JP2005146355A - Component for nitriding treatment furnace, and its production method - Google Patents

Component for nitriding treatment furnace, and its production method Download PDF

Info

Publication number
JP2005146355A
JP2005146355A JP2003386234A JP2003386234A JP2005146355A JP 2005146355 A JP2005146355 A JP 2005146355A JP 2003386234 A JP2003386234 A JP 2003386234A JP 2003386234 A JP2003386234 A JP 2003386234A JP 2005146355 A JP2005146355 A JP 2005146355A
Authority
JP
Japan
Prior art keywords
aluminum
maraging steel
nitriding furnace
layer
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003386234A
Other languages
Japanese (ja)
Inventor
Naohiro Fujita
尚宏 藤田
Kenichi Tanaka
健一 田中
Shunzo Umegaki
俊造 梅垣
Ikuo Tani
意公男 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
JATCO Ltd
Original Assignee
Chugai Ro Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd, JATCO Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2003386234A priority Critical patent/JP2005146355A/en
Publication of JP2005146355A publication Critical patent/JP2005146355A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and uniformly form a thin nitriding layer of about several tens μm on the surface of maraging steel by suppressing the decomposition of gaseous ammonia at the time when the maraging steel is heated and is subjected to nitriding treatment in a gaseous ammonia atmosphere. <P>SOLUTION: In the components for a nitriding treatment furnace, an aluminum layer and/or an aluminum alloy layer is formed at least on a part of the surfaces of metallic components 20, 11, 12, 14...used in a nitriding treatment furnace 10 for subjecting maraging steel 1 to nitriding treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、無段変速機(CVT)用のスチールベルト等に用いられる薄肉のマルエージング鋼を窒化処理する窒化処理炉内で使用される金属製の窒化処理炉用部品及びその製造方法に係り、特に、薄肉のマルエージング鋼をアンモニアガスの雰囲気中において加熱して窒化処理する場合に、アンモニアガスが分解されるのを抑制して、このマルエージング鋼の表面に窒化層が容易に形成されるようにすると共に、このマルエージング鋼の表面に均一な薄い窒化層を形成できるようにした点に特徴を有するものである。   The present invention relates to a metal nitriding furnace part used in a nitriding furnace for nitriding thin-walled maraging steel used for a steel belt for a continuously variable transmission (CVT) and a manufacturing method thereof. In particular, when a thin-walled maraging steel is heated and nitrided in an ammonia gas atmosphere, the decomposition of the ammonia gas is suppressed, and a nitride layer is easily formed on the surface of the maraging steel. It is characterized in that a uniform thin nitride layer can be formed on the surface of the maraging steel.

近年、CVT用のスチールベルト等に薄肉のマルエージング鋼をリング状に形成したものが用いられるようになっている。   In recent years, a thin-walled maraging steel formed in a ring shape on a CVT steel belt or the like has been used.

ここで、このようなリング状になった薄肉のマルエージング鋼をCVT用のスチールベルト等に用いる場合、マルエージング鋼の耐摩耗性や曲げ疲労強度が十分ではないため、従来においても、このマルエージング鋼を窒化処理してその表面に窒化層を形成し、これによりマルエージング鋼の表面硬さを高めて、マルエージング鋼の耐摩耗性や曲げ疲労強度を向上させるようにしている。   Here, when such thin ring maraging steel is used for a steel belt for CVT, the wear resistance and bending fatigue strength of maraging steel are not sufficient. The aging steel is nitrided to form a nitrided layer on the surface thereof, thereby increasing the surface hardness of the maraging steel and improving the wear resistance and bending fatigue strength of the maraging steel.

そして、上記のようなマルエージング鋼を窒化処理するにあたり、従来においては、一般に、上記のリング状になった薄肉のマルエージング鋼を耐熱鋼等の金属で構成された保持具に保持させて窒化処理炉内に導き、この窒化処理炉内においてアンモニアガスの雰囲気中で加熱処理するガス窒化法が用いられている。   In nitriding the maraging steel as described above, conventionally, generally, the thin-walled maraging steel having the ring shape described above is held by a holder made of a metal such as heat-resistant steel, and is nitrided. A gas nitriding method is used in which heat treatment is performed in an atmosphere of ammonia gas in the nitriding furnace, which is introduced into the processing furnace.

