends on the molten steel components, the relationship between the trapping of bubbles and the flow velocity of molten steel at the solidification interface has not been clarified. Cannot be grasped. This is because in the actual mold, simultaneously with the surface tension due to the concentration distribution of C, S, N, O (= capturing force to the solidified shell), the drag due to the molten steel flow velocity also works, This is because when considering capturing non-metallic inclusions, it is necessary to consider the drag due to the molten steel flow velocity.
上記説明のように、自動車用鋼板などの厳格な品質が要求される鋼板の素材となる鋳片を、生産性を損なわずに且つ安価に製造することが切望されているにも拘わらず、従来、有効な手段はなく、鋳片の表層部にはアルミナクラスターによる欠陥が発生し、やむなくスカーファーなどを用いて溶削して欠陥を除去しており、製造コストの上昇をもたらしていた。 As described above, in spite of the desire to produce a slab, which is a raw material of a steel plate that requires strict quality such as a steel plate for automobiles, at low cost without impairing productivity, the conventional However, there was no effective means, and defects due to alumina clusters occurred in the surface layer portion of the slab, and the defects were inevitably removed by scouring with a scarfer, resulting in an increase in manufacturing cost.
本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片の表層部にアルミナクラスターなどの非金属介在物による欠陥が少なく、清浄で高品質の鋳片を、生産性を損なわずに、安価に且つ安定して製造することのできる、鋼鋳片の連続鋳造方法を提供することである。 The present invention has been made in view of the above circumstances. The object of the present invention is to produce a clean, high-quality slab with less defects due to non-metallic inclusions such as alumina clusters in the surface portion of the slab. It is an object to provide a continuous casting method of a steel slab that can be manufactured inexpensively and stably without impairing the above.
本発明者らは、上記課題を解決すべく、鋭意研究・検討を行った。その結果、鋳片の表層部にアルミナクラスターなどの非金属介在物による欠陥が少なく、清浄で高品質な、自動車用鋼板などの厳格な品質が要求される鋼板の素材となる鋳片を、生産性を損なわずに、安価に且つ安定して製造するためには、電磁攪拌装置を利用する或いは浸漬ノズルの吐出孔から吐出される吐出流を利用するなどして、凝固界面の溶鋼に流速を与え、アルミナクラスターを洗浄することを第1の条件とした上で、モールドパウダーの巻き込みなどを防止するために、それぞれの鋼種のTi含有量及びS含有量と、鋳型内の凝固速度とに応じた適切な溶鋼流速を付与することが必要であるとの知見が得られた。 In order to solve the above-mentioned problems, the present inventors have intensively studied and studied. As a result, it produces slabs that are made of steel plate materials that require clean quality, such as automotive steel plates, with few defects due to non-metallic inclusions such as alumina clusters in the surface layer of the slabs. In order to manufacture stably and inexpensively without impairing the properties, the flow rate of the molten steel at the solidification interface is reduced by using an electromagnetic stirrer or using the discharge flow discharged from the discharge hole of the immersion nozzle. Given that the first condition is to clean the alumina cluster, depending on the Ti content and S content of each steel type and the solidification rate in the mold in order to prevent the entrainment of mold powder, etc. It was also found that it was necessary to provide an appropriate molten steel flow rate.
本発明は、上記知見に基づいてなされたものであり、第1の発明に係る鋼鋳片の連続鋳造方法は、Cを0.003質量%以下含有する極低炭素鋼鋳片の連続鋳造方法であって、鋳片の凝固殻前面での溶鋼流速が、鋳片の凝固殻の凝固速度と溶鋼成分のうちのTi含有量及びS含有量とに対し、下記の(1)式の範囲内となるように制御して鋳造することを特徴とするものである。
V≧[165308×(1-KE Ti)×Vs×[Ti]+1613307×(1-KE S)×Vs×[S]]2/3 …(1)
但し、(1)式において、Vは、凝固殻前面での溶鋼流速(m/s)、Vsは、鋳型内凝固殻の凝固速度(m/s)、KE Tiは、Tiの実効分配係数(−)、KE Sは、Sの実効分配係数(−)、[Ti]は、溶鋼中のTi濃度(質量%)、[S]は、溶鋼中のS濃度(質量%)である。
The present invention has been made on the basis of the above knowledge, and the continuous casting method of a steel slab according to the first invention is a continuous casting method of an ultra-low carbon steel slab containing 0.003% by mass or less of C. The molten steel flow velocity at the front of the solidified shell of the slab is within the range of the following formula (1) with respect to the solidification rate of the solidified shell of the slab and the Ti content and S content of the molten steel components. It is characterized by being controlled so as to be cast.
V ≧ [165308 × (1-K E Ti ) × Vs × [Ti] + 1613307 × (1-K E S ) × Vs × [S]] 2/3 … (1)
However, in (1), V is, the molten steel flow velocity in the solidified shell front (m / s), Vs is the solidification speed (m / s) of the mold in the solidified shell, K E Ti is effective partition coefficient Ti (−), K E S is the effective distribution coefficient (−) of S, [Ti] is the Ti concentration (mass%) in the molten steel, and [S] is the S concentration (mass%) in the molten steel.
第2の発明に係る鋼鋳片の連続鋳造方法は、第1の発明において、前記凝固殻前面での溶鋼流速及び凝固殻の凝固速度は、鋳型内溶鋼湯面から鋳造方向に300〜500mm離れた位置付近の凝固殻における凝固殻前面溶鋼流速及び凝固速度であることを特徴とするものである。 The continuous casting method of the steel slab according to the second invention is the method according to the first invention, wherein the molten steel flow velocity at the front of the solidified shell and the solidification rate of the solidified shell are 300 to 500 mm away from the molten steel surface in the mold in the casting direction. It is characterized by the solidified shell front molten steel flow velocity and solidification velocity in the solidified shell near the position.
第3の発明に係る鋼鋳片の連続鋳造方法は、第1または第2の発明において、前記極低炭素鋼は、C以外の化学成分として、Si:0.05質量%以下、Mn:1.0質量%以下、P:0.05質量%以下、S:0.015質量%以下、Al:0.010〜0.075質量%、Ti:0.050質量%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とするものである。 In the continuous casting method of the steel slab according to the third invention, in the first or second invention, the ultra-low carbon steel contains, as a chemical component other than C, Si: 0.05% by mass or less, Mn: 1 0.0 mass% or less, P: 0.05 mass% or less, S: 0.015 mass% or less, Al: 0.010 to 0.075 mass%, Ti: 0.050 mass% or less, with the balance being It consists of Fe and inevitable impurities.
第4の発明に係る鋼鋳片の連続鋳造方法は、第1ないし第3の発明の何れかにおいて、前記凝固殻前面での溶鋼流速を、鋳型背面に配置した交流移動磁場印加装置によって制御することを特徴とするものである。 In the continuous casting method of a steel slab according to a fourth invention, in any one of the first to third inventions, the molten steel flow velocity at the front surface of the solidified shell is controlled by an AC moving magnetic field applying device arranged at the back surface of the mold. It is characterized by this.
