JP2003251438A - Method for continuously casting cast slab having little blow hole and steel material obtained by working the cast slab - Google Patents

Method for continuously casting cast slab having little blow hole and steel material obtained by working the cast slab

Info

Publication number
JP2003251438A
JP2003251438A JP2002057655A JP2002057655A JP2003251438A JP 2003251438 A JP2003251438 A JP 2003251438A JP 2002057655 A JP2002057655 A JP 2002057655A JP 2002057655 A JP2002057655 A JP 2002057655A JP 2003251438 A JP2003251438 A JP 2003251438A
Authority
JP
Japan
Prior art keywords
molten steel
slab
continuous casting
cast slab
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002057655A
Other languages
Japanese (ja)
Other versions
JP3802822B2 (en
Inventor
Takashi Morohoshi
隆 諸星
Akifumi Seze
昌文 瀬々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002057655A priority Critical patent/JP3802822B2/en
Publication of JP2003251438A publication Critical patent/JP2003251438A/en
Application granted granted Critical
Publication of JP3802822B2 publication Critical patent/JP3802822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously casting a cast slab having little blow hole by which the cast slab having excellent quality is produced by restraining the catch of argon gas in molten steel into a solidified shell by a simple method and at a low cost to prevent the surface defect, and the quality of a steel material obtained by applying a rolling-work to the cast slab can be improved, and to provide the steel material obtained by working the cast slab. <P>SOLUTION: In the method for continuously casting the cast slab, by which the molten steel having a composition causing crystallization of γ-phase as a primary crystal at the solidification is received into a tundish from a ladle and poured into a water-cooled mold through a nozzle to cast the cast slab, the continuous casting is performed after adjusting the component concentrations in the molten steel so that a Z value calculated with the following formula becomes ≤2,500: Z=Σy(i)×(1-k(i))/k(i)×c(i) [wherein, y(i) is a concentration factor indicating the effect of an (i) element exerted to a surface tension in the molten steel and is a positive value in the case of lowering the surface tension at the addition of the element adding time; k(i) is an equilibrium distribution factor of the (i) element in the molten steel; c(i) is a mass% of the (i) element; and Σ is the total of the constituting elements in the molten steel]. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気泡性の欠陥が少
なく鋳片の表層品質、および鋼材の表面品質に優れた鋳
片の連続鋳造方法及びその鋳片を加工した鋼材に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method of a slab, which is excellent in the surface quality of the slab and the surface quality of the slab and has a small number of defects in the bubble property, and a steel product obtained by processing the slab.

【0002】[0002]

【従来の技術】従来、溶鋼鍋からタンディッシュに受湯
し、タンディッシュの底部に設けた浸漬ノズルを介して
鋳型に注湯して鋳型による冷却を行なった後、支持セグ
メントに配置したスプレーノズルから冷却水を噴霧しな
がら凝固させて鋳片の製造が行われる。この浸漬ノズル
を用いて溶鋼を鋳型に注湯する際、溶鋼中の介在物が浸
漬ノズル内に付着するため、吐出口が閉塞して注湯が不
可能になったり、溶鋼の吐出流が偏流して鋳造操業の継
続に支障をきたす事態を招く。また、付着した介在物が
剥離して溶鋼中に混入して介在物に起因した欠陥を生じ
る。
2. Description of the Related Art Conventionally, a spray nozzle is placed in a supporting segment after receiving hot water from a molten steel ladle into a tundish, pouring it into a mold through an immersion nozzle provided at the bottom of the tundish, and cooling the mold. A slab is manufactured by solidifying while cooling water is sprayed from. When pouring molten steel into the mold using this immersion nozzle, inclusions in the molten steel adhere to the inside of the immersion nozzle, blocking the discharge port and making pouring impossible, or the molten steel discharge flow is uneven. This may cause a situation in which the casting operation is interrupted and the continuation of the casting operation is hindered. In addition, the adhered inclusions are separated and mixed into the molten steel to cause defects due to the inclusions.

【0003】この問題を解消するため、浸漬ノズルにア
ルゴンガスを送給し、浸漬ノズルへの介在物の付着の防
止と、鋳型内の介在物をアルゴンガス気泡によって浮上
させて溶鋼中から分離し、介在物に起因する欠陥を防止
することが行われている。しかし、アルゴンガスを吹き
込むことによって浸漬ノズル内の介在物の付着を抑制す
ることはできたが、吹き込まれたアルゴンガスの気泡が
溶鋼の凝固によって形成される凝固殻に捕捉され、この
気泡が圧延加工時に表面に露出し、線状あるいは膨れ等
の表面疵になり、製造された鋼板の品質を損なう問題が
生じた。
In order to solve this problem, argon gas is fed to the immersion nozzle to prevent the inclusions from adhering to the immersion nozzle, and the inclusions in the mold are floated by argon gas bubbles and separated from the molten steel. , Defects caused by inclusions are prevented. However, although it was possible to suppress the adhesion of inclusions in the immersion nozzle by blowing argon gas, the bubbles of the blown argon gas were captured in the solidified shell formed by the solidification of the molten steel, and the bubbles were rolled. There was a problem that it was exposed on the surface during processing and became surface defects such as linear or swollen, which impaired the quality of the manufactured steel sheet.