ここで、上記のガス窒化法によりマルエージング鋼を窒化処理する場合、アンモニアガスの濃度によってマルエージング鋼の表面に形成される窒化層の厚みが変化する。   Here, when maraging a maraging steel by said gas nitriding method, the thickness of the nitrided layer formed in the surface of a maraging steel changes with the density | concentration of ammonia gas.

そして、上記のようにリング状になったマルエージング鋼を耐熱鋼等の金属で構成された保持具に保持させて処理するようにした場合、窒化処理炉内においてアンモニアガスが、上記の保持具や窒化処理炉内におけるレール、ヒータ、ファン、炉壁の鋼板等の金属製部品と接触して分解し、窒化処理炉内におけるアンモニアガスの濃度が低下したり、アンモニアガスの濃度にばらつきが生じたりし、マルエージング鋼の表面に窒化層を形成するのに時間がかかり、またマルエージング鋼の表面に均一な薄い窒化層を形成することが非常に困難であった。特に、マルエージング鋼と接触する保持具の部分においては、マルエージング鋼の窒化が進みにくくなって窒化層が薄くなり、マルエージング鋼の表面に形成される窒化層の厚みのばらつきが大きくなる等の問題があった。   When the maraging steel in the ring shape as described above is held in a holder made of a metal such as heat-resistant steel and processed, ammonia gas is converted into the holder in the nitriding furnace. In contact with metal parts such as rails, heaters, fans, and steel plates on the furnace wall in the nitriding furnace, the ammonia gas concentration in the nitriding furnace decreases or the concentration of ammonia gas varies. However, it took time to form a nitrided layer on the surface of the maraging steel, and it was very difficult to form a uniform thin nitrided layer on the surface of the maraging steel. In particular, in the portion of the holder that comes into contact with the maraging steel, the nitriding of the maraging steel is difficult to proceed, the nitrided layer becomes thin, and the variation in the thickness of the nitrided layer formed on the surface of the maraging steel increases. There was a problem.

このため、近年においては、上記のような保持具において、マルエージング鋼と接触する部分に純ニッケルを配設させ、マルエージング鋼と保持具とが接触する部分においてアンモニアガスが分解するのを抑制するようにしたものが提案されている(例えば、特許文献1参照。)。   For this reason, in recent years, in the holders as described above, pure nickel is disposed at the portion that contacts the maraging steel, and the ammonia gas is prevented from being decomposed at the portion where the maraging steel and the holder are in contact. The thing which made it do is proposed (for example, refer patent document 1).

しかし、上記のように純ニッケルを用いるとコストが高くつくという問題があり、またマルエージング鋼と接触する部分に純ニッケルを配設させるにあたっては、網状の純ニッケルを取り付けるようにしたり、メッキによって純ニッケルを設けるようにしているが、網状の純ニッケルが外れたり、メッキが剥離したりして、長期に渡って使用することができなくなったり、さらに網状の純ニッケルの場合、網目の空間部分においてアンモニアガスが分解し、依然としてマルエージング鋼の表面に均一な薄い窒化層を形成することが困難になるという問題があった。   However, when pure nickel is used as described above, there is a problem that the cost is high. In addition, when placing pure nickel in a portion in contact with maraging steel, reticulated nickel is attached or plated. Although pure nickel is provided, the net-like pure nickel may come off or the plating may peel off, making it impossible to use for a long time. In this case, ammonia gas decomposes, and it is still difficult to form a uniform thin nitride layer on the surface of the maraging steel.