本発明によれば、凝固殻前面の溶鋼流速を溶鋼成分及び鋳型内の凝固速度に応じた適切な流速に制御するので、モールドパウダーの巻き込みも発生せず、アルミナクラスターなどの非金属介在物による表面欠陥が極めて少なく、清浄で高品質の鋳片を、生産性を損なわずに、安価に且つ安定して製造することが達成される。 According to the present invention, since the molten steel flow velocity in front of the solidified shell is controlled to an appropriate flow velocity according to the molten steel component and the solidification velocity in the mold, mold powder is not entrapped and is caused by non-metallic inclusions such as alumina clusters. It is possible to produce a clean and high-quality slab with extremely few surface defects at low cost and stably without impairing productivity.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
Cの含有量が0.003質量%以下である極低炭素鋼は、転炉における大気下での脱炭精錬と、RH真空脱ガス装置などの真空脱ガス設備における減圧下での脱炭精錬(「真空脱炭精錬」という)との二回の脱炭精錬により、溶銑から溶製される。脱炭精錬は溶鋼中の溶存酸素濃度が或る程度高くならないと進行せず、従って、脱炭精錬終了時には溶鋼中に多くの溶存酸素(「フリー酸素」ともいう)が残留する。多くの溶存酸素が残留したままでは鋼の清浄性が劣化するので、極低炭素鋼の溶製工程においては、真空脱炭精錬が終了した後に溶鋼中に金属Alが添加され、溶鋼は脱酸処理される。この脱酸処理により、溶鋼中の溶存酸素濃度は急激に低下し、脱酸生成物としてアルミナが形成される。尚、アルミナ中の酸素はAlと化学結合しており、アルミナが溶鋼中に懸濁していても、アルミナ中の酸素は、溶存酸素とはいわない。このアルミナなどの酸化物として溶鋼中に存在する酸素と、溶存酸素とを合計したものをトータル酸素(「T.O」とも記す)と称している。 An ultra-low carbon steel having a C content of 0.003% by mass or less is decarburized and refined under atmospheric pressure in a converter and decarburized and refined under reduced pressure in a vacuum degassing facility such as an RH vacuum degassing apparatus. It is made from hot metal by decarburizing and refining twice ("vacuum decarburizing and refining"). Decarburization refining does not proceed unless the concentration of dissolved oxygen in the molten steel is increased to some extent. Therefore, a large amount of dissolved oxygen (also referred to as “free oxygen”) remains in the molten steel at the end of decarburization refining. Since the cleanliness of steel deteriorates when a large amount of dissolved oxygen remains, in the melting process of ultra-low carbon steel, metal Al is added to the molten steel after vacuum decarburization refining, and the molten steel is deoxidized. It is processed. By this deoxidation treatment, the dissolved oxygen concentration in the molten steel is rapidly lowered, and alumina is formed as a deoxidation product. Note that oxygen in alumina is chemically bonded to Al, and even if alumina is suspended in molten steel, oxygen in alumina is not called dissolved oxygen. The total of oxygen present in molten steel as an oxide such as alumina and dissolved oxygen is referred to as total oxygen (also referred to as “TO”).
脱酸生成物として生成したアルミナは、溶鋼が、真空脱ガス設備から連続鋳造設備に搬送される期間及びタンディッシュに注入された後に鋳型内に注入されるまでの期間、時間の経過とともに凝集してアルミナクラスターを形成する。このアルミナクラスターが溶鋼とともに鋳型内に注入されて鋳片の凝固殻に捕捉されると、極低炭素鋼鋳片の表面欠陥となり、鋳片の品質が低下する。 The alumina produced as a deoxidation product agglomerates with the passage of time for the period during which molten steel is transported from the vacuum degassing equipment to the continuous casting equipment and the time it is injected into the mold after being injected into the tundish. To form an alumina cluster. When this alumina cluster is injected into the mold together with molten steel and is captured by the solidified shell of the slab, it becomes a surface defect of the ultra-low carbon steel slab, and the quality of the slab deteriorates.
本発明者らは、アルミナクラスターなどの非金属介在物の凝固殻への捕捉を防止する条件を検討するにあたり、凝固殻前面における溶鋼中の非金属介在物に働く力に注目した。そして、「非金属介在物−溶鋼間の界面張力の勾配に基づく凝固界面方向に作用する力」と、「溶鋼流速による抗力」との2つの力を考慮した結果、以下の手段によって上記課題を解決できるとの知見を得た。即ち、「鋳片の凝固殻前面での溶鋼流速が、鋳片の凝固殻の凝固速度と溶鋼成分のうちのTi含有量及びS含有量とに対し、下記の(1)式の範囲内となるように制御して鋳造する」という方法である。
V≧[165308×(1-KE Ti)×Vs×[Ti]+1613307×(1-KE S)×Vs×[S]]2/3 …(1)
但し、(1)式において、Vは、凝固殻前面での溶鋼流速(m/s)、Vsは、凝固殻の凝固速度(m/s)、KE Tiは、Tiの実効分配係数(−)、KE Sは、Sの実効分配係数(−)、[Ti]は、溶鋼中のTi濃度(質量%)、[S]は、溶鋼中のS濃度(質量%)である。
The present inventors paid attention to the force acting on the nonmetallic inclusions in the molten steel in the front of the solidified shell in examining the conditions for preventing the nonmetallic inclusions such as alumina clusters from being trapped in the solidified shell. And as a result of considering two forces of “force acting in the direction of solidification interface based on the gradient of interfacial tension between non-metallic inclusions and molten steel” and “drag due to molten steel flow velocity”, the above-mentioned problem is solved by the following means: The knowledge that it can be solved was obtained. That is, “the molten steel flow velocity at the front of the solidified shell of the slab is within the range of the following formula (1) with respect to the solidification rate of the solidified shell of the slab and the Ti content and S content of the molten steel components: It is a method of “controlling and casting to be”.
V ≧ [165308 × (1-K E Ti ) × Vs × [Ti] + 1613307 × (1-K E S ) × Vs × [S]] 2/3 … (1)
However, in the formula (1), V is a molten steel flow velocity (m / s) in front of the solidified shell, Vs is a solidification rate of the solidified shell (m / s), and K E Ti is an effective distribution coefficient of Ti (− ), K E S is the effective distribution coefficient (−) of S, [Ti] is the Ti concentration (mass%) in the molten steel, and [S] is the S concentration (mass%) in the molten steel.
ここで、(1)式における「(1-KE Ti)×Vs×[Ti]」及び「(1-KE S)×Vs×[S]」は、連続鋳造中の凝固殻前面に形成される溶質元素(以下、単に「溶質」とも記す)の濃度境界層に侵入した非金属介在物に働く、界面張力勾配による凝固殻方向への引力の尺度を示しており、本発明においては、鋳型内の凝固界面前面の溶鋼流速を決定するパラメーターである。また、本発明は、凝固殻へのアルミナクラスターの捕捉を防止することを目的としており、従って、(1)式における凝固殻前面での溶鋼流速V及び凝固殻の凝固速度Vsは、凝固殻へのアルミナクラスターの捕捉が発生しやすい、鋳型内溶鋼湯面から鋳造方向に300〜500mm離れた位置付近の凝固殻における凝固殻前面溶鋼流速及び凝固速度を対象とすることが好ましい。 Here, “(1-K E Ti ) × Vs × [Ti]” and “(1-K E S ) × Vs × [S]” in equation (1) are formed on the front of the solidified shell during continuous casting. Is a measure of the attractive force in the direction of the solidified shell due to the interfacial tension gradient that acts on the nonmetallic inclusions that have entered the concentration boundary layer of the solute element (hereinafter also simply referred to as “solute”). It is a parameter that determines the molten steel flow velocity in front of the solidification interface in the mold. In addition, the present invention aims to prevent the capture of alumina clusters in the solidified shell. Therefore, the molten steel flow velocity V and the solidification velocity Vs of the solidified shell in the equation (1) It is preferable to target the solidified shell front molten steel flow velocity and solidification rate in the solidified shell near the position 300 to 500 mm away from the molten steel surface in the mold in the casting direction, where the alumina cluster is likely to be captured.
以下、(1)式の導出方法について説明する。 Hereinafter, a method for deriving the expression (1) will be described.
