JP4427429B2 - Method and apparatus for controlling flow in strand pool - Google Patents

Method and apparatus for controlling flow in strand pool Download PDF

Info

Publication number
JP4427429B2
JP4427429B2 JP2004315606A JP2004315606A JP4427429B2 JP 4427429 B2 JP4427429 B2 JP 4427429B2 JP 2004315606 A JP2004315606 A JP 2004315606A JP 2004315606 A JP2004315606 A JP 2004315606A JP 4427429 B2 JP4427429 B2 JP 4427429B2
Authority
JP
Japan
Prior art keywords
flow
molten metal
metal surface
stirring
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004315606A
Other languages
Japanese (ja)
Other versions
JP2006122961A (en
Inventor
寛 原田
明徳 若木
智弘 今野
貴宏 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004315606A priority Critical patent/JP4427429B2/en
Publication of JP2006122961A publication Critical patent/JP2006122961A/en
Application granted granted Critical
Publication of JP4427429B2 publication Critical patent/JP4427429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、気泡ならびに介在物系欠陥の少ない高品質の鋳片を製造するための、ストランドプール内での流動を電磁力を用いて制御する方法およびそのための装置に関する。   The present invention relates to a method for controlling flow in a strand pool using electromagnetic force and an apparatus therefor for producing a high-quality slab having less bubbles and inclusion system defects.

連続鋳造プロセスにおけるストランドプール(ここでは鋳型内湯面から最終凝固位置までの未凝固溶鋼プールを指す)内での流動は、鋳片品質を大きく左右する。そのため、ストランドプール内での流動をいかに制御するかが極めて重要である。電磁力は非接触でプール内での流動を制御できるため、従来から様々な方法が検討されてきた。   The flow in the strand pool (here, the unsolidified molten steel pool from the mold surface to the final solidification position) in the continuous casting process greatly affects the slab quality. Therefore, how to control the flow in the strand pool is extremely important. Since electromagnetic force can control the flow in the pool without contact, various methods have been studied.

リムド鋼やセミキルド鋼鋳造時に発生するCO気泡の発生ならびに捕捉防止を目的としたものでは、鋳型内に設けた電磁攪拌装置により鋳造中から圧延開始までの間に生成されるスケール厚みに相当する凝固層が形成されるまでの部位の凝固界面溶鋼に電磁流動を付与しつつ、浸漬ノズルの吐出孔を電磁流動下において水平または下向きに吐出させる方法(特許文献1)や、浸漬ノズルの吐出孔を前記電磁攪拌装置よりも下方に配置し、鋳型内湯面位置から所定深さ(凝固厚みが少なくとも5mm形成される間)の凝固界面近傍の溶鋼を全体的にほぼ一定で0.1〜1m/sの流速を付与する方法(特許文献2)が開示されている。   For the purpose of preventing generation and capture of CO bubbles generated during the casting of rimmed steel and semi-killed steel, solidification corresponding to the scale thickness generated between casting and the start of rolling by an electromagnetic stirrer provided in the mold A method (Patent Document 1) in which the discharge hole of the immersion nozzle is discharged horizontally or downward under electromagnetic flow while applying electromagnetic flow to the solidified interfacial molten steel at the site until the layer is formed, or a discharge hole of the immersion nozzle The molten steel is disposed below the electromagnetic stirrer, and the molten steel near the solidification interface at a predetermined depth (while the solidification thickness is formed at least 5 mm) from the position of the molten metal surface in the mold is approximately constant to 0.1 to 1 m / s as a whole. (Patent Document 2) is disclosed.

しかし、特許文献1及び2は、水平断面内で旋回流を付与しかつその流速が過大の場合、鋳型内溶鋼表面を乱すことから凝固界面に膜状の流動を付与することを狙ったものである(図1(a) 参照)。そのため、電磁攪拌装置に印加する周波数は5〜20Hzの中で高い周波数が好ましいとしている。しかしながら、周波数が増大すると鋳型銅板による磁場ロスや銅板の背面に設けるステンレス板による磁場ロスが大となるため、鋳型銅板厚みや鋳型構造に特殊な細工が必要となる。そのため通常の電磁攪拌では、周波数として3〜6Hz程度が選択される。その際、凝固界面から20mm程度の界面近傍だけでなく溶鋼プール内部まで電磁力が作用する。   However, Patent Documents 1 and 2 aim to impart a film-like flow to the solidification interface because the swirling flow is applied in the horizontal section and the flow velocity is excessive, which disturbs the molten steel surface in the mold. Yes (see Fig. 1 (a)). Therefore, the frequency applied to the electromagnetic stirrer is preferably a high frequency of 5 to 20 Hz. However, when the frequency is increased, the magnetic field loss due to the mold copper plate and the magnetic field loss due to the stainless steel plate provided on the back surface of the copper plate become large. Therefore, special work is required for the thickness of the mold copper plate and the mold structure. Therefore, in normal electromagnetic stirring, about 3 to 6 Hz is selected as the frequency. At that time, electromagnetic force acts not only in the vicinity of the interface of about 20 mm from the solidification interface but also in the molten steel pool.

加えて、溶鋼の動粘性係数は1×10−6/s程度(水と同等)の低粘性の流体であるため、凝固界面近傍に膜状の強制流を付与することは困難である。そのため、凝固界面に膜状の流動を付与するのではなく、水平断面内で旋回流を形成する方法が一般的に用いられる。その結果、ノズル吐出流と攪拌流の干渉やノズル吐出流が短辺に衝突した後の吐出反転流と電磁攪拌による攪拌流とが干渉することがよく発生し、その部位での介在物捕捉防止効果が十分ではないという問題がある(図1(b) 参照)。 In addition, since the kinematic viscosity coefficient of molten steel is a low-viscosity fluid of about 1 × 10 −6 m 2 / s (equivalent to water), it is difficult to apply a film-like forced flow near the solidification interface. . For this reason, a method of forming a swirl flow in a horizontal section rather than imparting a film-like flow to the solidification interface is generally used. As a result, interference between the nozzle discharge flow and the agitation flow, and the discharge reverse flow after the nozzle discharge flow collides with the short side often interfere with the agitation flow due to electromagnetic stirring, preventing inclusion trapping at that site. There is a problem that the effect is not sufficient (see Fig. 1 (b)).

特許文献3では、[S]<0.015%、[C×O]<8×10−4以下の成分組成の溶鋼を、鋳型または鋳型近傍に設けられた電磁攪拌装置により、1m/s以下の流速で強制的に流動させながら鋳造を行う方法が開示されている。確かに凝固開始位置から完了位置までこのように強攪拌するのが、凝固シェルへの介在物および気泡捕捉防止の観点からは理想的であるが、大がかりな攪拌装置が必要となることは明らかである。 In Patent Document 3, [S] <0.015%, [C × O] <8 × 10 −4 % 2 or less molten steel having a component composition of 1 m / m or less by a magnetic stirrer provided near the mold or the mold. A method of casting while forcibly flowing at a flow rate of s or less is disclosed. Although it is ideal from the viewpoint of preventing inclusions and bubbles from being trapped in the solidified shell, it is clear that strong stirring from the solidification start position to the completion position is ideal, but it is clear that a large-scale stirring device is required. is there.

特許文献1及び2では、スケールオフする凝固厚みと同程度の領域に全体的にほぼ一定で0.1〜1m/s程度の流動を付与するとしているが、スケールオフする厚みに相当する部位だけ介在物や気泡の捕捉防止を図るだけでは不十分であり、表面から10mm程度までの領域で捕捉防止を達成する必要がある。但しこの場合においても、清浄性を確保するために必要な流速が凝固シェル厚でどのように変化するか不明瞭である。   In Patent Documents 1 and 2, it is assumed that a flow of about 0.1 to 1 m / s is given to a region of the same degree as the solidified thickness to be scaled off, but only a portion corresponding to the thickness to be scaled off is given. It is not sufficient to prevent the inclusions and bubbles from being trapped, and it is necessary to achieve the trapping prevention in the region of about 10 mm from the surface. However, even in this case, it is unclear how the flow rate required for ensuring cleanliness varies with the thickness of the solidified shell.

