JP2005152931A - Method for continuously casting medium carbon steel slab - Google Patents

Method for continuously casting medium carbon steel slab Download PDF

Info

Publication number
JP2005152931A
JP2005152931A JP2003394182A JP2003394182A JP2005152931A JP 2005152931 A JP2005152931 A JP 2005152931A JP 2003394182 A JP2003394182 A JP 2003394182A JP 2003394182 A JP2003394182 A JP 2003394182A JP 2005152931 A JP2005152931 A JP 2005152931A
Authority
JP
Japan
Prior art keywords
mold
mass
casting
flux
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003394182A
Other languages
Japanese (ja)
Other versions
JP4569099B2 (en
Inventor
Akira Yamauchi
章 山内
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003394182A priority Critical patent/JP4569099B2/en
Publication of JP2005152931A publication Critical patent/JP2005152931A/en
Application granted granted Critical
Publication of JP4569099B2 publication Critical patent/JP4569099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently provide a medium carbon steel slab excellent in surface quality without developing the surface defect caused by the longitudinal crack and deoxidation generated material, etc., even in the case of such high speed continuous casting as to exceed 20 m/min. <P>SOLUTION: Under condition of 150-240 mm short wall side length in the casting space in a mold and >2.0 m/min casting speed in a continuous casting facility, as mold flux, the flux containing at least two components selected from 0.5-8.0 mass% TiO<SB>2</SB>, 0.6-4.0 mass% MnO and 2.0-6.0 mass% Al<SB>2</SB>O<SB>3</SB>and satisfying in the range of 1.4-2.0 the ratio of CaO and SiO<SB>2</SB>in the remained components, is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、中炭素鋼のスラブ連続鋳造に関し、特に従来懸念された縦割れの発生なしに高速鋳造を可能ならしめることにより、生産性の有利な向上を図ると共に、得られるスラブひいてはそれを素材とする製品板の表面品質の向上を図ろうとするものである。   The present invention relates to slab continuous casting of medium carbon steel, and in particular, by enabling high-speed casting without the occurrence of vertical cracks, which has been a concern in the past, it is possible to improve the productivity advantageously, and to obtain the obtained slab and the raw material. It is intended to improve the surface quality of the product plate.

C含有量が0.07〜0.22mass%のいわゆる中炭素鋼を対象とする連続鋳造では、連続鋳造時に鋳片表面に縦割れが発生し易いという問題があった。
そこで、従来から、かような縦割れの発生機構およびその防止対策について種々の研究がなされている。
中炭素鋼において縦割れが発生し易いのは、C含有量が0.07〜0.22mass%の包晶変態域にあるためで、鋼の凝固過程における変態応力の発生により凝固シェルの成長の遅い部分と速い部分に大きな差が生じること、すなわち凝固シェルの成長の不均一度が大きくなることが原因であることが明かとなっている。
In continuous casting for so-called medium carbon steel having a C content of 0.07 to 0.22 mass%, there is a problem that vertical cracks are likely to occur on the surface of the slab during continuous casting.
Thus, various studies have been made on the mechanism of occurrence of such vertical cracks and countermeasures therefor.
Longitudinal cracks tend to occur in medium carbon steel because it is in the peritectic transformation region with a C content of 0.07 to 0.22 mass%. Due to the occurrence of transformation stress in the solidification process of steel, It is clear that this is due to the fact that a large difference occurs in the fast part, that is, the nonuniformity of the growth of the solidified shell increases.

ここに、上記した凝固シェルの不均一度は、鋳型内における初期放熱量との間に相関があり、
(1) 鋳型内で緩冷却化する、
(2) 鋳型内抜熱の不均一要因であるエアギャップを解消する、
(3) 鋳型と凝固シェル間におけるモールドフラックスフィルムの厚みの変動を抑制する
ことで緩和できることが既に公知となっている。
Here, the above non-uniformity of the solidified shell has a correlation with the initial heat radiation amount in the mold,
(1) Slow cooling in the mold,
(2) Eliminate the air gap that is the cause of non-uniform heat removal from the mold,
(3) It has already been known that it can be mitigated by suppressing variation in the thickness of the mold flux film between the mold and the solidified shell.

この点に関する先行技術として、例えば特許文献1には、表面きずの少ない広幅連続鋳造鋳片を製造する方法として、オイルキャスティング法とモールドフラックスキャスティング法とを併用することにより、鋳型内溶鋼の不均一冷却に起因した表面縦割れを防止する技術が開示されている。
また、特許文献2には、連続鋳造用鋳型として、鋳型内の上部表面に適正な形状寸法になる複数の縦溝を形成したものを用い、ここに中炭素鋼の溶湯を供給して鋳型の上部のみで緩冷却することにより、凝固シェルを均一に冷却して表面割れを回避する連続鋳造技術が開示されている。
As a prior art regarding this point, for example, in Patent Document 1, as a method for producing a wide continuous cast slab having few surface flaws, by using an oil casting method and a mold flux casting method in combination, non-uniformity of molten steel in a mold is achieved. A technique for preventing surface vertical cracks due to cooling is disclosed.
Patent Document 2 uses a continuous casting mold in which a plurality of longitudinal grooves having appropriate shapes and dimensions are formed on the upper surface of the mold, and a medium carbon steel melt is supplied to the mold. A continuous casting technique is disclosed in which the solidified shell is uniformly cooled to avoid surface cracks by slowly cooling only at the upper part.

さらに、モールドフラックスに関する先行技術として、特許文献3には、モールドフラックスを均一に流入させて凝固シェルの不均一冷却を回避すべく、かかるフラックスの粘度および結晶化温度を低く設定し、それを鋳型の中央部のみに適用する技術が開示されている。
また、特許文献4や特許文献5には、モールドフラックスの塩基度ならびに凝固温度を上昇させて、鋳型と鋳片間のモールドフラックス層における固相厚さを増加させ、輻射熱流束を減少させることによって割れの防止を図る技術が提案されている。
Further, as a prior art related to mold flux, Patent Document 3 discloses that the viscosity and crystallization temperature of the flux are set low in order to allow the mold flux to flow uniformly and avoid non-uniform cooling of the solidified shell. A technique that is applied only to the central portion of each is disclosed.
In Patent Document 4 and Patent Document 5, the basicity and solidification temperature of the mold flux are increased, the solid phase thickness in the mold flux layer between the mold and the slab is increased, and the radiant heat flux is decreased. A technique for preventing cracking has been proposed.

一方、非特許文献1には、モールドフラックスの塩基度を 1.2程度に維持し、ZrO2を3%程度添加し、さらに高凝固点化することで輻射熱伝熱の低滅ならびに鋳型とフラックス凝固層間の接触熱抵抗の上昇によって緩冷却化を図り、割れの防止を図る技術が開示されている。 On the other hand, in Non-Patent Document 1, the basicity of the mold flux is maintained at about 1.2, ZrO 2 is added at about 3%, and the solidification point is lowered by further reducing the radiant heat transfer and between the mold and the flux solidification layer. A technique is disclosed in which slow cooling is achieved by increasing contact thermal resistance to prevent cracking.

その他、Tiを一定量以上含有するステンレス鋼の連続鋳造においては、鋳造中のモールドフラックス中へのTiO2濃化によってフラックス物性が変化し、フラックスそのものに起因した鋼板の表面欠陥、あるいは潤滑が損なわれることによる凝固シェルの鋳型への拘束の原因となることが、非特許文献2に示されている。
そして、報告者は、かような問題の解決策として、CaOとSiO2との比すなわち塩基度を 0.5〜0.6 に低減することを提案している。
In addition, in continuous casting of stainless steel containing a certain amount or more of Ti, the physical properties of the flux change due to the concentration of TiO 2 in the mold flux during casting, and the surface defects or lubrication of the steel sheet due to the flux itself is impaired. It is shown in Non-Patent Document 2 that it becomes a cause of restraint of the solidified shell to the mold due to the above.
The reporter is, as a solution to such a problem, it is proposed to reduce the ratio i.e. basicity of CaO and SiO 2 0.5 to 0.6.

特開昭50−59229 号公報Japanese Patent Laid-Open No. 50-59229 特開昭61−92756 号公報JP-A-61-92756 特開昭63−235054号公報JP 63-235054 A 特開平8−197214号公報JP-A-8-197214 特開平5−277680号公報JP-A-5-277680 「CAMP−ISIJ,6(1993),P.283 」"CAMP-ISIJ, 6 (1993), p.283" 「製鉄研究第324 号(1987), P.10」"Steel Research No.324 (1987), P.10"

しかしながら、上記した従来技術にはいずれも、以下に述べるような問題があった。
特許文献1に開示の技術は、中炭素鋼以外の鋼種において現在一般的になっているモールドフラックスキャスティングのための設備の他に、オイルキャスティング用の設備を新設する必要があるため、作業員の増加や設備コストの上昇が避けられないという問題があった。
特許文献2に開示の技術は、中炭素鋼を鋳造するための専用の鋳型を用いる必要があり、鋳型交換等のダウンタイムを考慮した場合に製造コストの面で不利になる。また、鋳型表面温度が推定 400℃以上となるため、鋳型自身およびめっき層の劣化が著しく、鋳型寿命の点で実現が困難である。
特許文献3に開示の技術は、2種類のモールドフラックスを、鋳片の長辺面中央部から200 mm程度のところを境にして使用するため、この領域でのモールドフラックスの混合に起因した不安定な抜熱が起こり、縦割れの抑制効果は認められるものの、その改善度合いは極めて軽微にすぎない。
However, all of the above conventional techniques have the following problems.
Since the technology disclosed in Patent Document 1 needs to newly install equipment for oil casting in addition to equipment for mold flux casting which is currently common in steel types other than medium carbon steel, There was a problem that an increase and an increase in equipment cost were inevitable.
The technique disclosed in Patent Document 2 requires the use of a dedicated mold for casting medium carbon steel, which is disadvantageous in terms of manufacturing cost when considering downtime such as mold replacement. In addition, since the mold surface temperature is estimated to be 400 ° C. or higher, the mold itself and the plating layer are significantly deteriorated, which is difficult to realize in terms of mold life.
The technique disclosed in Patent Document 3 uses two types of mold flux with a boundary of about 200 mm from the center of the long side of the slab as a boundary. Although stable heat removal occurs and the effect of suppressing vertical cracks is recognized, the degree of improvement is very slight.

特許文献4、特許文献5および非特許文献1に開示の高凝固点フラックスを用いる技術では、鋳造開始初期においてはほぼ問題なく鋳造を行うことが可能であるが、鋳造時間の経過とともに浮上介在物あるいは溶鋼との直接の反応によりモールドフラックス組成が初期組成から乖離し、均一な結晶生成による均一緩冷却効果が得られないという現象が数多く確認された。特に鋳造速度が 2.0 m/min超の高速鋳造では、不均一冷却に伴う縦割れの発生が著しくなる傾向が見られた。
なお、上記の観点から、予めCaOとSiO2の比(塩基度)を例えば1.8 程度に高く設定すれば成分変化後の結晶化特性を維持することは十分可能ではあるが、鋳造初期には凝固温度が高すぎて鋳型と鋳片間の潤滑が維持できない状態となり、凝固シェルが破断してブレークアウトに到るため、対策として実用的でない。
In the technique using the high freezing point flux disclosed in Patent Document 4, Patent Document 5 and Non-Patent Document 1, it is possible to perform casting with almost no problem at the beginning of casting. It was confirmed that the mold flux composition deviated from the initial composition by direct reaction with molten steel, and the uniform slow cooling effect due to uniform crystal formation could not be obtained. In particular, in high-speed casting with a casting speed exceeding 2.0 m / min, there was a tendency for vertical cracks to occur significantly due to uneven cooling.
From the above viewpoint, if the ratio (basicity) of CaO and SiO 2 is set to a high value, for example, about 1.8, it is possible to maintain the crystallization characteristics after the change of the components. Since the temperature is too high to maintain the lubrication between the mold and the slab, the solidified shell breaks and breaks out, which is not practical as a countermeasure.

非特許文献2の提示に従い、CaOとSiO2との比すなわち塩基度を 0.5〜0.6 に低減した場合、鋳造速度の上昇と共にモールドフラックス流入の不均一さが顕著となり、鋳型内幅方向の冷却が著しく不均一となるため、やはり満足いくほどの縦割れ防止は達成できなかった。
これは、塩基度が低いため、流入したモールドフラックスが結晶化せずにガラス状になってしまい、鋳型との接触が伝熱的に強固になることに起因する。
When the ratio of CaO and SiO 2 , that is, the basicity is reduced to 0.5 to 0.6 according to the presentation of Non-Patent Document 2, the non-uniformity of mold flux inflow becomes remarkable as the casting speed increases, and cooling in the mold width direction is reduced. Since it became extremely uneven, satisfactory vertical crack prevention could not be achieved.
This is due to the fact that since the basicity is low, the inflowing mold flux does not crystallize and becomes glassy, and the contact with the mold becomes thermally conductive.

本発明は、上記の問題を有利に解決するもので、浮上介在物あるいは溶鋼との直接の反応に伴うモールドフラックス組成の初期組成からの乖離を効果的に防止して、均一な結晶生成を可能ならしめると共に、凝固シェルに脱酸生成物やモールドフラックス等が捕捉されるのを有利に回避することにより、2.0 m/min 超の高速連続鋳造においても、縦割れや上記脱酸生成物等に起因した表面欠陥の発生を有利に回避して、表面品質に優れた連続鋳造鋳片を効率良く生産することができる中炭素鋼のスラブ連続鋳造方法を提案することを目的とする。   The present invention advantageously solves the above problem, and effectively prevents the deviation of the mold flux composition from the initial composition due to the direct reaction with floating inclusions or molten steel, and enables uniform crystal formation. In addition, it effectively avoids trapping of deoxidation products, mold flux, etc. in the solidified shell, so that even in high-speed continuous casting exceeding 2.0 m / min, vertical cracks and the above-mentioned deoxidation products An object of the present invention is to propose a method for continuously casting slabs of medium carbon steel that can advantageously produce continuous cast slabs excellent in surface quality while advantageously preventing the occurrence of surface defects.

さて、発明者らは、包晶変態域にある中炭素鋼の連続鋳造における特有の問題、すなわち表面割れの防止および鋳型と鋳片の潤滑性の向上について種々の実験と検討を重ねた結果、以下に述べる知見を得た。
すなわち、脱酸方法により異なるが、鋳造中、モールドフラックス中における組成変化の著しい Al2O3, MnO, TiO2などの脱酸生成物あるいはフラックス中のSiO2による還元生成物に起因した酸化物は、モールドフラックス自身の結晶生成を抑制し、組成設計上目指すところの均一緩冷却特性の維持を妨げるが、その弊害は複数の脱酸生成物が組み合わさることで著しく助長される。これを回避するには、予め結晶生成を抑制する上記酸化物をある程度の量添加した上で、結晶生成が十分となるように主にCaOとSiO2の相成比、さらにはNaやF, MgO濃度を調整すればよい。
Now, as a result of repeating various experiments and examinations about problems peculiar to continuous casting of medium carbon steel in the peritectic transformation region, that is, prevention of surface cracking and improvement of lubricity of mold and slab, The following findings were obtained.
In other words, although depending on the deoxidation method, oxides caused by deoxidation products such as Al 2 O 3 , MnO, TiO 2 or the like, or reduction products by SiO 2 in the flux, whose composition changes significantly during casting and mold flux This suppresses the crystal formation of the mold flux itself and prevents the maintenance of uniform slow cooling characteristics as intended in the composition design, but the adverse effect is greatly promoted by the combination of a plurality of deoxidation products. In order to avoid this, after adding a certain amount of the above-mentioned oxide that suppresses crystal formation in advance, mainly the phase ratio of CaO and SiO 2 , and further Na, F, The MgO concentration may be adjusted.

また、脱酸生成物やモールドフラックス等に起因した表面欠陥を防止するには、2.0 m/min 超の高速連続鋳造の下では、連続鋳造設備の鋳型内鋳造空間の短辺長さを 150〜240mmの範囲に制御することが有効である。
本発明は、上記の知見に立脚するものである。
In order to prevent surface defects due to deoxidation products, mold flux, etc., under high-speed continuous casting exceeding 2.0 m / min, the short side length of the casting space in the mold of the continuous casting equipment is set to 150 ~. It is effective to control within the range of 240mm.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.連続鋳造設備を用いて、C含有量が0.07〜0.22mass%の中炭素鋼スラブを製造するに際し、
上記連続鋳造設備の鋳型内鋳造空間の短辺長さ:150 〜240 mm、鋳造速度:2.0 m/min超の条件下で、モールドフラックスとして、TiO2:0.5 〜8.0 mass%、MnO:0.6 〜4.0mass%および Al2O3:2.0 〜6.0 mass%のうちから選んだ少なくとも2成分を含有し、かつ残余成分のうちCaOとSiO2の比が 1.4〜2.0 の範囲を満足するフラックスを使用することを特徴とする中炭素鋼のスラブ連続鋳造方法。
That is, the gist configuration of the present invention is as follows.
1. When producing medium carbon steel slabs with a C content of 0.07 to 0.22 mass% using continuous casting equipment,
The short side length of the casting space in the mold of the above continuous casting equipment: 150 to 240 mm, casting speed: more than 2.0 m / min, as mold flux, TiO 2 : 0.5 to 8.0 mass%, MnO: 0.6 to 4.0 mass% and Al 2 O 3 : Use a flux that contains at least two components selected from 2.0 to 6.0 mass% and that satisfies the ratio of CaO and SiO 2 of the remaining components in the range of 1.4 to 2.0. A method for continuously casting slabs of medium carbon steel characterized by the above.

2.前記モールドフラックスが、さらに、Na2O換算で 4.0〜12.0mass%のNa、 6.0〜15.0mass%のFおよび0〜2.0 mass%のMgOを含有する組成になることを特徴とする上記1記載の中炭素鋼のスラブ連続鋳造方法。 2. 2. The mold flux according to 1 above, wherein the mold flux further comprises a composition containing 4.0 to 12.0 mass% Na, 6.0 to 15.0 mass% F, and 0 to 2.0 mass% MgO in terms of Na 2 O. Slab continuous casting method for medium carbon steel.

3.前記鋳造速度を 2.4 m/min以上とすることを特徴とする上記1または2記載の中炭素鋼のスラブ連続鋳造方法。 3. 3. The slab continuous casting method for medium carbon steel according to 1 or 2 above, wherein the casting speed is 2.4 m / min or more.

本発明によれば、2.0 m/min 超という高速連続鋳造においても、縦割れや脱酸生成物等に起因した表面欠陥の発生を有利に防止することができ、その結果、表面品質に優れた中炭素鋼スラブを効率良く生産することができる。   According to the present invention, even in high-speed continuous casting exceeding 2.0 m / min, it is possible to advantageously prevent the occurrence of surface defects due to vertical cracks, deoxidation products, etc., and as a result, the surface quality is excellent. Medium carbon steel slabs can be produced efficiently.

以下、本発明を具体的に説明する。
さて、連続鋳造用鋳型内の上部のいわゆるメニスカス近傍域で、凝固シェルが形成されつつある状況は次のとおりである。
鋳型内における溶鋼ならびに凝固シェルの抜熱は、すべて凝固シェルと鋳型の間のモールドフラックスを介して行われる。そして、モールドフラックスの鋳型に接した部分では固相の層(凝固層)を形成し、凝固シェルに接した部分では、フラックスの凝固温度を超えているので液相を形成している。かようなフラックス層を介して行われる熱伝達は、その寄与率からいって50%以上が鋳型とフラックス凝固層間の伝熱抵抗、すなわち両者の接触状況で決定される。
Hereinafter, the present invention will be specifically described.
Now, the situation where a solidified shell is being formed in the vicinity of the so-called meniscus in the upper part of the continuous casting mold is as follows.
All the heat removal from the molten steel and the solidified shell in the mold is performed through the mold flux between the solidified shell and the mold. Then, a solid phase layer (solidified layer) is formed at the portion of the mold flux in contact with the mold, and a liquid phase is formed at the portion in contact with the solidified shell because the solidification temperature of the flux is exceeded. The heat transfer performed through such a flux layer is determined by the heat transfer resistance between the mold and the flux solidification layer, that is, the contact state between the two, based on the contribution rate.

従って、適切なモールドフラックスを用いることによって、鋳型側に液相から結晶相を生じさせ、10μm 程度の凝固層凹凸に相当する鋳型面との熱抵抗を形成させてやれば、均一緩冷却が達成される。   Therefore, by using an appropriate mold flux, a crystal phase is generated from the liquid phase on the mold side, and if the thermal resistance with the mold surface corresponding to the solidified layer irregularities of about 10 μm is formed, uniform gentle cooling can be achieved. Is done.

そこで、発明者らは、かようなモールドフラックスとしては、どのようなフラックスが好適であるのかについて鋭意検討を重ねた。
その結果、従来の考えに反して、モールドフラックス自身の結晶化を抑制するとされていた Al2O3, MnO, TiO2などを、予めフラックス中に適量含有させておくことが好ましいとの知見を得た。
Therefore, the inventors have made extensive studies on what kind of flux is suitable as such a mold flux.
As a result, contrary to the conventional idea, it was found that it is preferable to previously contain an appropriate amount of Al 2 O 3 , MnO, TiO 2 or the like, which was supposed to suppress the crystallization of the mold flux itself, in the flux. Obtained.

すなわち、上記した Al2O3, MnO, TiO2などの脱酸生成物、あるいはSiO2による還元生成物は、その濃化が必ずしも幅方向に均一に進行しないため、通常であれば鋳造時間の経過とともにモールドフラックスの結晶化特性が劣化し、冷却の不均一度が増加するのであるが、かような Al2O3, MnO, TiO2をモールドフラックス中に予め適量含有させておけば、これらの濃化変化が効果的に緩和され、その結果、鋳造初期から終了にいたるまで結晶化特性の劣化程度が許容範囲でにおさまり、縦割れの発生が皆無となることが究明されたのである。 That is, the deoxidation product such as Al 2 O 3 , MnO, TiO 2 or the reduction product by SiO 2 does not always progress uniformly in the width direction. The crystallization characteristics of the mold flux deteriorate with the passage of time and the non-uniformity of cooling increases. However, if such Al 2 O 3 , MnO, TiO 2 is contained in the mold flux in advance, these As a result, it has been found that the deterioration of crystallization characteristics is within an acceptable range from the beginning to the end of casting, and that no vertical cracks are generated.

ここに、上記した Al2O3, MnO, TiO2のモールドフラックス中における適正含有量は次のとおりである。
TiO2:0.5 〜8.0 mass%、MnO:0.6 〜4.0 mass%および Al2O3:2.0 〜6.0 mass%
上記の酸化物はいずれも、含有量が下限に満たないと、鋳造時間の経過に伴ってやはりモールドフラックスの結晶化特性の劣化を招き、一方上限を超えるとモールドフラックスの結晶化抑制効果が強くなりすぎて、モールドフラックスの結晶化が困難となり、いずれの場合も冷却の不均一度が増加する不利が生じる。
TiO2, MnOおよびAl2O3 はいずれも、モールドフラックスの結晶化を阻害する方向に作用するが、初期(使用前)に各々下限量を含有していないと、使用開始直後やTiO2, MnO,Al2O3 のいずれかが濃化し始めた時期に、フラックスの結晶化挙動あるいは凝固速度が大きく変化してしまい、設計通りの伝熱、潤滑特性が安定して得られない。
Here, the appropriate content of Al 2 O 3 , MnO, and TiO 2 in the mold flux is as follows.
TiO 2: 0.5 ~8.0 mass%, MnO: 0.6 ~4.0 mass% and Al 2 O 3: 2.0 ~6.0 mass %
If the content of any of the above oxides is less than the lower limit, the crystallization characteristics of the mold flux are also deteriorated as the casting time elapses. On the other hand, if the upper limit is exceeded, the crystallization suppression effect of the mold flux is strong. Thus, it becomes difficult to crystallize the mold flux, and in any case, there is a disadvantage that the non-uniformity of cooling is increased.
Both TiO 2, MnO and Al 2 O 3 acts on the direction of inhibiting the crystallization of mold flux, initial if not each contain lower amounts (before use), used immediately after the start and TiO 2, When either MnO or Al 2 O 3 begins to concentrate, the crystallization behavior of the flux or the solidification rate changes greatly, and the designed heat transfer and lubrication characteristics cannot be obtained stably.

また、CaOとSiO2の比(塩基度)は 1.4〜2.0 の範囲に制御する必要がある。
というのは、この塩基度が 1.4に満たないと、モールドフラックスが鋳型−鋳片間に流入し液相および固相の膜を形成する際、固相が十分結晶化せず、不均一に鋳型と接触するようになることから、容易に縦割れが発生してしまい、一方 2.0を超えると、必要以上に結晶化が促進され、潤滑に必要な液相が維持できなくなり、凝固シェルの拘束ひいてはブレークアウトを引き起こすことがあるからである。
Further, the ratio (basicity) of CaO and SiO 2 needs to be controlled in the range of 1.4 to 2.0.
This is because if the basicity is less than 1.4, when the mold flux flows between the mold and the slab and forms a liquid phase and solid phase film, the solid phase does not crystallize sufficiently and the mold is unevenly distributed. Longitudinal cracks are easily generated, and if it exceeds 2.0, crystallization is promoted more than necessary, and the liquid phase necessary for lubrication cannot be maintained. This may cause a breakout.

さらに、モールドフラックス中に適量のNaやF, MgOを含有させることによって、均一緩冷却特性を向上させることができる。
Na:Na2O換算で 4.0〜12.0mass%
Naは、モールドフラックスの結晶化を促進する方向に作用し、その効果は4.0 mass%から顕著となる。しかしながら、12.0mass%を超えて過剰に含有されるとモールドフラックスの凝固点が低下し、記載される均一冷却の効果が得られなくなる。
F:6.0 〜15.0mass%
Fも、Naと同様な作用がある。すなわち、6.0 mass%以上含有させることで結晶化を促進し、一方15.0mass%を超えて含有すると凝固温度、粘度の低下を招き、伝熱、潤滑上望ましい特性が得られなくなる。
MgO:0〜2.0 mass%
MgOは、上述した2成分とは異なり、モールドフラックスの結晶化を阻害する作用がある。このため、2.0 mass%以下の範囲で含有させることが好ましい。
Furthermore, uniform slow cooling characteristics can be improved by including appropriate amounts of Na, F, and MgO in the mold flux.
Na: 4.0 to 12.0 mass% in terms of Na 2 O
Na acts in the direction of promoting crystallization of the mold flux, and the effect becomes remarkable from 4.0 mass%. However, if it exceeds 12.0 mass% and is contained excessively, the freezing point of the mold flux is lowered, and the described effect of uniform cooling cannot be obtained.
F: 6.0 to 15.0 mass%
F also has the same effect as Na. That is, by containing 6.0 mass% or more, crystallization is promoted. On the other hand, if it exceeds 15.0 mass%, the solidification temperature and viscosity are lowered, and desirable heat transfer and lubrication characteristics cannot be obtained.
MgO: 0 to 2.0 mass%
Unlike the two components described above, MgO has an action of inhibiting the crystallization of the mold flux. For this reason, it is preferable to make it contain in 2.0 mass% or less.

ところで、本発明では、鋳造速度が 2.0 m/min超の高速鋳造を前提としているが、かような高速鋳造の下では、連続鋳造設備の鋳型内鋳造空間の短辺長さを適正範囲に制御することによって、脱酸生成物やモールドフラックス等(以下、単に異物という)が凝固シェルに捕捉されるのを有利に回避することができ、その結果かような異物に起因した表面欠陥を有利に防止できることも併せて究明された。   By the way, the present invention assumes high-speed casting with a casting speed of over 2.0 m / min. By doing so, it is possible to advantageously avoid deoxidation products, mold flux, etc. (hereinafter simply referred to as foreign matter) being trapped by the solidified shell, and as a result, surface defects caused by such foreign matter are advantageously avoided. It was also investigated that it could be prevented.

以下、この点の解明経緯について説明する。
(1) 異物捕捉場所の減少
鋳造速度Vc を速くすることにより、メニスカス部初期凝固シェル、いわゆる「爪」の生成が著しく抑制される。これは、湯面下同一深さでの凝固シェル厚がVc の増加につれてより薄くなるため、溶鋼静圧の影響で鋳型側に押しつけられる力が、凝固シェル厚に依存するシェルの熱収縮により溶鋼側へ爪が倒れ込もうとする力よりも大きくなるためである。また、スラブ厚みが薄くなると、厚み方向のシェル収縮量の絶対値(=スラブ厚×温度差×線膨張係数) が小さくなるので、溶鋼側への倒れ込みがより一層抑制され、その結果、爪の倒れ込み抑制効果が一層顕著になる。
Hereinafter, the process of elucidating this point will be described.
(1) Decrease in foreign matter trapping locations By increasing the casting speed Vc, the formation of meniscus initial solidified shells, so-called “nails”, is remarkably suppressed. This is because the solidified shell thickness at the same depth below the molten metal surface becomes thinner as Vc increases, so the force pressed against the mold side due to the influence of the molten steel static pressure is due to the heat shrinkage of the shell depending on the solidified shell thickness. This is because the nail is larger than the force of the nail to fall to the side. In addition, as the slab thickness decreases, the absolute value of shell shrinkage in the thickness direction (= slab thickness x temperature difference x linear expansion coefficient) decreases, so that the collapse to the molten steel side is further suppressed. The fall-suppressing effect becomes even more pronounced.

(2) 異物吸着の抑制
凝固に伴い、凝固界面に濃化する溶質の偏析に起因して界面張力勾配が発生し、この力により、凝固シェル界面に異物が吸引・捕捉され易くなる現象が生じる。このため、異物を吸引・捕捉する力を大きくする溶質元素として特に影響の大きいSやTi等の濃度を低下させる試みも実施されている。しかしながら、成分を操作することは、コストアップ(低S化)や材質劣化(Ti低減)につながるという問題がある。
本発明では、鋳造速度Vcをより大きくすることにより、異物の凝固シェルへの吸引・捕捉する力の増大を抑制する。すなわち、(1) のような高速鋳造では、メニスカス部の凝固量がより減少するため、偏析量も減少し、よって、異物の吸引力となる界面張力勾配も小さくなる。その結果、凝固シェル側に吸着・捕捉される異物の量も抑制されるのである。
(2) Suppression of foreign matter adsorption Along with solidification, an interfacial tension gradient occurs due to segregation of the solute concentrated at the solidification interface, and this force causes a phenomenon that foreign matter is easily attracted and trapped at the solidified shell interface. . For this reason, attempts have been made to reduce the concentration of S, Ti, etc., which have a particularly large influence as a solute element that increases the force for attracting and capturing foreign matter. However, there is a problem that manipulating the components leads to cost increase (lower S) and material deterioration (Ti reduction).
In the present invention, by increasing the casting speed Vc, it is possible to suppress an increase in the force for sucking / capturing foreign matter into the solidified shell. That is, in the high-speed casting as in (1), the amount of solidification of the meniscus portion is further reduced, so that the amount of segregation is also reduced, and hence the interfacial tension gradient that is a suction force for foreign matters is also reduced. As a result, the amount of foreign matter adsorbed and captured on the solidified shell side is also suppressed.

(3) 異物捕捉厚みの減少
本発明の条件で連続鋳造を行うと、異物は湯面下20mm以内でシェルに捕捉され、さらに鋳造速度の増加につれて捕捉深さは浅くなり、鋳造速度Vc >2.0 m/min では、スラブ表面からの捕捉深さhは1mm以下となる。
この深さ以下になると、異物がシェルに捕捉されても、その後の熱延→冷延工程を経て製品になる過程で、異物は鋳片表面の酸化スケールと共に脱落・除去される。従って、スラブ手入れを行うことなしに、無欠陥の製品とすることができる。なお、鋳造速度が 2.4m/min 以上では爪深さが 0.7mm以下、つまり異物捕捉厚みhもそれ以下となるので、鋳造速度は 2.4 m/min以上とすることがより好適である。
(3) Decrease in trapping thickness of foreign matter When continuous casting is performed under the conditions of the present invention, foreign matter is trapped by the shell within 20 mm below the molten metal surface, and the trapping depth becomes shallower as the casting speed increases, and the casting speed Vc> 2.0. At m / min, the capture depth h from the slab surface is 1 mm or less.
Below this depth, even if the foreign matter is trapped by the shell, the foreign matter is dropped and removed together with the oxide scale on the surface of the slab in the process of becoming a product through the subsequent hot rolling → cold rolling process. Therefore, it is possible to obtain a defect-free product without performing slab maintenance. Note that when the casting speed is 2.4 m / min or more, the claw depth is 0.7 mm or less, that is, the foreign matter capturing thickness h is also less, so the casting speed is more preferably 2.4 m / min or more.

(4) 異物捕捉確率の減少
異物が凝固シェルに捕捉され易い湯面下20mm以内における凝固シェルの滞留時間は、鋳造速度の増加につれて短くなる。従って、異物の量が同じでも、凝固シェルに捕捉される確率は小さくなる。例えば、Vc =3.0 m/min の場合には、Vc =1.5 m/min の場合に比べて、異物が捕捉される確率は半分になる。
(4) Decrease in foreign matter trapping probability The residence time of the solidified shell within 20 mm below the molten metal surface where foreign matter is easily trapped by the solidified shell becomes shorter as the casting speed increases. Therefore, even if the amount of foreign matter is the same, the probability of being trapped by the solidified shell is reduced. For example, in the case of Vc = 3.0 m / min, the probability of trapping foreign matter is halved compared to the case of Vc = 1.5 m / min.

そこで、本発明では、鋳造速度Vc を 2.0 m/min超、好ましくは 2.4 m/min以上に限定したのである。   Therefore, in the present invention, the casting speed Vc is limited to more than 2.0 m / min, preferably 2.4 m / min or more.

(5) 短辺バルジング防止(鋳型内鋳造空間の短辺長さの上限規制理由)
短辺長さが厚くなりすぎると、鋳造速度Vc が 2.0m/min 超えの場合には、短辺バルジングに起因したスラブ形状不良やブレークアウトの問題が発生する。この点、短辺長さが小さい場合やVc が小さい場合には、鋳型を出てからのスラブ短辺の溶鋼静圧によるバルジングが小さく抑えられ、ブレークアウト発生の危険性は低い。
しかしながら、短辺長さ(すなわちスラブ厚み)が 240mm超えにおいては、鋳造速度が 2.4 m/minでもスラブ厚み増加による浸漬ノズル吐出孔からの溶鋼噴流速度の増加により、電磁ブレーキ制動による二次流速増加のため、短辺シェル成長の遅れを抑えることが困難になり、鋳型下端での短辺バルジングが顕著になり、ブレークアウトの危険性(バルジング量≧10mm)が増大する。
また、短辺長さ(すなわちスラブ厚み)が 240mm超えの場合には、上と同様の理由で、溶鋼噴流の短辺からの反転流や二次流が湯面の乱れを助長するため、モールドフラックスの巻き込みや噛み込みも発生し易くなり、またスラブ厚みの増加は、メニスカス部の特に浸漬ノズル近傍での溶鋼のよどみも発生し易くなる傾向にあるため、スラブ表面欠陥および製品欠陥が増大する。
(5) Prevention of short side bulging (reason for upper limit on short side length of casting space in mold)
If the short side length becomes too thick, when the casting speed Vc exceeds 2.0 m / min, problems of slab shape and breakout due to short side bulging occur. In this respect, when the short side length is small or Vc is small, bulging due to the molten steel static pressure on the short side of the slab after exiting the mold can be suppressed, and the risk of occurrence of breakout is low.
However, when the short side length (ie, slab thickness) exceeds 240 mm, the secondary flow rate increases due to electromagnetic brake braking due to the increase in the molten steel jet velocity from the immersion nozzle discharge hole due to the increase in the slab thickness even when the casting speed is 2.4 m / min. Therefore, it becomes difficult to suppress the delay in the growth of the short side shell, the short side bulging at the lower end of the mold becomes remarkable, and the risk of breakout (bulging amount ≧ 10 mm) increases.
If the short side length (ie, slab thickness) exceeds 240mm, the reverse flow or secondary flow from the short side of the molten steel jet will promote disturbance of the molten metal surface for the same reason as above. Flux entrainment and biting are likely to occur, and the increase in slab thickness tends to cause stagnation of molten steel in the meniscus area, particularly in the vicinity of the immersion nozzle, increasing slab surface defects and product defects. .

(6) 鋳型内鋳造空間の短辺長さの下限規制理由
鋳型内鋳造空間の短辺長さ(スラブ厚み)Dが150 mm未満では、下記の理由で好ましくない。
すなわち、スラブ断面積が小さくなりすぎると、湯面制御性の問題から、同じ鋳造量の変動に対して、湯面の変動量が大きくなり、湯じわに起因した深さ:1mm以上の爪の発生頻度が増加し、上記(1) の効果が得られなくなる。また、湯面の変動に起因して、モールドフラックスの巻き込みや噛み込みも発生し易くなる。さらに、一般の浸漬ノズルの外径は、耐久性から定まる壁厚み(20mm〜)、スループット:5.4 t/min(150 mm厚、2200mm幅、Vc :2.1 m/min 〜)〜14.5 t/min(240 mm厚、2200mm幅、Vc :〜3.5 m/min )を確保する観点から決まる内径(70〜130 mm)の和で決定される。ここで、短辺長さ(スラブ厚み)Dが小さすぎると、浸漬ノズル外壁と長辺凝固シェルとの距離が狭くなりすぎ(<20mm)、この間での流動が不均一になり、縦割れの原因となる。極端な場合、凝固シェルがノズルに接触・固着し、ブレークアウトにつながる。よって、短辺長さ(スラブ厚み)Dは、 150mm(内径:70mm+外壁総厚:40mm(20×2)+浸漬ノズル外壁と長辺凝固シェルの距離:40mm(20×2))以上とする必要がある。
(6) Reason for the lower limit of the short side length of the casting space in the mold If the short side length (slab thickness) D of the casting space in the mold is less than 150 mm, it is not preferable for the following reasons.
That is, if the slab cross-sectional area becomes too small, the amount of fluctuation of the molten metal surface becomes large for the same variation of casting amount due to the problem of molten metal surface controllability, and the nail depth of 1 mm or more caused by the water wrinkles The occurrence frequency of (1) cannot be obtained. In addition, the mold flux is likely to be caught or bitten due to the fluctuation of the molten metal surface. Furthermore, the outer diameter of a general immersion nozzle is determined by the wall thickness (20 mm or more) determined from durability, throughput: 5.4 t / min (150 mm thickness, 2200 mm width, Vc: 2.1 m / min or more) to 14.5 t / min ( 240 mm thickness, 2200 mm width, Vc: ~ 3.5 m / min) is determined by the sum of the inner diameters (70 to 130 mm) determined from the viewpoint of ensuring. Here, if the short side length (slab thickness) D is too small, the distance between the outer wall of the immersion nozzle and the long side solidified shell becomes too narrow (<20 mm), the flow between them becomes uneven, and vertical cracks occur. Cause. In extreme cases, the solidified shell contacts and adheres to the nozzle, leading to breakout. Therefore, the short side length (slab thickness) D is 150 mm (inner diameter: 70 mm + outer wall total thickness: 40 mm (20 × 2) + distance between the outer wall of the immersion nozzle and the long side solidified shell: 40 mm (20 × 2)) or more. There is a need.

そこで、本発明では、鋳型内鋳造空間の短辺長さ(スラブ厚み)は、 150〜240 mmの範囲に限定したのである。   Therefore, in the present invention, the short side length (slab thickness) of the casting space in the mold is limited to the range of 150 to 240 mm.

なお、鋳型内鋳造空間の長辺長さ(スラブ幅)は、特に制限されるものではなく、通常の冷延鋼板向けの長さであればよく、 900〜2200mm程度とするのが好ましい。
また、鋳型の上下方向の高さは、特に規定しないが、鋳造速度:2.0m/min 超の条件で鋳造した場合においても、鋳型内を抜けた鋳片がバルジングしない程度の厚みの凝固シェルを生成させる必要があることから、800mm から1000mm程度とするのが好ましい。
The long side length (slab width) of the casting space in the mold is not particularly limited, and may be a length for a normal cold-rolled steel sheet, and is preferably about 900 to 2200 mm.
The height of the mold in the vertical direction is not specified, but a solidified shell with a thickness sufficient to prevent bulging of the slab that has passed through the mold even when cast at a casting speed of more than 2.0 m / min. Since it needs to be generated, it is preferable that the thickness is about 800 mm to 1000 mm.

また、本発明が対象とする鋼種は、C含有量が0.07〜0.22mass%のいわゆる中炭素鋼である。
ちなみに、C以外の中炭素鋼の代表組成を掲げると、次のとおりである。
Si:0.02〜0.75mass%,Mn:0.3 〜2.1 mass%,P:0.001 〜0.095 mass%, S:0.001〜0.020 mass%, Al:0.01〜0.065 mass%, Ti:0.001 〜0.30mass%。
Further, the steel type targeted by the present invention is a so-called medium carbon steel having a C content of 0.07 to 0.22 mass%.
Incidentally, the typical composition of medium carbon steel other than C is as follows.
Si: 0.02 to 0.75 mass%, Mn: 0.3 to 2.1 mass%, P: 0.001 to 0.095 mass%, S: 0.001 to 0.020 mass%, Al: 0.01 to 0.065 mass%, Ti: 0.001 to 0.30 mass%.

鋳造した溶鋼の組成は、C:0.10mass%、Mn:0.20mass%、Si:0.3 mass%、P:0.01mass%、S:0.01mass%およびAl:0.01mass%を含み、残部は実質的にFeの組成である。また、タンディッシュにおける溶鋼過熱度は21℃とした。モールドフラックスとしては、表1および表2に示すものを用いた。フラックスの残部は、表中の塩基度の比で示されているCaOとSiO2である。鋳造速度は 1.5〜3.0 m/min の範囲で実施したが、各々の条件で十分比較できる鋳片長さが得られた 2.1および2.4 m/min における結果を採用した。 The composition of the cast molten steel includes C: 0.10 mass%, Mn: 0.20 mass%, Si: 0.3 mass%, P: 0.01 mass%, S: 0.01 mass%, and Al: 0.01 mass%, and the balance is substantially The composition of Fe. In addition, the degree of superheated molten steel in the tundish was 21 ° C. As the mold flux, those shown in Table 1 and Table 2 were used. The balance of the flux is CaO and SiO 2 indicated by the basicity ratio in the table. The casting speed was 1.5 to 3.0 m / min, but the results were obtained at 2.1 and 2.4 m / min, where slab lengths that were sufficiently comparable under each condition were obtained.

また、調査項目は次のとおりである。
縦割れ発生と因果関係があるとされるモールドフラックスの結晶化について調査し、X線回折法によりフラックスフィルム中の結晶の比率を求めた。
本発明のような高いCaOとSiO2の組成比のフラックスを用いる場合、鋳造初期に凝固シェルが潤滑不良により鋳型内に拘束され、場合によってはブレークアウトに至ることから、初期の潤滑状態の指標として鋳片表面に凝固シェルの拘束した痕跡がどの程度存在するかを鋳片:1000m当たりの個数の百分率で示す。また、縦割れそのものの発生頻度を鋳片:1000m当たりの縦割れ個数の百分率で示す。
The survey items are as follows.
The crystallization of the mold flux, which is considered to be causally related to the occurrence of vertical cracks, was investigated, and the ratio of crystals in the flux film was determined by the X-ray diffraction method.
When using a flux having a high composition ratio of CaO and SiO 2 as in the present invention, the solidified shell is restrained in the mold due to poor lubrication at the beginning of casting, and sometimes breaks out. As the percentage of the number of slabs per 1000 m, it indicates how much traces of the solidified shell are present on the slab surface. Moreover, the frequency of occurrence of vertical cracks is shown as a percentage of the number of vertical cracks per 1000 m of slab.

まず、表1を用いて説明する。同表では、比較例として、モールドフラックスのCaOとSiO2の組成比(塩基度)およびTiO2,MnO,Al2O3 量が、本発明の適合範囲よりそれぞれ大きい場合、小さい場合を掲げた。 First, a description will be given using Table 1. In the table, as a comparative example, the case where the composition ratio (basicity) of CaO and SiO 2 and the amounts of TiO 2 , MnO, and Al 2 O 3 of the mold flux are larger and smaller than the applicable range of the present invention are listed. .

Figure 2005152931
Figure 2005152931

Figure 2005152931
Figure 2005152931

Figure 2005152931
Figure 2005152931

Figure 2005152931
Figure 2005152931

表1に示したとおり、CaOとSiO2の組成比が 1.4に満たない場合(比較例1)には、十分な縦割れ防止効果は得られなかった。また、CaOとSiO2の組成比が 2.0を超えた場合(比較例2)には、縦割れ抑制効果は得られたものの、鋳造初期において凝固シェルの拘束が発生したことが確認された。
これに対し、発明例1および2では、安定な鋳造と縦割れ抑制が実現された。同様に、発明例3〜34に示すように、モールドフラックス中のTiO2,MnO,Al2O3 量が適合範囲を満足している場合には、縦割れ発生の頻度は皆無か、少なくとも比較例1〜34に対して著しい改善効果を示している。
As shown in Table 1, when the composition ratio of CaO and SiO 2 was less than 1.4 (Comparative Example 1), a sufficient vertical crack prevention effect was not obtained. In addition, when the composition ratio of CaO and SiO 2 exceeded 2.0 (Comparative Example 2), it was confirmed that restraint of the solidified shell occurred at the initial stage of casting although the effect of suppressing vertical cracking was obtained.
In contrast, in Invention Examples 1 and 2, stable casting and suppression of vertical cracks were realized. Similarly, as shown in Invention Examples 3 to 34, when the amount of TiO 2 , MnO, Al 2 O 3 in the mold flux satisfies the conforming range, there is no frequency of occurrence of vertical cracks, at least compared. The remarkable improvement effect is shown with respect to Examples 1-34.

次に、表2を用いて説明する。同表では、比較例として、Na2O,F,MgOが本発明の適合範囲よりそれぞれ大きい場合、小さい場合を掲げた。 Next, it demonstrates using Table 2. FIG. In the table, as a comparative example, Na 2 O, F, and MgO are listed as being larger or smaller than the applicable range of the present invention.

Figure 2005152931
Figure 2005152931

Figure 2005152931
Figure 2005152931

Figure 2005152931
Figure 2005152931

Na2O、F、MgOが本発明の適合範囲を外れる比較例35〜74はいずれも、凝固相中の結晶の比率が小さく、均一冷却効果が得られなかったため、縦割れ発生頻度は大きいままであった。
これに対し、発明例35〜42では、比較例に比べてフラックスフィルム中の結晶比率が高く、安定な鋳造と縦割れ抑制を実現することができた。
In Comparative Examples 35 to 74 in which Na 2 O, F, and MgO deviate from the applicable range of the present invention, since the ratio of crystals in the solidified phase was small and a uniform cooling effect was not obtained, the occurrence frequency of vertical cracks remained high. Met.
On the other hand, in the inventive examples 35 to 42, the crystal ratio in the flux film was higher than that in the comparative example, and stable casting and suppression of vertical cracks could be realized.

Claims (3)

連続鋳造設備を用いて、C含有量が0.07〜0.22mass%の中炭素鋼スラブを製造するに際し、
上記連続鋳造設備の鋳型内鋳造空間の短辺長さ:150 〜240 mm、鋳造速度:2.0 m/min超の条件下で、モールドフラックスとして、TiO2:0.5 〜8.0 mass%、MnO:0.6 〜4.0mass%および Al2O3:2.0 〜6.0 mass%のうちから選んだ少なくとも2成分を含有し、かつ残余成分のうちCaOとSiO2の比が 1.4〜2.0 の範囲を満足するフラックスを使用することを特徴とする中炭素鋼のスラブ連続鋳造方法。
When producing medium carbon steel slabs with a C content of 0.07 to 0.22 mass% using continuous casting equipment,
The short side length of the casting space in the mold of the above continuous casting equipment: 150 to 240 mm, casting speed: more than 2.0 m / min, as mold flux, TiO 2 : 0.5 to 8.0 mass%, MnO: 0.6 to 4.0 mass% and Al 2 O 3 : Use a flux that contains at least two components selected from 2.0 to 6.0 mass% and that satisfies the ratio of CaO and SiO 2 of the remaining components in the range of 1.4 to 2.0. A method for continuously casting slabs of medium carbon steel characterized by the above.
前記モールドフラックスが、さらに、Na2O換算で 4.0〜12.0mass%のNa、 6.0〜15.0mass%のFおよび0〜2.0 mass%のMgOを含有する組成になることを特徴とする請求項1記載の中炭素鋼のスラブ連続鋳造方法。 2. The composition according to claim 1, wherein the mold flux further comprises a composition containing 4.0 to 12.0 mass% Na, 6.0 to 15.0 mass% F, and 0 to 2.0 mass% MgO in terms of Na 2 O. Continuous carbon steel slab casting method. 前記鋳造速度を 2.4 m/min以上とすることを特徴とする請求項1または2記載の中炭素鋼のスラブ連続鋳造方法。   The slab continuous casting method for medium carbon steel according to claim 1 or 2, wherein the casting speed is 2.4 m / min or more.
JP2003394182A 2003-11-25 2003-11-25 Slab continuous casting method for medium carbon steel Expired - Fee Related JP4569099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394182A JP4569099B2 (en) 2003-11-25 2003-11-25 Slab continuous casting method for medium carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394182A JP4569099B2 (en) 2003-11-25 2003-11-25 Slab continuous casting method for medium carbon steel

Publications (2)

Publication Number Publication Date
JP2005152931A true JP2005152931A (en) 2005-06-16
JP4569099B2 JP4569099B2 (en) 2010-10-27

Family

ID=34720331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394182A Expired - Fee Related JP4569099B2 (en) 2003-11-25 2003-11-25 Slab continuous casting method for medium carbon steel

Country Status (1)

Country Link
JP (1) JP4569099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229803A (en) * 2006-02-01 2007-09-13 Nippon Steel Corp Powder for continuous casting and continuous casting method for steel
JP2010227944A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Continuous casting method for steel cast slab
CN104907513A (en) * 2015-06-09 2015-09-16 石家庄钢铁有限责任公司 Method for continuous casting of large rectangular billet of low-carbon hadifield steel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058105A (en) * 1996-08-22 1998-03-03 Nippon Steel Metal Prod Co Ltd Method for continuous casting steel having large shrinkage quantity in solidified process
JPH10216907A (en) * 1997-01-31 1998-08-18 Nkk Corp Mold powder for continuous casting
JPH10263766A (en) * 1997-03-25 1998-10-06 Kawasaki Steel Corp Mold flux for continuously casting steel
JPH11320058A (en) * 1997-08-26 1999-11-24 Sumitomo Metal Ind Ltd Mold powder for continuous casting and continuous casting method
JP2000102846A (en) * 1998-09-30 2000-04-11 Nkk Corp Mold powder for continuous casting
JP2000351049A (en) * 1999-06-11 2000-12-19 Sumitomo Metal Ind Ltd Continuous casting method
JP2001293543A (en) * 2000-04-11 2001-10-23 Nkk Corp Method for continuously casting steel
JP2002239693A (en) * 2001-02-09 2002-08-27 Sumitomo Metal Ind Ltd Mold powder for continuous casting
JP2003170259A (en) * 2001-12-04 2003-06-17 Kawasaki Steel Corp High speed casting method for medium carbon steel slab
JP2003334636A (en) * 2002-05-21 2003-11-25 Jfe Steel Kk High speed continuous casting method for medium carbon steel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058105A (en) * 1996-08-22 1998-03-03 Nippon Steel Metal Prod Co Ltd Method for continuous casting steel having large shrinkage quantity in solidified process
JPH10216907A (en) * 1997-01-31 1998-08-18 Nkk Corp Mold powder for continuous casting
JPH10263766A (en) * 1997-03-25 1998-10-06 Kawasaki Steel Corp Mold flux for continuously casting steel
JPH11320058A (en) * 1997-08-26 1999-11-24 Sumitomo Metal Ind Ltd Mold powder for continuous casting and continuous casting method
JP2000102846A (en) * 1998-09-30 2000-04-11 Nkk Corp Mold powder for continuous casting
JP2000351049A (en) * 1999-06-11 2000-12-19 Sumitomo Metal Ind Ltd Continuous casting method
JP2001293543A (en) * 2000-04-11 2001-10-23 Nkk Corp Method for continuously casting steel
JP2002239693A (en) * 2001-02-09 2002-08-27 Sumitomo Metal Ind Ltd Mold powder for continuous casting
JP2003170259A (en) * 2001-12-04 2003-06-17 Kawasaki Steel Corp High speed casting method for medium carbon steel slab
JP2003334636A (en) * 2002-05-21 2003-11-25 Jfe Steel Kk High speed continuous casting method for medium carbon steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229803A (en) * 2006-02-01 2007-09-13 Nippon Steel Corp Powder for continuous casting and continuous casting method for steel
JP4751283B2 (en) * 2006-02-01 2011-08-17 新日本製鐵株式会社 Continuous casting powder and steel continuous casting method
JP2010227944A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Continuous casting method for steel cast slab
CN104907513A (en) * 2015-06-09 2015-09-16 石家庄钢铁有限责任公司 Method for continuous casting of large rectangular billet of low-carbon hadifield steel

Also Published As

Publication number Publication date
JP4569099B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP2006247712A (en) Mold powder for continuous casting of steel
JP4569099B2 (en) Slab continuous casting method for medium carbon steel
JP4508087B2 (en) Continuous casting method and continuous cast slab
JP4932533B2 (en) Steel slab surface modification method, surface-modified steel slab and processed product
WO2018055799A1 (en) Continuous steel casting method
JP4337565B2 (en) Steel slab continuous casting method
JP2009136909A (en) Method for producing continuously cast slab
JP2008212972A (en) METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
WO2018056322A1 (en) Continuous steel casting method
JPH09276994A (en) Mold for continuous casting
JP2008261036A (en) Method for cooling continuously cast bloom
JP4303578B2 (en) Method for reducing center defects in continuous cast slabs of steel
JP4289205B2 (en) Continuous casting method and continuous cast slab
JP3876917B2 (en) Steel continuous casting method
JP2006247672A (en) MOLD FLUX FOR CONTINUOUS CASTING TO Ni BASED MOLTEN METAL AND CONTINUOUS CASTING METHOD FOR Ni MATERIAL
JP4717357B2 (en) High-speed continuous casting method for carbon steel
JP2003334635A (en) High-speed casting method for medium carbon steel
JP4527832B2 (en) Steel continuous casting method
JP2005152973A (en) HIGH SPEED CASTING METHOD FOR HIGH Al STEEL
JP4462052B2 (en) Continuous casting mold and steel continuous casting method
JP4609119B2 (en) Steel continuous casting method
JP6146346B2 (en) Mold for continuous casting of steel and continuous casting method
JP2008207201A (en) Method for manufacturing continuously cast slab
JP5626438B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees