JP2005147649A - 加熱ヒーター、加熱ヒーターの使用方法及び加熱ヒーターを用いた連続式加熱炉 - Google Patents
加熱ヒーター、加熱ヒーターの使用方法及び加熱ヒーターを用いた連続式加熱炉 Download PDFInfo
- Publication number
- JP2005147649A JP2005147649A JP2004062847A JP2004062847A JP2005147649A JP 2005147649 A JP2005147649 A JP 2005147649A JP 2004062847 A JP2004062847 A JP 2004062847A JP 2004062847 A JP2004062847 A JP 2004062847A JP 2005147649 A JP2005147649 A JP 2005147649A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- heated
- heating
- furnace
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Coating Apparatus (AREA)
- Tunnel Furnaces (AREA)
- Furnace Charging Or Discharging (AREA)
- Furnace Details (AREA)
Abstract
【課題】従来使用されてきたランプヒーターよりも高速昇温が可能で、かつヒーター各部の温度分布の制御を容易に行えるような加熱ヒーターと、当該加熱ヒーターの使用方法と、加熱手段として当該ヒーターを用いた連続式加熱炉を提供する。
【解決手段】炉内で被加熱物を所定方向に搬送させながら前記被加熱物の加熱を行う連続式加熱炉の加熱手段として使用される加熱ヒーターである。この加熱ヒーターは、少なくとも1つの平面2aを有するブロック状の断熱材2の当該平面2aに、一定の断面形状を有する溝3を直線状に設け、溝3の内面に沿って発熱体4を配置することにより発熱面を形成してなり、溝3の長手方向が被加熱物の搬送方向と直交するように炉内に設置して使用される。
【選択図】図1
【解決手段】炉内で被加熱物を所定方向に搬送させながら前記被加熱物の加熱を行う連続式加熱炉の加熱手段として使用される加熱ヒーターである。この加熱ヒーターは、少なくとも1つの平面2aを有するブロック状の断熱材2の当該平面2aに、一定の断面形状を有する溝3を直線状に設け、溝3の内面に沿って発熱体4を配置することにより発熱面を形成してなり、溝3の長手方向が被加熱物の搬送方向と直交するように炉内に設置して使用される。
【選択図】図1
Description
本発明は、太陽電池基板等の薄板状で迅速な加熱を要する被加熱物の熱処理に好適に使用できる加熱ヒーターと連続式加熱炉に関する。
太陽電池基板の製造においては、基板上に電極ペーストを所定のパターンで印刷形成した後、当該電極ペーストの熱処理を行う必要がある。この熱処理は、メッシュベルトコンベアを搬送手段として有する加熱炉を用い、基板をメッシュベルト上に載置した状態で、炉内を連続的又は間欠的に移動させながらヒーターで800〜900℃程度の温度まで加熱した後、冷却するという工程で行われている。
通常、基板を加熱するためのヒーターには、タングステンからなる発熱体を石英ガラスで密封してなる棒状のランプヒーター(近赤外ランプ)を用い、その長手方向が炉の幅方向(基板の搬送方向と直交する方向)と平行で、かつ、搬送面に対し水平になるように炉内に架け渡して使用していた(例えば、特許文献1参照。)。
ところで、前記のように太陽電池基板を熱処理するに当たっては、基板を迅速に昇温させることが製品特性上有利であり、特に600℃辺りから最高温度の800〜900℃まで昇温する過程においては、50℃/秒以上の昇温速度で高速加熱することが理想とされている。
しかしながら、従来使用されていたランプヒーターとその設置方法では、30℃/秒程度の昇温速度が限界であり、前記のような高速加熱を実現することは困難であった。また、この棒状のランプヒーターは、その発熱体の輻射のエネルギーが中央に集中しやすいため、端部付近の温度が中央部の温度に対して低くなる傾向にあり、炉の幅方向において温度差が生じるという問題があった。この対策として、ランプヒーター内の巻線の粗密を調整して改善を図る方法もあったが、必ずしも多様な加熱条件に対応できるものではない。
特開2002−83983号公報
本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、従来使用されてきたランプヒーターよりも高速昇温が可能で、かつヒーター各部の温度分布の制御を容易に行えるような加熱ヒーターと、当該加熱ヒーターの使用方法と、加熱手段として当該ヒーターを用いた連続式加熱炉を提供することにある。
本発明によれば、炉内で被加熱物を所定方向に搬送させながら前記被加熱物の加熱を行う連続式加熱炉の加熱手段として使用される加熱ヒーターであって、少なくとも1つの平面を有するブロック状の断熱材の当該平面に、一定の断面形状を有する溝を直線状に設け、当該溝の内面に沿って発熱体を配置することにより発熱面を形成してなり、前記溝の長手方向が前記被加熱物の搬送方向と直交するように炉内に設置して使用される加熱ヒーター、が提供される。
また、本発明によれば、前記加熱ヒーターを、前記溝を設けた平面が互いに向かい合わせになり、かつ互いの前記溝の位置が一致するように2つ配置し、それら2つの加熱ヒーターの前記溝同士により形成される空間を被加熱物を加熱するための発熱空間とする加熱ヒーターの使用方法、が提供される。
更に、本発明によれば、炉内で被加熱物を加熱するための加熱手段として、前記の加熱ヒーターを備えた連続式加熱炉、が提供される。
本発明の加熱ヒーターは、本発明の使用方法に規定したように2つ組み合わせて使用することにより、発熱空間が断熱材で囲まれた構造となるため発熱空間外に熱が逃げにくく、従来使用されてきたランプヒーター等に比べて高速昇温が可能である。特に、加熱ヒーターの溝の断面形状を略半円形又はそれに近い形状とした場合には、近似的に黒体空間を形成することができ、その結果、高い熱効率が得られ、950℃程度の高温加熱及び50℃/秒以上の高速加熱が可能となる。また、個別に温度制御可能な複数の発熱体を、断熱材の溝の長手方向に区分して配置することにより、炉内に設置したときに、炉の幅方向(被加熱物の搬送方向と直交する方向)における温度分布を容易に調整することができる。更に、連続式加熱炉の加熱手段として本発明の加熱ヒーターを用いれば、高価で、比較的寿命の短いとされるランプヒーターを使用せずに、ランプヒーター以上の加熱性能を得ることができる。
図1は、本発明に係る加熱ヒーターの実施形態の一例を示す説明図である。前記のとおり、本発明の加熱ヒーター1は、炉内で被加熱物を所定方向に搬送させながら前記被加熱物の加熱を行う連続式加熱炉の加熱手段として使用されるものであって、少なくとも1つの平面2aを有するブロック状の断熱材2の当該平面2aに、一定の断面形状を有する溝3を直線状に設け、溝3の内面に沿って発熱体4を配置することにより発熱面を形成してなるものである。
断熱材2の材質としては、例えばシリカやアルミナの繊維を使用した成形品等が好適に使用できる。また、発熱体4としては、金属の抵抗線のフラットバーやコイル等が使用でき、これらを溝3の断面形状に合致するような形状に加工して、被加熱物の搬送方向(溝の長手方向と直交する方向)に対して平行になるように並列配置し、隣接する発熱体と適宜連結することが好ましい。
本発明の加熱ヒーターは、溝3の長手方向が被加熱物の搬送方向と直交するように炉内に設置して使用するものであり、単独で炉内に設置して使用することも可能であるが、その本来の性能を十分に発揮させるためには、2つの加熱ヒーターを1組として使用する必要がある。その場合の使用方法は、図2に示すように、2つの加熱ヒーター1を、その溝3(発熱面5)を設けた平面が互いに向かい合わせになり、かつ互いの溝3の位置が一致するように配置し、それら2つの加熱ヒーター1の溝3同士により形成される空間を被加熱物9を加熱するための発熱空間6とする。これら2つの加熱ヒーター1は、前記のとおり、溝3の長手方向が被加熱物の搬送方向と直交するように炉内に設置されるので、発熱空間6内に被加熱物9を搬入するための入口20と、発熱空間6内で加熱された被加熱物9を発熱空間6外へ搬出するための出口21とを、溝3の長手方向と直交する方向に有することになり、図2の例においては、2つの加熱ヒーター1を、両者間に隙間7を設けて配置することで入口20及び出口21となるような発熱空間6に通じる開口部を設けている。そして、メッシュベルト等の搬送機構8に載置された被加熱物9が、この入口20を通じて発熱空間6内に搬送され、当該発熱空間6内で加熱された後、出口21を通じて発熱空間6外へ搬出される。
本発明の加熱ヒーター1においては、以下の理由により、ブロック状の断熱材2の平面2aに垂直な断面における溝3の断面形状が、図1及び図2に示すように、略半円形であることが好ましい。輻射主体の加熱において、最も効率的な方法は、等温度の壁面に囲まれた密閉空間に被加熱物を投入して加熱を行う、いわゆる黒体による加熱であるが、連続式加熱炉のように、連続搬送されて来る被加熱物を加熱する場合においては、その被加熱物の出入口となる開口部が必要となるため、前記のように完全な密閉空間で被加熱物を加熱することは事実上不可能である。
しかし、被加熱物が太陽電池基板のような薄板状であり、また、それを載置して搬送する搬送機構がメッシュベルトのような厚みの小さいものである場合には、前記のように2つの加熱ヒーターを配置する際に、両者の隙間を極力小さくすること等により、発熱面に対し開口部を著しく小さくすることができるので、近似的に黒体空間を実現することができる。
そこで、黒体輻射の理論を準用して説明すると、完全に閉鎖された密閉空間においては、内部の輻射場の状態は壁面の温度にのみ依存し、その空間の形状や壁面の材質には無関係になる。すなわち、密閉空間の壁面を等温度に保つことができれば、理想的な加熱場が実現される(キルヒホッフの法則)。
これを、本発明のような加熱ヒーターの発熱空間に応用しようとすると、2つの加熱ヒーターの発熱面によって、球形の発熱空間が得られるようにするのが最も効率的である。なぜならば、発熱空間を取り囲む壁面(発熱面)を等温度に保つには、その壁面の面積をできるだけ小さくすることが望ましく(面積が大きくなるほど温度ムラが生じやすくなり、壁面全体を等温度に保つことが困難となる)、そして等体積を囲む三次元平面で最小のものは球だからである。
しかしながら、本発明の加熱ヒーターにおいては、炉の幅方向(搬送方向と直交する方向)に複数の被加熱物を並べて同時に加熱するような使い方を想定すると、球形の発熱空間とすることは現実的ではない。このため、結果的に、搬送方向と平行に切断した垂直断面の断面形状にのみ任意性が許されることになるが、前記と同様の推論をすれば、等面積を囲む閉曲線のうち、最小のものは円であるから、最も効率的な断面形状は円形ということになる。
このような理由から、本発明においては、溝(発熱面)の断面形状を略半円形(2つ組み合わせたときに略円形となる)とすることが好ましい。このように断面形状が略半円形の溝を設けた加熱ヒーターを、図2のように2つ組み合わせて使用すれば、600℃から850℃までの昇温速度を50〜60℃/秒程度とすることが可能である。
また、本発明の加熱ヒーターにおいて、溝(発熱面)の断面形状を略半円形とすることは、発熱体の寿命、ヒーター強度、断熱性と言った設計上の観点からも合理性を有する。すなわち、図5に示すように、断熱材22に設ける溝23の断面形状を、方形のような隅部24を有する形状とした場合において、その壁面全てに発熱体を配置しようとすると、隅部24での抵抗線等の発熱体の配置が困難であるとともに、その部位で折り曲げられた抵抗線等に局所的な加熱が生じるなどして、断線等によるヒーター寿命の低下が懸念されることになるが、略半円形であれば、抵抗線等の発熱体は、隣接する発熱体との連結部以外では一様性が保てるため、ヒーター寿命の向上が望める。
更に、断熱材の溝の断面形状を略半円形とし、その溝の内面に沿うように発熱体の断面形状も略半円形とすることで、他の断面形状にする場合に比して、力学的な強度も高くなる。更にまた、本発明の加熱ヒーターは、局所的に高速加熱することを前提としているため、発熱空間外に極力熱を逃がさないことが重要であるが、図2を見てもわかるように、断熱材2の溝3の断面形状が略半円形をしていれば、搬送面付近以外では、ブロック状の断熱材2の厚みを非常に厚くすることができるので、例えば、図5のように溝23の断面形状を方形としたような場合に比して断熱効率の向上が望める。本発明において、加熱ヒーターの溝の断面形状は、略円形に限定されるものではなく、例えば正多角形を2分割したような断面形状(2つ組み合わせたときに正多角形となる)とすることもできるが、その場合においても、これまで述べてきたような理由から、図6に示すように、できるだけ半円形状に近い断面形状を有する溝27とすることが好ましい。
本発明においては、図3に示すように、個別に温度制御可能な複数の発熱体4を、溝3の長手方向に区分して配置することが好ましい。図3の例では、溝3を長手方向に3つの区域10a、10b、10cに区分けし、各区域に発熱体4として抵抗線を配置するとともに、各区域毎に抵抗線を連結し、外部接続用の端子(電極リード線)11を設けている。
このような構成にすれば、溝3の長手方向と炉の幅方向(被加熱物9の搬送方向と直交する方向)とが平行になるように加熱ヒーターを炉内に設置した場合において、溝の中央部の区域10bに配置した発熱体及び溝の端部の区域10a、10cに配置した発熱体をそれぞれ個別に温度制御することにより、炉の幅方向における温度分布を容易に調整することができるので、図3のように、炉の幅方向に複数の被加熱物9を並べて同時に加熱する際にも、各被加熱物9をムラ無く均一に加熱することが可能となる。
本発明の連続式加熱炉は、炉内で被加熱物を加熱するための加熱手段として、以上説明した本発明の加熱ヒーターを備えたものである。この連続式加熱炉は、前述の本発明の加熱ヒーターを加熱手段に用いたことにより、当該連続式加熱炉で被加熱物を実際に加熱するに際して、前述の加熱ヒーターによる効果を享受することができる。
すなわち、本発明の連続式加熱炉を用いれば、前記加熱ヒーターを設置した領域において高い熱効率が得られ、950℃程度の高温加熱及び50℃/秒以上の高速加熱も可能となる。また、特に個別に温度制御可能な複数の発熱体を、断熱材の溝の長手方向に区分して配置した加熱ヒーターを使用する場合には、当該加熱ヒーターを、その溝の長手方向が被加熱物の搬送方向と直交するように炉内に設置することにより、炉の幅方向(被加熱物の搬送方向と直交する方向)における温度分布を容易に調整することができる。
図4は、本発明の加熱ヒーターを使用した太陽電池基板用連続式加熱炉の構成例を温度曲線(ヒートパターン)に対応させて示した概要図である。本例では、本発明の加熱ヒーターの配置位置よりも炉の入口側の位置に、4つの加熱領域12a、12b、12c、12dが設けられており、メッシュベルト等の搬送機構8に載置された太陽電池基板19が、この4つの加熱領域に、炉の入口側から順にタクト送りされ、各加熱領域において天井部に配置された、本発明の加熱ヒーター以外の加熱手段13(例えばランプヒーター)により、段階的に昇温されて、炉の入口側から見て4番目の加熱領域12dにおいて約550℃まで加熱された後、本発明の加熱ヒーター1の配置位置に送られて、当該加熱ヒーターにより50〜60℃/秒の昇温速度で最高温度(約850℃)まで一気に高速加熱される。
その後、太陽電池基板19は、加熱ヒーターの配置位置を通過し、炉の出口に向かって搬送されながら、炉内に設けたエアー導入孔14からのクリーンエアーの吹き付け等により200℃程度まで冷却された後、出口より炉外に搬出される。
このように本発明の加熱ヒーターは、炉内の加熱を行う領域全体に渡って配置するのではなく、特に高速昇温を要する位置に局所的に使用することができる。
本発明の加熱ヒーターによる加熱の対象(被加熱物)としては、太陽電池基板に代表されるような、厚さが0.3mm以下程度の薄板状のものが好ましい。前述のとおり、本発明の加熱ヒーターは基本的に2つを1組として使用し、それら2つの加熱ヒーターを両者間に隙間を設けて配置するなどして発熱空間への入口と出口となる開口部を形成し、発熱空間への被加熱物の搬送や発熱空間からの被加熱物の搬出を行うため、前記開口部は、被加熱物が通過可能な大きさである必要があるが、被加熱物の厚みが厚すぎると、前記開口部が大きくなりすぎて、近似的な黒体空間が実現できなくなるため、加熱効率が低下する。また、搬送機構により被加熱物を加熱ヒーターの発熱空間に送る場合には、同様の理由により、メッシュベルトのような厚みの小さい搬送機構が好ましく、特に図7に示すような線材を使用したウォーキング方式の搬送機構を用いることが好ましい。
図7に示す搬送機構は、炉に対して移動するように設けられた線材を有し、被加熱物を前記線材上に載置し、前記線材を移動させることにより前記被加熱物の搬送を行う仕組みとなっている。具体的な構成としては、加熱炉に固定される固定側線材31と、炉に対してウォーキングビーム的動作をする移動側線材35という2種の線材が、互いに所定間隔で2本ずつ配設されている。なお。ここで「ウォーキングビーム的動作」とは、従来一般的に知られているウォーキングビームの動作、すなわち、上昇→前進→下降→後退を周期的に繰り返す移動動作のことを言う。
この搬送機構において、炉に固定されて移動しない固定側線材31は固定側線材ホルダー32に片端を固定され、他端を固定側ウェイト33に固定される。固定側ウェイト33は固定側滑車34を介して固定側線材31に固定されるため、固定側線材31の伸張に関わらず、常に同じ張力を固定側線材31に与えることができる。
同様に、炉に対し移動する移動側線材35は移動側線材ホルダー36に片端を固定され、他端を移動側ウェイト37に固定される。移動側ウェイト37は移動側滑車38を介して移動側線材35に固定されるため、移動側線材35の伸張に関わらず、常に同じ張力を移動側線材35に与えることができる。
移動側線材ホルダー36と移動側滑車38は、駆動機構(図示せず)に支持される。駆動機構は、上昇、前進、下降、後退の動作を周期的に繰り返す、いわゆる一般的なウォーキングビームの動作をするものと同等の構成とすることができる。このため移動側線材35は、同様に上述のウォーキングビーム的動作を周期的に繰り返すことができる。
最初に、固定側線材31上に載置された被加熱物30は、移動側線材35が上昇する際に移動側線材35上に移載される。次に、移動側線材35が前進し、被加熱物30を前進搬送する。更に、移動側線材35が下降すると、被加熱物30は固定側線材31上に移載される。最後に、移動側線材35が後退し、最初の状態となる。これらの動作を繰り返すことで、被加熱物30を搬送することができ、加熱炉(図示せず)内を通過させながら、所定の熱処理を施すことが可能となる。
なお、本例では、2種の線材の内の一方(移動側線材35)だけが炉に対して移動(ウォーキングビーム的動作)をするような構成としているが、いわゆるダブルウォーキングビームのように、所定間隔で配設された2種の線材が炉に対し互いに異なったウォーキングビーム的動作をするように構成してもよい。また、線材の本数は、被加熱物を支持する際の安定性を考慮して、各種毎に2本以上とする。
このように線材を用いて被加熱物の搬送(支持及び移動)を行うような構造の搬送機構を用いれば、2つの加熱ヒーターにより形成される発熱空間への入口と当該発熱空間からの出口となる開口部を小さくすることが可能となり、前述のような近似的な黒体空間を実現しやすくなるとともに、搬送機構自体の顕熱容量を小さくすることもできるので、より迅速な加熱や冷却が可能となる。
この搬送機構において使用する線材としては、炉内温度に耐え得る耐熱性と、必要な張力を与えることができるものであれば、その材質や形状に特に制限はないが、例えば、インコネル、チタン等の金属のより線や、径が1〜2mmの細棒からなるワイヤー、あるいは、同様に耐熱性に優れた金属やセラミックからなるチェーンを挙げることができる。
本発明は、太陽電池基板等の薄板状で迅速な加熱を要する被加熱物の熱処理に好適に使用することができる。
1…加熱ヒーター、2…断熱材、2a…平面、3…溝、4…発熱体、5…発熱面、6…発熱空間、7…隙間、8…搬送機構、9…被加熱物、10a…区域、10b…区域、10c…区域、11…端子(電極リード線)、12a…加熱領域、12b…加熱領域、12c…加熱領域、12d…加熱領域、13…加熱手段、14…エアー導入孔、19…太陽電池基板、20…入口、21…出口、22…断熱材、23…溝、24…隅部、27…溝、30…被加熱物、31…固定側線材、32…固定側線材ホルダー、33…固定側ウェイト、34…固定側滑車、35…移動側線材、36…移動側線材ホルダー、37…移動側ウェイト、38…移動側滑車。
Claims (6)
- 炉内で被加熱物を所定方向に搬送させながら前記被加熱物の加熱を行う連続式加熱炉の加熱手段として使用される加熱ヒーターであって、
少なくとも1つの平面を有するブロック状の断熱材の当該平面に、一定の断面形状を有する溝を直線状に設け、当該溝の内面に沿って発熱体を配置することにより発熱面を形成してなり、前記溝の長手方向が前記被加熱物の搬送方向と直交するように炉内に設置して使用される加熱ヒーター。 - 前記平面に垂直な断面における前記溝の断面形状が略半円形である請求項1に記載の加熱ヒーター。
- 個別に温度制御可能な複数の発熱体を、前記溝の長手方向に区分して配置した請求項1又は2に記載の加熱ヒーター。
- 請求項1ないし3の何れか一項に記載の加熱ヒーターを、前記溝を設けた平面が互いに向かい合わせになり、かつ互いの前記溝の位置が一致するように2つ配置し、それら2つの加熱ヒーターの前記溝同士により形成される空間を被加熱物を加熱するための発熱空間とする加熱ヒーターの使用方法。
- 炉内で被加熱物を加熱するための加熱手段として、請求項1ないし3の何れか一項に記載の加熱ヒーターを備えた連続式加熱炉。
- 炉内で被加熱物を搬送するための搬送機構として、炉に対して移動するように設けられた線材を有し、前記被加熱物を前記線材上に載置し、前記線材を移動させることにより前記被加熱物の搬送を行う請求項5に記載の連続式加熱炉。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004062847A JP2005147649A (ja) | 2003-03-06 | 2004-03-05 | 加熱ヒーター、加熱ヒーターの使用方法及び加熱ヒーターを用いた連続式加熱炉 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003059324 | 2003-03-06 | ||
JP2003364569 | 2003-10-24 | ||
JP2004062847A JP2005147649A (ja) | 2003-03-06 | 2004-03-05 | 加熱ヒーター、加熱ヒーターの使用方法及び加熱ヒーターを用いた連続式加熱炉 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005147649A true JP2005147649A (ja) | 2005-06-09 |
Family
ID=34704822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004062847A Pending JP2005147649A (ja) | 2003-03-06 | 2004-03-05 | 加熱ヒーター、加熱ヒーターの使用方法及び加熱ヒーターを用いた連続式加熱炉 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005147649A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008020078A (ja) * | 2006-07-10 | 2008-01-31 | Ngk Insulators Ltd | 連続式熱処理炉 |
JP2013115273A (ja) * | 2011-11-29 | 2013-06-10 | Noritake Co Ltd | 太陽電池用熱処理方法および熱処理炉 |
-
2004
- 2004-03-05 JP JP2004062847A patent/JP2005147649A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008020078A (ja) * | 2006-07-10 | 2008-01-31 | Ngk Insulators Ltd | 連続式熱処理炉 |
JP4541326B2 (ja) * | 2006-07-10 | 2010-09-08 | 日本碍子株式会社 | 連続式熱処理炉及び熱処理方法 |
JP2013115273A (ja) * | 2011-11-29 | 2013-06-10 | Noritake Co Ltd | 太陽電池用熱処理方法および熱処理炉 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5934801B2 (ja) | 成形装置 | |
KR100956834B1 (ko) | 면형상 히터 | |
JP2009176584A (ja) | 被加熱材の加熱装置及び加熱方法 | |
US20120181265A1 (en) | Firing furnace configuration for thermal processing system | |
KR100469522B1 (ko) | 열처리 장치 | |
JP6116366B2 (ja) | 金型組 | |
CN103964679A (zh) | 一种隧道式泡沫玻璃退火窑 | |
JP2007187398A (ja) | 連続式熱処理炉 | |
JP2005147649A (ja) | 加熱ヒーター、加熱ヒーターの使用方法及び加熱ヒーターを用いた連続式加熱炉 | |
WO2004079283A1 (ja) | 線材を用いた搬送機構並びにそれを使用した熱処理炉及び熱処理方法 | |
US6512206B1 (en) | Continuous process furnace | |
US10798781B2 (en) | Horizontal modular heater | |
KR102403525B1 (ko) | 비-균일한 절연부를 갖는 열적 프로세스 디바이스 | |
JP2003332727A (ja) | 熱遮蔽部分材及びリフロー装置 | |
JP4587022B2 (ja) | 連続焼成炉および連続焼成方法 | |
JP4515117B2 (ja) | 線材を用いた搬送機構並びにそれを使用した熱処理炉及び熱処理方法 | |
JP2007178038A (ja) | 搬送機構、熱処理炉及び熱処理方法 | |
KR100776370B1 (ko) | 소성로 | |
JPWO2018135038A1 (ja) | 発熱体及び真空熱処理装置 | |
US12072150B2 (en) | Heating furnace | |
KR200471723Y1 (ko) | 열처리로용 발열체 및 이를 구비한 머플식 열처리로 | |
US20210394292A1 (en) | Ovens for equipment such as die attach systems, flip chip bonding systems, clip attach systems, and related methods | |
JP2001174159A (ja) | 熱処理装置 | |
JP2003090685A (ja) | 基板上に形成された機能膜材料の熱処理炉 | |
JP4874754B2 (ja) | 被加熱物の熱処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
A977 | Report on retrieval |
Effective date: 20080611 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080624 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081111 |