【0004】この対策として、一般的には、鋳造速度を
遅くし、鋳型内の溶鋼中のアルゴンガス気泡を浮上さ
せ、気泡が凝固殻に捕捉されるのを防止することが行わ
れている。更に、特開平9−192801号公報、特開
2000−202603号公報等のように、移動磁場型
等の通常の電磁攪拌装置を用い、鋳型内の溶鋼の吐出流
の下向きの流れを抑制して溶鋼中のアルゴンガス気泡の
浮上を促進したり、鋳型の内壁に沿って旋回する溶鋼の
流れを形成し、凝固殻の近傍のアルゴンガス気泡や介在
物の凝固殻への付着を防止して清浄な凝固殻を形成し、
気泡欠陥、介在物欠陥等を防止することが行われてい
る。
As a countermeasure against this, generally, the casting speed is slowed down, and the argon gas bubbles in the molten steel in the mold are levitated to prevent the bubbles from being trapped by the solidified shell. Further, as in JP-A-9-192801, JP-A-2000-202603, etc., an ordinary electromagnetic stirrer such as a moving magnetic field type is used to suppress the downward flow of the molten steel discharge flow in the mold. It promotes the floating of argon gas bubbles in the molten steel and forms the flow of molten steel that swirls along the inner wall of the mold to prevent the argon gas bubbles and inclusions near the solidified shell from adhering to the solidified shell for cleaning. Form a solidified shell,
Prevention of bubble defects, inclusion defects, etc. has been carried out.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、鋳造速
度を遅くして鋳型内の溶鋼中のアルゴンガス気泡を浮上
させる方法では、鋳造速度が大幅に低下し、連続鋳造装
置の生産性が低下したり、一回当たりの溶鋼量が大きい
場合、この溶鋼が放熱によって温度低下を生じ、鋳造末
期の溶鋼の温度が目標温度から低目側に外れ、低温度に
起因した地金付着や浸漬ノズル詰まり等から鋳造操業の
継続に支障を生じる。更に、特開平9−192801号
公報、特開2000−202603号公報等のように、
移動磁場型等の通常の電磁攪拌装置を用い、鋳型内の溶
鋼の吐出流の下向きの流れを抑制して溶鋼中のアルゴン
ガス気泡の浮上を促進したり、鋳型の内壁に沿って旋回
する溶鋼の流れを形成する方法では、上向きの溶鋼流に
よるパウダーの巻き込み、あるいは旋回流の下方に体積
する介在物や気泡が存在し、これ等が新たな欠陥が生じ
たり、電磁攪拌等の装置の設置に多大の費用を要し、使
用中の電力消費の増加等の問題がある。
However, in the method of slowing down the casting speed to float up the argon gas bubbles in the molten steel in the mold, the casting speed is significantly lowered, and the productivity of the continuous casting apparatus is lowered. When the amount of molten steel per one time is large, this molten steel causes a temperature drop due to heat radiation, and the temperature of the molten steel at the end of casting deviates from the target temperature to the lower side, causing metal adhesion and clogging of immersion nozzle due to the low temperature. Will interfere with the continuation of the casting operation. Furthermore, as in JP-A-9-192801 and JP-A-2000-202603,
Using a normal electromagnetic stirrer such as a moving magnetic field type, the downward flow of molten steel in the mold is suppressed to promote downward floating of argon gas bubbles in the molten steel, and the molten steel swirls along the inner wall of the mold. In the method of forming the flow of the above, there is inclusion of powder by the upward molten steel flow, or there are inclusions and air bubbles that volume below the swirling flow, which causes new defects and installation of equipment such as electromagnetic stirring. However, there is a problem such as an increase in power consumption during use.

【0006】本発明はかかる事情に鑑みてなされたもの
で、簡単で、しかも安価に溶鋼中のアルゴンガス気泡が
凝固殻に捕捉されるのを抑制し、表面欠陥を防止して優
れた品質の鋳片を製造し、この鋳片を圧延加工を施した
鋼材の品質を向上することができる気泡欠陥の少ない鋳
片の連続鋳造方法及びその鋳片を加工した鋼材を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to easily and inexpensively prevent the argon gas bubbles in molten steel from being trapped in the solidified shell, prevent surface defects, and have excellent quality. It is an object of the present invention to produce a slab and to provide a continuous casting method of a slab with few bubble defects capable of improving the quality of a steel product obtained by rolling the slab and a steel product obtained by processing the slab. .

【0007】[0007]

【課題を解決するための手段】前記目的に沿う本発明に
係る気泡欠陥の少ない鋳片の連続鋳造方法は、凝固時の
初晶としてγ相が晶出する組成の溶鋼を、取鍋からタン
ディッシュに受湯し、ノズルを介して前記溶鋼を水冷鋳
型に注湯して鋳片を鋳造する鋳片の連続鋳造方法におい
て、前記溶鋼の成分濃度から下式により計算されるZ値
を2500以下になるように予め該溶鋼の成分濃度を調
整してから連続鋳造する。 Z=Σy(i)×(1−k(i))/k(i)×c(i) … (1) この方法により、凝固シェルの内方側の前面に形成され
る濃度境界層の表面張力勾配を小さくし、侵入した気体
の気泡が凝固シェルの内方表面に吸着するのを抑制で
き、冷却して成長した凝固シェルに捕捉される気泡を大
幅に減少することができる。Z値が2500を超える
と、溶鋼が凝固した凝固シェルの内方表面の表面張力勾
配が大きくなり、凝固シェルの内方表面への気泡の付着
個数が増加する。なお、y(i)は溶鋼の表面張力に及
ぼすi元素の影響を表す濃度係数であり、添加した際に
表面張力を低下させる場合を正の値とする。k(i)は
溶鋼中のi元素の平衡分配係数、c(i)はi元素の質
量%、Σは溶鋼中の構成元素の総和を示す。
The continuous casting method for a slab with few bubble defects according to the present invention in accordance with the above-mentioned object is to prepare molten steel having a composition in which a γ phase is crystallized as a primary crystal during solidification from a ladle. In a continuous casting method of a slab, in which a molten steel is poured into a water-cooled mold through a nozzle to cast a slab, a Z value calculated from the component concentration of the molten steel by the following formula is 2500 or less. In this case, the component concentration of the molten steel is adjusted beforehand so that continuous casting is performed. Z = Σy (i) × (1-k (i)) / k (i) × c (i) (1) By this method, the surface of the concentration boundary layer formed on the inner front surface of the solidified shell. The tension gradient can be made small, and the bubbles of invading gas can be suppressed from adsorbing to the inner surface of the solidified shell, and the bubbles trapped in the solidified shell grown by cooling can be greatly reduced. When the Z value exceeds 2500, the surface tension gradient of the inner surface of the solidified shell in which the molten steel is solidified increases, and the number of bubbles adhered to the inner surface of the solidified shell increases. It should be noted that y (i) is a concentration coefficient representing the effect of the i element on the surface tension of molten steel, and a positive value is given when the surface tension is reduced when added. k (i) is the equilibrium partition coefficient of the i element in the molten steel, c (i) is the mass% of the i element, and Σ is the sum of the constituent elements in the molten steel.

