JP2006028588A - Nitriding treatment method - Google Patents

Nitriding treatment method Download PDF

Info

Publication number
JP2006028588A
JP2006028588A JP2004209601A JP2004209601A JP2006028588A JP 2006028588 A JP2006028588 A JP 2006028588A JP 2004209601 A JP2004209601 A JP 2004209601A JP 2004209601 A JP2004209601 A JP 2004209601A JP 2006028588 A JP2006028588 A JP 2006028588A
Authority
JP
Japan
Prior art keywords
nitriding
parameter
partial pressure
metal material
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004209601A
Other languages
Japanese (ja)
Inventor
Izuru Yamamoto
出 山本
Yukio Ito
幸夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004209601A priority Critical patent/JP2006028588A/en
Publication of JP2006028588A publication Critical patent/JP2006028588A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitriding treatment method by gas atmosphere control using a new nitriding parameter. <P>SOLUTION: The nitriding treatment method is characterized in that, at the time of subjecting a metallic material to gas nitriding treatment, gas atmosphere control during the treatment is performed using a nitriding parameter (K<SB>N</SB>') expressed by following formula: K<SB>N</SB>'=(P<SB>NH3</SB>/P<SB>H2</SB><SP>1/2</SP>); wherein, P<SB>NH3</SB>is NH<SB>3</SB>partial pressure, and P<SB>H2</SB>is H<SB>2</SB>partial pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、窒化性環境中に金属材料を保持し、該窒化性環境から該金属材料への活性窒素供給により該金属材料を窒化処理する方法に関する。   The present invention relates to a method for holding a metal material in a nitriding environment and nitriding the metal material by supplying active nitrogen to the metal material from the nitriding environment.

金属材料表面の状態を変えることによって、表面の性質を変えたり、新しい機能を付与する表面改質の一つに表面熱処理があり、主として鋼を対象として行われている。熱拡散法による表面熱処理は、他の元素を金属材料表面から新たに熱拡散させて、耐摩耗性、耐疲労性、耐焼付性等を付与するものである。   One of the surface modifications that change the properties of the surface of a metal material or change the surface properties or impart a new function is surface heat treatment, which is mainly performed on steel. The surface heat treatment by the thermal diffusion method newly imparts wear resistance, fatigue resistance, seizure resistance, etc. by thermally diffusing other elements from the surface of the metal material.

鋼に代表される金属材料の表面熱処理法として窒化法が広く行われている。金属材料の窒化処理方法として、ガス窒化法(本願においては、ガス軟窒化法も含む)、塩浴窒化法(例えばタフトライド法)、プラズマ(イオン)窒化法が行われているが、ガス窒化法が生産性が高く、一般的である。ガス窒化法は、主な反応原料としてアンモニアガス(NH)を用い、一般に500〜600℃程度の比較的低温で行われ、窒化後も焼入れ等の熱処理を必要としないため、熱歪みが極めて少ないことが大きな利点である。窒化法は、ばね、歯車、鋼板等の構造用部品、切削工具、ダイス等の製造に広く利用されている。 A nitriding method is widely used as a surface heat treatment method for metal materials typified by steel. As a nitriding method of a metal material, a gas nitriding method (including a gas soft nitriding method in the present application), a salt bath nitriding method (for example, a tuftride method), and a plasma (ion) nitriding method are performed. Is highly productive and general. The gas nitriding method uses ammonia gas (NH 3 ) as a main reaction raw material, and is generally performed at a relatively low temperature of about 500 to 600 ° C., and does not require heat treatment such as quenching after nitriding, so that thermal distortion is extremely high. Less is a big advantage. The nitriding method is widely used for manufacturing structural parts such as springs, gears and steel plates, cutting tools, dies and the like.