「非金属介在物−溶鋼間の界面張力の勾配に基づく凝固界面方向に作用する力」に関して、刊行物:鉄と鋼(80(1994)p.527)に示されるように、凝固界面前面の濃度境界層中の界面張力勾配K、即ちdσ/dx(σ:非金属介在物−溶鋼間の界面張力、x:距離)に基づいて、介在物が凝固殻方向に受ける力Fは、下記の(2)式で示される。
F=-(8/3)×πR2K…(2)
ここで、Fは介在物の受ける力(N)、πは円周率、Rは介在物の半径(m)、Kは界面張力勾配(N/m2)である。
Regarding “force acting in the direction of solidification interface based on gradient of interfacial tension between non-metallic inclusion and molten steel”, as shown in the publication: Iron and Steel (80 (1994) p.527), Based on the interfacial tension gradient K in the concentration boundary layer, that is, dσ / dx (σ: interfacial tension between non-metallic inclusion and molten steel, x: distance), the force F that the inclusion receives in the direction of the solidified shell is It is shown by the formula (2).
F =-(8/3) × πR 2 K… (2)
Here, F is the force (N) received by the inclusions, π is the circumference, R is the radius (m) of the inclusions, and K is the interfacial tension gradient (N / m 2 ).
この界面張力勾配Kは、下記の(3)式に示すように、界面張力の溶質濃度による変化と成分の濃度勾配との積である。
K=dσ/dx=(dσ/dc)×(dc/dx)…(3)
ここで、σは非金属介在物−溶鋼間の界面張力(N/m)、xは凝固界面からの距離(m)であり、また、dσ/dcは非金属介在物−溶鋼間の界面張力の溶質濃度による変化(N/m・質量%)、dc/dxは成分の濃度勾配(質量%/m)である。
The interfacial tension gradient K is the product of the change in interfacial tension due to the solute concentration and the component concentration gradient, as shown in the following equation (3).
K = dσ / dx = (dσ / dc) × (dc / dx) (3)
Here, σ is the interfacial tension (N / m) between the nonmetallic inclusion and molten steel, x is the distance (m) from the solidification interface, and dσ / dc is the interfacial tension between the nonmetallic inclusion and molten steel. The change due to the solute concentration (N / m · mass%), dc / dx is the concentration gradient (mass% / m) of the component.
凝固理論から、鋳型内のような溶鋼流速が存在する条件下での成分の濃度勾配dc/dxは下記の(4)式で表される。
dc/dx=-C0×(1-KE)×(Vs/D)×exp[-Vs×(x-δ)/D]…(4)
ここで、C0は鋳造前の溶鋼中の溶質濃度(質量%)、Vsは鋳型内での凝固速度(m/s)、Dは溶鋼中での溶質の拡散係数(m2/s)、δは濃度境界層の厚み(m)である。また、KEは溶質の実効分配係数(−)であり、下記の(5)式で表される。
KE=K0/[K0+(1-K0)×exp(-Vsδ/D)]…(5)
ここで、K0は溶質の平衡分配係数(−)である。
From the solidification theory, the concentration gradient dc / dx of the component under the condition where the molten steel flow velocity exists in the mold is expressed by the following equation (4).
dc / dx = -C 0 x (1-K E ) x (V s / D) x exp [-V s x (x-δ) / D] ... (4)
Here, C 0 is the solute concentration (mass%) in the molten steel before casting, V s is the solidification rate (m / s) in the mold, and D is the diffusion coefficient of the solute in the molten steel (m 2 / s). , Δ is the thickness (m) of the concentration boundary layer. K E is the effective partition coefficient (−) of the solute and is expressed by the following equation (5).
K E = K 0 / [K 0 + (1-K 0 ) × exp (−Vsδ / D)] (5)
Here, K 0 is the equilibrium partition coefficient (−) of the solute.
(4)式において、x=δを代入すると、x=δでの濃度勾配(dc/dx)は下記の(6)式で求められる。
dc/dx=-C0×(1-KE)×(Vs/D)…(6)
(6)式を(3)式に代入することにより、x=δでの非金属介在物−溶鋼間の界面張力勾配K、つまり、アルミナクラスターが濃度境界層に侵入した直後に作用する力の尺度を示す界面張力勾配Kを下記の(7)式により求めることができる。
When x = δ is substituted in the equation (4), the concentration gradient (dc / dx) at x = δ is obtained by the following equation (6).
dc / dx = -C 0 x (1-K E ) x (V s /D)...(6 )
By substituting Eq. (6) into Eq. (3), the interfacial tension gradient K between the non-metallic inclusion and molten steel at x = δ, that is, the force acting immediately after the alumina cluster enters the concentration boundary layer. An interfacial tension gradient K indicating a scale can be obtained by the following equation (7).
K=(dσ/dc)×[-C0×(1-KE)×(Vs/D)]…(7)
(7)式を(2)式に代入すると、濃度境界層に侵入した直後のアルミナクラスターに作用する力が下記の(8)式で求められる。
K = (dσ / dc) x [-C 0 x (1-K E ) x (V s /D)]...(7 )
When the formula (7) is substituted into the formula (2), the force acting on the alumina cluster immediately after entering the concentration boundary layer is obtained by the following formula (8).
F=-(8/3)×πR2×(dσ/dc)×[-C0×(1-KE)×(Vs/D)]…(8)
「溶鋼流速による抗力」について、刊行物:材料工学のための移動現象論(p.45)に示されているように、流体中の球が受ける抗力FDは下記の(9)式で示される。
FD=CD×(πR2)×[(1/2)×ρV2]…(9)
ここで、FDは流体中の球が受ける抗力(N)、CDは抵抗係数(−)、ρは溶鋼の密度(kg/m3)である。
F =-(8/3) × πR 2 × (dσ / dc) × [-C 0 × (1-K E ) × (V s /D)]...(8)
For "drag by molten steel flow speed", publication: As shown in transport phenomena for Materials Engineering (p.45), the drag F D the ball is subjected in the fluid represented by the following formula (9) It is.
F D = C D × (πR 2 ) × [(1/2) × ρV 2 ] ... (9)
Here, F D is the drag (N), C D is the drag coefficient of a sphere is subjected in the fluid (-), [rho is the molten steel density (kg / m 3).
抵抗係数CDはRe数(レイノズル数)より求められ、またRe数の値により算出式が異なる。鋳型内における介在物挙動を考える場合、Re数は約30〜300となり、この場合には、抵抗係数CDは下記の(10)式で示されるアレンの式が良く一致する。
CD=10/Re1/2…(10)
(10)式を(9)式に代入すれば、鋳型内の介在物の受ける抗力FDが下記の(11)式により求められる。
Resistance coefficient C D is sought from the Re number (Reynolds number), also calculation formula is different according to the value of Re number. When considering inclusion behavior in the mold, Re number is about 30 to 300, and the in this case, the resistance coefficient C D is formula Allen represented by the following equation (10) is in good agreement.
C D = 10 / Re 1/2 (10)
(10) By substituting expression (9) below, the drag F D received by the inclusions in the mold is determined by (11) below.
FD=(10/Re1/2)×(πR2)×[(1/2)×ρV2]…(11)
この場合にRe数は、下記の(12)式で求められる
Re=2RρV/μ…(12)
ここで、μは溶鋼の粘性度(N・s/m2)である。この(12)式を(11)式に代入することで下記の(13)式が得られる。
F D = (10 / Re 1/2 ) × (πR 2 ) × [(1/2) × ρV 2 ] ... (11)
In this case, the Re number is obtained by the following equation (12).
Re = 2RρV / μ… (12)
Here, μ is the viscosity (N · s / m 2 ) of the molten steel. By substituting this equation (12) into equation (11), the following equation (13) is obtained.