【0008】また、本発明に係る気泡欠陥の少ない鋳片
の連続鋳造方法は、凝固時の初晶としてγ相が晶出する
組成の溶鋼を、取鍋からタンディッシュに受湯し、ノズ
ルを介して前記溶鋼を水冷鋳型に注湯して鋳片を鋳造す
る鋳片の連続鋳造方法において、前記溶鋼の成分濃度か
ら下式により計算されるM値を2500以下になるよう
に予め該溶鋼の成分濃度を調整してから連続鋳造する。
この方法により、一部の特定成分である炭素(C)、硫
黄(S)、窒素(N)、酸素(O)の溶鋼中における濃
度を調整することにより、凝固シェルの内方側の前面に
形成される濃度境界層の表面張力勾配を小さくし、侵入
した気体の気泡が凝固シェルの内方表面に吸着するのを
抑制することができる。M値が2500を超えると、溶
鋼が凝固した凝固シェルの内方表面の表面張力勾配が大
きくなり、凝固シェルの内方表面への気泡の付着個数が
増加する。 M=36C質量%+303066S質量%+5804N質量%+845197 O質量% … (2) なお、Cは溶鋼中に含まれる炭素、Sは溶鋼中に含まれ
る硫黄、Nは溶鋼中に含まれる窒素、Oは溶鋼中に含ま
れる酸素を示す。
Further, in the continuous casting method of a slab with few bubble defects according to the present invention, molten steel having a composition in which a γ phase is crystallized out as a primary crystal at the time of solidification is received in a tundish from a ladle, and a nozzle is used. In a continuous casting method of a cast piece in which the molten steel is poured into a water-cooled mold to cast a cast piece, the M value calculated from the component concentration of the molten steel by the following formula is 2500 or less in advance of the molten steel. Continuously casting after adjusting the component concentrations.
By this method, by adjusting the concentration of carbon (C), sulfur (S), nitrogen (N), and oxygen (O), which are some specific components, in the molten steel, the internal front surface of the solidified shell is adjusted. It is possible to reduce the surface tension gradient of the formed concentration boundary layer and suppress the adsorption of the invading gas bubbles on the inner surface of the solidified shell. When the M value exceeds 2500, the surface tension gradient of the inner surface of the solidified shell in which the molten steel is solidified increases, and the number of bubbles adhered to the inner surface of the solidified shell increases. M = 36 C mass% + 303066 S mass% + 5804 N mass% + 845197 O mass% (2) In addition, C is carbon contained in molten steel, S is sulfur contained in molten steel, N is nitrogen contained in molten steel, and O is Indicates oxygen contained in molten steel.

【0009】さらに、本発明に係る気泡欠陥の少ない鋳
片の連続鋳造方法において、前記ノズルから溶鋼中に供
給するアルゴンガスを0.5NL/分以上とすることが
望ましい。これにより、タンディッシュノズルや浸漬ノ
ズルに付着するAl2 3 系の介在物の付着を抑制した
り、付着したAl2 3 系の介在物の剥離に起因した鋳
片の欠陥を防止することができ、鋳型内を浮遊する介在
物を浮上させて除去することができる。アルゴンガスの
供給量が0.5NL/分未満になると、ノズルや浸漬ノ
ズルに付着するAl2 3 系の介在物を抑制する効果が
低下し、溶鋼の吐出流の変動やノズル閉塞を生じる。
Further, in the continuous casting method of a slab with few bubble defects according to the present invention, it is desirable that the argon gas supplied from the nozzle into the molten steel be 0.5 NL / min or more. Thus, it is possible to suppress the adhesion of Al 2 O 3 -based inclusions that adhere to the tundish nozzle or the dipping nozzle, and to prevent the defects of the slab caused by the peeling of the adhered Al 2 O 3 -based inclusions. The inclusions floating in the mold can be floated and removed. If the supply rate of the argon gas is less than 0.5 NL / min, the effect of suppressing the Al 2 O 3 -based inclusions adhering to the nozzle or the dipping nozzle is reduced, and fluctuations in the molten steel discharge flow and nozzle clogging occur.

【0010】また、本発明に係る気泡欠陥の少ない鋼材
は、凝固時の初晶としてγ相が晶出する組成の溶鋼を、
取鍋からタンディッシュに受湯し、ノズルを介して前記
溶鋼を水冷鋳型に注湯して鋳片を鋳造した鋳片に圧延加
工を施した鋼材において、前記溶鋼の成分濃度から下式
により計算されるZ値を2500以下になるように予め
該溶鋼の成分濃度を調整してから連続鋳造した鋳片を圧
延加工して製造する。この鋼材は、凝固シェルに捕捉さ
れる気泡を抑制した鋳片を圧延加工して製造しているの
で、鋼材の表面に発生する気泡に起因した表面欠陥が少
なく、外観性の良好な製品を製造することができる。 Z=Σy(i)×(1−k(i))/k(i)×c(i) … (1) ここで、y(i)は溶鋼の表面張力に及ぼすi元素の影
響を表す濃度係数であり、添加した際に表面張力を低下
させる場合を正の値とする。k(i)は溶鋼中のi元素
の平衡分配係数、c(i)はi元素の質量%、Σは溶鋼
中の構成元素の総和を示す。
The steel material having few bubble defects according to the present invention is a molten steel having a composition in which a γ phase is crystallized as a primary crystal during solidification.
In a steel material obtained by receiving hot water from a ladle in a tundish, pouring the molten steel into a water-cooled mold through a nozzle and casting a slab and rolling the slab, the concentration of the molten steel is calculated by the following formula. The component concentration of the molten steel is adjusted in advance so that the Z value is 2500 or less, and the continuously cast slab is rolled to manufacture. This steel material is manufactured by rolling a slab that suppresses air bubbles trapped in the solidified shell, so there are few surface defects due to air bubbles that occur on the surface of the steel material, and products with good appearance are manufactured. can do. Z = Σy (i) × (1-k (i)) / k (i) × c (i) (1) where y (i) is the concentration representing the effect of the i element on the surface tension of the molten steel. The coefficient is a positive value when the surface tension is reduced when added. k (i) is the equilibrium partition coefficient of the i element in the molten steel, c (i) is the mass% of the i element, and Σ is the sum of the constituent elements in the molten steel.