窒化による表面硬化層(窒化層)は、最表層の金属窒化物層と、その下の拡散層とから構成されている。表面硬化特性の向上、生産性および生産コストの向上のために、より短時間でより深い拡散層を形成して窒化効率を向上させることが重要である。そのため、これまでに上記の各窒化処理方法において種々の改良がなされてきた。   The surface hardened layer (nitrided layer) formed by nitriding is composed of an outermost metal nitride layer and a diffusion layer therebelow. In order to improve surface hardening characteristics, productivity, and production cost, it is important to form a deeper diffusion layer in a shorter time to improve nitriding efficiency. For this reason, various improvements have been made in the above nitriding methods.

ここで、金属材料に対して所望の窒化処理を施すためには、窒化雰囲気を的確に管理する必要がある。下記特許文献1には、窒化可能性パラメータとして
=(PNH3/PH2 3/2
が開示されている(ここで、PNH3はNH分圧であり、PH2はH分圧である。)。又、下記特許文献2には、残留アンモニア濃度
NH =PNH3
を用いることが開示されている(ここで、PNH3はNH分圧である。)。
特開2000−45060号公報 特開2003−328109号公報
Here, in order to perform a desired nitriding treatment on the metal material, it is necessary to accurately manage the nitriding atmosphere. In Patent Document 1 below, K N = (P NH3 / P H2 3/2 ) as a nitridability parameter.
(Where P NH3 is the NH 3 partial pressure and P H2 is the H 2 partial pressure). Further, Patent Document 2 below describes the residual ammonia concentration NH 3 R = P NH3.
(Where P NH3 is the NH 3 partial pressure).
Japanese Patent Laid-Open No. 2000-4560 JP 2003-328109 A

特許文献1に開示された窒化可能性パラメータや特許文献2に開示された残留アンモニア濃度を用いた場合、後述するように窒化深さに大きなばらつきが見られた。そこで、窒化された金属材料の品質を均一にするには、これらに代わる新しい窒化パラメータが必要とされた。   When the nitridability parameter disclosed in Patent Document 1 and the residual ammonia concentration disclosed in Patent Document 2 were used, large variations were observed in the nitridation depth, as will be described later. Therefore, in order to make the quality of the nitrided metal material uniform, new nitriding parameters instead of these were required.

本発明は、新規な窒化パラメータを用いたガス雰囲気管理による窒化処理法を提供することを目的とする。   An object of the present invention is to provide a nitriding method by gas atmosphere management using a novel nitriding parameter.

本発明者らは、従来の方法に比べて、窒化処理のばらつきの少ない新規な窒化パラメータを見出し、本発明に至った。即ち、本発明は、金属材料にガス窒化処理を施すにあたり、処理中のガス雰囲気管理を
’=(PNH3/PH2 1/2
(ここで、PNH3はNH分圧であり、PH2はH分圧である。)で表される窒化パラメータ(K’)を用いて行うことを特徴とする窒化処理方法である。
The present inventors have found a novel nitriding parameter with less variation in nitriding treatment as compared with the conventional method, and have reached the present invention. That is, according to the present invention, when performing a gas nitriding process on a metal material, K N ′ = (P NH3 / P H2 1/2 )
(Here, P NH3 is NH 3 partial pressure, and P H2 is H 2 partial pressure.) This is a nitriding method characterized in that it is performed using a nitriding parameter (K N ′). .

本発明の窒化パラメータ(K’)は、NH分圧及びH分圧で規定されるが、特にHガス導入量により、容易に制御することができる。 The nitriding parameter (K N ′) of the present invention is defined by the NH 3 partial pressure and the H 2 partial pressure, and can be easily controlled by the amount of H 2 gas introduced.

窒化処理が施される金属材料としては、制限されず、鋼の他、チタン等も適用できるが、鋼材が最も適している。   The metal material subjected to the nitriding treatment is not limited, and titanium and the like can be applied in addition to steel, but steel is most suitable.