また、このように保持具の一部にだけ純ニッケルを配設させて、アンモニアガスが分解するのを抑制するだけでは、アンモニアガスが窒化処理炉内における保持具以外のレール、ヒータ、ファン、炉壁の鋼板等の金属製部品と接触して分解するのを抑制することができず、窒化処理炉内におけるアンモニアガスの濃度が低下したり、アンモニアガスの濃度にばらつきが生じたりするのを十分に防止することができなかった。
特開2002−161314号公報
In addition, by arranging pure nickel only in a part of the holder in this way and suppressing ammonia gas from being decomposed, the ammonia gas is removed from the rails other than the holder in the nitriding furnace, a heater, a fan, It is impossible to suppress decomposition due to contact with metal parts such as steel plates on the furnace wall, and the concentration of ammonia gas in the nitriding furnace decreases or the concentration of ammonia gas varies. It could not be prevented sufficiently.
JP 2002-161314 A

この発明は、窒化処理炉内において、マルエージング鋼をアンモニアガス雰囲気中で加熱して窒化処理させる場合における上記のような問題を解決することを課題とするものであり、マルエージング鋼をアンモニアガス雰囲気中で加熱して窒化処理する場合に、アンモニアガスが分解するのを抑制して、マルエージング鋼の表面に窒化層が容易に形成されるようにすると共に、マルエージング鋼の表面に数十μm程度の薄い窒化層を均一に形成できるようにすることを課題とするものである。   An object of the present invention is to solve the above-mentioned problems in the case of heating and nitriding maraging steel in an ammonia gas atmosphere in a nitriding furnace. When nitriding by heating in an atmosphere, decomposition of ammonia gas is suppressed so that a nitrided layer is easily formed on the surface of the maraging steel, and several tens of times are formed on the surface of the maraging steel. It is an object to make it possible to uniformly form a thin nitride layer of about μm.

この発明の請求項1の窒化処理炉用部品においては、上記のような課題を解決するため、マルエージング鋼を窒化処理する窒化処理炉内で使用される金属製の部品において、この部品の表面の少なくとも一部に、アルミニウム層及び/又はアルミニウムとの合金層を形成するようにした。   In the nitriding furnace part according to claim 1 of the present invention, in order to solve the above-described problems, in the metal part used in the nitriding furnace for nitriding maraging steel, the surface of this part An aluminum layer and / or an alloy layer with aluminum is formed on at least a part of the film.

また、この発明の請求項2の窒化処理炉用部品においては、上記の請求項1における窒化処理炉用部品において、上記の部品の表面全体に、アルミニウム層及び/又はアルミニウムとの合金層を形成するようにした。   In the nitriding furnace part according to claim 2 of the present invention, in the nitriding furnace part according to claim 1, an aluminum layer and / or an alloy layer with aluminum is formed on the entire surface of the part. I tried to do it.

ここで、上記の部品としては、窒化処理炉内においてマルエージング鋼を保持する金属製の保持具や、窒化処理炉内に設けられるレール、ヒータ、ファン、炉壁の鋼板等の金属製部品があり、特に、マルエージング鋼と接触する保持具においては、上記のようにその表面にアルミニウム層及び/又はアルミニウムとの合金層を形成することが必要になる。   Here, as the above-mentioned parts, there are metal parts such as metal holders for holding maraging steel in the nitriding furnace, rails, heaters, fans, furnace wall steel plates provided in the nitriding furnace. In particular, in a holder that comes into contact with maraging steel, it is necessary to form an aluminum layer and / or an alloy layer with aluminum on the surface as described above.

また、この発明の請求項4における窒化処理炉用部品の製造方法においては、上記のような窒化処理炉用部品を製造するにあたり、上記の部品の表面に溶融アルミニウムメッキを行った後、これを加熱処理させるようにした。   Further, in the method for manufacturing a nitriding furnace part according to claim 4 of the present invention, in manufacturing the nitriding furnace part as described above, after performing hot dip aluminum plating on the surface of the above part, It was made to heat-process.

ここで、上記のように部品の表面に溶融アルミニウムメッキを行い、部品の表面にアルミニウム層を形成した後、これを加熱処理すると、アルミニウム層におけるアルミニウムが部品内に拡散されて、部品の表面にアルミニウムとの合金層が形成されるようになる。   Here, as described above, molten aluminum plating is performed on the surface of the component, and after forming an aluminum layer on the surface of the component, when this is heat-treated, the aluminum in the aluminum layer is diffused into the component, and the surface of the component is formed. An alloy layer with aluminum is formed.