【0011】[0011]

【発明の実施の形態】以下、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は、本発明の一実施の形態に係
る溶鋼の連続鋳造装置の全体図である。この図1に示す
ように、本発明の一実施の形態に係る溶鋼の連続鋳造に
用いられる連続鋳造装置Aにおいて、タンディッシュ1
内の溶鋼2は鋳型3に浸漬ノズル4を介して注湯され
る。このとき、溶鋼中の介在物のノズルへの付着による
ノズル閉塞を防止するため、さらには、連鋳鋳型内の介
在物を浮上分離させるために浸漬ノズル4内にアルゴン
ガスが吹き込まれる。鋳型内に注湯された溶鋼2は、鋳
型3および複数の支持ロール群より構成される支持セグ
メント5により支持されながら、支持セグメント5に付
設した図示しない冷却ノズルからの冷却水の噴射によ
り、外側から凝固が進行し、ピンチロール6により鋳片
7として引き抜きが行われる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments embodying the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is an overall view of a molten steel continuous casting apparatus according to an embodiment of the present invention. As shown in FIG. 1, in a continuous casting apparatus A used for continuous casting of molten steel according to an embodiment of the present invention, a tundish 1
The molten steel 2 therein is poured into the mold 3 through the immersion nozzle 4. At this time, argon gas is blown into the immersion nozzle 4 in order to prevent nozzle clogging due to adhesion of inclusions in the molten steel to the nozzles, and to float and separate inclusions in the continuous casting mold. The molten steel 2 poured into the mold is supported outside by the injection of cooling water from a cooling nozzle (not shown) attached to the support segment 5 while being supported by the support segment 5 composed of the mold 3 and a plurality of support roll groups. The solidification progresses from then, and the pinch roll 6 pulls it out as a cast piece 7.

【0012】このようにして、鋳造された鋳片の凝固シ
ェルにはアルゴンガスが捕捉され、鋳造後に表面に露出
するか表層に残留する。また、このような鋳片を加熱処
理・圧延加工すると、アルゴンガスを起因とした線状の
表面疵や膨れ状の表面欠陥が発生しやすく、鋼板の品位
が大きく損なわれる。この対策として、鋳型内のアル
ゴンガスの浮上性を確保するために鋳造速度を低下させ
る方法が考えられるが、この方法では鋳造速度を低下さ
せるため生産性が損なわれるといった副次的な問題が生
じる。ノズルの吐出角度を溶鋼が鋳型内の溶鋼内の溶
鋼プールの深部に侵入しないように上向きに調整する方
法が考えられるが、この方法でもモールドフラックスを
巻き込み易くなるため、モールドフラックス起因の表面
欠陥が増えるといった問題が生じる。
In this way, the argon gas is trapped in the solidified shell of the cast slab and is exposed on the surface or remains on the surface layer after casting. Further, when such a slab is subjected to heat treatment / rolling, linear surface flaws and swollen surface defects caused by argon gas are likely to occur, and the quality of the steel sheet is greatly impaired. As a countermeasure for this, a method of reducing the casting speed in order to secure the floatability of the argon gas in the mold is conceivable, but this method causes a secondary problem that productivity is impaired because the casting speed is reduced. . A possible method is to adjust the nozzle discharge angle upward so that molten steel does not penetrate into the deep portion of the molten steel pool in the molten steel in the mold, but this method also facilitates the inclusion of mold flux, so surface defects caused by mold flux may occur. There is a problem of increase.

【0013】鋳型内の溶鋼を電磁攪拌することで、ア
ルゴンガスの捕捉を防止する方法も考えられるが、電磁
攪拌装置を設置するための設備費用や電力を要するなど
の問題がある。また、アルゴンガス吹き込み量自体を
低減する方法も考えられるが、アルゴンガスの吹き込み
量としては、前記ノズルへの介在物の付着防止効果と連
鋳鋳型内での介在物の浮上分離効果の両方を満足するた
めに、本発明者らの研究によると0.5L/min以上
が必要であり必ずしも十分な対策にならない場合もあ
る。
A method of preventing the capture of argon gas by electromagnetically stirring the molten steel in the mold is conceivable, but there are problems such as facility cost and electric power for installing the electromagnetic stirrer. A method of reducing the amount of argon gas blown in itself is also conceivable, but as the amount of argon gas blown, both the effect of preventing the inclusions of inclusions from the nozzle and the effect of floating inclusions in the continuous casting mold are separated. In order to satisfy the requirement, according to the study by the present inventors, 0.5 L / min or more is necessary, and it may not always be a sufficient countermeasure.