FD=(5/21/2)×π×(μρ)1/2×(RV)3/2…(13)
このように、「介在物−溶鋼間の界面張力の勾配に基づく凝固界面方向に作用する力」及び「溶鋼流速による抗力」は、それぞれ(8)式及び(13)式に示した通りである。前者の「介在物−溶鋼間の界面張力の勾配に基づく凝固界面方向に作用する力」は介在物を凝固界面に引き寄せる力であり、一方、後者の「溶鋼流速による抗力」は介在物を凝固界面から遠ざける力である。つまり、下記の(14)式に示すように、介在物に作用する凝固界面方向への引力よりも大きい力を、この引力の垂直方向に付与すれば、介在物は捕捉されずに凝固界面を離れるということになる。
F D = (5/2 1/2 ) × π × (μρ) 1/2 × (RV) 3/2 (13)
Thus, the “force acting in the direction of the solidification interface based on the gradient of the interfacial tension between inclusions and molten steel” and “the drag due to the molten steel flow velocity” are as shown in the equations (8) and (13), respectively. . The former “force acting in the direction of the solidification interface based on the gradient of the interfacial tension between inclusions and molten steel” is the force that pulls inclusions toward the solidification interface, while the latter “force due to molten steel flow velocity” solidifies inclusions. It is the force away from the interface. That is, as shown in the following formula (14), if a force larger than the attractive force in the direction of the solidification interface acting on the inclusion is applied in the vertical direction of the attractive force, the inclusion is not trapped and the solidification interface is formed. I will leave.
F<FD…(14)
(14)式に、(2)式及び(13)式を代入すれば、介在物が凝固界面に捕捉されない溶鋼流速の条件式が、下記の(15)式として導出できる。
F <F D (14)
By substituting the equations (2) and (13) into the equation (14), a conditional equation of the molten steel flow velocity at which inclusions are not trapped at the solidification interface can be derived as the following equation (15).
V≧[(8×21/2/15)×K×R1/2×(μρ)-1/2]2/3…(15)
ここで、界面張力勾配Kはそれぞれの溶質成分毎に値が決まり、それぞれの成分の界面張力勾配毎に介在物は力を受ける。本発明者らは、研究の結果、極低炭素鋼の化学成分元素のなかで、界面張力勾配Kの値に大きな影響を及ぼす元素は、TiとSであり、これらの元素だけで計算される下記の(16)式で示した界面張力勾配Kの値を用いても、介在物の凝固殻への捕捉を検討するうえで問題ないことが分かった。
V ≧ [(8 × 2 1/2 / 15) × K × R 1/2 × (μρ) -1/2 ] 2 / 3 … (15)
Here, the value of the interfacial tension gradient K is determined for each solute component, and the inclusion receives a force for each interfacial tension gradient of each component. As a result of the study, the elements that have a great influence on the value of the interfacial tension gradient K among the chemical constituent elements of the ultra-low carbon steel are Ti and S, and these elements are only calculated. It was found that there was no problem in considering the trapping of inclusions in the solidified shell even when the value of the interfacial tension gradient K shown in the following equation (16) was used.
K=(dσ/dcTi)×[-CTi×(1-KE Ti)×(Vs/DTi)]+(dσ/dcS)×[-CS×(1-KE S)×(Vs/DS)] …(16)
ここで、dσ/dcTiは溶鋼−介在物間の界面張力のTi濃度による変化(N/m・質量%)、CTiは溶鋼中のTi濃度(質量%)、KE TiはTiの実効分配係数(−)、DTiは溶鋼中のTiの拡散係数(m2/s)、dσ/dcSは溶鋼−介在物間の界面張力のS濃度による変化(N/m・質量%)、CSは溶鋼中のS濃度(質量%)、KE SはSの実効分配係数(−)、DSは溶鋼中のSの拡散係数(m2/s)である。
K = (dσ / dc Ti ) × [-C Ti × (1-K E Ti ) × (Vs / D Ti )] + (dσ / dc S ) × [-C S × (1-K E S ) × (Vs / D S )]… (16)
Here, dσ / dc Ti is the change in the interfacial tension between the molten steel and inclusions due to the Ti concentration (N / m · mass%), C Ti is the Ti concentration (mass%) in the molten steel, and K E Ti is the effective Ti Distribution coefficient (−), D Ti is the diffusion coefficient of Ti in the molten steel (m 2 / s), dσ / dc S is the change in the interfacial tension between the molten steel and inclusions due to the S concentration (N / m · mass%), C S is S concentration (mass%) in the molten steel, K E S is the effective distribution coefficient S (-), D S is the diffusion coefficient of S in the molten steel (m 2 / s).
(16)式に示すdσ/dcTi及びdσ/dcSは、刊行物:溶鉄と溶滓の物性値便覧(日本鉄鋼協会編)などに示されており、また、各成分の拡散係数、溶鋼の密度ρ及び粘性度μは、刊行物「金属データブック」(日本金属学会編)などに示されている。また、自動車用鋼板の表面品質おいて、直径が100μm程度の介在物が問題となる場合が多いことから、(15)式中の介在物半径Rは50μmとした。また、濃度境界層厚δは数10〜1000μmとされており、本研究では100μmとすると、良く実験結果と一致することから、100μmとした。これらの値を(15)式及び(16)式に代入すると、前述した(1)式が導出される。 The dσ / dc Ti and dσ / dc S shown in the equation (16) are described in the publication: Handbook of Physical Properties of Molten Iron and Hot Metal (Edited by the Japan Iron and Steel Institute), and the diffusion coefficient of each component, molten steel The density ρ and the viscosity μ are shown in a publication “Metal Data Book” (edited by the Japan Institute of Metals) and the like. Further, in the surface quality of the steel plate for automobiles, inclusions having a diameter of about 100 μm are often problematic. Therefore, the inclusion radius R in the equation (15) is set to 50 μm. Further, the concentration boundary layer thickness δ is set to several 10 to 1000 μm, and in this study, if it is set to 100 μm, it agrees well with the experimental result, so it is set to 100 μm. By substituting these values into the equations (15) and (16), the above-described equation (1) is derived.
凝固殻前面つまり凝固界面前面の溶鋼流速Vを(1)式の範囲内に制御することで、アルミナクラスターの凝固殻への捕捉が防止される。凝固殻前面の溶鋼流速Vを制御する範囲は、鋳片の表層部に相当する範囲であり、前述したように、鋳型内溶鋼湯面から鋳造方向に300〜500mm離れた位置付近における凝固殻前面での溶鋼流速とすることが好ましい。当然ながら、300〜500mm離れた位置よりも鋳造方向の上流側或いは鋳造方向の下硫側の範囲までを制御対象としても構わない。また、鋳造条件により、凝固殻の厚みは変化し、また連続鋳造機によって磁場印加装置の位置が異なるため、適宜、溶鋼流速を制御する位置を変化させても構わない。 By controlling the flow velocity V of the molten steel in front of the solidified shell, that is, in front of the solidified interface, within the range of the formula (1), it is possible to prevent the alumina cluster from being captured by the solidified shell. The range for controlling the molten steel flow velocity V on the front surface of the solidified shell is a range corresponding to the surface layer portion of the slab, and as described above, the front surface of the solidified shell near the position 300 to 500 mm away from the molten steel surface in the mold in the casting direction. It is preferable to use a molten steel flow rate at. Needless to say, the control target may be an upstream side in the casting direction or a range on the lower sulfur side in the casting direction from a position 300 to 500 mm away. Moreover, since the thickness of the solidified shell varies depending on the casting conditions, and the position of the magnetic field application device differs depending on the continuous casting machine, the position for controlling the molten steel flow rate may be changed as appropriate.
鋳型内の凝固速度Vsを求める方法としては、アイソトープによる標識法や鋳型内の熱伝導方式を解析する方法が良く知られている。 As a method for obtaining the solidification rate Vs in the mold, an isotope labeling method and a method for analyzing a heat conduction system in the mold are well known.
アイソトープによる標識法は、例えば刊行物:鉄と鋼(55(1969)S108)に明記されているように、198Auをトレーサーとして鋳型内に投入し、凝固界面に198Auを捕捉させ、後にオートラジオグラフを作製して凝固殻厚みを調べ、この凝固殻厚みを鋳造速度と対比させて、凝固殻厚みの時間変化を計算し、これにより、鋳型内の凝固速度Vsを求める方法である。予め、鋳造条件毎に凝固速度を調べておけば、調べた凝固速度を(1)式に代入することで、適切な凝固界面前面での溶鋼流速を算出することができる。 The isotope labeling method is described in, for example, the publication: Iron and Steel (55 (1969) S108). 198Au is introduced into a mold as a tracer to capture 198Au at the solidification interface, and then autoradiograph. The solidified shell thickness is examined, the solidified shell thickness is compared with the casting speed, the time change of the solidified shell thickness is calculated, and thereby the solidification rate Vs in the mold is obtained. If the solidification rate is examined in advance for each casting condition, the molten steel flow velocity at the front surface of the appropriate solidification interface can be calculated by substituting the examined solidification rate into the equation (1).
鋳型内の熱伝導方式を解析する方法は、刊行物:鉄と鋼(58(1972)S396)や、刊行物:鉄と鋼(56(1970)S268)に明記されているように、1次元の非定常伝熱を鋳造速度などの鋳造条件の関数で解き、未知のパラメーターは操業の実績値と計算結果の比較とで決定する方法であり、鋳型内の凝固殻厚みの時間変化を計算し、これにより、凝固速度を算出する方法である。前述したアイソトープによる標識法の結果と対比することで、より一層計算精度が向上する。予め、鋳造条件毎に凝固速度を調べておけば、調べた凝固速度を(1)式に代入することで、適切な凝固界面前面での溶鋼流速を算出することができる。 The method of analyzing the heat conduction method in the mold is one-dimensional as specified in the publication: Iron and Steel (58 (1972) S396) and the publication: Iron and Steel (56 (1970) S268). The unsteady heat transfer is solved by a function of casting conditions such as casting speed, and the unknown parameter is determined by comparing the actual operation value with the calculation result, and the time change of the solidified shell thickness in the mold is calculated. This is a method for calculating the coagulation rate. Comparing with the result of the labeling method using the isotope described above, the calculation accuracy is further improved. If the solidification rate is examined in advance for each casting condition, the molten steel flow velocity at the front surface of the appropriate solidification interface can be calculated by substituting the examined solidification rate into the equation (1).
凝固界面前面の溶鋼流速を制御する方法としては、タンディッシュ内の溶鋼を鋳型内に注入するための浸漬ノズルの吐出孔の大きさ、角度、浸漬深さなどを調整し、吐出孔から吐出される溶鋼の吐出流を利用する方法や、鋳型背面に配置した磁場印加装置から磁場を印加し、磁場と溶鋼流とで形成される電磁力を利用する方法などを用いることができる。磁場発生装置としては、交流移動印加装置と直流磁場(静磁場)印加装置とがあるが、鋳造速度が変更されても、凝固殻前面の溶鋼流速を任意に調整することができることから、交流移動磁場印加装置を用いることが好ましい。特に、鋳型長辺の背面全幅に配置した交流移動磁場印加装置によって制御することが好ましい。 As a method of controlling the molten steel flow velocity in front of the solidification interface, the size, angle, immersion depth, etc. of the discharge hole of the immersion nozzle for injecting the molten steel in the tundish into the mold are adjusted and discharged from the discharge hole. A method using a discharge flow of molten steel, a method using a magnetic field applied from a magnetic field application device arranged on the back of a mold, and using an electromagnetic force formed by the magnetic field and the molten steel flow can be used. There are two types of magnetic field generators: an alternating current movement application device and a direct current magnetic field (static magnetic field) application device. Even if the casting speed is changed, the molten steel flow velocity in front of the solidified shell can be adjusted arbitrarily. It is preferable to use a magnetic field application device. In particular, it is preferable to control by an alternating-current moving magnetic field applying device arranged over the entire back surface of the long side of the mold.
スラブ連続鋳造機の鋳型長辺背面全幅に鋳片を挟んで相対させて交流移動磁場印加装置を配置し、この交流移動磁場印加装置から印加する移動磁場の移動方向を、相対する磁場印加装置ともに鋳型短辺側から浸漬ノズル側に向かう方向とすることで、浸漬ノズルから吐出される溶鋼の吐出流は減速され、これに伴って凝固界面前面の溶鋼流速が減速(「減速磁場印加」と称す)し、逆に、交流移動磁場印加装置から印加する移動磁場の移動方向を、相対する磁場印加装置ともに浸漬ノズル側から鋳型短辺側に向かう方向とすることで、浸漬ノズルから吐出される溶鋼の吐出流は加速され、これに伴って凝固界面前面の溶鋼流速が増速(「加速磁場印加」と称す)する。更に、一方の鋳型長辺の背面に配置した交流移動磁場印加装置から印加する移動磁場の移動方向を同一方向とし、且つ、鋳片を挟んで相対する交流移動磁場印加装置から印加する移動磁場の移動方向をこれとは逆方向とすることで、鋳型内の溶鋼は水平方向に回転するように攪拌され、これに伴って凝固界面前面の溶鋼流速が増速(「旋回磁場印加」と称す)する。 An AC moving magnetic field application device is placed across the entire width of the back side of the long side of the mold of the slab continuous casting machine, and the moving direction of the moving magnetic field applied from this AC moving magnetic field application device is set to the opposite magnetic field application device. By setting the direction from the mold short side to the immersion nozzle side, the discharge flow of the molten steel discharged from the immersion nozzle is decelerated, and the molten steel flow velocity in front of the solidification interface is reduced accordingly (referred to as “deceleration magnetic field application”). Conversely, the molten steel discharged from the immersion nozzle is set so that the moving magnetic field applied from the AC moving magnetic field application device is in the direction from the immersion nozzle side to the mold short side with the opposite magnetic field application device. As a result, the molten steel flow velocity in front of the solidification interface is increased (referred to as “acceleration magnetic field application”). Further, the moving magnetic field applied from the AC moving magnetic field applying device arranged on the back side of one long side of the mold is set to the same direction, and the moving magnetic field applied from the AC moving magnetic field applying device opposite to the slab is sandwiched. By moving the moving direction in the opposite direction, the molten steel in the mold is agitated so as to rotate in the horizontal direction, and the molten steel flow velocity in front of the solidification interface is increased accordingly (referred to as “swirl magnetic field application”). To do.
このように、鋳型長辺の背面全幅に配置した交流移動磁場印加装置により、鋳造速度に応じて適宜選択した3種類の磁場印加パターンで磁場を印加することで、凝固界面前面の溶鋼流速を減速或いは加速することができ、鋳造速度の如何に拘わらず、凝固界面前面の溶鋼流速を任意の流速に制御することが可能となる。 In this way, the flow velocity of the molten steel at the front of the solidification interface is reduced by applying a magnetic field with three types of magnetic field application patterns appropriately selected according to the casting speed by the AC moving magnetic field application device arranged at the entire back surface of the mold long side. Alternatively, it can be accelerated, and the molten steel flow velocity in front of the solidification interface can be controlled to an arbitrary flow velocity regardless of the casting speed.