この発明における窒化処理炉用部品のように、マルエージング鋼を窒化処理する窒化処理炉内において使用される金属製の部品の表面の一部又は表面全体に、アルミニウム層及び/又はアルミニウムとの合金層を形成すると、アルミニウム層及び/又はアルミニウムとの合金層の部分においてアンモニアガスが分解するということがない。   An aluminum layer and / or an alloy with aluminum on a part of or the entire surface of a metal part used in a nitriding furnace for nitriding maraging steel, such as a nitriding furnace part in the present invention When the layer is formed, ammonia gas is not decomposed in the aluminum layer and / or the portion of the alloy layer with aluminum.

このため、窒化処理炉内で使用される多くの金属製の部品の表面にアルミニウム層及び/又はアルミニウムとの合金層を形成すると、窒化処理炉内においてアンモニアガスがこれらの金属製の部品と接触して分解するのが抑制され、窒化処理炉内においてアンモニアガスの濃度が低下したり、アンモニアガスの濃度にばらつきが生じたりするのが抑制されるようになり、マルエージング鋼の表面に窒化層を容易に形成できるようになると共に、マルエージング鋼の表面に数十μm程度の薄い窒化層を均一に形成できるようになる。特に、マルエージング鋼と接触する保持具の表面にアルミニウム層及び/又はアルミニウムとの合金層を形成すると、保持具と接触する部分においてマルエージング鋼の窒化が進みにくくなるのが防止され、マルエージング鋼の表面にさらに均一な厚みになった窒化層が形成されるようになる。   For this reason, when an aluminum layer and / or an alloy layer with aluminum are formed on the surface of many metal parts used in a nitriding furnace, ammonia gas contacts with these metal parts in the nitriding furnace. Decomposition is suppressed, and the concentration of ammonia gas in the nitriding furnace is reduced, and variation in the concentration of ammonia gas is suppressed, and a nitride layer is formed on the surface of the maraging steel. Can be easily formed, and a thin nitride layer of about several tens of μm can be uniformly formed on the surface of the maraging steel. In particular, when an aluminum layer and / or an alloy layer of aluminum is formed on the surface of the holder that comes in contact with the maraging steel, it is prevented that nitriding of the maraging steel hardly progresses in the portion that comes into contact with the holder, and maraging A nitride layer having a more uniform thickness is formed on the steel surface.

また、上記のように部品の表面にアルミニウム層及び/又はアルミニウムとの合金層を形成する場合、純ニッケルを配設させる場合に比べてコストが低減されるようになり、特にアルミニウムとの合金層を設けるようにすると、この合金層が剥離するということがなく、長期に渡って安定して使用することができるようになる。   In addition, when an aluminum layer and / or an alloy layer with aluminum is formed on the surface of the component as described above, the cost is reduced as compared with the case where pure nickel is disposed, and in particular, the alloy layer with aluminum. If this is provided, the alloy layer does not peel off and can be used stably over a long period of time.

以下、この発明に係る窒化処理炉用部品及びその製造方法の実施形態を添付図面に基づいて具体的に説明する。なお、この発明に係る窒化処理炉用部品及びその製造方法は下記の実施形態に示すものに限定されず、発明の要旨を変更しない範囲において、適宜変更して実施できるものである。   Embodiments of a nitriding furnace part and a method for manufacturing the same according to the present invention will be specifically described below with reference to the accompanying drawings. Note that the nitriding furnace part and the manufacturing method thereof according to the present invention are not limited to those shown in the following embodiments, and can be appropriately modified and implemented without departing from the scope of the invention.

この実施形態においては、図1に示すようなリング状に形成された薄肉のマルエージング鋼1を窒化処理炉10内において窒化処理して、このマルエージング鋼1の表面に窒化層を形成する場合について説明する。   In this embodiment, a thin maraging steel 1 formed in a ring shape as shown in FIG. 1 is nitrided in a nitriding furnace 10 to form a nitrided layer on the surface of the maraging steel 1. Will be described.