【0014】そこで、発明者らは、溶鋼中のアルゴンガ
スの挙動について研究を積み重ね、以下の手段を用いる
ことで、上記課題を解決できることを知見した。すなわ
ち、溶鋼鍋からタンディッシュに溶鋼を受給し、耐火物
製の溶鋼供給用ノズルを介して、アルゴンガスを0.5
L/min以上ノズル内の溶鋼に吹き込みながら、該溶
鋼を水冷鋳型内に供給する鋼の連続鋳造方法について、
鋼の成分濃度から(1)式で計算されるZ値が2500
以下になるように予め溶鋼成分を調整した後、該溶鋼を
連続鋳造することを特徴とする鋼の連続鋳造方法。 Z=Σy(i)×(1−k(i))/k(i)×c(i) … (1) ここで、y(i)は溶鋼の表面張力に及ぼすi元素の影
響を表す濃度係数(添加した際に表面張力を低下させる
場合を正の値とする)、k(i)は溶鋼中のi元素の平
衡分配係数、c(i)はi元素の質量%、Σは溶鋼の構
成元素の総和を示す。
Therefore, the inventors of the present invention have found that the above problems can be solved by carrying out research on the behavior of argon gas in molten steel and using the following means. That is, the molten steel is received from the molten steel ladle into the tundish, and argon gas is added to 0.5 through a refractory molten steel supply nozzle.
Regarding the continuous casting method of steel in which the molten steel is supplied into the water-cooled mold while being blown into the molten steel in the nozzle at L / min or more,
The Z value calculated from formula (1) from the steel component concentration is 2500.
A method for continuous casting of steel, wherein the molten steel composition is adjusted in advance as follows, and then the molten steel is continuously cast. Z = Σy (i) × (1-k (i)) / k (i) × c (i) (1) where y (i) is the concentration representing the effect of the i element on the surface tension of the molten steel. Coefficient (a positive value is given to reduce the surface tension when added), k (i) is the equilibrium distribution coefficient of the i element in the molten steel, c (i) is the mass% of the i element, and Σ is the molten steel. The total sum of the constituent elements is shown.

【0015】前記(1)式の右辺は、鋼に含まれる成分
元素の凝固時の固液分配により、連続鋳造中の凝固シェ
ルの前面に形成される濃度境界層中に侵入したアルゴン
ガスを凝固シュルに吸引する力の大小を表すものであ
る。すなわち、刊行物:「鉄と鋼」80(1994)
p.527に示されているように、凝固シュル前面の濃
度勾配によって形成される表面張力勾配∂Y/∂Xによ
りアルゴンガスを吸引する速度Vは(3)式で表され
る。 V=−(2d/9μ)(∂Y/∂X)=−(2d/9μ)(∂Y/∂C)(∂ C/∂X ‥‥ (3) ここで、dはアルゴンガスの径、μは溶鋼の粘度、Yは
溶鋼の表面張力、Xは凝固界面からの距離である。ま
た、∂Y/∂Xは表面張力勾配、∂Y/∂Cは表面張力
の成分濃度Cの依存項、∂C/∂Xは成分濃度の勾配で
ある。
The right side of the above equation (1) solidifies the argon gas that has penetrated into the concentration boundary layer formed on the front surface of the solidification shell during continuous casting due to solid-liquid distribution during solidification of the constituent elements contained in the steel. It represents the magnitude of the force that is sucked into the surreal. That is, the publication: "Iron and Steel" 80 (1994)
p. As indicated by 527, the speed V at which the argon gas is sucked by the surface tension gradient ∂Y / ∂X formed by the concentration gradient on the front surface of the coagulation surreal is represented by the equation (3). V = − (2d / 9μ) (∂Y / ∂X) = − (2d / 9μ) (∂Y / ∂C) (∂C / ∂X ... (3) where d is the diameter of the argon gas, μ is the viscosity of molten steel, Y is the surface tension of molten steel, X is the distance from the solidification interface, ∂Y / ∂X is the surface tension gradient, and ∂Y / ∂C is the dependency term of the component concentration C of surface tension. , ∂C / ∂X are gradients of component concentrations.

【0016】凝固の定常状態を考えると、バルク溶鋼中
の成分濃度をCo、平均分配係数をkとすれば、凝固シ
ェルと溶鋼界面の成分濃度はCo/kで表され、濃度境
界層の幅をδとして直線的な濃度分布を仮定すると、濃
度勾配は次式で表される。 ∂C/∂X=(Co/k−Co)/δ=(1−k)k・Co/δ ‥‥(4) よって、(3)式は(5)式のように書き直すことがで
きる。 V=−(2d/9μ)(∂Y/∂X)=−(2d/9μ)(∂Y/∂C)(1− k)k・Co/δ ‥‥ (5)
Considering the steady state of solidification, if the component concentration in the bulk molten steel is Co and the average distribution coefficient is k, the component concentration at the solidification shell / molten steel interface is expressed by Co / k, and the width of the concentration boundary layer is expressed. Assuming that δ is δ and a linear concentration distribution is assumed, the concentration gradient is expressed by the following equation. ∂C / ∂X = (Co / k−Co) / δ = (1-k) k · Co / δ (4) Therefore, the equation (3) can be rewritten as the equation (5). V =-(2d / 9μ) (∂Y / ∂X) =-(2d / 9μ) (∂Y / ∂C) (1-k) k · Co / δ (5)

【0017】次に、(5)式の右辺の成分濃度に関する
項だけ取り出し、全ての構成元素に対して総和をとる
と、(1)式が得られる。 Z値=ΣY(i)・(1−k(i))/k(i)・C(i) ‥‥ (1) ここで、Y(i)=−∂Y/∂C(i)(mN/m/m
ass%)は鉄の表面張力Yに及ぼすi元素の影響を表
す濃度係数(添加した際に表面張力を低下させる場合を
正の値とする)で公知刊行物「マテリア、vol,36
(1997).p.47」等に示されている。k(i)
は鉄中のi元素の平衡分配係数で公知刊行物「第3版鉄
鋼便覧I,日本鉄鋼協会編(1981)、p.193」
等で示されている。C(i)はi元素の質量%、Σは構
成元素に対する総和を示す。
Next, by taking out only the term relating to the component concentration on the right side of the equation (5) and summing all the constituent elements, the equation (1) is obtained. Z value = ΣY (i) · (1-k (i)) / k (i) · C (i) (1) where Y (i) = − ∂Y / ∂C (i) (mN / M / m
(ass%) is a concentration coefficient representing the influence of the i element on the surface tension Y of iron (a positive value is given when the surface tension is reduced when added), and the known publication "Materia, vol. 36".
(1997). p. 47 "and the like. k (i)
Is a well-known publication on the equilibrium partition coefficient of the i element in iron, "3rd Edition Iron and Steel Handbook I, edited by the Iron and Steel Institute of Japan (1981), p. 193".
Etc. C (i) is the mass% of the i element, and Σ is the sum of the constituent elements.

【0018】次に、本発明者らは、種々の組成の溶鋼を
鋳造し、(1)式で計算されるZ値と鋳片に捕捉された
アルゴンガスの個数との関係を調査した結果を図2に示
す。図2は、本発明の一実施の形態に係る溶鋼の成分か
ら計算されるZ値、M値と鋳片に捕捉された気泡の個数
との関係を示す図ある。この図2に示すようにZ値を2
500以下とすることで、アルゴンガスの凝固シェルへ
の捕捉を防止し工業的に無害な0.1個/cm3 以下の
レベルまで低減できることを知見した。言い換えると、
Z値が2500以下となるように成分調整することで、
気泡性の欠陥を計画的に低減できることになる。また、
材質上成分調整が難しい鋼種でもZ値を用いて気泡の捕
捉性を予測することで、低速鋳造やノズル角度変更など
の対策を限定的に講ずることが出来るようになり生産効
率も向上する効果が得られる。
Next, the present inventors cast molten steels of various compositions and investigated the relationship between the Z value calculated by the equation (1) and the number of argon gas trapped in the slab. As shown in FIG. FIG. 2 is a diagram showing a relationship between the Z value and the M value calculated from the components of the molten steel according to the embodiment of the present invention and the number of bubbles trapped in the slab. As shown in FIG. 2, the Z value is 2
It has been found that by setting it to be 500 or less, it is possible to prevent the argon gas from being trapped in the solidified shell and to be reduced to the industrially harmless level of 0.1 / cm 3 or less. In other words,
By adjusting the components so that the Z value is 2500 or less,
It will be possible to systematically reduce bubble defects. Also,
Even in steel grades where it is difficult to adjust the composition of the material, by predicting the air bubble trapping ability by using the Z value, it becomes possible to take limited measures such as low speed casting and nozzle angle change, which has the effect of improving production efficiency. can get.

【0019】また、凝固時の初晶としてγ相が晶出する
組成の溶鋼に対しては、Z値に大きな影響を及ぼす元素
は、C(炭素)、S(硫黄)、N(窒素)、O(酸素)
であり、(2)式に示すような、これらの元素だけで計
算したM値を用いても、実用上問題なくアルゴンガス気
泡の捕捉防止だできることが判った。ただし、計算に用
いる成分濃度としては、表面張力に影響を与える溶鋼中
に単独(フリー)の形で溶解している濃度であり、化合
物(窒化物、酸化物など)の形で存在している濃度は影
響を及ぼさないことに注意すべきである。 M=36C質量%+303066S質量%+5804N質量%+84519 7O質量% … (2)
For molten steel having a composition in which the γ phase crystallizes out as a primary crystal during solidification, the elements that have a large effect on the Z value are C (carbon), S (sulfur), N (nitrogen), O (oxygen)
It was found that even if the M value calculated only with these elements as shown in the equation (2) is used, it is possible to prevent trapping of the argon gas bubbles without any problems in practical use. However, the concentration of the component used in the calculation is the concentration that is dissolved alone (free) in the molten steel that affects the surface tension, and is present in the form of compounds (nitride, oxide, etc.). It should be noted that the concentration has no effect. M = 36C mass% + 303066S mass% + 5804N mass% + 84519 7O mass% (2)

【0020】[0020]

【実施例】以下、本発明を具体化した実施例について説
明する。表1に示す化学成分の溶鋼350トン(溶鋼鍋
容量)を鋳型内寸が250mm厚み×1000mm幅の
図1に示すような連続鋳造装置で、アルゴンガスの吹き
込み量を5NL/minとし、鋳造速度1.0m/mi
nの条件で鋳造した。鋳造後は、鋳片の表層(表面から
0〜20mm)に捕捉されたガスの個数をX線探傷法で
調査すると共に、圧延後の気泡性欠陥の発生状況につい
ても一貫的に調査した。表2に調査結果を示すが、本発
明例の鋼種A,D,Gは鋼片のアルゴンガス個数も少な
く圧延後の鋼板の気泡性欠陥の発生もなく良好である。
一方、比較例として示した鋼種B,C,E,F,H,I
の場合は鋳片のアルゴンガス個数が多く圧延後の鋼板に
も気泡性欠陥が認められる。以上、本発明の一実施例を
説明したが、本発明は上記した実施例に限定されるもの
でなく、要旨を逸脱しない条件の変更等は本発明の適用
範囲である。
EXAMPLES Examples embodying the present invention will be described below. With 350 tons of molten steel (molten steel ladle capacity) having the chemical composition shown in Table 1, a continuous casting apparatus having an inner size of 250 mm in thickness and 1000 mm in width as shown in FIG. 1 was used, the blowing rate of argon gas was 5 NL / min, and the casting speed was 1.0 m / mi
It was cast under the condition of n. After casting, the number of gases trapped in the surface layer (0 to 20 mm from the surface) of the slab was investigated by an X-ray flaw detection method, and the occurrence of bubble defects after rolling was also investigated consistently. Table 2 shows the results of the investigation. The steel types A, D, and G of the present invention examples are good in that the number of argon gas in the billet is small and no bubble defects occur in the rolled steel sheet.
On the other hand, steel types B, C, E, F, H, I shown as comparative examples
In the case of (1), the number of argon gas in the slab is large, and bubble defects are recognized in the rolled steel sheet. Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and changes in conditions and the like without departing from the spirit of the present invention are within the scope of application of the present invention.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば、従
来の製造技術での課題であったアルゴンガスによるノズ
ルへの介在物の付着防止と連鋳鋳型内での介在物の浮上
分離の効果とアルゴンガスの鋳片の凝固シェルへの捕捉
防止を両立できるため、表面品位の優れた鋳片・鋼板を
工業的に安価かつ安定に製造できる極めて優れた効果を
奏するものである。
As described above, according to the present invention, the prevention of inclusions of inclusions on the nozzle by the argon gas and the floating separation of inclusions in the continuous casting mold, which have been problems in the conventional manufacturing technology. Since it is possible to achieve both the effect of 1) and the prevention of trapping of argon gas slabs in the solidified shell, the slabs / steel plates having excellent surface quality can be industrially manufactured at low cost and stably, and this is an extremely excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る溶鋼の連続鋳造装
置の全体図である。
FIG. 1 is an overall view of a molten steel continuous casting apparatus according to an embodiment of the present invention.

【図2】本発明の一実施の形態に係る溶鋼の成分から計
算されるZ値、M値と鋳片に捕捉された気泡の個数との
関係を示す図ある。
FIG. 2 is a diagram showing a relationship between a Z value and an M value calculated from the components of molten steel according to an embodiment of the present invention and the number of bubbles trapped in a slab.

【符号の説明】[Explanation of symbols]

A 連続鋳造装置 1 タンディッシュ 2 溶鋼 3 鋳型 4 浸漬ノズル 5 支持セグメント 6 ピンチロール 7 鋳片 8 曲げ戻し矯正点 9 軽圧下ロールセグメント A continuous casting machine 1 tundish 2 Molten steel 3 molds 4 immersion nozzle 5 Supporting segments 6 pinch rolls 7 slab 8 Bending back correction points 9 Light rolling roll segment

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 凝固時の初晶としてγ相が晶出する組成
の溶鋼を、取鍋からタンディッシュに受湯し、ノズルを
介して前記溶鋼を水冷鋳型に注湯して鋳片を鋳造する鋳
片の連続鋳造方法において、前記溶鋼の成分濃度から下
式により計算されるZ値を2500以下になるように予
め該溶鋼の成分濃度を調整してから連続鋳造することを
特徴とする気泡欠陥の少ない鋳片の連続鋳造方法。 Z=Σy(i)×(1−k(i))/k(i)×c(i) … (1) ここで、y(i)は溶鋼の表面張力に及ぼすi元素の影
響を表す濃度係数であり、添加した際に表面張力を低下
させる場合を正の値とする。k(i)は溶鋼中のi元素
の平衡分配係数、c(i)はi元素の質量%、Σは溶鋼
中の構成元素の総和を示す。
1. A molten steel having a composition in which a γ phase crystallizes as a primary crystal during solidification is received from a ladle in a tundish, and the molten steel is poured into a water-cooled mold through a nozzle to cast a slab. In the continuous casting method of a slab, the bubble is characterized in that the component concentration of the molten steel is adjusted in advance so that the Z value calculated by the following formula from the component concentration of the molten steel becomes 2500 or less, and the continuous casting is performed. Continuous casting method for slabs with few defects. Z = Σy (i) × (1-k (i)) / k (i) × c (i) (1) where y (i) is the concentration representing the effect of the i element on the surface tension of the molten steel. The coefficient is a positive value when the surface tension is reduced when added. k (i) is the equilibrium partition coefficient of the i element in the molten steel, c (i) is the mass% of the i element, and Σ is the sum of the constituent elements in the molten steel.
【請求項2】 凝固時の初晶としてγ相が晶出する組成
の溶鋼を、取鍋からタンディッシュに受湯し、ノズルを
介して前記溶鋼を水冷鋳型に注湯して鋳片を鋳造する鋳
片の連続鋳造方法において、前記溶鋼の成分濃度から下
式により計算されるM値を2500以下になるように予
め該溶鋼の成分濃度を調整してから連続鋳造することを
特徴とする気泡欠陥の少ない鋳片の連続鋳造方法。 M=36C質量%+303066S質量%+5804N質量%+84519 7O質量% … (2) ここで、Cは溶鋼中に含まれる炭素、Sは溶鋼中に含ま
れる硫黄、Nは溶鋼中に含まれる窒素、Oは溶鋼中に含
まれる酸素を示す。
2. Molten steel having a composition in which a γ phase crystallizes out as a primary crystal during solidification is received in a tundish from a ladle, and the molten steel is poured into a water-cooled mold through a nozzle to cast a slab. In the continuous casting method for slabs, the bubble is characterized in that the component concentration of the molten steel is adjusted in advance so that the M value calculated from the component concentration of the molten steel by the following formula becomes 2500 or less, and then the continuous casting is performed. Continuous casting method for slabs with few defects. M = 36 C mass% + 303066 S mass% + 5804N mass% + 84519 7O mass% (2) Here, C is carbon contained in the molten steel, S is sulfur contained in the molten steel, N is nitrogen contained in the molten steel, O Indicates oxygen contained in molten steel.
【請求項3】 請求項1または2記載の気泡欠陥の少な
い鋳片の連続鋳造方法において、前記ノズルから溶鋼中
に供給するアルゴンガスを0.5NL/分以上とするこ
とを特徴とする気泡欠陥の少ない鋳片の連続鋳造方法。
3. The continuous casting method for a slab with few bubble defects according to claim 1, wherein the argon gas supplied from the nozzle into the molten steel is 0.5 NL / min or more. Continuous casting method with less slab.
【請求項4】 凝固時の初晶としてγ相が晶出する組成
の溶鋼を、取鍋からタンディッシュに受湯し、ノズルを
介して前記溶鋼を水冷鋳型に注湯して鋳片を鋳造した鋳
片に圧延加工を施した鋼材において、前記溶鋼の成分濃
度から下式により計算されるZ値を2500以下になる
ように予め該溶鋼の成分濃度を調整してから連続鋳造し
た鋳片に圧延加工することを特徴とする気泡欠陥の少な
い鋼材。 Z=Σy(i)×(1−k(i))/k(i)×c(i) … (1) ここで、y(i)は溶鋼の表面張力に及ぼすi元素の影
響を表す濃度係数であり、添加した際に表面張力を低下
させる場合を正の値とする。k(i)は溶鋼中のi元素
の平衡分配係数、c(i)はi元素の質量%、Σは溶鋼
中の構成元素の総和を示す。
4. Molten steel having a composition in which a γ phase crystallizes out as a primary crystal during solidification is received in a tundish from a ladle, and the molten steel is poured into a water-cooled mold through a nozzle to cast a slab. In the steel product obtained by rolling the cast slab, the cast slab continuously cast after the component concentration of the smelt is adjusted in advance so that the Z value calculated from the component concentration of the smelt by the following formula is 2500 or less. A steel material with few bubble defects characterized by being rolled. Z = Σy (i) × (1-k (i)) / k (i) × c (i) (1) where y (i) is the concentration representing the effect of the i element on the surface tension of the molten steel. The coefficient is a positive value when the surface tension is reduced when added. k (i) is the equilibrium partition coefficient of the i element in the molten steel, c (i) is the mass% of the i element, and Σ is the sum of the constituent elements in the molten steel.
JP2002057655A 2002-03-04 2002-03-04 Continuous casting method of cast slab with few bubble defects and steel material processed from the slab Expired - Lifetime JP3802822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057655A JP3802822B2 (en) 2002-03-04 2002-03-04 Continuous casting method of cast slab with few bubble defects and steel material processed from the slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057655A JP3802822B2 (en) 2002-03-04 2002-03-04 Continuous casting method of cast slab with few bubble defects and steel material processed from the slab

Publications (2)

Publication Number Publication Date
JP2003251438A true JP2003251438A (en) 2003-09-09
JP3802822B2 JP3802822B2 (en) 2006-07-26

Family

ID=28667865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057655A Expired - Lifetime JP3802822B2 (en) 2002-03-04 2002-03-04 Continuous casting method of cast slab with few bubble defects and steel material processed from the slab

Country Status (1)

Country Link
JP (1) JP3802822B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434207C (en) * 2006-07-21 2008-11-19 江苏兴利来特钢有限公司 Continuous steel billet casting process and apparatus
JP2010184255A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Continuous casting method for steel slab
JP2010227944A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Continuous casting method for steel cast slab
WO2011111858A1 (en) 2010-03-10 2011-09-15 Jfeスチール株式会社 Method for continuously casting steel and process for producing steel sheet
CN103170597A (en) * 2011-12-20 2013-06-26 攀钢集团攀枝花钢钒有限公司 Continuous casting method for steel billets
JP2013163191A (en) * 2012-02-09 2013-08-22 Nippon Steel & Sumitomo Metal Corp Device, method and program for operation support of manufacturing process
KR102034438B1 (en) * 2018-05-02 2019-11-08 주식회사 포스코 Manufacturing apparatus for metal material and method thereof
CN112496287A (en) * 2020-10-22 2021-03-16 福建三宝钢铁有限公司 Steelmaking process for controlling air hole defects of continuous casting slab

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434207C (en) * 2006-07-21 2008-11-19 江苏兴利来特钢有限公司 Continuous steel billet casting process and apparatus
JP2010184255A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Continuous casting method for steel slab
JP2010227944A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Continuous casting method for steel cast slab
WO2011111858A1 (en) 2010-03-10 2011-09-15 Jfeスチール株式会社 Method for continuously casting steel and process for producing steel sheet
US8596334B2 (en) 2010-03-10 2013-12-03 Jfe Steel Corporation Continuous casting method for steel and method for manufacturing steel sheet
CN103170597A (en) * 2011-12-20 2013-06-26 攀钢集团攀枝花钢钒有限公司 Continuous casting method for steel billets
JP2013163191A (en) * 2012-02-09 2013-08-22 Nippon Steel & Sumitomo Metal Corp Device, method and program for operation support of manufacturing process
KR102034438B1 (en) * 2018-05-02 2019-11-08 주식회사 포스코 Manufacturing apparatus for metal material and method thereof
CN112496287A (en) * 2020-10-22 2021-03-16 福建三宝钢铁有限公司 Steelmaking process for controlling air hole defects of continuous casting slab
CN112496287B (en) * 2020-10-22 2022-02-15 福建三宝钢铁有限公司 Steelmaking process for controlling air hole defects of continuous casting slab

Also Published As

Publication number Publication date
JP3802822B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
TWI326230B (en) Casting steel strip with low surface roughness and low porosity
JP7284403B2 (en) Twin roll continuous casting apparatus and twin roll continuous casting method
JP2003251438A (en) Method for continuously casting cast slab having little blow hole and steel material obtained by working the cast slab
WO2000040354A1 (en) Continuous casting billet and production method therefor
JP3984476B2 (en) Continuous casting method of cast slab with few bubble defects and manufactured slab
JPH0375256B2 (en)
JP3526705B2 (en) Continuous casting method for high carbon steel
JP2010099704A (en) Continuous casting method for steel cast slab
JP2004009064A (en) Method for producing continuously cast slab
JP7389335B2 (en) Method for producing thin slabs
JP2554105B2 (en) Method for preventing blockage of immersion nozzle in continuous casting
JP2019030892A (en) Continuous casting method for steel
JP2022121869A (en) Method of producing thin-walled slab and twin-roll continuous caster
Dutta et al. Continuous casting (concast)
JP3538967B2 (en) Continuous casting method
JP2002079355A (en) Method for continuously casting steel
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2002321043A (en) Manufacturing method for piece of cast which has fine solidification structure and steel product which is processed from it
JP2008043979A (en) Continuous casting method for low aluminum steel
JP3351976B2 (en) Continuous casting method of molten stainless steel
JP3426117B2 (en) Continuous casting method of molten steel
JP2021016861A (en) Thin casting-piece manufacturing method and twin-roll-type continuous casting apparatus
JP4469092B2 (en) Slab with fine solidification structure
JPH02247052A (en) Method for continuously casting cast slab for steel strip
JP2002086253A (en) Secondary cooling method in continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R151 Written notification of patent or utility model registration

Ref document number: 3802822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term