また、鋳型内における電磁攪拌の他、鋳型よりも下方に位置する電磁攪拌に関するものとして、特許文献4及び5が開示されている。
特許文献4は、浸漬ノズルからの吐出流が短辺部凝固シェルと衝突する位置よりも下方であり、かつ噴流最大浸透深さの下方1mの位置よりも上方の位置において、左右の短辺部凝固シェル近傍の溶鋼に電磁攪拌装置により左右交互に上昇流を形成する方法である。 しかしながら、ストランドプール内の温度はプール深さとともに減少していくことになるが、プール深部の過熱度が低い溶鋼を上部まで供給することになるため、低速鋳造の条件では、デッケル性欠陥(地鉄と介在物や気泡等が混じったもの)が凝固シェルに捕捉され、鋼板の欠陥になることがあった。そのため、湯面近傍に付与する電磁攪拌の条件を適正な条件とする必要がある。
In addition to electromagnetic stirring in the mold, Patent Documents 4 and 5 are disclosed as relating to electromagnetic stirring located below the mold.
Patent Document 4 discloses that the left and right short sides are below the position where the discharge flow from the immersion nozzle collides with the short side solidified shell and above the position 1 m below the maximum penetration depth of the jet. In this method, an upward flow is alternately formed on the molten steel in the vicinity of the solidified shell by a magnetic stirring device. However, although the temperature in the strand pool decreases with the pool depth, molten steel with a low superheat in the pool depth is supplied to the upper part. (A mixture of iron and inclusions, bubbles, etc.) may be trapped by the solidified shell, resulting in defects in the steel sheet. Therefore, it is necessary to make the conditions of the electromagnetic stirring given to the hot-water surface vicinity into an appropriate condition.

また特許文献5においては、鋳型内湯面近傍および鋳型内に溶鋼を供給する浸漬ノズル吐出孔よりも下方の位置に電磁攪拌装置を設置し、両者の攪拌方向を連動して制御する方法が開示されている。しかしながら、攪拌方向を切り替えると流速が0の時間帯を確実に通過することになる。特に湯面近傍で生成される凝固シェルへの介在物捕捉を防止するためにはある一定流速以上の流速が必要とすると、流速が0の時間帯では介在物捕捉が不可避的に発生することになる。
特開昭56− 4355号公報 特開昭56−41054号公報 特開昭58−77755号公報 特開平11−28556号公報 特開2003−39141号公報
Further, Patent Document 5 discloses a method in which an electromagnetic stirrer is installed in the vicinity of the molten metal surface in the mold and below the immersion nozzle discharge hole for supplying molten steel into the mold, and the stirring direction of both is controlled in conjunction. ing. However, when the agitation direction is switched, the time zone in which the flow rate is 0 is reliably passed. In particular, in order to prevent inclusion trapping in the solidified shell generated in the vicinity of the molten metal surface, if a flow rate higher than a certain constant flow rate is required, inclusion trapping inevitably occurs in a time zone where the flow rate is zero. Become.
JP 56-4355 A Japanese Patent Laid-Open No. 56-41054 JP 58-77755 A JP-A-11-28556 JP 2003-39141 A

以上述べたように、従来の技術は電磁攪拌による攪拌流と浸漬ノズルからの吐出流および吐出反転流との干渉を回避し、鋼板の表面欠陥となる鋳片内で気泡や介在物の捕捉がなく、かつ、パウダーの巻き込みも生じない、高品質の鋳片を製造する方法ならびに装置を提供するという点では何れも不十分と言え、これらの課題を解決することが本発明の目的である。
さらに、介在物系欠陥に対する要求は年々厳しくなっており、従来に比べて品質欠陥の少ない高品質鋳片への期待は益々高まってきている。
As described above, the conventional technology avoids interference between the stirring flow caused by electromagnetic stirring and the discharge flow from the immersion nozzle and the discharge reverse flow, and traps bubbles and inclusions in the slab that becomes the surface defect of the steel plate. None of them is insufficient in terms of providing a method and an apparatus for producing a high-quality cast slab that does not cause powder entrainment, and it is an object of the present invention to solve these problems.
Furthermore, the requirements for inclusion-type defects are becoming stricter year by year, and expectations for high quality slabs with fewer quality defects than ever are increasing.

本発明の構成は、以下の通りである。
(1) 連鋳ストランドプール内において、凝固界面近傍の溶鋼中に、湯面近傍において0 . 6 〜 1 m / s の流速の旋回流を連続的に形成し、湯面から湯面下1mまでの領域で、湯面からの距離L ( m ) 、鋳造速度V c ( m / s ) によって、下記( 1 ) 式によって規定される流速U(m/s)以上の流動を付与することを特徴とするストランドプール内流動の制御方法。
D = K √ ( L / V c )
U ≧ 0 . 6 3 a K 4/3( D )2/3 … … … … ( 1 )
ただし、a=12.4(m1/3・s−1/3
K:凝固シェル成長速度係数(1.8×10−3〜 3.2×10−3 m・s−1/2)
凝固シェル厚D(m):0.001≦D≦0.1
(2)前記(1)において、湯面下1mから7mまでのいずれかの領域において一方の短辺から他方の短辺に向い、かつその最大流速が0.5m/s以下かつ推進方向が10〜60s周期で変化する推進流を付与することで、湯面下1mから7mまでの領域において凝固界面に平行でかつその流速が周期的に時間変動する流動を付与することを特徴とするストランドプール内流動の制御方法。
(3)湯面近傍においては、相対する鋳片の各長辺に対して平行かつ両者が互いに逆向きの推力を付与することで攪拌流速が0.6m/s以上1m/s以下の水平断面内で旋回流を付与可能な電磁攪拌装置と、湯面下1mから7m下方までのいずれかの領域においては、相対する鋳片の各長辺に対して平行かつ両者が同一方向の推力を付与することで、一方の短辺から他方の短辺に向かう最大流速が0.5m/s以下の推進流を付与し、かつその推進方向を10〜60sの周期で周期的に変化させることが可能な電磁攪拌装置を1組以上備えたことを特徴とするストランドプール内での流動制御装置。
The configuration of the present invention is as follows.
(1) In the continuous cast strand pool, in the molten steel near the solidification interface , 0. A swirling flow having a flow rate of 6 to 1 m / s is continuously formed, and in a region from the molten metal surface to 1 m below the molten metal surface , depending on the distance L (m) from the molten metal surface and the casting speed V c (m / s). The flow control method of the flow in a strand pool characterized by providing the flow more than the flow velocity U (m / s) prescribed | regulated by following (1) Formula.
D = K√ (L / Vc)
U ≧ 0. 6 3 a K 4/3 (D) 2/3 ... ... (1)
However, a = 12.4 (m 1/3 · s −1/3 )
K: Solidification shell growth rate coefficient (1.8 × 10 −3 to 3.2 × 10 −3 m · s −1/2 )
Solidified shell thickness D (m): 0.001 ≦ D ≦ 0.1
(2) the Te (1) odor, directed from one short side in any region from below the melt surface 1m to 7m on the other short side, and the maximum flow rate that is less and propulsion direction 0.5 m / s By applying a propulsive flow that changes in a cycle of 10 to 60 s, a strand that gives a flow that is parallel to the solidification interface and whose flow velocity periodically varies in a region from 1 m to 7 m below the molten metal surface Control method of flow in the pool.
(3) In the vicinity of the molten metal surface, a horizontal cross-section in which the stirring flow rate is 0.6 m / s or more and 1 m / s or less by applying thrust in parallel with each long side of the opposed slabs and in the opposite direction to each other. In an electromagnetic stirrer that can apply a swirl flow within one area and any area from 1 m to 7 m below the molten metal surface, the thrust is applied in the same direction in parallel to each long side of the opposed slabs. By doing so, it is possible to give a propulsion flow with a maximum flow velocity of 0.5 m / s or less from one short side to the other short side, and to periodically change the propulsion direction at a period of 10 to 60 s. A flow control device in a strand pool, comprising at least one set of electromagnetic stirring devices.