ここで、この実施形態においては、図2に示すように、上記のマルエージング鋼1をリング状の状態で上下方向に架け渡して保持する保持部21が多数並設された保持具20全体に溶融アルミニウムメッキを行い、その後、これを800℃以上に加熱させて、保持具20の表面におけるアルミニウムを内部に拡散させ、この保持具20の表面全体にアルミニウムとの合金層を形成するようにしている。なお、このように溶融アルミニウムメッキされた保持具20を加熱させて、その表面におけるアルミニウムを内部に拡散させて、アルミニウムとの合金層を形成するようにした場合においても、この保持具20の表面にアルミニウム層が残ることがあり、このアルミニウム層が厚みが厚くなると、このアルミニウム層が剥離しやすくなるため、残存するアルミニウム層の厚みを50μm以下にすることが好ましい。   Here, in this embodiment, as shown in FIG. 2, the entire maraging steel 1 is held in a ring-shaped state in a state where a plurality of holding portions 21 for holding the maraging steel 1 in a ring shape are arranged in parallel. Hot-dip aluminum plating is performed, and then the aluminum is heated to 800 ° C. or more to diffuse aluminum on the surface of the holder 20 so that an alloy layer with aluminum is formed on the entire surface of the holder 20. Yes. In addition, even when the holder 20 thus plated with molten aluminum is heated to diffuse the aluminum on the surface to form an alloy layer with aluminum, the surface of the holder 20 In some cases, an aluminum layer may remain. When the thickness of the aluminum layer increases, the aluminum layer is easily peeled off. Therefore, the thickness of the remaining aluminum layer is preferably 50 μm or less.

なお、この実施形態においては、上記の保持具20の表面全体にアルミニウムとの合金層を形成するようにしたが、特に、マルエージング鋼1と接触して保持する保持部21の表面にだけアルミニウムとの合金層を形成することも可能である。   In this embodiment, an alloy layer with aluminum is formed on the entire surface of the holder 20 described above. In particular, aluminum is formed only on the surface of the holding portion 21 that is held in contact with the maraging steel 1. It is also possible to form an alloy layer.

そして、上記のように保持具20に保持された多数のマルエージング鋼1を窒化処理炉10内において窒化処理するにあたっては、この窒化処理炉10の出入口に設けられた扉11を開け、上記のように各保持部21に順々にマルエージング鋼1をリング状の状態で上下方向に架け渡して保持させた保持具20を、この窒化処理炉10の出入口から窒化処理炉10内に敷設されたレール12上を走行させて窒化処理炉10内に導き、上記の扉11を閉じて窒化処理炉10内に収容させる。   Then, when nitriding many maraging steels 1 held by the holder 20 as described above in the nitriding furnace 10, the door 11 provided at the entrance of the nitriding furnace 10 is opened, In this manner, the holder 20 in which the maraging steel 1 is held in a ring-like state in the up-down direction in order in each holding portion 21 is laid in the nitriding furnace 10 from the entrance / exit of the nitriding furnace 10. The rails 12 are run and guided into the nitriding furnace 10, and the door 11 is closed and accommodated in the nitriding furnace 10.

そして、この窒化処理炉10内にアンモニアガスと窒素ガスとを導入させて、この窒化処理炉10内が所定のアンモニアガス濃度になるようにした後、ヒータ(図示せず)により窒化処理炉10内を加熱させると共に、ファン13によって窒化処理炉10内の温度を均一化させ、窒化処理炉10内を400℃〜500℃の所定の温度に設定して所定時間維持させ、上記の各マルエージング鋼1を窒化処理し、各マルエージング鋼1の表面に所定厚みの窒化層を形成する。   Then, after introducing ammonia gas and nitrogen gas into the nitriding furnace 10 so that the inside of the nitriding furnace 10 has a predetermined ammonia gas concentration, the nitriding furnace 10 is heated by a heater (not shown). The interior is heated, the temperature inside the nitriding furnace 10 is made uniform by the fan 13, the inside of the nitriding furnace 10 is set to a predetermined temperature of 400 ° C. to 500 ° C. and maintained for a predetermined time, and each of the above-described maraging The steel 1 is nitrided, and a nitride layer having a predetermined thickness is formed on the surface of each maraging steel 1.

ここで、この実施形態においては、上記のようにマルエージング鋼1を保持する保持具20の表面全体にアルミニウムとの合金層を形成しているため、マルエージング鋼1の近傍においてアンモニアガスが分解されるのが抑制されて、マルエージング鋼1が均一に窒化処理されるようになり、マルエージング鋼1の表面に数十μm程度の薄い窒化層を均一に形成できるようになる。   Here, in this embodiment, since the alloy layer with aluminum is formed on the entire surface of the holder 20 that holds the maraging steel 1 as described above, the ammonia gas is decomposed in the vicinity of the maraging steel 1. As a result, the maraging steel 1 is uniformly nitrided, and a thin nitride layer of about several tens of μm can be uniformly formed on the surface of the maraging steel 1.

なお、この実施形態においては、マルエージング鋼1を保持する保持具20の表面にアルミニウムとの合金層を形成するようにしただけであるが、この保持具20の他に、上記の窒化処理炉10内における金属製の部品、例えば、上記のレール12、ファン13、ヒータ(図示せず)、窒化処理炉10の内壁に設ける鋼板14等の表面にも、アルミニウム層やアルミニウムとの合金層を設けることが好ましい。   In this embodiment, only the alloy layer with aluminum is formed on the surface of the holder 20 that holds the maraging steel 1, but in addition to the holder 20, the above nitriding furnace An aluminum layer or an alloy layer with aluminum is also formed on the surfaces of metal parts in the steel plate 10, such as the rail 12, the fan 13, the heater (not shown), the steel plate 14 provided on the inner wall of the nitriding furnace 10, and the like. It is preferable to provide it.

そして、このように窒化処理炉10内における多くの金属製部品の表面にアルミニウム層やアルミニウムとの合金層を設けると、窒化処理炉10内においてアンモニアガスが分解されるのがさらに抑制され、窒化処理炉10内におけるアンモニアガスの濃度が低下したり、アンモニアガスの濃度にばらつきが生じたりするのがより一層抑制され、マルエージング鋼1の表面に数十μm程度の薄い均一な窒化層をより容易に形成できるようになる。   Then, when an aluminum layer or an alloy layer with aluminum is provided on the surface of many metal parts in the nitriding furnace 10 as described above, the ammonia gas is further prevented from being decomposed in the nitriding furnace 10 and nitriding is performed. A decrease in the concentration of ammonia gas in the processing furnace 10 or a variation in the concentration of ammonia gas is further suppressed, and a thin uniform nitride layer of about several tens of μm is further formed on the surface of the maraging steel 1. It can be formed easily.

この発明の実施形態において窒化処理するリング状のマルエージング鋼を示した概略斜視図である。1 is a schematic perspective view showing a ring-shaped maraging steel to be nitrided in an embodiment of the present invention. 同実施形態において、上記のマルエージング鋼を保持具に多数保持させた状態を示した概略側面図である。In the same embodiment, it is the schematic side view showing the state where many above-mentioned maraging steels were held in the holder. 同実施形態において、マルエージング鋼を多数保持した上記の保持具を窒化処理炉内に導いて各マルエージング鋼を窒化処理する状態を示した断面説明図である。In the same embodiment, it is cross-sectional explanatory drawing which showed the state which introduce | transduces said holding tool holding many maraging steels in a nitriding furnace, and nitrides each maraging steel.

符号の説明Explanation of symbols

1 マルエージング鋼
10 窒化処理炉
11 扉
12 レール
13 ファン
14 内壁の鋼板
20 保持具
21 保持部
DESCRIPTION OF SYMBOLS 1 Maraging steel 10 Nitriding furnace 11 Door 12 Rail 13 Fan 14 Steel plate of inner wall 20 Holder 21 Holder

Claims (4)

マルエージング鋼を窒化処理する窒化処理炉内で使用される金属製の部品において、この部品の表面の少なくとも一部に、アルミニウム層及び/又はアルミニウムとの合金層が形成されていることを特徴とする窒化処理炉用部品。   In a metal part used in a nitriding furnace for nitriding maraging steel, an aluminum layer and / or an alloy layer with aluminum is formed on at least a part of the surface of the part. Parts for nitriding furnace. 請求項1に記載の窒化処理炉用部品において、上記の部品の表面全体に、アルミニウム層及び/又はアルミニウムとの合金層が形成されていることを特徴とする窒化処理炉用部品。   The nitriding furnace part according to claim 1, wherein an aluminum layer and / or an alloy layer with aluminum is formed on the entire surface of the part. 請求項1又は請求項2に記載の窒化処理炉用部品において、上記の部品がマルエージング鋼を保持する保持具であることを特徴とする窒化処理炉用部品。   The nitriding furnace part according to claim 1 or 2, wherein the part is a holder for holding maraging steel. 請求項1〜3の何れか1項に記載の窒化処理炉用部品を製造するにあたり、上記の部品の表面に溶融アルミニウムメッキを行った後、これを加熱処理することを特徴とする窒化処理炉用部品の製造方法。   In manufacturing the nitriding furnace part according to any one of claims 1 to 3, a nitriding furnace characterized in that after the molten aluminum plating is performed on the surface of the part, it is heat-treated. Method of manufacturing parts.
JP2003386234A 2003-11-17 2003-11-17 Component for nitriding treatment furnace, and its production method Pending JP2005146355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386234A JP2005146355A (en) 2003-11-17 2003-11-17 Component for nitriding treatment furnace, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386234A JP2005146355A (en) 2003-11-17 2003-11-17 Component for nitriding treatment furnace, and its production method

Publications (1)

Publication Number Publication Date
JP2005146355A true JP2005146355A (en) 2005-06-09

Family

ID=34693970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386234A Pending JP2005146355A (en) 2003-11-17 2003-11-17 Component for nitriding treatment furnace, and its production method

Country Status (1)

Country Link
JP (1) JP2005146355A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270338A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Nitriding furnace and nitriding treatment method
WO2011135624A1 (en) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 Metal ring and method for producing same
KR20160050167A (en) * 2014-10-28 2016-05-11 포스코강판 주식회사 Method for manufacturing alluminum plated steel sheet having excellent high tempearature discoloration-resistance and formability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270338A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Nitriding furnace and nitriding treatment method
WO2011135624A1 (en) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 Metal ring and method for producing same
JP5146597B2 (en) * 2010-04-28 2013-02-20 トヨタ自動車株式会社 Metal ring and manufacturing method thereof
US8713786B2 (en) 2010-04-28 2014-05-06 Toyota Jidosha Kabushiki Kaisha Metal ring and method of producing the same
KR20160050167A (en) * 2014-10-28 2016-05-11 포스코강판 주식회사 Method for manufacturing alluminum plated steel sheet having excellent high tempearature discoloration-resistance and formability
KR101628017B1 (en) 2014-10-28 2016-06-09 포스코강판 주식회사 Method for manufacturing alluminum plated steel sheet having excellent high tempearature discoloration-resistance and formability

Similar Documents

Publication Publication Date Title
US10385439B2 (en) Nitriding process method of steel member
EP2322687A1 (en) Method for carburizing steel components
JP5420213B2 (en) Heat treatment equipment
EP1544317B1 (en) Method of nitriding metal ring and apparatus therefor
JP3960697B2 (en) Carburizing and carbonitriding methods
JP5669979B1 (en) Method and apparatus for surface hardening treatment of steel member
JP2007238969A (en) Nitriding method
JP2005146355A (en) Component for nitriding treatment furnace, and its production method
US8758856B2 (en) Method of fluoridation and directions for use of a unit of fluoridation
JP4518604B2 (en) Sulfur quenching treatment, sulfur carburizing treatment, and sulfur carbonitriding method
JP2005272884A (en) Gas nitriding method
JP2006028588A (en) Nitriding treatment method
CN114341392B (en) Vacuum carburization method and carburized component manufacturing method
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JP2010189686A (en) Method for nitriding iron group element-based alloy
KR20170052485A (en) Low-Temperature Vacuum Carburizing Method
JP3986996B2 (en) Method for nitriding metal ring
US9738964B2 (en) Method for the nitro carburization of a deep-drawn part or a stamped-bent part made of austenitic stainless steel
JP2001049347A (en) Production of endless metallic belt and heat treating device
JP2018028113A (en) Method for manufacturing steel material
JP2005133214A (en) Heat treatment system
JP3995178B2 (en) Gas nitriding treatment method for maraging steel
KR20050000627A (en) Method for heat treatment in gasnitriding
JP4308368B2 (en) Method for producing endless metal belt
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226