直流磁場印加装置の場合は、磁場印加装置をスラブ連続鋳造機の鋳型長辺背面に鋳片を挟んで相対させて配置し、鋳型の厚み方向に貫通する磁場を印加することで、移動する溶鋼に制動力が付与されて、凝固界面前面の溶鋼流速が制御される。直流磁場印加装置の場合、溶鋼は減速されるだけではなく、浸漬ノズルからの溶鋼吐出流は直流磁場印加装置を迂回するように流れるので、直流磁場印加装置の設置位置によっては、凝固界面前面の溶鋼流速はかえって増加することも発生する。 In the case of a direct current magnetic field application device, the magnetic field application device is placed opposite to the back of the long side of the mold of the slab continuous casting machine with the slab interposed therebetween, and the molten steel moves by applying a magnetic field penetrating in the mold thickness direction. Is applied with a braking force to control the molten steel flow velocity in front of the solidification interface. In the case of a DC magnetic field application device, the molten steel is not only decelerated, but the molten steel discharge flow from the immersion nozzle flows so as to bypass the DC magnetic field application device, so depending on the installation position of the DC magnetic field application device, The molten steel flow velocity may also increase.
但し、攪拌強度が強くなりすぎるなどして凝固界面前面の溶鋼流速が速くなりすぎると、それに応じて鋳型内溶鋼湯面の溶鋼流が強くなり、鋳型内溶鋼湯面上に添加したモールドパウダーの巻き込みが発生するので、モールドパウダーの巻き込みが発生しない範囲内で、凝固界面前面の溶鋼流速を制御することが好ましい。公知文献(学振19委、No.10977)に基づけば、鋳型内溶鋼湯面の流速が0.48m/s以下であれば、モールドパウダーの巻き込みが発生しないことから、鋳型内溶鋼湯面の流速が0.48m/s以下の範囲内となるように、凝固界面前面の溶鋼流速を制御すればよい。 However, if the molten steel flow velocity at the front of the solidification interface becomes too high due to excessively strong stirring strength, the molten steel flow on the molten steel surface in the mold will increase accordingly, and the mold powder added on the molten steel surface in the mold will Since entrainment occurs, it is preferable to control the molten steel flow velocity in front of the solidification interface within a range in which entrainment of mold powder does not occur. If the flow rate of the molten steel surface in the mold is 0.48 m / s or less based on known literature (Gakushin 19 Committee, No. 10977), the mold powder will not be entrained. What is necessary is just to control the molten steel flow velocity of the solidification interface front surface so that it may become in the range below 0.48 m / s.
本発明は、Cの含有量が0.003質量%以下である極低炭素鋼である限り、鋼種を問わずに適用できることは勿論であるが、得られる効果の点からすれば、C以外の化学成分として、Si:0.05質量%以下、Mn:1.0質量%以下、P:0.05質量%以下、S:0.015質量%以下、Al:0.010〜0.075質量%、Ti:0.050質量%以下を含有し、残部がFe及び不可避的不純物からなる鋼を対象としたときに、特に効果が著しい。
以下に、成分を規定する理由を説明する。
The present invention can be applied to any steel type as long as it is an ultra-low carbon steel having a C content of 0.003% by mass or less. As chemical components, Si: 0.05 mass% or less, Mn: 1.0 mass% or less, P: 0.05 mass% or less, S: 0.015 mass% or less, Al: 0.010 to 0.075 mass %, Ti: 0.050 mass% or less, and the effect is particularly remarkable when the steel is made of Fe and inevitable impurities.
The reason for defining the components will be described below.
Cは、その含有量が高くなると薄鋼板の加工性を劣化させる。それゆえ、TiやNbなどの炭化物形成元素を添加したときにIF鋼(Interstitial-Free steel)として優れた伸び及び深絞り性を得ることのできる0.003質量%を上限とした。 C deteriorates the workability of the thin steel sheet when its content increases. Therefore, the upper limit is set to 0.003 mass% at which excellent elongation and deep drawability can be obtained as IF steel (Interstitial-Free steel) when carbide forming elements such as Ti and Nb are added.
Siは、固溶強化元素であり、含有量が多いと薄鋼板の加工性が劣化する。また、表面処理への影響も考慮し、0.05質量%を上限とした。 Si is a solid solution strengthening element, and if the content is large, the workability of the thin steel sheet deteriorates. In consideration of the influence on the surface treatment, 0.05 mass% was made the upper limit.
Mnは、固溶強化元素であり、鋼の強度を増加させるが、本発明は軟鋼を想定しており、加工性を優先する。従って、上限を1.0質量%とした。 Mn is a solid solution strengthening element and increases the strength of steel. However, the present invention assumes mild steel and gives priority to workability. Therefore, the upper limit was set to 1.0 mass%.
Pは、固溶強化元素であり、鋼の強度を増加させる。しかし、含有量が0.05質量%を超えると加工性や溶接性が劣化するため、上限を0.05質量%とした。 P is a solid solution strengthening element and increases the strength of steel. However, if the content exceeds 0.05% by mass, workability and weldability deteriorate, so the upper limit was made 0.05% by mass.
Sは熱間圧延時に割れの原因となり、また、薄鋼板の加工性を低下させるA系介在物を生成するので、可能な限りその含有量を低減する必要がある。そこで、本発明では上限を0.015質量%とした。 S causes cracking during hot rolling and generates A-based inclusions that lower the workability of the thin steel sheet. Therefore, the content thereof needs to be reduced as much as possible. Therefore, in the present invention, the upper limit is set to 0.015% by mass.
Alは脱酸剤として機能し、脱酸効果を得るためには、0.010質量%含有される必要がある。また、必要以上のAl添加はコストアップの増加を招く。そこで、本発明ではAl含有量の範囲を0.010〜0.075質量%とした。 Al functions as a deoxidizing agent, and in order to obtain a deoxidizing effect, it is necessary to contain 0.010% by mass. Moreover, adding more Al than necessary causes an increase in cost. Therefore, in the present invention, the range of Al content is set to 0.010 to 0.075% by mass.
Tiは、鋼中のC、N、Sを析出物として固定し、加工性や深絞り性を向上させる。しかし、含有量が0.05質量%を超えると鋼板が硬くなり、加工性が劣化する。そこで、本発明ではTi含有量の上限を0.050質量%とした。 Ti fixes C, N, and S in the steel as precipitates and improves workability and deep drawability. However, if the content exceeds 0.05% by mass, the steel sheet becomes hard and workability deteriorates. Therefore, in the present invention, the upper limit of the Ti content is set to 0.050% by mass.
以上説明したように、本発明によれば、凝固殻前面の溶鋼流速を溶鋼成分及び鋳型内の凝固速度に応じた適切な流速に制御するので、モールドパウダーの巻き込みも発生せず、アルミナクラスターなどの非金属介在物による表面欠陥が少なく、清浄で高品質の鋳片を、生産性を損なわずに、安価に且つ安定して製造することが可能となる。 As described above, according to the present invention, the molten steel flow velocity at the front of the solidified shell is controlled to an appropriate flow velocity according to the molten steel components and the solidification velocity in the mold, so that no mold powder is involved, such as alumina clusters. Therefore, it is possible to produce a clean and high quality slab inexpensively and stably without impairing productivity.
以下、スラブ連続鋳造機で実施した8チャージの試験鋳造結果を説明する。 Hereinafter, the test casting result of 8 charges performed with the slab continuous casting machine will be described.
