JP2005133214A - Heat treatment system - Google Patents

Heat treatment system Download PDF

Info

Publication number
JP2005133214A
JP2005133214A JP2004296166A JP2004296166A JP2005133214A JP 2005133214 A JP2005133214 A JP 2005133214A JP 2004296166 A JP2004296166 A JP 2004296166A JP 2004296166 A JP2004296166 A JP 2004296166A JP 2005133214 A JP2005133214 A JP 2005133214A
Authority
JP
Japan
Prior art keywords
heat treatment
heating
treatment apparatus
primary
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004296166A
Other languages
Japanese (ja)
Inventor
Hirokazu Nakajima
碩一 中島
Kikuo Maeda
喜久男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004296166A priority Critical patent/JP2005133214A/en
Publication of JP2005133214A publication Critical patent/JP2005133214A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of heat treatment in the whole system when a nitrogen-enriched layer is formed in primary heat treatment and a re-quenching is applied in secondary heat treatment. <P>SOLUTION: A bearing part 41 is cooled to the temperature below an A<SB>1</SB>transformation point after heating to the temperature exceeding the A<SB>1</SB>transformation point with a primary heat treatment apparatus 1 to form the nitrogen-enriched layer on the surface thereof. The bearing part 41 after applying the primary heat treatment, is applied to the heat treatment with a secondary heat treatment apparatus 2 which cools to the temperature below the A<SB>1</SB>transformation point after heating to the temperature exceeding the A<SB>1</SB>transformation point. The respective secondary heat treatment apparatus 2 is parallel disposed at a plurality of positions, and an induction-heating is applied in each secondary heat treatment apparatus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼製部品に二段の熱処理(一次熱処理および二次熱処理)を施す熱処理システムに関するものである。   The present invention relates to a heat treatment system for performing two-stage heat treatment (primary heat treatment and secondary heat treatment) on a steel part.

高い転動疲労寿命が求められる鋼製の機械部品、例えば転がり軸受の軸受部品に適合する熱処理方法として、特開2003−226918号公報に記載されたものがある。これは、軸受部品用の鋼をA1変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A1変態点未満の温度に冷却し、その後、A1変態点以上で浸炭窒化処理の温度未満の焼入れ温度域(790℃〜830℃)に再加熱して焼入れを行うものである。 Japanese Patent Application Laid-Open No. 2003-226918 discloses a heat treatment method suitable for steel mechanical parts that require a high rolling fatigue life, such as rolling bearing parts. This, after the steel for the bearing parts were carbonitrided in the carbonitriding temperature exceeding the A 1 transformation point, cooled to a temperature below the A 1 transformation point, then the temperature of the carbonitriding process by A 1 transformation point or more Quenching is performed by reheating to a lower quenching temperature range (790 ° C. to 830 ° C.).

この方法によれば、表層の浸炭窒化層の存在により軸受部品が高硬度化され、かつ再加熱時の焼入れ温度がオーステナイト結晶粒の成長が生じにくい温度に抑えられるので、オーステナイト粒径を平均粒径8μm以下まで微小化することができる。これにより粒界強度が増すため、転動疲労寿命の向上、さらには耐割れ性の向上等の効果が得られる。
特開2003−226918号公報
According to this method, the presence of the carbonitriding layer on the surface layer increases the hardness of the bearing component, and the quenching temperature during reheating is suppressed to a temperature at which austenite crystal grains do not easily grow. The diameter can be reduced to 8 μm or less. As a result, the grain boundary strength is increased, so that effects such as improvement of rolling fatigue life and improvement of crack resistance can be obtained.
JP 2003-226918 A

このように前記公報に開示された発明では、一次と二次の合わせて二回の熱処理が行われるが、一次熱処理と二次熱処理では必要な加熱時間が異なるため、そのままでは一次熱処理と二次熱処理の加熱時間の整合性がとれず、熱処理品がライン中で停滞したり、各熱処理機器の待機時間が長くなって熱処理効率の低下を招くおそれがある。   As described above, in the invention disclosed in the above publication, the heat treatment is performed twice in combination with the primary and the secondary. However, since the required heating times are different between the primary heat treatment and the secondary heat treatment, the primary heat treatment and the secondary heat treatment as they are. The consistency of the heating time of heat treatment may not be achieved, and the heat treated product may stagnate in the line, or the waiting time of each heat treatment device may be increased, resulting in a decrease in heat treatment efficiency.