本発明の窒化処理方法の好ましい態様として、通常の窒化処理で最表面に生成する化合物(FeN)を抑制し、金属材料の表面窒素濃度をすばやく窒化化合物生成臨界値以下とし、その後窒素濃度を該窒化化合物生成臨界値以下に保つことに、本発明のパラメータ(K’)は好適に用いることができる。最表面に生成する化合物(FeN)層は、脆性的であり、面圧強度を低下させる原因となっている。化合物層は、窒化が進行し、表面窒素がある臨界濃度以上となった時に形成される。従って、化合物層を抑制するには、窒素濃度分布を正確に予測し、それを基に最適な材料設計、窒化条件を設定することが重要である。 As a preferred embodiment of the nitriding method of the present invention, the compound (Fe 3 N) generated on the outermost surface by normal nitriding treatment is suppressed, and the surface nitrogen concentration of the metal material is quickly reduced to a nitride compound formation critical value or less, and then the nitrogen concentration Is kept below the critical value for forming a nitride compound, the parameter (K N ′) of the present invention can be preferably used. The compound (Fe 3 N) layer generated on the outermost surface is brittle and causes a reduction in the surface pressure strength. The compound layer is formed when nitriding proceeds and the surface nitrogen reaches a certain critical concentration or higher. Therefore, in order to suppress the compound layer, it is important to accurately predict the nitrogen concentration distribution and to set the optimum material design and nitriding conditions based on it.

本発明の窒化パラメータ(K’=(PNH3/PH2 1/2))を用いることにより、従来の窒化可能性パラメータ(K=(PNH3/PH2 3/2))や残留アンモニア濃度(NH =PNH3)を用いる場合に比べて、はるかに均一に窒化深さを制御することが可能となり、品質のばらつきを少なくすることができる。又、本発明の窒化パラメータ(K’=(PNH3/PH2 1/2))を用いることにより、短時間で、最表面に生成する化合物(FeN)を抑制して窒化処理を行うことができる。 By using the nitriding parameter (K N ′ = (P NH3 / P H2 1/2 )) of the present invention, the conventional nitridability parameter (K N = (P NH3 / P H2 3/2 )) and residual ammonia Compared with the case where the concentration (NH 3 R = P NH3 ) is used, the nitridation depth can be controlled much more uniformly, and variations in quality can be reduced. Further, by using the nitriding parameter (K N ′ = (P NH3 / P H2 1/2 )) of the present invention, the compound (Fe 3 N) generated on the outermost surface can be suppressed in a short time to perform nitriding treatment. It can be carried out.

先ず、本発明の窒化パラメータ(K’=(PNH3/PH2 1/2))の算出方法を説明する。以下の説明では、
a:添加したNHの流量(L/min)
b:添加したNの流量(L/min)
c:添加したHの流量(L/min)
B:NHの分解率(未知)(NH→0.5N+1.5H
NH3:NHの分圧
N2:Nの分圧
H2:Hの分圧
を用いる。
First, a method for calculating the nitriding parameter (K N ′ = (P NH3 / P H2 1/2 )) of the present invention will be described. In the description below,
a: Flow rate of added NH 3 (L / min)
b: Flow rate of added N 2 (L / min)
c: Flow rate of added H 2 (L / min)
B: Decomposition rate of NH 3 (unknown) (NH 3 → 0.5N 2 + 1.5H 2 )
P NH3 : Partial pressure of NH 3 P N2 : Partial pressure of N 2 P H2 : Partial pressure of H 2 is used.

赤外吸光分析などで、NHの分圧を測定し、
NH3=a(1−B)/(a+b+c+Ba)
より、Bを算出する。算出されたBを、
N2=(b+Ba/2)/(a+b+c+Ba)
及び
H2=(c+3Ba/2)/(a+b+c+Ba)
に代入して、Nの分圧とHの分圧を求める。これらより、本発明の窒化パラメータ
’=(PNH3/PH2 1/2
を算出する。
Measure the partial pressure of NH 3 by infrared absorption analysis, etc.
P NH3 = a (1-B) / (a + b + c + Ba)
Thus, B is calculated. Calculated B is
P N2 = (b + Ba / 2) / (a + b + c + Ba)
And P H2 = (c + 3Ba / 2) / (a + b + c + Ba)
To obtain the partial pressure of N 2 and the partial pressure of H 2 . From these, the nitriding parameter K N ′ = (P NH3 / P H2 1/2 ) of the present invention.
Is calculated.

なお、下記実施例では、同時に、従来の窒化可能性パラメータ
=(PNH3/PH2 3/2
を算出した。
In the following examples, the conventional nitridability parameter K N = (P NH3 / P H2 3/2 )
Was calculated.

本発明の窒化処理法により処理する金属材料は、代表的には鋼であるが、これに限定する必要はなく、チタンあるいはチタン合金、アルミニウムあるいはアルミニウム合金、マグネシウムあるいはマグネシウム合金等、窒化処理の対象とし得る金属材料であればよい。   The metal material to be treated by the nitriding method of the present invention is typically steel, but need not be limited to this, and is subject to nitriding treatment such as titanium or titanium alloy, aluminum or aluminum alloy, magnesium or magnesium alloy, etc. Any metal material can be used.

以下、実施例を示す。
[実施例1]
窒化用鋼を用い、600℃、4時間、表1に示す流量のガスを流して窒化した。表1に、従来の残留アンモニア濃度、窒化可能性パラメータ(K=(PNH3/PH2 3/2))、本発明の窒化パラメータ(K’=(PNH3/PH2 1/2))、及び窒化深さを記載した。
Examples are shown below.
[Example 1]
Nitriding steel was used for nitriding by flowing gas at a flow rate shown in Table 1 at 600 ° C. for 4 hours. Table 1 shows conventional residual ammonia concentration, nitridability parameter (K N = (P NH3 / P H2 3/2 )), and nitriding parameter of the present invention (K N ′ = (P NH3 / P H2 1/2 )). ) And the nitriding depth.

Figure 2006028588
Figure 2006028588

図1は、表1の実験No.1〜17の結果を、残留アンモニア濃度に対する窒化深さのグラフにプロットしたものであ。同様に、図2は、表1の結果を、窒化可能性パラメータ(K)に対する窒化深さのグラフにプロットしたものである。図1及び図2とも窒化深さのばらつきが大きいことが分かる。これに対して、図3は、表1の実験No.1〜17の結果を、本発明の窒化パラメータ(K’)に対する窒化深さのグラフにプロットしたものであり、図1や図2と比べて窒化深さが一定の範囲内に収まっていることが分かる。これから、本発明の窒化パラメータ(K’)を用いることにより、窒化製品の品質のばらつきが少ないことが分かる。 FIG. The results of 1 to 17 are plotted in a graph of the nitriding depth against the residual ammonia concentration. Similarly, FIG. 2 plots the results of Table 1 in a graph of nitridation depth versus nitridability parameter (K N ). 1 and 2 show that the variation in the nitriding depth is large. On the other hand, FIG. The results of 1 to 17 are plotted in a graph of the nitriding depth against the nitriding parameter (K N ′) of the present invention, and the nitriding depth is within a certain range as compared with FIG. 1 and FIG. I understand that. From this, it can be seen that by using the nitriding parameter (K N ′) of the present invention, there is little variation in quality of the nitrided product.

[実施例2]
化合物層の生成を抑制しつつ、短時間で窒化するためには、図4に示すように、表面窒素濃度がすばやく臨界濃度の直下となるようにし、その後はその窒素濃度を保つように窒化パラメータ(K’)を制御することが有効である。そこで、窒化鋼を処理温度600℃にて、窒化深さ0.4mmを得るための条件を検討した。結果を、図5に示す。
[Example 2]
In order to perform nitriding in a short time while suppressing the formation of the compound layer, as shown in FIG. 4, the nitriding parameter is set so that the surface nitrogen concentration quickly becomes immediately below the critical concentration, and thereafter the nitrogen concentration is maintained. It is effective to control (K N ′). Therefore, conditions for obtaining a nitriding depth of 0.4 mm at a processing temperature of 600 ° C. were examined. The results are shown in FIG.

窒化パラメータ(K’)が一定の条件では、図5中の(1)に示されるように、260分の処理時間を要するが、図4の概念を実現できるように、逐次窒化パラメータ(K’)を制御すると、図5中の(2)に示されるように、150分の処理時間で目的の品質の窒化処理鋼を得ることができ、43%の時間減であった。 When the nitriding parameter (K N ′) is constant, a processing time of 260 minutes is required as indicated by (1) in FIG. 5, but the sequential nitriding parameter (K N ) is used so as to realize the concept of FIG. When N ′) is controlled, as shown in (2) in FIG. 5, nitriding steel of the desired quality can be obtained in a processing time of 150 minutes, which is a reduction of 43%.

本発明の窒化パラメータ(K’:K’=(PNH3/PH2 1/2))を用いることにより、窒化深さを均一に制御することが可能となり、品質のばらつきを少なくすることができる。又、本発明のパラメータ(K’:K’=(PNH3/PH2 1/2))を用いることにより、短時間で、最表面に生成する化合物(FeN)を抑制して窒化処理を行うことができる。 By using the nitriding parameter of the present invention (K N ′: K N ′ = (P NH3 / P H2 1/2 )), it becomes possible to uniformly control the nitriding depth and reduce the variation in quality. Can do. Further, by using the parameters of the present invention (K N ′: K N ′ = (P NH3 / P H2 1/2 )), the compound (Fe 3 N) generated on the outermost surface can be suppressed in a short time. Nitriding can be performed.

残留アンモニア濃度に対する窒化深さを示すグラフ。The graph which shows the nitriding depth with respect to residual ammonia concentration. 窒化可能性パラメータ(K)に対する窒化深さを示すグラフ。The graph which shows the nitridation depth with respect to the nitridability parameter (K N ). 本発明の窒化パラメータ(K’)に対する窒化深さを示すグラフ。The graph which shows the nitridation depth with respect to the nitriding parameter (K N ') of the present invention. 理想の窒化進行過程を説明する図。The figure explaining the ideal nitriding progress process. 最適窒化条件を説明する図。The figure explaining optimal nitriding conditions.

Claims (4)

金属材料にガス窒化処理を施すにあたり、処理中のガス雰囲気管理を下記式で表される窒化パラメータ(K’)を用いることを特徴とする窒化処理方法。
’=(PNH3/PH2 1/2
(ここで、PNH3はNH分圧であり、PH2はH分圧である。)
A nitriding method characterized by using a nitriding parameter (K N ′) represented by the following formula for gas atmosphere management during processing when performing a gas nitriding treatment on a metal material.
K N '= (P NH3 / P H2 1/2 )
(Here, P NH3 is the NH 3 partial pressure, and P H2 is the H 2 partial pressure.)
前記窒化パラメータ(K’)をHガス導入量で制御することを特徴とする請求項1に記載の窒化処理方法。 The nitriding method according to claim 1, wherein the nitriding parameter (K N ′) is controlled by an H 2 gas introduction amount. 前記金属材料が鋼材であることを特徴とする請求項1又は2に記載の窒化処理方法。   The nitriding method according to claim 1, wherein the metal material is a steel material. 前記窒化パラメータ(K’)を制御することにより、前記金属材料の表面窒素濃度をすばやく窒化化合物生成臨界値以下とし、その後窒素濃度を該窒化化合物生成臨界値以下に保つことを特徴とする請求項1乃至3のいずれかに記載の窒化処理方法。 By controlling the nitriding parameter (K N ′), the surface nitrogen concentration of the metal material is quickly brought to a nitride compound formation critical value or less, and thereafter the nitrogen concentration is kept to the nitride compound formation critical value or less. Item 4. The nitriding method according to any one of Items 1 to 3.
JP2004209601A 2004-07-16 2004-07-16 Nitriding treatment method Withdrawn JP2006028588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209601A JP2006028588A (en) 2004-07-16 2004-07-16 Nitriding treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209601A JP2006028588A (en) 2004-07-16 2004-07-16 Nitriding treatment method

Publications (1)

Publication Number Publication Date
JP2006028588A true JP2006028588A (en) 2006-02-02

Family

ID=35895294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209601A Withdrawn JP2006028588A (en) 2004-07-16 2004-07-16 Nitriding treatment method

Country Status (1)

Country Link
JP (1) JP2006028588A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115135A1 (en) * 2011-02-23 2012-08-30 Dowaサーモテック株式会社 Nitrided steel member and method for producing same
WO2013157579A1 (en) * 2012-04-18 2013-10-24 Dowaサーモテック株式会社 Nitrided steel member and process for producing same
JP2014520957A (en) * 2011-06-30 2014-08-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacturing method for drive belt ring parts
JP2015175009A (en) * 2014-03-13 2015-10-05 新日鐵住金株式会社 Gas soft nitriding process of low-alloy steel
CN105874094A (en) * 2014-03-13 2016-08-17 新日铁住金株式会社 Nitriding method, and nitrided component manufacturing method
WO2016129333A1 (en) * 2015-02-10 2016-08-18 サンコール株式会社 Method and device for producing metal springs
JP2017082275A (en) * 2015-10-27 2017-05-18 光洋サーモシステム株式会社 Nitriding treatment apparatus and nitriding treatment method
KR20180019685A (en) 2015-09-08 2018-02-26 신닛테츠스미킨 카부시키카이샤 Nitrided steel parts and manufacturing method thereof
KR20180037004A (en) 2015-09-08 2018-04-10 신닛테츠스미킨 카부시키카이샤 Nitrided steel parts and manufacturing method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115135A1 (en) * 2011-02-23 2012-08-30 Dowaサーモテック株式会社 Nitrided steel member and method for producing same
US9988704B2 (en) 2011-02-23 2018-06-05 Dowa Thermotech Co., Ltd. Manufacturing method of nitrided steel member
EP2679701A4 (en) * 2011-02-23 2015-10-28 Dowa Thermotech Co Ltd Nitrided steel member and method for producing same
CN103403212A (en) * 2011-02-23 2013-11-20 同和热处理技术株式会社 Nitrided steel member and method for producing same
JPWO2012115135A1 (en) * 2011-02-23 2014-07-07 Dowaサーモテック株式会社 Nitride steel member and manufacturing method thereof
US9598760B2 (en) 2011-02-23 2017-03-21 Dowa Thermotech Co., Ltd. Nitrided steel member and manufacturing method thereof
JP2017036509A (en) * 2011-02-23 2017-02-16 Dowaサーモテック株式会社 Manufacturing method of nitrided steel member
CN103403212B (en) * 2011-02-23 2015-08-26 同和热处理技术株式会社 Nitriding steel component and manufacture method thereof
JP2014520957A (en) * 2011-06-30 2014-08-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacturing method for drive belt ring parts
JP2013221203A (en) * 2012-04-18 2013-10-28 Dowa Thermotech Kk Nitrided steel member and method for manufacturing the same
US9783879B2 (en) 2012-04-18 2017-10-10 Dowa Thermotech Co., Ltd. Nitrided steel member and manufacturing method thereof
CN104334766B (en) * 2012-04-18 2016-09-21 同和热处理技术株式会社 Nitrated steel component and manufacture method thereof
CN104334766A (en) * 2012-04-18 2015-02-04 同和热处理技术株式会社 Nitrided steel member and process for producing same
WO2013157579A1 (en) * 2012-04-18 2013-10-24 Dowaサーモテック株式会社 Nitrided steel member and process for producing same
US10094014B2 (en) 2014-03-13 2018-10-09 Nippon Steel & Sumitomo Metal Corporation Nitriding method and nitrided part production method
CN105874094A (en) * 2014-03-13 2016-08-17 新日铁住金株式会社 Nitriding method, and nitrided component manufacturing method
KR20160098336A (en) 2014-03-13 2016-08-18 신닛테츠스미킨 카부시키카이샤 Nitriding method, and nitrided component manufacturing method
JPWO2015136917A1 (en) * 2014-03-13 2017-04-06 新日鐵住金株式会社 Nitriding method and method for manufacturing nitrided parts
JP2015175009A (en) * 2014-03-13 2015-10-05 新日鐵住金株式会社 Gas soft nitriding process of low-alloy steel
JP2016148068A (en) * 2015-02-10 2016-08-18 サンコール株式会社 Manufacturing method and manufacturing apparatus for metallic spring
WO2016129333A1 (en) * 2015-02-10 2016-08-18 サンコール株式会社 Method and device for producing metal springs
KR20180019685A (en) 2015-09-08 2018-02-26 신닛테츠스미킨 카부시키카이샤 Nitrided steel parts and manufacturing method thereof
KR20180037004A (en) 2015-09-08 2018-04-10 신닛테츠스미킨 카부시키카이샤 Nitrided steel parts and manufacturing method thereof
US10731242B2 (en) 2015-09-08 2020-08-04 Nippon Steel Corporation Nitrided steel part and method of production of same
US10837096B2 (en) 2015-09-08 2020-11-17 Nippon Steel Corporation Nitrided steel part and method of production of same
JP2017082275A (en) * 2015-10-27 2017-05-18 光洋サーモシステム株式会社 Nitriding treatment apparatus and nitriding treatment method

Similar Documents

Publication Publication Date Title
JP6378189B2 (en) Method of nitriding steel member
KR102466065B1 (en) Enhanced activation of self-passivating metals
JPWO2015136917A1 (en) Nitriding method and method for manufacturing nitrided parts
CN113862610B (en) Pretreatment method for improving corrosion resistance of carburized layer
EP3299487A1 (en) Method for surface hardening a cold deformed article comprising low temperature annealing
JP2006028588A (en) Nitriding treatment method
JP2008525639A (en) Compositions and methods for enhancing the properties of components containing iron
JP5457000B2 (en) Surface treatment method of steel material, steel material and mold obtained thereby
JP3114973B1 (en) Gas nitriding method for maraging steel
JP6587886B2 (en) Manufacturing method of nitrided steel member
JP2021042398A (en) Nitrided steel member, and method and apparatus for manufacturing the same
RU2291227C1 (en) Construction-steel parts surface hardening method
JP2005272884A (en) Gas nitriding method
JP7201092B2 (en) Vacuum carburizing treatment method and carburized part manufacturing method
JP2010058164A (en) Method of manufacturing die-cast mold
JP7434018B2 (en) Nitriding method for steel parts
US20090205751A1 (en) Method for modifying surface of titanium or titanium alloy by fluidized bed carburization
WO2016159235A1 (en) Method for nitriding steel member
JP2010222649A (en) Production method of carbon steel material and carbon steel material
EP3797894A1 (en) Method for manufacturing forged article
JP2006097115A (en) METHOD FOR STRENGTHENING beta TYPE TITANIUM ALLOY AND betaTYPE TITANIUM ALLOY PRODUCT OBTAINED THEREBY
JP4998654B2 (en) Method of gas soft nitriding treatment of steel members
JP2004052023A (en) Nitriding method
JPH1030164A (en) Treatment for nitriding die for aluminum extrusion and die for aluminum extrusion
JP2018028113A (en) Method for manufacturing steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061024

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070307

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071207