1チャージ約200トンの8チャージ(試験No.1〜8)の極低炭素鋼の溶鋼を、厚みが220mm、幅が1160mmのスラブ鋳片に、鋳造速度を1.04m/min、溶鋼鋳造量を2.1トン/minとして鋳造した。各試験チャージの溶鋼の化学成分、及び鋳造速度と伝熱計算とから算出した凝固速度を表1に示す。スラブ連続鋳造機では、これらの溶鋼を、鋳型内溶鋼湯面から約400mm鋳造方向に離れた位置での凝固界面前面での溶鋼流速が、前述した(1)式の範囲を満たす条件と、(1)式の範囲を満たさない条件とに調整して鋳造した。つまり、表1に(1)式から求めた必要最低流速を示しているが、試験No.1〜4では(1)式の範囲を満たす条件(本発明例)とし、試験No.5〜8では(1)式の範囲を満たさない条件(比較例)とした。(1)式を算出するにあたり、溶鋼の化学成分は、RH真空脱ガス装置での精錬終了時に溶鋼から採取した試料の分析値を用いた。尚、表1に示す酸素濃度は溶存酸素濃度である。 8 charges (test No. 1-8) of ultra-low carbon steel with a charge of about 200 tons is cast into a slab slab having a thickness of 220 mm and a width of 1160 mm, a casting speed of 1.04 m / min, and a cast amount of molten steel Was cast at 2.1 tons / min. Table 1 shows the chemical composition of the molten steel of each test charge, and the solidification rate calculated from the casting rate and the heat transfer calculation. In the slab continuous casting machine, the molten steel flow rate at the front surface of the solidification interface at a position about 400 mm away from the molten steel surface in the mold in the casting direction satisfies the condition of the above-described formula (1), 1) Casting was performed under conditions that did not satisfy the range of the equation. That is, Table 1 shows the necessary minimum flow velocity obtained from the equation (1). In Test Nos. 1 to 4, the conditions satisfying the range of the equation (1) (examples of the present invention) are used, and the test Nos. 5 to 8 are performed. Then, it was set as the conditions (comparative example) which do not satisfy | fill the range of (1) Formula. In calculating the equation (1), the analytical value of the sample collected from the molten steel at the end of refining in the RH vacuum degassing apparatus was used as the chemical component of the molten steel. The oxygen concentration shown in Table 1 is the dissolved oxygen concentration.
凝固界面前面での溶鋼流速は、鋳片を挟んで鋳型長辺の背面全幅に配置した交流移動磁場印加装置を用いて制御した。具体的には、鋳型内溶鋼湯面から約400mm鋳造方向に離れた位置近傍における凝固界面前面での溶鋼流速を0.05m/sとする場合には、磁束密度が0.025テスラの旋回磁場印加とし、凝固界面前面での溶鋼流速を0.10m/sとする場合には、磁束密度が0.050テスラの旋回磁場印加とし、凝固界面前面での溶鋼流速を0.15m/sとする場合には、磁束密度が0.075テスラの旋回磁場印加とし、凝固界面前面での溶鋼流速を0.20m/sとする場合には、磁束密度が0.10テスラの旋回磁場印加とした。 The molten steel flow velocity at the front surface of the solidification interface was controlled by using an AC moving magnetic field application device disposed across the entire width of the back surface of the mold long side with the slab interposed therebetween. Specifically, when the molten steel flow velocity at the front of the solidification interface in the vicinity of a position about 400 mm away from the molten steel surface in the mold in the casting direction is set to 0.05 m / s, the rotating magnetic field having a magnetic flux density of 0.025 Tesla. In the case where the molten steel flow velocity at the solidification interface front is 0.10 m / s, a swirl magnetic field application with a magnetic flux density of 0.050 Tesla is applied, and the molten steel flow velocity at the solidification interface front is 0.15 m / s. In this case, a swirl magnetic field with a magnetic flux density of 0.075 Tesla was applied, and when a molten steel flow velocity at the front of the solidification interface was 0.20 m / s, a swirl magnetic field with a magnetic flux density of 0.10 Tesla was applied.
凝固界面前面での溶鋼流速は、鋳造後の鋳片から試料を採取し、その試料の凝固組織から確認した。即ち、鋳造後の鋳片から全厚(220mm)×全幅(1160mm)の試料を採取し、この試料を鏡面仕上げした後に酸で腐食して凝固組織を現出させ、図1に示す6箇所の位置において凝固組織のデンドライト樹枝状晶の傾き角度を測定し、測定した傾き角度から、岡野らの式(刊行物:鉄と鋼(61(1975)p.69)参照)を用いて溶鋼流速を求め、6箇所の平均値から確認した。 The molten steel flow velocity at the front of the solidification interface was confirmed from the solidification structure of the sample taken from the cast slab. That is, a sample having a full thickness (220 mm) × full width (1160 mm) was taken from the cast slab, and after the sample was mirror-finished, it was corroded with acid to reveal a solidified structure. Measure the tilt angle of dendritic dendrites in the solidified structure at the position, and use the Okano et al. Formula (see publication: Iron and Steel (61 (1975) p.69)) to determine the molten steel flow velocity from the measured tilt angle. Obtained and confirmed from the average value of 6 locations.
また、前記凝固組織調査用試料の近傍から介在物調査用試料を採取し、採取した介在物調査用試料を鏡面仕上げした後、光学顕微鏡を用いて、鋳片表面から20mm内部の位置までの範囲に存在するアルミナクラスターの個数をカウントするとともに、アルミナクラスターの長軸及び短軸を測定して、鋳片における単位面積あたりのアルミナクラスターの面積を算出した。また、鋳片を薄鋼板に圧延後、薄鋼板における表面欠陥の有無についても調査した。鋳片及び薄鋼板での調査結果を表2に示す。尚、本発明者らの研究により、自動車用極低炭素鋼において、単位面積あたりのアルミナクラスターの面積が0.001mm2/mm2を超えると、表面欠陥が発生することが分かっている。 Further, after collecting the inclusion investigation sample from the vicinity of the solidification structure investigation sample, and mirror-finishing the collected inclusion investigation sample, the range from the slab surface to a position within 20 mm using an optical microscope In addition to counting the number of alumina clusters present in the sample, the major and minor axes of the alumina clusters were measured to calculate the area of the alumina clusters per unit area in the slab. Further, after the slab was rolled into a thin steel plate, the presence or absence of surface defects in the thin steel plate was also investigated. Table 2 shows the results of investigations on slabs and thin steel sheets. In addition, it has been found from the research by the present inventors that surface defects occur when the area of alumina clusters per unit area exceeds 0.001 mm 2 / mm 2 in the ultra-low carbon steel for automobiles.
表2に示すように、本発明例である試験No.1〜4では、鋳片でのアルミナクラスターの面積は0.001mm2/mm2以下になっており、圧延後の薄鋼板においても表面欠陥が発生していなかった。これに対して、比較例である試験No.5〜8では、鋳片でのアルミナクラスターの面積は0.001mm2/mm2を越えており、圧延後の薄鋼板においても表面欠陥が確認できた。 As shown in Table 2, in Test Nos. 1 to 4 which are examples of the present invention, the area of the alumina cluster in the slab is 0.001 mm 2 / mm 2 or less, and the surface of the rolled steel sheet is also a surface. There were no defects. On the other hand, in test Nos. 5 to 8 which are comparative examples, the area of the alumina cluster in the slab exceeds 0.001 mm 2 / mm 2 , and surface defects can be confirmed even in the rolled steel sheet. It was.
Claims (4)
V≧[165308×(1-KE Ti)×Vs×[Ti]+1613307×(1-KE S)×Vs×[S]]2/3 …(1)
但し、(1)式において、Vは、凝固殻前面での溶鋼流速(m/s)、Vsは、鋳型内凝固殻の凝固速度(m/s)、KE Tiは、Tiの実効分配係数(−)、KE Sは、Sの実効分配係数(−)、[Ti]は、溶鋼中のTi濃度(質量%)、[S]は、溶鋼中のS濃度(質量%)である。 C is a continuous casting method of an ultra-low carbon steel slab containing 0.003% by mass or less, wherein the molten steel flow velocity in front of the solidified shell of the slab is the solidification rate of the solidified shell of the slab and the molten steel component A continuous casting method for a steel slab, wherein the casting is controlled so as to be within the range of the following expression (1) with respect to the Ti content and the S content.