本発明の連続鋳造方法並びにストランドプール内での流動制御装置を用いることで、気泡ならびに介在物欠陥の少ない高品質の鋳片を製造することができる。本発明方法は連続鋳造機の垂直曲げ型連鋳機にも適用できる。また、鋳片表層部のみ清浄性を改善したい場合には、湯面近傍のみ攪拌流速が0.6m/s以上1m/s以下の旋回流を付与することもできる。   By using the continuous casting method of the present invention and the flow control device in the strand pool, a high-quality slab having few bubbles and inclusion defects can be produced. The method of the present invention can also be applied to a vertical bending type continuous casting machine of a continuous casting machine. Moreover, when it is desired to improve the cleanliness only on the slab surface layer portion, a swirling flow having a stirring flow rate of 0.6 m / s or more and 1 m / s or less can be applied only in the vicinity of the molten metal surface.

凝固界面近傍の溶鋼に流動が付与されていれば、凝固シェルへの介在物の捕捉を防止することができる。しかしながら、湯面から最終凝固位置までそのような流動を付与するためには大がかりな装置が必要となる。本発明者らは、先ず、凝固シェルへの介在物捕捉防止に必要な流速について凝固速度との関係について検討した。
凝固シェルへの介在物捕捉を流れによって防止する機構は、以下のように理解される。 一般的に速度勾配をもった流動下の粒子には、速度勾配の平方根に比例した力(Saffmann力)が作用することが知られている(例えば、T.Toh et al:ISIJ.Int.,41(2001),1245.)。鋼の連続鋳造の場合においては、凝固シェル近傍で境界層が形成され、境界層内では凝固シェルからの距離とともに流速は大きくなるため、粒子には凝固シェルから遠ざかる方向に力が作用し、粒子は凝固シェルから離れる方向にある速度(以下、離反速度Up)で移動することになる(図2参照)。その際、凝固シェルは鋳造条件に応じた凝固速度Vで前方に移動するため、離反速度Upの方が凝固速度Vよりも大きければ、凝固シェルに捕捉されないことになる。
すなわち、介在物捕捉を防止する条件は以下のように表される。
Up≧V (ここで、Up:離反速度、U:流速、V:凝固速度)
If flow is imparted to the molten steel near the solidification interface, it is possible to prevent inclusions from being trapped in the solidification shell. However, a large-scale device is required to impart such a flow from the molten metal surface to the final solidification position. The inventors first examined the relationship between the flow rate necessary for preventing inclusion trapping in the solidified shell and the solidification rate.
The mechanism for preventing inclusion trapping in the solidified shell by flow is understood as follows. It is known that a force in proportion to the square root of the velocity gradient (Saffmann force) is generally applied to particles under flow with a velocity gradient (for example, T. Toh et al: ISIJ. Int., 41 (2001), 1245.). In the case of continuous casting of steel, a boundary layer is formed in the vicinity of the solidified shell, and the flow velocity increases with the distance from the solidified shell in the boundary layer. Therefore, force acts on the particles in the direction away from the solidified shell, Moves at a speed in a direction away from the solidified shell (hereinafter referred to as a separation speed Up) (see FIG. 2). At that time, since the solidified shell moves forward at a solidification speed V corresponding to the casting condition, if the separation speed Up is larger than the solidification speed V, it is not captured by the solidified shell.
That is, the conditions for preventing inclusion inclusion are expressed as follows.
Up ≧ V (Up: separation speed, U: flow velocity, V: solidification rate)

発明者らは数値解析を行い流速Uと離反速度Upの関係について検討し、介在物捕捉防止条件として以下の関係式を見いだした。ここで、U(m/s):流速、V(m/s):凝固速度、a(m1/3・s−1/3):係数である。
U≧aV2/3
図3に、介在物粒径が100μmの場合の捕捉防止に必要な流速を凝固速度との関係で調べた結果を示す。aは12.4(m1/3・s−1/3)を用いて計算した結果を示している。
なお、本発明における係数aの範囲は、欠陥防止のために対象とする介在物径によって変化し、介在物粒径が50μmの場合、a=19.7(m1/3・s−1/3)である。介在物粒径が200μmの場合、a=7.8(m1/3・s−1/3)である。ここでは、一般的に100μm以上の介在物の存在が問題とされることが多いため、a=12.4(m1/3・s−1/3)とする。ここでの係数a(m1/3・s−1/3)は、溶鋼および介在物の物性値(密度、粘度および介在物径)に基づき規定される係数であり、前述したように介在物径が小さいほど大となる。
The inventors conducted a numerical analysis and studied the relationship between the flow velocity U and the separation velocity Up, and found the following relational expression as inclusion trapping prevention conditions. Here, U (m / s): flow velocity, V (m / s): solidification rate, a (m 1/3 · s −1/3 ): coefficient.
U ≧ aV 2/3
FIG. 3 shows the results of examining the flow rate necessary for preventing trapping when the inclusion particle size is 100 μm in relation to the solidification rate. a shows the result calculated using 12.4 (m 1/3 · s −1/3 ).
In addition, the range of the coefficient a in the present invention varies depending on the inclusion diameter targeted for defect prevention. When the inclusion particle diameter is 50 μm, a = 19.7 (m 1/3 · s −1 / 3 ). When the inclusion particle size is 200 μm, a = 7.8 (m 1/3 · s −1/3 ). Here, since the presence of inclusions of 100 μm or more is generally a problem, a = 12.4 (m 1/3 · s −1/3 ). The coefficient a (m 1/3 · s −1/3 ) here is a coefficient defined based on the physical properties (density, viscosity and inclusion diameter) of the molten steel and inclusions, and as described above, the inclusions The smaller the diameter, the larger.

実際の連続鋳造の条件では、凝固シェル厚D(m)、すなわち湯面からの距離L(m)、鋳造速度Vc(m/s)によって凝固速度が規定される。そのため、湯面からの距離、鋳造速度と必要流速の関係は以下のように表すことができる。
D=K√(L/Vc)
V=K/2√(Vc/L
U≧0.63aK4/3/D2/3
ここでD:凝固シェル厚(m)、0.001≦D≦0.1、t:時間(s)、K:凝固シェル成長速度係数(m・s−1/2)、L:湯面からの距離(m)、Vc:鋳造速度(m/s)、である。
Under actual continuous casting conditions, the solidification rate is defined by the solidification shell thickness D (m), that is, the distance L (m) from the molten metal surface, and the casting speed Vc (m / s). Therefore, the relationship between the distance from the molten metal surface, the casting speed and the required flow rate can be expressed as follows.
D = K√ (L / Vc)
V = K / 2√ (Vc / L )
U ≧ 0.63 aK 4/3 / D 2/3
Here, D: solidified shell thickness (m), 0.001 ≦ D ≦ 0.1, t: time (s), K: solidified shell growth rate coefficient (m · s −1/2 ), L: from the molten metal surface (M), Vc: casting speed (m / s).

上式を用い、かつK値として、3.0×10−3を用いて流速と凝固シェル厚との関係を調査した結果を図4に示す。なお、K値は鋳型銅板厚み、冷却水量、二次冷却条件、用いるパウダー等によって変化するが、およそ1.8×10-3〜3.2×10-3の範囲内である(例えば、第3版「鉄鋼便覧II」製銑・製鋼、日本鉄鋼協会編、p.619 )。
湯面近傍のような凝固速度が速い場合には、必要流速は0.3m/s程度と極めて速い流速が必要であるが、凝固速度が遅くなるに従い、必要流速は小さくなり、0.05m/s程度の流速を付与すれば十分捕捉は防止され得ることがわかる。
FIG. 4 shows the results of investigating the relationship between the flow velocity and the solidified shell thickness using the above equation and using a K value of 3.0 × 10 −3 . The K value varies depending on the thickness of the mold copper plate, the cooling water amount, the secondary cooling conditions, the powder used, etc., but is approximately in the range of 1.8 × 10 −3 to 3.2 × 10 −3 (for example, the first 3rd edition "Iron & Steel Handbook II" Steelmaking and Steelmaking, edited by Japan Iron and Steel Institute, p.619).
When the solidification rate is high as in the vicinity of the molten metal surface, the required flow rate is as high as about 0.3 m / s. However, as the solidification rate decreases, the required flow rate decreases and becomes 0.05 m / s. It can be seen that the capture can be sufficiently prevented by applying a flow rate of about s.

以下、本知見に基づき、プール上部と下部で凝固シェルへの介在物捕捉防止を図るために、プール内でどのような流動パターンを形成するかについて検討する。
プール上部については、凝固速度が相対的に速いため、およそ0.3m/s以上の流速を鋳片周方向全体の凝固界面近傍の溶鋼中に流動を付与する必要がある。そのため、スラブのような矩形断面の場合、水平断面内で旋回流を形成させる方法が好ましい。また、その攪拌流速としては、湯面でおよそ0.3m/s以上の攪拌流速を連続的に付与する必要がある。しかしながら、図1(b) に示したように、ノズル吐出反転流と攪拌流の干渉が起こると、その部位での流動の停滞が起こり、介在物や気泡が捕捉される。
In the following, based on this knowledge, we will examine what flow pattern is formed in the pool to prevent inclusion trapping in the solidified shell at the upper and lower parts of the pool.
As for the upper part of the pool, since the solidification speed is relatively fast, it is necessary to apply a flow rate of about 0.3 m / s or more to the molten steel near the solidification interface in the entire slab circumferential direction. Therefore, in the case of a rectangular cross section such as a slab, a method of forming a swirl flow in a horizontal cross section is preferable. Moreover, as the stirring flow rate, it is necessary to continuously apply a stirring flow rate of about 0.3 m / s or more on the molten metal surface. However, as shown in FIG. 1 (b), when the nozzle discharge reversal flow and the stirring flow interfere with each other, the stagnation of the flow at that portion occurs, and inclusions and bubbles are trapped.

発明者らは、攪拌流速の絶対値が湯面近傍での流動挙動に及ぼす影響について数値解析を行い詳細に検討した。その結果、図5に示すように攪拌流速が0.6m/s以上の攪拌流を付与することができれば、ノズル吐出反転流と攪拌流との干渉はほぼ皆無にできることを知見した。
図5の縦軸に示した流速停滞頻度とは、単位時間あたり何秒間必要流速以下の領域が形成されるかを表したものである。ここで流速0.6m/s以上で効果が顕著となるのは、一般的に湯面での流速は0.2m/s以上0.4m/s以下となるようにノズル条件(浸漬深さやノズル吐出孔の角度、面積)を設定するが、ノズル吐出流が長辺の凝固界面近傍の溶鋼中に形成する流速は湯面よりも下方で大きくなり、攪拌流速とノズル吐出流によって形成される凝固界面近傍の溶鋼流速とを比較した場合、攪拌流が確実に大きくなるようにするためである。
The inventors conducted a detailed numerical analysis on the influence of the absolute value of the stirring flow velocity on the flow behavior near the molten metal surface and examined it in detail. As a result, as shown in FIG. 5, it was found that if the stirring flow rate of 0.6 m / s or more can be applied, interference between the nozzle discharge reversal flow and the stirring flow can be almost eliminated.
The flow velocity stagnation frequency shown on the vertical axis in FIG. 5 represents how many seconds or less of the necessary flow velocity is formed per unit time. Here, the effect becomes remarkable when the flow velocity is 0.6 m / s or more. Generally, the nozzle conditions (immersion depth and nozzle) are set so that the flow velocity at the molten metal surface is 0.2 m / s or more and 0.4 m / s or less. The angle and area of the discharge holes are set, but the flow rate formed in the molten steel near the solidification interface on the long side by the nozzle discharge flow becomes larger below the molten metal surface, and the solidification formed by the stirring flow rate and the nozzle discharge flow This is to ensure that the stirring flow becomes large when compared with the molten steel flow velocity in the vicinity of the interface .

次に、攪拌流速とパウダー巻き込みの関係を明らかにするため、水モデル実験を行い検討した。パウダーを模擬するため、シリコンオイルを用い、シリコンオイル/水界面状況と攪拌流速の関係について検討した。その結果をもとに、溶鋼/パウダー間での巻き込みが生じる流速を推定した。その結果を図6に示す。攪拌流速が1m/sを超えると湯面形状の乱れが大きくなり、湯面上に添加するパウダーの巻き込みを引き起こすことがわかった。以上から、攪拌流速は0.6m/s以上1m/s以下に設定する。   Next, in order to clarify the relationship between the stirring flow rate and the powder entrainment, a water model experiment was conducted and examined. In order to simulate powder, silicon oil was used, and the relationship between the silicon oil / water interface condition and the stirring flow rate was examined. Based on the result, the flow velocity at which entrainment between molten steel / powder occurred was estimated. The result is shown in FIG. It has been found that when the stirring flow rate exceeds 1 m / s, the shape of the molten metal surface becomes more turbulent and causes the powder added to the molten metal surface to be involved. From the above, the stirring flow rate is set to 0.6 m / s or more and 1 m / s or less.

また、このような強力な攪拌流を付与することで、付随的な効果が生じる。一般的にコイルが設置されている部位では、所定の攪拌流が付与されるが、コイルから離れるに従いその流速は徐々に減少する。発明者らの解析結果によれば、湯面近傍で攪拌流速が0.6m/s以上の攪拌流を形成すると、湯面から1m深さまで凝固界面近傍の溶鋼中に攪拌流を付与できる(図7参照)。この効果は、鋳型内上部プールの最も介在物個数の多い領域での凝固シェルへの介在物捕捉を大幅に低減できることを意味する(図7での必要流速は、図4と同一曲線を図示している)。
このように、湯面近傍に0.6m/s以上1m/s以下の攪拌流速を付与することで、清浄性が要求される鋳片表層部での介在物捕捉を確実に防止できる。
Moreover, an accompanying effect arises by providing such a strong stirring flow. In general, a predetermined stirring flow is applied to a portion where the coil is installed, but the flow rate gradually decreases as the coil moves away from the coil. According to the analysis results of the inventors, when a stirring flow having a stirring flow velocity of 0.6 m / s or more is formed in the vicinity of the molten metal surface , the stirring flow can be imparted to the molten steel near the solidification interface from the molten metal surface to a depth of 1 m (Fig. 7). This effect means that inclusion trapping in the solidified shell in the region with the largest number of inclusions in the upper pool in the mold can be greatly reduced (the required flow velocity in FIG. 7 shows the same curve as FIG. 4). ing).
As described above, by providing a stirring flow velocity of 0.6 m / s or more and 1 m / s or less near the molten metal surface, inclusion capture at the slab surface layer portion where cleanliness is required can be reliably prevented.

さらに、内部気泡等の内部欠陥を低減させるべく、ストランドプール下部での流動制御方法について検討した。一般的に、Ar気泡ならびに介在物は溶鋼と比較して密度が小さいため、そのプール中での個数密度は湯面近傍で多く、プール深さとともにその個数密度は減少する。加えて、図3,4に示したようにプール深さとともに凝固速度は遅くなるため、必要流速は小さくてよい。しかしながら、凝固シェル厚が100mmになったとしても流速が0でよいわけではない。そのため、プール上部と異なりできるだけ広範囲にわたって何某かの流動を付与できる方法が好ましい。   Furthermore, in order to reduce internal defects such as internal bubbles, a flow control method under the strand pool was studied. In general, since Ar bubbles and inclusions are smaller in density than molten steel, the number density in the pool is large near the molten metal surface, and the number density decreases with the pool depth. In addition, as shown in FIGS. 3 and 4, the solidification rate decreases with the pool depth, so the required flow rate may be small. However, even if the solidified shell thickness becomes 100 mm, the flow rate is not necessarily zero. Therefore, unlike the upper part of the pool, a method that can impart some flow over as wide a range as possible is preferable.

連鋳ストランドプール内において広範囲にわたって流動を付与しようとすると、できるだけ循環流の領域を大きくとる必要がある。そのための流動パターンとしては、図8に示すパターンが考えられる。すなわち、一方の短辺から他方の短辺に向けて推進流を付与することで、推進流が衝突する短辺側で上下に流れが分岐した後、それぞれの短辺に沿って上昇あるいは下降する流れを形成し、鉛直断面内で上下に異なる回転方向をもつ循環流を2つ形成することができる。この流動方式が最も広い範囲にわたって流動を付与することができる。   In order to apply a flow over a wide range within the continuous cast strand pool, it is necessary to make the area of the circulating flow as large as possible. As a flow pattern for that purpose, the pattern shown in FIG. 8 can be considered. That is, by applying a propulsion flow from one short side to the other short side, the flow branches up and down on the short side where the propulsion flow collides, and then rises or falls along each short side. It is possible to form a flow, and to form two circulating flows having different rotational directions in the vertical direction in the vertical section. This flow system can provide flow over the widest range.

しかしながら、このような流動を定常的に付与すると偏流れとなってしまい、片方の短辺側でノズル吐出流の侵入を助長することになるため好ましくない。そこで、推進方向を周期的に切り替える方法について、水モデル実験を行い検討した。実験では両短辺にホースを取り付け、ホースとポンプを接続し、ポンプで水流を一方の短辺からプール内に送り込むと同時に他方の短辺から抜くことで幅方向に推進する流動を形成した。   However, when such a flow is constantly applied, the flow becomes uneven, which is not preferable because the penetration of the nozzle discharge flow is promoted on one short side. Therefore, a water model experiment was conducted to examine how to change the propulsion direction periodically. In the experiment, a hose was attached to both short sides, a hose and a pump were connected, and a water flow was pumped from one short side into the pool while being drawn from the other short side to form a flow propelled in the width direction.

その結果、推進方向を切り替えることで、幅方向全体の凝固界面近傍の溶鋼中に流動を付与できることがわかった(図9参照)。これは以下の理由による。
一方の短辺に上昇流を他方の短辺で下降流を加えた場合、循環流の中心は幅中央部となり、幅中央部ではいつも流れはよどんでいることになる。しかしながら、ノズル吐出流が短辺に衝突した後、短辺に沿って侵入する下降流が存在し、その状態で一方の短辺では下降流、他方の短辺では上昇流を付与した場合、循環流の中心は幅中央部にはなく、どちらかの短辺側に移動する。その状態で推進方向を切り替えることで、凝固界面近傍の溶鋼中のどの部位においても流動を付与することができる。
As a result, it was found that by switching the propulsion direction, a flow can be imparted to the molten steel near the solidification interface in the entire width direction (see FIG. 9). This is due to the following reason.
When an upflow is added to one short side and a downflow is added to the other short side, the center of the circulating flow is the center of the width, and the flow is always stagnant at the center of the width. However, after the nozzle discharge flow collides with the short side, there is a downward flow that intrudes along the short side. In this state, when the downward flow is applied to one short side and the upward flow is applied to the other short side, The center of the flow is not in the center of the width, but moves to either short side. By switching the propulsion direction in this state, it is possible to impart flow to any part of the molten steel near the solidification interface .

なお、推進方向を変更すると、流速が0の時間帯を必ず通過することになるが、湯面下1mよりも下方の領域であれば、Ar気泡ならびに介在物の個数密度は湯面近傍と比較して圧倒的に小さくなっており、仮に流速が0の時間帯があったとしても凝固シェルに捕捉される確率は極めて低い。加えて、凝固速度が遅いため、仮に介在物が捕捉されつつあったとしても、流れを付与することで介在物を溶鋼プール中へと再度離脱させることができる。すなわち、湯面下1mよりも下方の領域ではいつも一定の流動を付与する必要はなく、できるだけ幅広い範囲に亘って、絶えず変動する流動を付与することが鋳片内部品質の改善を図るための必要な流動パターンと言える。   If the propulsion direction is changed, the flow velocity always passes through the time zone of 0, but if the area is lower than 1 m below the molten metal surface, the number density of Ar bubbles and inclusions is compared with the vicinity of the molten metal surface. Therefore, even if there is a time zone in which the flow velocity is 0, the probability of being trapped by the solidified shell is extremely low. In addition, since the solidification rate is slow, even if inclusions are being captured, the inclusions can be separated again into the molten steel pool by applying a flow. In other words, it is not always necessary to provide a constant flow in the region below 1 m below the surface of the molten metal, and it is necessary to improve the internal quality of the slab by applying a constantly changing flow over as wide a range as possible. It can be said that it is a simple flow pattern.

次に、上記目的を達成するために必要な最大推進流速について、水モデル実験を行い検討した。加えて、介在物に見立てたトレーサーを添加し、プール内での状況を調査した。結果を図10に示す。循環領域内で壁に付着するトレーサーの個数は推進流速が速くなるほど、特に0.2m/sを超えると顕著に減少するが、0.5m/sを超えると、プール最下端に到達する個数は極端に多くなった。これは、流速が小さければ循環流が及ぶ範囲が小さくなるとともに凝固シェル前面の流速値も当然小さくなる。一方、0.5m/sを超えると、下降流による下方への侵入を助長してしまう効果が顕著となり、浮上率が小さくなることによる。なお、0.2m/s未満ではトレーサー個数の低減効果が小さいのは流動の及ぶ範囲が小さいためである。また、トレーサーの軌跡を観察することで循環流の領域を調査すると、最大流速が0.2から0.5m/sの範囲においては、推進流を付与する位置から上下それぞれ2〜3m程度まで循環流が形成されることがわかった。   Next, water model experiments were conducted to examine the maximum propulsion flow rate necessary to achieve the above objective. In addition, a tracer was added as an inclusion, and the situation in the pool was investigated. The results are shown in FIG. The number of tracers adhering to the wall in the circulation region decreases remarkably as the propulsion flow rate increases, especially when it exceeds 0.2 m / s, but when it exceeds 0.5 m / s, the number that reaches the lowest end of the pool is It became extremely large. If the flow velocity is small, the range covered by the circulating flow becomes small, and naturally the flow velocity value on the front surface of the solidified shell becomes small. On the other hand, if it exceeds 0.5 m / s, the effect of facilitating the downward intrusion due to the downward flow becomes remarkable, and the ascent rate is reduced. Note that the effect of reducing the number of tracers is small at less than 0.2 m / s because the range of flow is small. Further, when the region of the circulation flow is investigated by observing the tracer trace, the circulation is performed from the position where the propulsion flow is applied to about 2 to 3 m above and below from the position where the maximum flow velocity is 0.2 to 0.5 m / s. It was found that a flow was formed.

推進方向を切り替える周期について同様に水モデル実験を行い検討した。印加する最大推進流速は0.3m/sとした。その結果、図11に示すように推進流を切り替える周期を10秒から1分とすることで、気泡の個数を少なくすることができた。
以上の結果から、鋳片表面から内部まで清浄性の高い鋳片を提供するために必要な流動条件は以下のようにまとめることができる(図12参照)。
A water model experiment was similarly conducted to examine the period for switching the propulsion direction. The maximum propulsion flow velocity applied was 0.3 m / s. As a result, as shown in FIG. 11, the number of bubbles could be reduced by changing the period for switching the propulsion flow from 10 seconds to 1 minute.
From the above results, the flow conditions necessary to provide a highly clean slab from the slab surface to the inside can be summarized as follows (see FIG. 12).

先ず、湯面からの距離L(m)、鋳造速度Vc(m/s)によって、下記(1)式によって規程される流速を付与すること
U≧0.63aK4/3/D2/3 …………(1)
ここで、0.001≦D≦0.1
そのための方法として、
(I)鋳型内から湯面下1mまで:
1) 湯面近傍において0.6〜1m/sの流速の旋回流を連続的に形成すること。
これによって、湯面下1mまで(1)式を満足する流動を付与することができる。
(II)湯面下1mから7mまで:
1) 最大流速が0.5m/s以下の循環流を上下複数形成し、かつその循環方向を周期的に変化させること。
2) 循環流の方向を切り替える周期は、10〜60sが好ましい。
First, the flow rate prescribed | regulated by the following (1) Formula is provided with the distance L (m) from a molten metal surface, and the casting speed Vc (m / s) .
U ≧ 0.63 aK 4/3 / D 2/3 (1)
Here, 0.001 ≦ D ≦ 0.1
As a method for that,
(I) From the inside of the mold to 1 m below the hot water surface:
1) A swirling flow having a flow rate of 0.6 to 1 m / s is continuously formed in the vicinity of the molten metal surface.
Thereby, the flow which satisfies (1) Formula can be provided to 1 m below the hot_water | molten_metal surface.
(II) From 1m to 7m below the hot water surface:
1) Form a plurality of circulating flows with a maximum flow velocity of 0.5 m / s or less, and periodically change the circulation direction.
2) The period for switching the direction of the circulating flow is preferably 10 to 60 s.

次に、このような流動を付与するための装置について検討した。
先ず、湯面近傍には相対する鋳片の各長辺に対して平行かつ両者が互いに逆向きの推力を付与する電磁攪拌装置(コイル(1) )を設置する。そして、湯面近傍では流速が0.6m/s以上1m/s以下の流動 (図13中の細い矢印で図示)を付与する。これによって水平断面内で連続的に旋回する流動を形成することができ、図7に示したように湯面から1mまでの深さにおいて凝固シェル厚に応じて必要な流速を凝固界面近傍の溶鋼中に付与することができる。
Next, an apparatus for imparting such a flow was examined.
First, an electromagnetic stirrer (coil (1)) is provided in the vicinity of the molten metal surface to apply thrusts parallel to the long sides of the opposing slabs and opposite to each other . In the vicinity of the molten metal surface, a flow (shown by a thin arrow in FIG. 13) having a flow velocity of 0.6 m / s to 1 m / s is applied. As a result, a continuous swirling flow can be formed in the horizontal cross section, and as shown in FIG. 7, the necessary flow velocity is changed depending on the thickness of the solidified shell at a depth of 1 m from the molten metal surface. Can be given inside .

次に湯面下1m位置よりも下方のプールにおいては、周期的に循環方向が変化する大きな循環流を形成する。そのため、相対する鋳片の各長辺に対して1組の電磁攪拌装置(コイル(2) )を設置し同一方向の推進力を付与し、推進方向を周期的に切り替える。推進流速の最大値が0.2〜0.5m/sの場合、循環流の影響範囲としては、プール上下方向にそれぞれ2〜3m程度となる。そのため、湯面下2〜4m程度に電磁攪拌装置を設置すれば、湯面下1m〜7m程度の領域までその循環流(図13中のブロック矢印で図示)が形成される。 Next, in the pool below the 1 m position below the hot water surface, a large circulation flow whose circulation direction periodically changes is formed. Therefore, a set of electromagnetic stirrers (coil (2)) is installed on each long side of the opposed slabs to apply a propulsive force in the same direction, and the propulsion direction is switched periodically. When the maximum value of the propulsion flow velocity is 0.2 to 0.5 m / s, the influence range of the circulating flow is about 2 to 3 m in the vertical direction of the pool. Therefore, if an electromagnetic stirrer is installed about 2 to 4 m below the hot water surface, the circulation flow (illustrated by a block arrow in FIG. 13) is formed up to an area of about 1 m to 7 m below the hot water surface.

さらに本発明では、湯面近傍では0.6m/sから1m/sの攪拌流速を付与する。その結果、湯面下1m程度までは旋回流領域(図13中の細い矢印で図示)が及ぶ。その状態で、コイル(2) によって推進流を付与した場合、コイル(2) によって形成される循環流(図13中のブロック矢印で図示)と同方向の攪拌流がコイル(1) によっていずれかの凝固界面近傍の溶鋼中に絶えず形成されているため、下段の電磁攪拌装置(コイル(2) )と湯面近傍に設けた電磁攪拌装置(コイル(1) )とにより、鉛直断面内での循環流を効率よく形成するとともに、その循環方向を切り替えることが可能となる(図13参照)。 Further, in the present invention, a stirring flow rate of 0.6 m / s to 1 m / s is applied in the vicinity of the hot water surface. As a result, a swirl flow region (illustrated by a thin arrow in FIG. 13) extends to about 1 m below the molten metal surface. In this state, when the propulsion flow is applied by the coil (2), the stirring flow in the same direction as the circulating flow (illustrated by the block arrow in FIG. 13) formed by the coil (2) is generated by the coil (1). Because it is constantly formed in the molten steel near the solidification interface of the steel , the electromagnetic stirrer (coil (2)) on the lower stage and the electromagnetic stirrer (coil (1)) provided near the hot water surface It is possible to efficiently form a circulation flow and switch the circulation direction (see FIG. 13).

加えてできるだけ広範囲にわたって循環流領域を形成するには、ストランドプール内の上下異なる2ヶ所において相対する鋳片の各長辺に沿って2組の電磁攪拌装置(コイル(2) 、(3) )を設置する。 そして1組の電磁攪拌装置においては同一方向の推進力を、上下異なる組では逆向きの推進力を付与し、その推進方向を周期的に切り替える。コイル(2) の設置位置は図13と同じでよい。その下方に設置する電磁攪拌装置(コイル(3) )は3〜6m程度離すことが好ましい。これは、それぞれの攪拌装置によって形成される攪拌流の影響は攪拌流速が0.5m/s程度の場合、上下それぞれ2〜3m程度の領域までは影響するため、できるだけ広範囲のストランドプール内溶鋼を攪拌するためには3〜6m程度離すことが最も効果的に攪拌できることによる(図14参照)。 In addition, in order to form a circulation flow area as widely as possible, two sets of electromagnetic stirrers (coils (2), (3)) along the long sides of the slabs facing each other at two different locations in the strand pool. Is installed. Then, in one set of electromagnetic stirring devices, propulsive force in the same direction is applied, and in different sets up and down, reverse propulsive force is applied, and the propulsion direction is periodically switched. The installation position of the coil (2) may be the same as in FIG. It is preferable that the electromagnetic stirrer (coil (3)) installed therebelow is separated by about 3 to 6 m. This is because the influence of the stirring flow formed by each stirring device affects up to about 2 to 3 m when the stirring flow rate is about 0.5 m / s. In order to stir, it is because it can stir most effectively about 3-6 m apart (refer FIG. 14).

転炉での精錬と還流式真空脱ガス装置での処理ならびに合金添加により極低炭素鋼を溶製した。この溶鋼を10.5mRの湾曲型連鋳機で厚み250mm、幅1800mmのスラブに鋳造した。鋳造速度は1m/minで、ノズル内にArガスを3Nl/min流した。鋳型内の電磁攪拌コイルは湯面での流速が最大1.2m/s付与できるコイルを用い、コイル中心を湯面から100mmの位置に設置した。
一方、ストランドの電磁攪拌装置に関しては、一段設置の場合は湯面から3.5mの位置に電磁攪拌装置を相対する鋳片の各長辺に沿って一組設置、二段設置の場合は、湯面から3.5m位置、7m位置と異なる位置に二組設置した。それぞれ、攪拌流速としては最大0.5m/sの流速が付与できるものを用い、二段設置する場合、攪拌方向は上下で逆方向とした。
The ultra-low carbon steel was melted by refining in the converter, processing in the reflux type vacuum degassing equipment and alloy addition. This molten steel was cast into a slab having a thickness of 250 mm and a width of 1800 mm using a 10.5 mR continuous casting machine. The casting speed was 1 m / min, and Ar gas was allowed to flow through the nozzle at 3 Nl / min. As the electromagnetic stirring coil in the mold, a coil capable of applying a maximum flow velocity of 1.2 m / s on the molten metal surface was used, and the coil center was set at a position 100 mm from the molten metal surface.
On the other hand, as for the electromagnetic stirrer of the strand, in the case of one-stage installation, one set installation along each long side of the slab facing the electromagnetic stirrer at a position of 3.5 m from the molten metal surface, in the case of two-stage installation, Two sets were installed at positions different from 3.5m and 7m positions from the hot water surface. In each case, a stirring flow rate that can give a maximum flow rate of 0.5 m / s was used, and in the case of two-stage installation, the stirring direction was up and down and reverse.

内部欠陥となる気泡欠陥の評価方法としては、鋳造幅全幅×鋳造長さ方向10mmのサンプルを切り出し、X透過写真を撮影し気泡欠陥の分布を調査した。一方、鋳片表層部の介在物個数については、全幅×鋳造方向長さ200mmのサンプルを鋳片の上面、下面それぞれから切り出し、全幅×長さ200mmの表面内における介在物を表面から1mmおきに研削、研磨し、100μm以上の介在物個数を調査した。
結果を表1に示した。表1で、攪拌(1) は鋳型内の電磁攪拌コイルの攪拌条件、攪拌(2) はストランドの電磁攪拌装置による攪拌条件を示す。なお、垂直曲げ型の連続鋳造機を用いて操業した際にも、同様な結果を得ることができた。
As a method for evaluating the bubble defect which becomes an internal defect, a sample having a total casting width of 10 mm in the casting length direction was cut out, an X transmission photograph was taken, and the distribution of the bubble defect was investigated. On the other hand, regarding the number of inclusions on the surface part of the slab, a sample having a total width × 200 mm in the casting direction is cut out from each of the upper and lower surfaces of the slab, and inclusions in the surface having a total width × 200 mm are removed every 1 mm from the surface. After grinding and polishing, the number of inclusions of 100 μm or more was examined.
The results are shown in Table 1. In Table 1, stirring (1) indicates the stirring condition of the electromagnetic stirring coil in the mold, and stirring (2) indicates the stirring condition of the strand by the electromagnetic stirring device. In addition, the same result was able to be obtained also when it operated using the vertical bending type continuous casting machine.

電磁攪拌装置によって形成される攪拌流速の測定は、得られた鋳片のデンドライト傾角を測定し、以下のA−1式に示す傾角θおよび凝固速度fと流速uの関係式を用いて推算した(岡野ら:鉄と鋼、61(1975),2982)。
ln u=(θ+9.73 ln f +33.7)/(1.45 ln f +12.5) (u≦50cm/s)
ln u=(θ+4.83 ln f + 7.2)/(0.1 ln f + 5.4) (u≧50cm/s)
…………… A−1
f =k/120δ …………… A−2
上式において、u:流速(cm/s)、f:凝固速度(cm/s)、θ:鋳片表面の法線に対する偏向角(°)、k:凝固シェル成長速度係数(cm/min1/2 )、δ:凝固シェル厚(mm)である。
各鋳造速度において、電磁攪拌コイルのコア中心高さに相当するシェル厚δでの傾角を測定した。併せて、その凝固シェル厚での凝固速度fをA−2式で推算し、A−1式を用いて攪拌流速を推定した。なお、上記推算を行うにあたってkは2.2cm/min1/2とした。
The measurement of the stirring flow rate formed by the electromagnetic stirrer was performed by measuring the dendrite inclination angle of the obtained slab and using the relational expression of the inclination angle θ and the solidification rate f and the flow rate u shown in the following formula A-1. (Okano et al .: Iron and steel, 61 (1975), 2982).
ln u = (θ + 9.73 ln f + 33.7) / (1.45 ln f + 12.5) (u ≦ 50cm / s)
ln u = (θ + 4.83 ln f + 7.2) / (0.1 ln f + 5.4) (u ≧ 50cm / s)
…………… A-1
f = k 2 / 120δ …………… A-2
In the above equation, u: flow velocity (cm / s), f: solidification rate (cm / s), θ: deflection angle with respect to the normal of the slab surface (°), k: solidification shell growth rate coefficient (cm / min 1) / 2 ), δ: solidified shell thickness (mm).
At each casting speed, the tilt angle at the shell thickness δ corresponding to the core center height of the electromagnetic stirring coil was measured. At the same time, the solidification rate f at the solidified shell thickness was estimated by the formula A-2, and the stirring flow rate was estimated by using the formula A-1. In the above estimation, k was set to 2.2 cm / min 1/2 .

Figure 0004427429
Figure 0004427429

従来法(特許文献1,2)による溶鋼の水平断面内における攪拌状態を示す図であり、(a)はノズル吐出反転流と膜状攪拌流の状況、(b)は攪拌流と吐出反転流の関係及び旋回流の状況を示す。It is a figure which shows the stirring state in the horizontal cross section of the molten steel by a conventional method (patent documents 1 and 2), (a) is the situation of a nozzle discharge reverse flow and a film-like stirring flow, (b) is a stirring flow and discharge reverse flow And the situation of swirling flow. 凝固界面近傍の溶鋼中での粒子の挙動を示す図。The figure which shows the behavior of the particle | grains in the molten steel of the solidification interface vicinity . 本発明(以下同じ)における凝固速度と介在物捕捉防止に必要な流速の関係を示す図。The figure which shows the relationship between the coagulation | solidification speed | rate in this invention (following and the same) and the flow velocity required for inclusion trapping prevention. 凝固シェル厚と介在物捕捉防止に必要な流速との関係を示す図。The figure which shows the relationship between the solidification shell thickness and the flow velocity required for inclusion capture prevention. 攪拌流速と流動停滞頻度の関係を示す図。The figure which shows the relationship between stirring flow velocity and flow stagnation frequency. 攪拌流速とパウダー巻込み頻度の関係を示す図。The figure which shows the relationship between a stirring flow rate and powder entrainment frequency. 攪拌流速と攪拌領域の関係を示す図。The figure which shows the relationship between a stirring flow rate and a stirring area | region. 下部プールでの攪拌流の状態を示す模式図。The schematic diagram which shows the state of the stirring flow in a lower pool. プール内の流動状況を示す模式図であり、(a)は反時計回りの攪拌流+ノズル吐出流、(b)は時計回りの攪拌流+ノズル吐出流の状況を示す。It is a schematic diagram which shows the flow condition in a pool, (a) shows the counterclockwise stirring flow + nozzle discharge flow, (b) shows the state of clockwise stirring flow + nozzle discharge flow. 最大循環流速とトレーサー個数指数の関係を示す図。The figure which shows the relationship between the maximum circulation flow velocity and a tracer number index. 溶鋼の推進方向切り替え周期とトレーサー個数指数の関係を示す図。The figure which shows the relationship between the propulsion direction switching period of a molten steel, and a tracer number index. 湯面からの距離と必要流速及び最大流速の関係を示す図。The figure which shows the relationship between the distance from a molten metal surface, a required flow velocity, and the maximum flow velocity. 湯面近傍の電磁攪拌とプール下部に一組の電磁攪拌装置を設けた場合の流動状況を示す模式図であり、(a)は鉛直断面、(b)は水平断面を示す。It is a schematic diagram which shows the flow condition at the time of providing a set of electromagnetic stirring apparatus near the molten metal stirring and a pool lower part, (a) shows a vertical cross section, (b) shows a horizontal cross section. 湯面近傍の電磁攪拌とプール下部に二組の電磁攪拌装置を設けた場合の流動状況を示す模式図であり、(a)は鉛直断面、(b)は水平断面を示す。It is a schematic diagram which shows the flow situation at the time of providing two sets of electromagnetic stirring apparatuses near the hot water surface and the pool lower part, (a) shows a vertical section, (b) shows a horizontal section.

Claims (3)

連鋳ストランドプール内において、凝固界面近傍の溶鋼中に、湯面近傍において0 . 6 〜 1 m / s の流速の旋回流を連続的に形成し、湯面から湯面下1mまでの領域で、湯面からの距離L ( m ) 、鋳造速度V c ( m / s ) によって、下記( 1 ) 式によって規定される流速U(m/s)以上の流動を付与することを特徴とするストランドプール内流動の制御方法。
D = K √ ( L / V c )
U ≧ 0 . 6 3 a K 4/3( D )2/3 … … … … ( 1 )
ただし、a=12.4(m1/3・s−1/3
K:凝固シェル成長速度係数(1.8×10−3〜 3.2×10−3 m・s−1/2)
凝固シェル厚D(m):0.001≦D≦0.1
In the continuous cast strand pool, in the molten steel near the solidification interface , 0. A swirling flow having a flow rate of 6 to 1 m / s is continuously formed, and in a region from the molten metal surface to 1 m below the molten metal surface , depending on the distance L (m) from the molten metal surface and the casting speed V c (m / s). The flow control method of the flow in a strand pool characterized by providing the flow more than the flow velocity U (m / s) prescribed | regulated by following (1) Formula.
D = K√ (L / Vc)
U ≧ 0. 6 3 a K 4/3 (D) 2/3 ... ... (1)
However, a = 12.4 (m 1/3 · s −1/3 )
K: Solidification shell growth rate coefficient (1.8 × 10 −3 to 3.2 × 10 −3 m · s −1/2 )
Solidified shell thickness D (m): 0.001 ≦ D ≦ 0.1
請求項1において、湯面下1mから7mまでのいずれかの領域において一方の短辺から他方の短辺に向い、かつその最大流速が0.5m/s以下かつ推進方向が10〜60s周期で変化する推進流を付与することで、湯面下1mから7mまでの領域において凝固界面に平行でかつその流速が周期的に時間変動する流動を付与することを特徴とするストランドプール内流動の制御方法。 Te claim 1 smell, either towards the other short side from one short side in the region, and less and propulsion direction 10~60s period maximum flow velocity thereof is 0.5 m / s from below the melt surface 1m to 7m The flow in the strand pool is characterized in that in the region from 1 m to 7 m below the molten metal surface, a flow that is parallel to the solidification interface and whose flow rate periodically varies is provided. Control method. 湯面近傍においては、相対する鋳片の各長辺に対して平行かつ両者が互いに逆向きの推力を付与することで攪拌流速が0.6m/s以上1m/s以下の水平断面内で旋回流を付与可能な電磁攪拌装置と、湯面下1mから7m下方までのいずれかの領域においては、相対する鋳片の各長辺に対して平行かつ両者が同一方向の推力を付与することで、一方の短辺から他方の短辺に向かう最大流速が0.5m/s以下の推進流を付与し、かつその推進方向を10〜60sの周期で周期的に変化させることが可能な電磁攪拌装置を1組以上備えたことを特徴とするストランドプール内での流動制御装置。   In the vicinity of the molten metal surface, the stirring flow velocity is 0.6 m / s or more and 1 m / s or less in a horizontal cross section by applying thrusts parallel to the long sides of the opposite slabs and opposite to each other. In an electromagnetic stirrer capable of applying a flow and in any region from 1 m to 7 m below the molten metal surface, both are applied in parallel to each long side of the opposing slabs, and both apply thrust in the same direction. Electromagnetic stirring capable of imparting a propulsion flow having a maximum flow velocity of 0.5 m / s or less from one short side to the other short side and periodically changing the propulsion direction at a period of 10 to 60 s. A flow control device in a strand pool, comprising one or more sets of devices.
JP2004315606A 2004-10-29 2004-10-29 Method and apparatus for controlling flow in strand pool Active JP4427429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315606A JP4427429B2 (en) 2004-10-29 2004-10-29 Method and apparatus for controlling flow in strand pool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315606A JP4427429B2 (en) 2004-10-29 2004-10-29 Method and apparatus for controlling flow in strand pool

Publications (2)

Publication Number Publication Date
JP2006122961A JP2006122961A (en) 2006-05-18
JP4427429B2 true JP4427429B2 (en) 2010-03-10

Family

ID=36718186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315606A Active JP4427429B2 (en) 2004-10-29 2004-10-29 Method and apparatus for controlling flow in strand pool

Country Status (1)

Country Link
JP (1) JP4427429B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018144B2 (en) * 2007-03-09 2012-09-05 Jfeスチール株式会社 Steel continuous casting method
JP7135728B2 (en) * 2018-10-30 2022-09-13 日本製鉄株式会社 Slab Quality Estimating Method, Steel Manufacturing Method, Slab Quality Estimating Device, and Program
JP2020157333A (en) * 2019-03-26 2020-10-01 日本製鉄株式会社 Learning model creation device, slab quality estimation device, learning model creation method, slab quality estimation method, and program
CN115229150B (en) * 2022-07-04 2024-05-14 攀钢集团攀枝花钢铁研究院有限公司 Method for controlling rail inclusions

Also Published As

Publication number Publication date
JP2006122961A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
KR100710714B1 (en) Method and Apparatus for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
RU2500500C1 (en) Method of steel continuous casting
KR101250101B1 (en) Method for continuously casting steel and process for producing steel sheet
JP4427429B2 (en) Method and apparatus for controlling flow in strand pool
JP4821932B2 (en) Steel continuous casting method and steel plate manufacturing method
KR101302526B1 (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
KR102324300B1 (en) Method of continuous casting of steel
JP4728724B2 (en) Continuous casting slab and manufacturing method thereof
JP4441384B2 (en) Continuous casting method and flow control device in strand pool
JP3273291B2 (en) Stirring method of molten steel in continuous casting mold
JP5772767B2 (en) Steel continuous casting method
JP5354179B2 (en) Continuous casting method for steel slabs
JP3365362B2 (en) Continuous casting method
JP5413277B2 (en) Continuous casting method for steel slabs
JP7200722B2 (en) In-mold flow control method in curved continuous casting equipment
JP4432263B2 (en) Steel continuous casting method
JP2007260727A (en) Method for continuously casting extra-low carbon steel slab
JP3316109B2 (en) Manufacturing method of thick steel plate with uniform material in surface layer and inside
JP2006255759A (en) Method for continuously casting steel
JP2000126850A (en) Continuous casting method
JP4492333B2 (en) Steel continuous casting method
JP5304297B2 (en) Continuous casting method for steel slabs
JP4569320B2 (en) Continuous casting method of ultra-low carbon steel slab slab
JP5458779B2 (en) Continuous casting method for steel slabs
JP2000317593A (en) Method for continuously casting molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4427429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350