そこで、本発明は、一次熱処理で窒素富化層を形成し、二次熱処理で再焼入れするにあたり、システム全体での熱処理効率の向上を図ることを目的とする。   Therefore, an object of the present invention is to improve the heat treatment efficiency of the entire system when a nitrogen-enriched layer is formed by a primary heat treatment and re-quenched by a secondary heat treatment.

この目的を達成するため、本発明にかかる熱処理システムは、鋼製部品をA1変態点を越える温度に加熱した後、A1変態点未満に冷却して表面に窒素富化層を形成する一次熱処理装置と、一次熱処理後の鋼製部品を、A1変態点を越える温度に加熱した後、A1変態点未満に冷却する二次熱処理装置とを備え、複数の二次熱処理装置を並列に配置したものである。 In order to achieve this object, the heat treatment system according to the present invention is a primary system in which a steel part is heated to a temperature exceeding the A 1 transformation point and then cooled to below the A 1 transformation point to form a nitrogen-enriched layer on the surface. and a heat treatment apparatus, the steel part after the primary heat treatment, after heating to a temperature above the a 1 transformation point, and a second heat treatment apparatus for cooling to below the a 1 transformation point, in parallel a plurality of secondary heat treatment apparatus It is arranged.

この熱処理システムによれば、一次熱処理装置での熱処理により、表面に窒素が拡散した窒素富化層が形成されるので、鋼製部品の表面硬さが増す。その一方、一次熱処理後は鋼組織中のオーステナイト粒が粗大化しているが、その後に、A1変態点を越える二次加熱温度に誘導加熱して焼入れを行うので、加熱温度と加熱時間のコントロールを通じて、熱処理後の鋼製部品のミクロ組織におけるオーステナイト結晶粒を微細化することができ、例えばJIS G0551に規定されたオーステナイト結晶粒度試験方法による粒度番号が10番を越える微細な結晶粒を得ることが可能となる。以上の特性から、通常品に比べて耐摩耗性や耐割れ性を向上させ、さらに転動疲労寿命の大幅な向上を図ることができる。 According to this heat treatment system, since the nitrogen-enriched layer in which nitrogen is diffused is formed on the surface by the heat treatment in the primary heat treatment apparatus, the surface hardness of the steel part is increased. On the other hand, the austenite grains in the steel structure are coarsened after the primary heat treatment, but after that, induction heating is performed to a secondary heating temperature exceeding the A 1 transformation point, so that the control of the heating temperature and the heating time is performed. Through the heat treatment, the austenite grains in the microstructure of the steel part after heat treatment can be refined. For example, fine grains having a grain size number exceeding 10 by the austenite grain size test method defined in JIS G0551 can be obtained. Is possible. From the above characteristics, it is possible to improve wear resistance and crack resistance as compared with normal products, and to further greatly improve the rolling fatigue life.

本発明システムでは、上述のように複数の二次熱処理装置を並列に配置しているので、二次熱処理を複数箇所で同時進行させることができ、二次熱処理の熱処理効率を高めることができる。   In the system of the present invention, since the plurality of secondary heat treatment apparatuses are arranged in parallel as described above, the secondary heat treatment can be performed simultaneously at a plurality of locations, and the heat treatment efficiency of the secondary heat treatment can be increased.

この場合、各二次熱処理装置では誘導加熱を行うのが好ましい。誘導加熱は、燃焼炉等の雰囲気炉に比べて作業効率がよく、加熱時間が短時間で足りるから、この誘導加熱を複数箇所で並列的に行うことにより、二次熱処理での加熱効率が飛躍的に高まる。従って、一次熱処理と二次熱処理の熱処理効率を整合(バランス)させることが可能となり、これによりシステム全体で熱処理効率を向上させることができる。   In this case, it is preferable to perform induction heating in each secondary heat treatment apparatus. Induction heating has better work efficiency than an atmosphere furnace such as a combustion furnace, and the heating time is short. Therefore, by performing this induction heating in parallel at multiple locations, the heating efficiency in the secondary heat treatment jumps. Increase. Accordingly, the heat treatment efficiency of the primary heat treatment and the secondary heat treatment can be matched (balanced), whereby the heat treatment efficiency can be improved in the entire system.

この場合、二次熱処理装置で型焼入れを行えば、変形の少ない高い寸法精度を有する熱処理品が得られ、特に薄肉の部品や不均一な厚さを有する部品でも良好な寸法精度を確保することが可能となる。なお、型焼入れは、被加熱品を型で拘束した状態で焼入れする処理をいい、型に圧力を加えて拘束するプレス焼入れも含む意である。   In this case, if mold quenching is performed with a secondary heat treatment device, a heat-treated product with high deformation accuracy with little deformation can be obtained, and particularly good dimensional accuracy can be ensured even for thin-walled components and components with non-uniform thickness. Is possible. The mold quenching means a process of quenching in a state where the article to be heated is constrained by a mold, and includes press quenching that constrains the mold by applying pressure.

一次熱処理で窒素富化層を形成するための手段としては、浸炭窒化が望ましく、特にコスト面や品質面を考慮するとガス浸炭窒化が好ましい。ガス浸炭窒化は、例えば浸炭性ガスにアンモニアを添加した雰囲気ガスを使用して雰囲気炉内で行うことができる。   As a means for forming the nitrogen-enriched layer by the primary heat treatment, carbonitriding is desirable, and gas carbonitriding is particularly preferred in view of cost and quality. The gas carbonitriding can be performed in an atmosphere furnace using, for example, an atmosphere gas obtained by adding ammonia to a carburizing gas.

以上のように、本発明によれば、一次熱処理で窒素富化層を形成すると共に、二次熱処理で再焼入れするに際し、二次熱処理での熱処理効率が飛躍的に高まる。従って、一次熱処理と二次熱処理の熱処理効率を整合させることが可能となり、これによりシステム全体で熱処理効率を向上させることができる。   As described above, according to the present invention, when the nitrogen-enriched layer is formed by the primary heat treatment and re-quenched by the secondary heat treatment, the heat treatment efficiency in the secondary heat treatment is dramatically increased. Therefore, it becomes possible to match the heat treatment efficiency of the primary heat treatment and the secondary heat treatment, and thereby the heat treatment efficiency can be improved in the entire system.

以下、鋼製部品の一例として軸受部品を使用し、これに適用した本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention applied to a bearing component as an example of a steel component will be described.

図1に本発明にかかる熱処理システムの構成を概念的に示す。図示のように、この熱処理システムは、一次熱処理装置1、洗浄装置3、一次熱処理装置1および洗浄装置3に対して並列配置した複数の二次熱処理装置2、洗浄装置5、並びに焼戻し装置6で構成される。鍛造→旋削等の成形工程(図示省略)で成形された軸受部品は、一次熱処理装置1および二次熱処理装置2に順次移送され、それぞれの装置で加熱・冷却されて一次熱処理および二次熱処理が施される。各列の二次熱処理装置2の後段には、それぞれ洗浄装置5および焼戻し装置6が配置されている。   FIG. 1 conceptually shows the configuration of a heat treatment system according to the present invention. As illustrated, this heat treatment system includes a primary heat treatment apparatus 1, a cleaning apparatus 3, a plurality of secondary heat treatment apparatuses 2 arranged in parallel to the primary heat treatment apparatus 1 and the cleaning apparatus 3, a cleaning apparatus 5, and a tempering apparatus 6. Composed. Bearing parts formed in a forming process (not shown) such as forging → turning are sequentially transferred to the primary heat treatment apparatus 1 and the secondary heat treatment apparatus 2 and heated and cooled by the respective apparatuses to perform the primary heat treatment and the secondary heat treatment. Applied. A cleaning device 5 and a tempering device 6 are arranged at the subsequent stage of the secondary heat treatment apparatus 2 in each row.

ここでいう軸受部品は、玉軸受、円錐ころ軸受、ころ軸受、針状ころ軸受等の転がり軸受の軸受部品を意味する。図2は、一例として外輪41、内輪42、および転動体(円錐ころ)43を主要な構成要素とする円錐ころ軸受4を示すものであり、これら構成要素のうち相手部材と転がり接触する外輪41、内輪42、および転動体43がここでいう軸受部品に該当する。これら軸受部品の素材としては、SUJ2等の軸受鋼の他、C:0.6〜1.3wt%、Si:0.3〜3.0wt%、Mn:0.2〜1.5wt%、Cr:0.3〜5.0wt%、Ni:0.1〜3wt%を含む(望ましくはMo:0.05〜0.25wt%未満、V:0.05〜1.0wt%をさらに含む)高温用の軸受鋼や、C:0.4〜0.8wt%、Si:0.2〜0.9wt%、Mn:0.7〜1.3wt%、Cr:0.7wt%以下を含む中炭素鋼等も使用することができる。   The bearing component here means a bearing component of a rolling bearing such as a ball bearing, a tapered roller bearing, a roller bearing, or a needle roller bearing. FIG. 2 shows, as an example, a tapered roller bearing 4 having an outer ring 41, an inner ring 42, and rolling elements (conical rollers) 43 as main components, and the outer ring 41 that is in rolling contact with a mating member among these components. The inner ring 42 and the rolling element 43 correspond to the bearing parts here. As materials for these bearing parts, in addition to bearing steel such as SUJ2, C: 0.6 to 1.3 wt%, Si: 0.3 to 3.0 wt%, Mn: 0.2 to 1.5 wt%, Cr : 0.3 to 5.0 wt%, Ni: 0.1 to 3 wt% (desirably Mo: 0.05 to less than 0.25 wt%, V: 0.05 to 1.0 wt% further included) Bearing steel and medium carbon containing C: 0.4-0.8 wt%, Si: 0.2-0.9 wt%, Mn: 0.7-1.3 wt%, Cr: 0.7 wt% or less Steel or the like can also be used.

一次熱処理装置1は、加熱機11と冷却機12とで構成される。図1では、加熱機11として連続式を例示しているが、バッチ式の炉を使用することもできる。加熱機11は、例えば浸炭性ガスにアンモニアを添加した雰囲気ガスを使用する雰囲気炉で構成される。この加熱機11内では、軸受部品が、図3に示すようにA1変態点を越える温度T1(800℃〜900℃、例えば850℃)で所定時間、例えば40分加熱される(一次加熱)。これにより活性状態の窒素が表層に拡散して軸受部品の表層が硬化される(ガス浸炭窒化)。加熱機11は、基本的には表面に窒素富化層を形成することを目的とするから、少なくとも窒化すればよく、必ずしも浸炭は必要でない。但し、条件によっては、例えば脱炭が懸念される場合や使用鋼材の炭素量が少なく、十分な硬度を確保できない場合等は、窒化の他に浸炭も不可欠となる。加熱機11としては、真空炉や塩浴炉、誘導加熱機等を使用することもできる。加熱後の軸受部品は、冷却機12にてMs点以下に冷却(例えば油冷)され、さらに洗浄機3に移送されて冷却液の洗浄除去が行われる。 The primary heat treatment apparatus 1 includes a heater 11 and a cooler 12. In FIG. 1, a continuous type is illustrated as the heater 11, but a batch type furnace can also be used. The heater 11 is constituted by, for example, an atmospheric furnace that uses an atmospheric gas obtained by adding ammonia to a carburizing gas. In the heater 11, the bearing component is heated at a temperature T1 (800 ° C. to 900 ° C., for example, 850 ° C.) exceeding the A 1 transformation point for a predetermined time, for example, 40 minutes (primary heating) as shown in FIG. . As a result, activated nitrogen diffuses into the surface layer and the surface layer of the bearing component is hardened (gas carbonitriding). Since the heater 11 is basically intended to form a nitrogen-enriched layer on the surface, it may be at least nitrided and carburization is not necessarily required. However, depending on the conditions, for example, when decarburization is a concern or when the amount of carbon in the steel used is small and sufficient hardness cannot be ensured, carburizing is indispensable in addition to nitriding. As the heater 11, a vacuum furnace, a salt bath furnace, an induction heater, or the like can be used. The heated bearing parts are cooled (for example, oil-cooled) to the Ms point or less by the cooler 12 and further transferred to the washing machine 3 to remove the cooling liquid.

図1に示すように、一次熱処理装置1で浸炭窒化された軸受部品(図面では円錐ころ軸受の外輪41を例示している)は、図示しないコンベヤ等の搬送手段を介して、高周波加熱等の誘導加熱を行う何れかの二次熱処理装置2に振分け供給される。各二次熱処理装置2では、軸受部品41は誘導子21の内周に配置され、図3に示すように、A1変態点以上の二次加熱温度T2(例えば880℃〜900℃)で所定時間(例えば1.5〜2秒)誘導加熱される。図3では、二次加熱温度T2を一次加熱温度T1よりも低温にする場合を例示しているが、二次加熱温度T2はT1以上であってもよい。誘導加熱では、加熱温度や加熱時間を精密にコントロールすることができ、かつ短時間の処理になるので、軸受部品のミクロ組織におけるオーステナイト結晶粒を微細化することができる。この時、オーステナイト結晶粒が微細化されるか否かは、加熱温度と加熱時間の積で評価することができ、例えば誘導加熱機21での最高加熱温度が低い場合には加熱時間をその分長くすることにより、オーステナイト結晶粒の微細化が可能となる。加熱終了後、軸受部品41は、図1に示すように、例えば金型22に嵌め込まれ、これに保持された状態で、油等の冷却液でMs点以下に冷却され、焼入れされる(型焼入れ)。金型22の各所に設けた細孔から油等の冷却液を噴出させて焼入れしてもよい。冷却は、図示のように誘導加熱位置で行う他、誘導加熱位置とは別の位置に移送して行うこともできる。 As shown in FIG. 1, bearing parts carbonitrided by the primary heat treatment apparatus 1 (the outer ring 41 of the tapered roller bearing is illustrated in the drawing) are subjected to high-frequency heating or the like via a conveying means such as a conveyor (not shown). It is distributed and supplied to any secondary heat treatment apparatus 2 that performs induction heating. In each secondary heat treatment apparatus 2, the bearing component 41 is disposed on the inner periphery of the inductor 21 and, as shown in FIG. 3, is predetermined at a secondary heating temperature T 2 (for example, 880 ° C. to 900 ° C.) that is equal to or higher than the A 1 transformation point. Induction heating is performed for a time (for example, 1.5 to 2 seconds). Although FIG. 3 illustrates the case where the secondary heating temperature T2 is lower than the primary heating temperature T1, the secondary heating temperature T2 may be equal to or higher than T1. In the induction heating, the heating temperature and the heating time can be precisely controlled and the treatment is performed in a short time, so that the austenite crystal grains in the microstructure of the bearing part can be refined. At this time, whether or not the austenite crystal grains are refined can be evaluated by the product of the heating temperature and the heating time. For example, when the maximum heating temperature in the induction heater 21 is low, the heating time is correspondingly increased. By increasing the length, the austenite crystal grains can be made finer. After completion of the heating, as shown in FIG. 1, the bearing component 41 is fitted into, for example, a mold 22, and is cooled to below the Ms point with a coolant such as oil while being held therein (mold). Quenching). A quenching may be performed by ejecting a coolant such as oil from the pores provided in various places of the mold 22. Cooling can be performed at an induction heating position as shown in the figure, or can be performed by transferring to a position different from the induction heating position.

二次熱処理の終了した軸受部品は、各二次熱処理装置2から取り出し、各洗浄機5にて冷却液を洗浄除去した後、各焼戻し機6に移送されて図3に示すように適当な温度T3(例えば180℃)で焼戻される。この焼戻しは、加熱時間短縮による処理効率向上のため、高周波加熱等の誘導加熱で行うのが望ましい。   The bearing parts for which the secondary heat treatment has been completed are taken out from the respective secondary heat treatment apparatuses 2, and after the cooling liquid is washed and removed by the respective washing machines 5, the bearing parts are transferred to the respective tempering machines 6, and as shown in FIG. Tempering is performed at T3 (for example, 180 ° C.). This tempering is desirably performed by induction heating such as high-frequency heating in order to improve the processing efficiency by shortening the heating time.

なお、以上の説明では、一次熱処理装置1および二次熱処理装置2での冷却方法として油冷を例示したが、水冷や空冷、ガス冷却等の他の冷却方法も採用することができ、また一次熱処理装置1と二次熱処理装置2で異なる冷却方法を採用することもできる。本実施形態では、一次熱処理および二次熱処理の双方で油冷している関係で、洗浄装置3、5を設置しているが、水冷や空冷、ガス冷却の場合はこの種の洗浄装置は不要となる。   In the above description, oil cooling is exemplified as the cooling method in the primary heat treatment apparatus 1 and the secondary heat treatment apparatus 2, but other cooling methods such as water cooling, air cooling, gas cooling, etc. can also be adopted. Different cooling methods may be employed for the heat treatment apparatus 1 and the secondary heat treatment apparatus 2. In this embodiment, the cleaning devices 3 and 5 are installed because the oil cooling is performed in both the primary heat treatment and the secondary heat treatment. However, this type of cleaning device is not necessary for water cooling, air cooling, or gas cooling. It becomes.

以上に述べた一次加熱温度T1、二次加熱温度T2、および焼戻し温度T3は何れも鋼材として軸受鋼SUJ2を使用する場合を例示したものである。使用鋼材の種類によっては、これらの温度T1、T2、T3は上記例示と異なる温度をとる場合がある。   The primary heating temperature T1, the secondary heating temperature T2, and the tempering temperature T3 described above exemplify the case where the bearing steel SUJ2 is used as the steel material. Depending on the type of steel used, these temperatures T1, T2, and T3 may be different from the above examples.

以上の過程で熱処理された軸受部品では、表層に窒素富化層(窒素含有量0.1〜0.7wt%)が形成されるため、Hv700を越える高硬度が得られ、かつミクロ組織中のオーステナイト粒が微細化されてそのオーステナイト結晶粒度は10番を越えるものとなる。また、軸受部品の破壊応力値2650MPa以上、鋼中の水素濃度0.5ppm以下、鋼中の残留オーステナイト量13〜25%という通常品を遥かに凌ぐ良好な物性値が得られる。従って、以上から耐割れ強度、耐摩耗性等を向上させることができ、さらには転動疲労寿命の向上に顕著な効果が得られる。   In the bearing parts heat-treated in the above process, since a nitrogen-enriched layer (nitrogen content 0.1 to 0.7 wt%) is formed on the surface layer, high hardness exceeding Hv700 is obtained, and in the microstructure As the austenite grains are refined, the austenite grain size exceeds # 10. Further, good physical property values far exceeding conventional products such as a fracture stress value of bearing parts of 2650 MPa or more, a hydrogen concentration in steel of 0.5 ppm or less, and a retained austenite amount of 13 to 25% in steel can be obtained. Therefore, crack resistance strength, wear resistance, and the like can be improved from the above, and a remarkable effect can be obtained in improving the rolling fatigue life.

本発明では、上述のように共通の一次熱処理装置1を経た軸受部品41を複数の二次熱処理装置2に振り分けて二次加熱を同時進行させ、かつ各二次熱処理装置2では短時間で加熱が終了する高周波加熱を行っている。これにより二次熱処理での加熱効率が飛躍的に高まるので、一次熱処理と二次熱処理の熱処理効率を整合(バランス)させることが可能となり、システム全体で熱処理効率を向上させることができる。二次熱処理装置2の数は、一次処理側と二次処理側の熱処理効率の差を考慮し、両者をバランスさせ得る範囲で任意に選択することができる。上記実施形態では、一次熱処理装置1の数を一つとしているが、これを複数箇所に並列配置することで、複数の二次熱処理装置2との間の熱処理効率をバランスさせることもできる(この場合、二次熱処理装置2の数は一次熱処理装置1よりも多くする)。   In the present invention, as described above, the bearing parts 41 that have passed through the common primary heat treatment apparatus 1 are distributed to the plurality of secondary heat treatment apparatuses 2 to simultaneously advance the secondary heating, and each secondary heat treatment apparatus 2 heats in a short time. The high frequency heating is completed. Thereby, the heating efficiency in the secondary heat treatment is remarkably increased, so that the heat treatment efficiency of the primary heat treatment and the secondary heat treatment can be matched (balanced), and the heat treatment efficiency can be improved in the entire system. The number of secondary heat treatment apparatuses 2 can be arbitrarily selected within a range in which both can be balanced in consideration of the difference in heat treatment efficiency between the primary treatment side and the secondary treatment side. In the said embodiment, although the number of the primary heat processing apparatuses 1 is made into one, the heat processing efficiency between several secondary heat processing apparatuses 2 can also be balanced by arranging this in parallel in several places (this In this case, the number of secondary heat treatment apparatuses 2 is larger than that of the primary heat treatment apparatus 1).

また、二次熱処理装置2で行う高周波加熱は原理的に熱変形が少なく、しかも加熱後には型焼入れが行われるので、熱変形の少ない高い寸法精度を有する軸受部品が低コストに得られ、転がり軸受の外輪や内輪のような薄肉の部品、特に円錐ころ軸受の外輪41や内輪42のように不均一な厚さを有する部品でも、良好な寸法精度を確保することが可能となる。従って、軸受部品が高品質化し、軸受性能の安定確保が可能となる。   In addition, the high-frequency heating performed in the secondary heat treatment apparatus 2 is less likely to be thermally deformed in principle, and die quenching is performed after the heating, so that a bearing component having high dimensional accuracy with little heat deformation can be obtained at low cost and rolling. Good dimensional accuracy can be ensured even for thin parts such as the outer ring and inner ring of the bearing, particularly parts having a non-uniform thickness such as the outer ring 41 and inner ring 42 of the tapered roller bearing. Therefore, the quality of the bearing parts is improved, and it is possible to ensure stable bearing performance.

また、誘導加熱は、個々の構成部品をピースバイピースで均等に加熱することができる、局部加熱が可能で硬化層深さの選定が自由に行える、急熱・急冷が可能で表面圧縮残留応力により疲れ強さを高めることができる、等の利点を有するので、軸受部品のさらなる低コスト化、高品質化、疲労寿命の向上等にも有効となる。   Induction heating can be used to heat individual components even piece-by-piece, local heating is possible, and the depth of the hardened layer can be freely selected. This has the advantage that the fatigue strength can be increased by this, so that it is effective for further lowering the cost, improving the quality and improving the fatigue life of the bearing parts.

なお、以上の説明では熱処理の対象として軸受部品を例示したが、本発明はこれに限らず、高い転動疲労寿命が要求される機械部品(例えば等速自在継手の構成部品)、さらには鋼製部品一般に広く適用することができる。   In the above description, bearing parts are exemplified as heat treatment targets. However, the present invention is not limited to this, and mechanical parts (for example, components of constant velocity universal joints) that require a high rolling fatigue life, and steel are also included. Can be widely applied to manufactured parts in general.

本発明にかかる熱処理システムの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat processing system concerning this invention. 円錐ころ軸受の断面図である。It is sectional drawing of a tapered roller bearing. 上記熱処理システムにおける熱処理のサイクル図である。It is a cycle diagram of the heat processing in the said heat processing system.

符号の説明Explanation of symbols

1 一次熱処理装置
2 二次熱処理装置
3 洗浄装置
4 円錐ころ軸受(転がり軸受)
5 洗浄装置
6 焼戻し装置
11 加熱機
12 冷却機
21 誘導子
22 金型
41 外輪
42 内輪
43 転動体
DESCRIPTION OF SYMBOLS 1 Primary heat processing apparatus 2 Secondary heat processing apparatus 3 Cleaning apparatus 4 Tapered roller bearing (rolling bearing)
5 Cleaning device 6 Tempering device 11 Heating machine 12 Cooling machine 21 Inductor 22 Mold 41 Outer ring 42 Inner ring 43 Rolling element

Claims (4)

鋼製部品をA1変態点を越える温度に加熱した後、A1変態点未満に冷却して表面に窒素富化層を形成する一次熱処理装置と、一次熱処理後の鋼製部品を、A1変態点を越える温度に加熱した後、A1変態点未満に冷却する二次熱処理装置とを備え、複数の二次熱処理装置を並列に配置することを特徴とする熱処理システム。 After the steel parts were heated to a temperature above the A 1 transformation point, and primary heat treatment apparatus for forming a nitriding layer on the surface by cooling to below the A 1 transformation point, the steel parts after the primary heat treatment, A 1 after heating to a temperature exceeding the transformation point, the heat treatment system, characterized in that a second heat treatment apparatus for cooling to below the a 1 transformation point, to place a plurality of secondary heat treatment apparatus in parallel. 各二次熱処理装置で誘導加熱を行う請求項1記載の熱処理システム。   The heat processing system of Claim 1 which performs induction heating with each secondary heat processing apparatus. 各二次熱処理装置で型焼入れを行う請求項1または2記載の熱処理システム。   The heat treatment system according to claim 1 or 2, wherein mold hardening is performed in each secondary heat treatment apparatus. 一次熱処理装置でガス浸炭窒化を行う請求項1〜3何れか記載の熱処理システム。   The heat treatment system according to any one of claims 1 to 3, wherein gas carbonitriding is performed with a primary heat treatment apparatus.
JP2004296166A 2003-10-08 2004-10-08 Heat treatment system Withdrawn JP2005133214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296166A JP2005133214A (en) 2003-10-08 2004-10-08 Heat treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003349672 2003-10-08
JP2004296166A JP2005133214A (en) 2003-10-08 2004-10-08 Heat treatment system

Publications (1)

Publication Number Publication Date
JP2005133214A true JP2005133214A (en) 2005-05-26

Family

ID=34656015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296166A Withdrawn JP2005133214A (en) 2003-10-08 2004-10-08 Heat treatment system

Country Status (1)

Country Link
JP (1) JP2005133214A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124416A (en) * 2011-12-16 2013-06-24 Nsk Ltd Method for manufacturing bearing ring of rolling bearing
JP2013221200A (en) * 2012-04-18 2013-10-28 Nsk Ltd Method for producing bearing ring of rolling bearing
JP2013221199A (en) * 2012-04-18 2013-10-28 Nsk Ltd Method for producing bearing ring of rolling bearing
JP2014005526A (en) * 2012-06-27 2014-01-16 Nsk Ltd Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing
JP2017226860A (en) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 Surface treatment method and surface treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124416A (en) * 2011-12-16 2013-06-24 Nsk Ltd Method for manufacturing bearing ring of rolling bearing
JP2013221200A (en) * 2012-04-18 2013-10-28 Nsk Ltd Method for producing bearing ring of rolling bearing
JP2013221199A (en) * 2012-04-18 2013-10-28 Nsk Ltd Method for producing bearing ring of rolling bearing
JP2014005526A (en) * 2012-06-27 2014-01-16 Nsk Ltd Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing
JP2017226860A (en) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 Surface treatment method and surface treatment apparatus

Similar Documents

Publication Publication Date Title
JP3931276B2 (en) Vacuum carbonitriding method
CN100453661C (en) Bearing&#39;s component, heat treatment method thereof, heat treatment apparatus, and rolling bearing
US20110206473A1 (en) Method for manufacturing low distortion carburized gears
JP5045491B2 (en) Large rolling bearing
WO2018012626A1 (en) Heat treatment method and heat treatment device
JP2009197312A (en) Method for correcting deformation of annular member
CN1863931B (en) Thin-walled part producing method, bearing raceway ring, thrust needle roller bearing, rolling bearing raceway ring producing method, rolling bearing raceway ring, and rolling bearing
JP2013221199A (en) Method for producing bearing ring of rolling bearing
JP2005133214A (en) Heat treatment system
JP2005113213A (en) Heat treatment system
WO2005035802A1 (en) Heat treatment system
JP2005133212A (en) Heat treatment system
JP2009001837A (en) Method for correcting deformation of annular material
JP2013221200A (en) Method for producing bearing ring of rolling bearing
US20190072132A1 (en) Bearing ring for roller bearing, manufacturing method of bearing ring for roller bearing, and needle roller bearing
JP2005133211A (en) Heat treatment system
JP2009084635A (en) Method for quenching annular body using continuous quenching furnace
US20170314117A1 (en) Rolling-contact shaft member
JP2005133215A (en) Heat treatment system
JP5358875B2 (en) Steel member cooling method
JP2005113210A (en) Heat treatment system
CN110079652B (en) Method for producing a steel component
JP4318999B2 (en) Heat treatment system
JP2005169475A (en) Method for manufacturing thin-walled component, bearing raceway ring, and thrust needle roller bearing
JP2006045629A (en) Method for manufacturing bearing ring of rolling bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108