V ≧ [165308 × (1- K E Ti) × Vs × [Ti] + 1613307 × (1-K E S) × Vs × [S]] 2/3 ... (1)
Where V is the molten steel flow velocity (m / s) at the front of the solidified shell, Vs is the solidification rate of the solidified shell in the mold (m / s), and K E Ti is the effective distribution coefficient of Ti. (-), K E S is the effective distribution coefficient S (-), [Ti] is, Ti concentration (mass%) in the molten steel, [S] is the S concentration in molten steel (mass%).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009075487A JP5354179B2 (en) | 2009-03-26 | 2009-03-26 | Continuous casting method for steel slabs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009075487A JP5354179B2 (en) | 2009-03-26 | 2009-03-26 | Continuous casting method for steel slabs |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010227944A true JP2010227944A (en) | 2010-10-14 |
JP5354179B2 JP5354179B2 (en) | 2013-11-27 |
Family
ID=43044318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009075487A Active JP5354179B2 (en) | 2009-03-26 | 2009-03-26 | Continuous casting method for steel slabs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5354179B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020069494A (en) * | 2018-10-30 | 2020-05-07 | 日本製鉄株式会社 | Slab quality estimation method, production method of steel, slab quality estimation apparatus, and program |
JP2020078814A (en) * | 2018-11-13 | 2020-05-28 | 日本製鉄株式会社 | Continuous casting method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60145258A (en) * | 1983-12-29 | 1985-07-31 | Nippon Steel Corp | Controlling method of electromagnetic stirring current in continuous casting |
JPH08238545A (en) * | 1995-02-28 | 1996-09-17 | Nippon Steel Corp | Method for continuously casting titanium-adding extra-low carbon steel |
JPH10180426A (en) * | 1996-12-25 | 1998-07-07 | Nippon Steel Corp | Electromagnetic stirring method in mold in continuous casting |
JP2001138018A (en) * | 1999-11-12 | 2001-05-22 | Sumitomo Metal Ind Ltd | Method for continuously casting steel |
JP2003191052A (en) * | 2001-12-26 | 2003-07-08 | Nippon Steel Corp | Method of manufacturing extra-low carbon thin steel sheet and billet for the same |
JP2003205349A (en) * | 2002-01-15 | 2003-07-22 | Nippon Steel Corp | Method for continuously casting cast slab having little blow hole defect, and produced cast slab |
JP2003251438A (en) * | 2002-03-04 | 2003-09-09 | Nippon Steel Corp | Method for continuously casting cast slab having little blow hole and steel material obtained by working the cast slab |
JP2005152931A (en) * | 2003-11-25 | 2005-06-16 | Jfe Steel Kk | Method for continuously casting medium carbon steel slab |
JP2008188644A (en) * | 2007-02-06 | 2008-08-21 | Jfe Steel Kk | Continuous casting method for steel, equipment, and method for producing surface treated steel sheet |
JP2008290136A (en) * | 2007-05-28 | 2008-12-04 | Kobe Steel Ltd | Continuous casting method for low carbon high sulfur steel |
JP2010099704A (en) * | 2008-10-24 | 2010-05-06 | Jfe Steel Corp | Continuous casting method for steel cast slab |
-
2009
- 2009-03-26 JP JP2009075487A patent/JP5354179B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60145258A (en) * | 1983-12-29 | 1985-07-31 | Nippon Steel Corp | Controlling method of electromagnetic stirring current in continuous casting |
JPH08238545A (en) * | 1995-02-28 | 1996-09-17 | Nippon Steel Corp | Method for continuously casting titanium-adding extra-low carbon steel |
JPH10180426A (en) * | 1996-12-25 | 1998-07-07 | Nippon Steel Corp | Electromagnetic stirring method in mold in continuous casting |
JP2001138018A (en) * | 1999-11-12 | 2001-05-22 | Sumitomo Metal Ind Ltd | Method for continuously casting steel |
JP2003191052A (en) * | 2001-12-26 | 2003-07-08 | Nippon Steel Corp | Method of manufacturing extra-low carbon thin steel sheet and billet for the same |
JP2003205349A (en) * | 2002-01-15 | 2003-07-22 | Nippon Steel Corp | Method for continuously casting cast slab having little blow hole defect, and produced cast slab |
JP2003251438A (en) * | 2002-03-04 | 2003-09-09 | Nippon Steel Corp | Method for continuously casting cast slab having little blow hole and steel material obtained by working the cast slab |
JP2005152931A (en) * | 2003-11-25 | 2005-06-16 | Jfe Steel Kk | Method for continuously casting medium carbon steel slab |
JP2008188644A (en) * | 2007-02-06 | 2008-08-21 | Jfe Steel Kk | Continuous casting method for steel, equipment, and method for producing surface treated steel sheet |
JP2008290136A (en) * | 2007-05-28 | 2008-12-04 | Kobe Steel Ltd | Continuous casting method for low carbon high sulfur steel |
JP2010099704A (en) * | 2008-10-24 | 2010-05-06 | Jfe Steel Corp | Continuous casting method for steel cast slab |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020069494A (en) * | 2018-10-30 | 2020-05-07 | 日本製鉄株式会社 | Slab quality estimation method, production method of steel, slab quality estimation apparatus, and program |
JP7135728B2 (en) | 2018-10-30 | 2022-09-13 | 日本製鉄株式会社 | Slab Quality Estimating Method, Steel Manufacturing Method, Slab Quality Estimating Device, and Program |
JP2020078814A (en) * | 2018-11-13 | 2020-05-28 | 日本製鉄株式会社 | Continuous casting method |
JP7143731B2 (en) | 2018-11-13 | 2022-09-29 | 日本製鉄株式会社 | Continuous casting method |
Also Published As
Publication number | Publication date |
---|---|
JP5354179B2 (en) | 2013-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110035844B (en) | Continuous casting method | |
WO2018173888A1 (en) | Method for producing austenite stainless steel slab | |
JP5217785B2 (en) | Steel continuous casting method | |
RU2520891C2 (en) | Method of steel continuous casting and method of sheet steel production | |
JP5245800B2 (en) | Continuous casting mold and steel continuous casting method | |
JP5354179B2 (en) | Continuous casting method for steel slabs | |
JP4821932B2 (en) | Steel continuous casting method and steel plate manufacturing method | |
JP4411945B2 (en) | Slab continuous casting method for ultra-low carbon steel | |
Tacke | Overview of particles and bubbles in continuously cast steel | |
JP2010099704A (en) | Continuous casting method for steel cast slab | |
JP5304297B2 (en) | Continuous casting method for steel slabs | |
JP5413277B2 (en) | Continuous casting method for steel slabs | |
JP5458779B2 (en) | Continuous casting method for steel slabs | |
JP3365362B2 (en) | Continuous casting method | |
JP5044981B2 (en) | Steel continuous casting method | |
JP5125663B2 (en) | Continuous casting method of slab slab | |
JP4427429B2 (en) | Method and apparatus for controlling flow in strand pool | |
JP5791234B2 (en) | Continuous casting method for steel slabs | |
JP2006255759A (en) | Method for continuously casting steel | |
JP2007260727A (en) | Method for continuously casting extra-low carbon steel slab | |
JP4427875B2 (en) | Metal continuous casting method | |
JP3505142B2 (en) | Casting method of high clean steel | |
JP2011212723A (en) | Continuous casting method of steel cast slab | |
JP5217784B2 (en) | Steel continuous casting method | |
JP4569320B2 (en) | Continuous casting method of ultra-low carbon steel slab slab |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120223 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130813 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5354179 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |