JP2005133215A - Heat treatment system - Google Patents

Heat treatment system Download PDF

Info

Publication number
JP2005133215A
JP2005133215A JP2004296167A JP2004296167A JP2005133215A JP 2005133215 A JP2005133215 A JP 2005133215A JP 2004296167 A JP2004296167 A JP 2004296167A JP 2004296167 A JP2004296167 A JP 2004296167A JP 2005133215 A JP2005133215 A JP 2005133215A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
heating
transformation point
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004296167A
Other languages
Japanese (ja)
Inventor
Hirokazu Nakajima
碩一 中島
Kikuo Maeda
喜久男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004296167A priority Critical patent/JP2005133215A/en
Publication of JP2005133215A publication Critical patent/JP2005133215A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly micronize crystal grains in the whole body of a part by strictly controlling the heating temperature in secondary heat treatment in a heat treatment system in which a nitrogen-enriched layer is formed in primary heat treatment and a re-quenching is applied in the secondary heat treatment. <P>SOLUTION: A bearing part is cooled to the temperature below an A<SB>1</SB>transformation point after heating to the temperature exceeding the A<SB>1</SB>transformation point with a primary heat treatment apparatus 1, to form the nitrogen-enriched layer on the surface thereof. The bearing part after applying the primary heat treatment, is applied to the heat treatment with a secondary heat treatment apparatus 2 which cools to the temperature below the A<SB>1</SB>transformation point after heating to the temperature exceeding the A<SB>1</SB>transformation point. In a heater 21 in the secondary heat treatment apparatus 2, an induction-heating is applied and the temperature of the induction-heated bearing part, is detected and a feedback control is applied to the heater 21 according to the detected value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼製部品に二段の熱処理(一次熱処理および二次熱処理)を施す熱処理システムに関するものである。   The present invention relates to a heat treatment system for performing two-stage heat treatment (primary heat treatment and secondary heat treatment) on a steel part.

高い転動疲労寿命が求められる鋼製の機械部品、例えば転がり軸受の軸受部品に適合する熱処理方法として、特開2003−226918号公報に記載されたものがある。これは、軸受部品用の鋼をA1変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A1変態点未満の温度に冷却し、その後、A1変態点以上で浸炭窒化処理の温度未満の焼入れ温度域(790℃〜830℃)に再加熱して焼入れを行うものである。 Japanese Patent Application Laid-Open No. 2003-226918 discloses a heat treatment method suitable for steel mechanical parts that require a high rolling fatigue life, such as rolling bearing parts. This, after the steel for the bearing parts were carbonitrided in the carbonitriding temperature exceeding the A 1 transformation point, cooled to a temperature below the A 1 transformation point, then the temperature of the carbonitriding process by A 1 transformation point or more Quenching is performed by reheating to a lower quenching temperature range (790 ° C. to 830 ° C.).

この方法によれば、表層の浸炭窒化層の存在により軸受部品が高硬度化され、かつ再加熱時の焼入れ温度がオーステナイト結晶粒の成長が生じにくい温度に抑えられるので、オーステナイト粒径を平均粒径8μm以下まで微小化することができる。これにより粒界強度が増すため、転動疲労寿命の向上、さらには耐割れ性の向上等の効果が得られる。
特開2003−226918号公報
According to this method, the presence of the carbonitriding layer on the surface layer increases the hardness of the bearing component, and the quenching temperature during reheating is suppressed to a temperature at which austenite crystal grains do not easily grow. The diameter can be reduced to 8 μm or less. As a result, the grain boundary strength is increased, so that effects such as improvement of rolling fatigue life and improvement of crack resistance can be obtained.
JP 2003-226918 A

前記公報に開示された発明において、部品全体で均一に結晶粒を微細化するためには、二次熱処理の加熱温度を厳密に管理する必要がある。この際、従来の一般的な焼入れ工程のように、二次加熱を雰囲気炉で行い、かつ炉内の雰囲気温度を測定していたのでは、測定温度と実際の軸受部品の温度との間にずれを生じる可能性があり、厳密な温度管理は難しい。   In the invention disclosed in the above publication, it is necessary to strictly control the heating temperature of the secondary heat treatment in order to uniformly refine the crystal grains in the entire part. At this time, as in the conventional general quenching process, secondary heating was performed in an atmospheric furnace and the atmospheric temperature in the furnace was measured. Deviation may occur, and strict temperature control is difficult.

そこで、本発明は、一次熱処理で窒素富化層を形成し、二次熱処理で再焼入れする熱処理システムにおいて、二次熱処理での加熱温度を厳密に管理することを目的とする。   Therefore, an object of the present invention is to strictly control the heating temperature in the secondary heat treatment in a heat treatment system in which a nitrogen-enriched layer is formed by the primary heat treatment and re-quenched by the secondary heat treatment.

この目的を達成するため、本発明にかかる熱処理システムは、鋼製部品をA1変態点を越える温度に加熱した後、A1変態点未満に冷却して表面に窒素富化層を形成する一次熱処理装置と、一次熱処理後の鋼製部品を、A1変態点を越える温度に加熱した後、A1変態点未満に冷却する二次熱処理装置とを備え、二次熱処理装置で誘導加熱を行うと共に、誘導加熱される鋼製部品の温度を検出し、この検出値に応じて誘導加熱機をフィードバック制御するものである。 In order to achieve this object, the heat treatment system according to the present invention is a primary system in which a steel part is heated to a temperature exceeding the A 1 transformation point and then cooled to below the A 1 transformation point to form a nitrogen-enriched layer on the surface. performing a heat treatment apparatus, the steel part after the primary heat treatment, after heating to a temperature above the a 1 transformation point, and a second heat treatment apparatus for cooling to below the a 1 transformation point, the induction heating in the secondary heat treatment apparatus At the same time, the temperature of the steel part to be induction-heated is detected, and the induction heater is feedback-controlled according to the detected value.

この熱処理システムによれば、一次熱処理装置での熱処理により、表面に窒素が拡散した窒素富化層が形成されるので、鋼製部品の表面硬さが増す。その一方、一次熱処理後は鋼組織中のオーステナイト粒が粗大化しているが、その後に、A1変態点を越える二次加熱温度に誘導加熱して焼入れを行うので、加熱温度と加熱時間のコントロールを通じて、熱処理後の鋼製部品のミクロ組織におけるオーステナイト結晶粒を微細化することができ、例えばJIS G0551に規定されたオーステナイト結晶粒度試験方法による粒度番号が10番を越える微細な結晶粒を得ることが可能となる。以上の特性から、通常品に比べて耐摩耗性や耐割れ性を向上させ、さらに転動疲労寿命の大幅な向上を図ることができる。 According to this heat treatment system, since the nitrogen-enriched layer in which nitrogen is diffused is formed on the surface by the heat treatment in the primary heat treatment apparatus, the surface hardness of the steel part is increased. On the other hand, the austenite grains in the steel structure are coarsened after the primary heat treatment, but after that, induction heating is performed to a secondary heating temperature exceeding the A 1 transformation point, so that the control of the heating temperature and the heating time is performed. Through the heat treatment, the austenite grains in the microstructure of the steel part after heat treatment can be refined. For example, fine grains having a grain size number exceeding 10 by the austenite grain size test method defined in JIS G0551 can be obtained. Is possible. From the above characteristics, it is possible to improve wear resistance and crack resistance as compared with normal products, and to further greatly improve the rolling fatigue life.

本発明では、二次熱処理装置で高周波加熱等の誘導加熱を行うと共に、誘導加熱される鋼製部品の温度を検出し、この検出値に応じて誘導加熱機の加熱条件をフィードバック制御しているので、実際の鋼製部品の温度に基づいて二次加熱温度を狭い温度領域に正確にかつ精度よく保持することができ、部品全体で均一に結晶粒度を微細化した高品質の鋼製部品を得ることができる。   In the present invention, induction heating such as high-frequency heating is performed with a secondary heat treatment apparatus, the temperature of the steel part to be induction-heated is detected, and the heating condition of the induction heater is feedback-controlled according to the detected value. Therefore, based on the temperature of the actual steel part, the secondary heating temperature can be accurately and accurately maintained in a narrow temperature range, and a high quality steel part with a fine grain size can be obtained throughout the part. Can be obtained.

この場合、温度誤差を極力少なくするため、誘導加熱される鋼製部品の温度は非接触型の温度センサで検出するのが望ましい。   In this case, in order to minimize the temperature error, it is desirable to detect the temperature of the steel part to be induction-heated with a non-contact type temperature sensor.

一次熱処理で窒素富化層を形成するための手段としては、浸炭窒化が望ましく、特にコスト面や品質面を考慮するとガス浸炭窒化が好ましい。ガス浸炭窒化は、例えば浸炭性ガスにアンモニアを添加した雰囲気ガスを使用して雰囲気炉内で行うことができる。   As a means for forming the nitrogen-enriched layer by the primary heat treatment, carbonitriding is desirable, and gas carbonitriding is particularly preferred in view of cost and quality. The gas carbonitriding can be performed in an atmosphere furnace using, for example, an atmosphere gas obtained by adding ammonia to a carburizing gas.

以上のように、本発明によれば、一次熱処理で窒素富化層を形成すると共に、二次熱処理で再焼入れするに際し、二次熱処理装置での加熱温度を精度よく管理することができる。従って、二次熱処理での加熱むらを防止して部品全体で結晶粒度を均一に微細化することができ、鋼製部品の品質安定化を図ることができる。   As described above, according to the present invention, when the nitrogen-enriched layer is formed by the primary heat treatment and the re-quenching is performed by the secondary heat treatment, the heating temperature in the secondary heat treatment apparatus can be accurately managed. Therefore, it is possible to prevent uneven heating in the secondary heat treatment and to uniformly refine the crystal grain size in the entire part, and to stabilize the quality of the steel part.

以下、鋼製部品の一例として軸受部品を使用し、これに適用した本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention applied to a bearing component as an example of a steel component will be described.

図1に本発明にかかる熱処理システムの構成を概念的に示す。図示のように、この熱処理システムは、一次熱処理装置1、二次熱処理装置2、洗浄装置3および5、並びに焼戻し装置6で構成される。鍛造→旋削等の成形工程(図示省略)で成形された軸受部品は、一次熱処理装置1および二次熱処理装置2に順次移送され、それぞれの装置で加熱・冷却されて一次熱処理、さらには二次熱処理が施される。   FIG. 1 conceptually shows the configuration of a heat treatment system according to the present invention. As shown in the figure, this heat treatment system includes a primary heat treatment apparatus 1, a secondary heat treatment apparatus 2, cleaning apparatuses 3 and 5, and a tempering apparatus 6. Bearing parts formed in a forming process (not shown) such as forging → turning are sequentially transferred to the primary heat treatment apparatus 1 and the secondary heat treatment apparatus 2 and heated and cooled by the respective apparatuses to be subjected to the primary heat treatment and further to the secondary heat treatment. Heat treatment is applied.

ここでいう軸受部品は、玉軸受、円錐ころ軸受、ころ軸受、針状ころ軸受等の転がり軸受の軸受部品を意味する。図2は、一例として外輪41、内輪42、および転動体(ボール)43を主要な構成要素とする深溝玉軸受4を示すものであり、これら構成要素のうち相手部材と転がり接触する外輪41、内輪42、および転動体43がここでいう軸受部品に該当する。これら軸受部品の素材としては、SUJ2等の軸受鋼の他、C:0.6〜1.3wt%、Si:0.3〜3.0wt%、Mn:0.2〜1.5wt%、Cr:0.3〜5.0wt%、Ni:0.1〜3wt%を含む(望ましくはMo:0.05〜0.25wt%未満、V:0.05〜1.0wt%をさらに含む)高温用の軸受鋼や、C:0.4〜0.8wt%、Si:0.2〜0.9wt%、Mn:0.7〜1.3wt%、Cr:0.7wt%以下を含む中炭素鋼等も使用することができる。   The bearing component here means a bearing component of a rolling bearing such as a ball bearing, a tapered roller bearing, a roller bearing, or a needle roller bearing. FIG. 2 shows, as an example, a deep groove ball bearing 4 having an outer ring 41, an inner ring 42, and rolling elements (balls) 43 as main components, and among these components, an outer ring 41 that is in rolling contact with a mating member, The inner ring 42 and the rolling element 43 correspond to the bearing parts referred to herein. As materials for these bearing parts, in addition to bearing steel such as SUJ2, C: 0.6 to 1.3 wt%, Si: 0.3 to 3.0 wt%, Mn: 0.2 to 1.5 wt%, Cr : 0.3 to 5.0 wt%, Ni: 0.1 to 3 wt% (desirably Mo: 0.05 to less than 0.25 wt%, V: 0.05 to 1.0 wt% further included) Bearing steel and medium carbon containing C: 0.4-0.8 wt%, Si: 0.2-0.9 wt%, Mn: 0.7-1.3 wt%, Cr: 0.7 wt% or less Steel or the like can also be used.

一次熱処理装置1は、加熱機11と冷却機12とで構成される。図1では、加熱機11として連続式を例示しているが、バッチ式の炉を使用することもできる。加熱機11は、例えば浸炭性ガスにアンモニアを添加した雰囲気ガスを使用する雰囲気炉で構成される。この加熱機11の炉内では、軸受部品が、図3に示すようにA1変態点を越える温度T1(800℃〜900℃、例えば850℃)で所定時間、例えば40分加熱される(一次加熱)。これにより活性状態の窒素が表層に拡散して軸受部品の表層が硬化される(ガス浸炭窒化)。加熱機11は、基本的には表面に窒素富化層を形成することを目的とするから、少なくとも窒化すればよく、必ずしも浸炭は必要でない。但し、条件によっては、例えば脱炭が懸念される場合や使用鋼材の炭素量が少なく、十分な硬度を確保できない場合等は、窒化の他に浸炭も不可欠となる。加熱機11としては、真空炉や塩浴炉、誘導加熱機等を使用することもできる。加熱後の軸受部品は、冷却機12にてMs点以下に冷却(例えば油冷)され、さらに洗浄機3に移送されて冷却液の洗浄除去が行われる。 The primary heat treatment apparatus 1 includes a heater 11 and a cooler 12. In FIG. 1, a continuous type is illustrated as the heater 11, but a batch type furnace can also be used. The heater 11 is constituted by, for example, an atmospheric furnace that uses an atmospheric gas obtained by adding ammonia to a carburizing gas. In the furnace of the heater 11, the bearing parts are heated at a temperature T1 (800 ° C. to 900 ° C., for example, 850 ° C.) exceeding the A 1 transformation point as shown in FIG. heating). As a result, activated nitrogen diffuses into the surface layer and the surface layer of the bearing component is hardened (gas carbonitriding). Since the heater 11 is basically intended to form a nitrogen-enriched layer on the surface, it may be at least nitrided and carburization is not necessarily required. However, depending on the conditions, for example, when decarburization is a concern or when the amount of carbon in the steel used is small and sufficient hardness cannot be ensured, carburizing is indispensable in addition to nitriding. As the heater 11, a vacuum furnace, a salt bath furnace, an induction heater, or the like can be used. The heated bearing parts are cooled (for example, oil-cooled) to the Ms point or less by the cooler 12 and further transferred to the washing machine 3 to remove the cooling liquid.

図1に示すように、一次熱処理装置1で浸炭窒化された軸受部品は、コンベヤ等の搬送手段を介して二次熱処理装置2に供給される。二次熱処理装置2は、高周波焼入れを行うもので、加熱機21と冷却機22とで構成される。加熱機21では、図3に示すように、軸受部品がA1変態点以上の二次加熱温度T2(例えば880℃〜900℃)で所定時間(例えば1.5〜2秒)誘導加熱される。図3では、二次加熱温度T2を一次加熱温度T1よりも低温にする場合を例示しているが、二次加熱温度T2はT1以上であってもよい。誘導加熱では、加熱温度や加熱時間を精密にコントロールすることができ、かつ短時間の処理になるので、軸受部品のミクロ組織におけるオーステナイト結晶粒を微細化することができる。この時、オーステナイト結晶粒が微細化されるか否かは、加熱温度と加熱時間の積で評価することができ、例えば誘導加熱機21での最高加熱温度が低い場合には加熱時間をその分長くすることにより、オーステナイト結晶粒の微細化が可能となる。 As shown in FIG. 1, the bearing parts carbonitrided by the primary heat treatment apparatus 1 are supplied to the secondary heat treatment apparatus 2 via a conveying means such as a conveyor. The secondary heat treatment apparatus 2 performs induction hardening, and includes a heater 21 and a cooler 22. In the heater 21, as shown in FIG. 3, the bearing component is induction-heated at a secondary heating temperature T2 (for example, 880 ° C. to 900 ° C.) equal to or higher than the A 1 transformation point for a predetermined time (for example, 1.5 to 2 seconds). . Although FIG. 3 illustrates the case where the secondary heating temperature T2 is lower than the primary heating temperature T1, the secondary heating temperature T2 may be equal to or higher than T1. In the induction heating, the heating temperature and the heating time can be precisely controlled and the treatment is performed in a short time, so that the austenite crystal grains in the microstructure of the bearing part can be refined. At this time, whether or not the austenite crystal grains are refined can be evaluated by the product of the heating temperature and the heating time. For example, when the maximum heating temperature in the induction heater 21 is low, the heating time is correspondingly increased. By increasing the length, the austenite crystal grains can be made finer.

加熱終了後、軸受部品は、冷却機22に移送されてMs点以下に冷却(例えば油冷)され、焼入れされる。冷却は、図示のように加熱機21から独立した冷却機22で行う他、加熱機21内で誘導加熱位置に保持したまま行うこともできる。焼入れ後の寸法精度を確保するため、二次熱処理装置2では高周波加熱後に型焼入れを行うこともでき、これにより転がり軸受の外輪や内輪のような薄肉の部品、さらには円錐ころ軸受の外輪や内輪のように不均一な厚さを有する部品の高精度化を図り、軸受性能を安定的に得ることが可能となる。なお、型焼入れは、被加熱品を型で拘束した状態で焼入れする処理をいい、型に圧力を加えて拘束するプレス焼入れも含む意である。   After the heating is completed, the bearing component is transferred to the cooler 22 where it is cooled (for example, oil-cooled) below the Ms point and quenched. The cooling can be performed by the cooler 22 independent from the heater 21 as shown, or can be performed while being held in the induction heating position in the heater 21. In order to ensure the dimensional accuracy after quenching, the secondary heat treatment apparatus 2 can also perform mold quenching after induction heating, so that thin parts such as an outer ring and an inner ring of a rolling bearing, an outer ring of a tapered roller bearing, It is possible to improve the accuracy of components having a non-uniform thickness such as an inner ring and to stably obtain bearing performance. The mold quenching means a process of quenching in a state where the article to be heated is constrained by a mold, and includes press quenching that constrains the mold by applying pressure.

二次熱処理の終了した軸受部品は、二次熱処理装置2から取り出しされ、洗浄装置5にて冷却液を洗浄除去した後、焼戻し装置6に移送されて図3に示すように適当な温度T3(例えば180℃)で焼戻される。この焼戻しは、加熱時間短縮による処理効率向上のため、高周波加熱等の誘導加熱で行うのが望ましい。   The bearing parts that have been subjected to the secondary heat treatment are taken out from the secondary heat treatment apparatus 2, washed and removed of the cooling liquid by the cleaning apparatus 5, and then transferred to the tempering apparatus 6, as shown in FIG. For example, tempering is performed at 180 ° C. This tempering is desirably performed by induction heating such as high-frequency heating in order to improve the processing efficiency by shortening the heating time.

二次熱処理装置2の加熱機21には、誘導加熱される軸受部品の温度(表面温度)を非接触で検出するセンサ9が設けられる。このセンサ9としては、例えば赤外線温度センサ等が使用可能である。加熱機21内では、軸受部品が図示しない誘導子に対して所定のクリアランスをあけて保持されており、センサ9はこの保持された軸受部品の温度を非接触に測定し、検出値を制御装置8に伝送する。制御装置8は検出した温度データにより、加熱対象の軸受部品が規定の二次加熱温度T2に達しているか否か、さらには所定の温度領域内にあるか否かを判定し、この判定結果に応じて誘導加熱機21のフィードバック制御を行う。誘導加熱機21の制御は、主として誘導子への入力電力や加熱時間を変更することにより行われる。   The heater 21 of the secondary heat treatment apparatus 2 is provided with a sensor 9 that detects the temperature (surface temperature) of the bearing component that is induction-heated in a non-contact manner. For example, an infrared temperature sensor can be used as the sensor 9. In the heater 21, the bearing component is held with a predetermined clearance with respect to an inductor (not shown), and the sensor 9 measures the temperature of the held bearing component in a non-contact manner, and the detected value is a control device. 8 is transmitted. Based on the detected temperature data, the control device 8 determines whether or not the bearing component to be heated has reached the prescribed secondary heating temperature T2, and further whether or not it is within a predetermined temperature range. Accordingly, feedback control of the induction heater 21 is performed. The induction heater 21 is controlled mainly by changing the input power to the inductor and the heating time.

なお、以上の説明では、一次熱処理装置1および二次熱処理装置2での冷却方法として油冷を例示したが、水冷や空冷、ガス冷却等の他の冷却方法も採用することができ、また一次熱処理装置1と二次熱処理装置2で異なる冷却方法を採用することもできる。本実施形態では、一次熱処理および二次熱処理の双方で油冷している関係で、洗浄装置3、5を設置しているが、水冷や空冷、ガス冷却の場合はこの種の洗浄装置は不要となる。   In the above description, oil cooling is exemplified as the cooling method in the primary heat treatment apparatus 1 and the secondary heat treatment apparatus 2, but other cooling methods such as water cooling, air cooling, gas cooling, etc. can also be adopted. Different cooling methods may be employed for the heat treatment apparatus 1 and the secondary heat treatment apparatus 2. In this embodiment, the cleaning devices 3 and 5 are installed because the oil cooling is performed in both the primary heat treatment and the secondary heat treatment. However, this type of cleaning device is not necessary for water cooling, air cooling, or gas cooling. It becomes.

以上に述べた一次加熱温度T1、二次加熱温度T2、および焼戻し温度T3は何れも鋼材として軸受鋼SUJ2を使用する場合を例示したものである。使用鋼材の種類によっては、これらの温度T1、T2、T3は上記例示と異なる温度をとる場合がある。   The primary heating temperature T1, the secondary heating temperature T2, and the tempering temperature T3 described above exemplify the case where the bearing steel SUJ2 is used as the steel material. Depending on the type of steel used, these temperatures T1, T2, and T3 may be different from the above examples.

以上の過程で熱処理された軸受部品では、表層に窒素富化層(窒素含有量0.1〜0.7wt%)が形成されるため、Hv700を越える高硬度が得られ、かつミクロ組織中のオーステナイト粒が微細化されてそのオーステナイト結晶粒度は10番を越えるものとなる。また、軸受部品の破壊応力値2650MPa以上、鋼中の水素濃度0.5ppm以下、鋼中の残留オーステナイト量13〜25%という通常品を遥かに凌ぐ良好な物性値が得られる。従って、以上から耐割れ強度、耐摩耗性等を向上させることができ、さらには転動疲労寿命の向上に顕著な効果が得られる。   In the bearing parts heat-treated in the above process, since a nitrogen-enriched layer (nitrogen content 0.1 to 0.7 wt%) is formed on the surface layer, high hardness exceeding Hv700 is obtained, and in the microstructure As the austenite grains are refined, the austenite grain size exceeds # 10. Further, good physical property values far exceeding conventional products such as a fracture stress value of bearing parts of 2650 MPa or more, a hydrogen concentration in steel of 0.5 ppm or less, and a retained austenite amount of 13 to 25% in steel can be obtained. Therefore, crack resistance strength, wear resistance, and the like can be improved from the above, and a remarkable effect can be obtained in improving the rolling fatigue life.

二次加熱装置2の加熱機21は、電磁誘導現象を利用し、鋼組織中で電気エネルギを直接熱エネルギに変えて発熱させる誘導加熱機であるから、誘導子への入力電力や加熱時間といった加熱条件を調整することで、容易にかつ正確に加熱量を制御できる。従って、センサ9の検出値に応じ、制御装置8で加熱機21の加熱条件をフィードバック制御することにより、二次加熱温度T2を所定の温度領域に正確に保持することができる。また、誘導加熱はピースバイピースの加熱であるから、雰囲気炉を使用する場合のように炉内の装入位置によって加熱むらが生じることはない。以上から、部品全体で均一に結晶粒度を微細化した鋼製部品を得ることができ、耐摩耗性や耐割れ性の確保、あるいは転動疲労寿命の向上といった上記二段熱処理に特有の効果を安定的に得ることが可能となる。   The heater 21 of the secondary heating device 2 is an induction heater that uses an electromagnetic induction phenomenon to generate heat by directly converting electrical energy into thermal energy in a steel structure. By adjusting the heating conditions, the amount of heating can be controlled easily and accurately. Therefore, the secondary heating temperature T2 can be accurately maintained in a predetermined temperature range by feedback control of the heating condition of the heater 21 by the control device 8 according to the detection value of the sensor 9. Moreover, since the induction heating is a piece-by-piece heating, there is no uneven heating depending on the charging position in the furnace as in the case of using an atmospheric furnace. From the above, it is possible to obtain steel parts with a uniform crystal grain size throughout the entire part, and have the effects specific to the above two-stage heat treatment, such as ensuring wear resistance and crack resistance, or improving rolling fatigue life. It becomes possible to obtain stably.

また、誘導加熱は、局部加熱が可能で硬化層深さの選定が自由に行える、急熱・急冷が可能で表面圧縮残留応力により疲れ強さを高めることができる、等の利点を有するので、軸受部品のさらなる低コスト化、高品質化、疲労寿命の向上等にも有益となる。   In addition, induction heating has the advantages that local heating is possible and the hardened layer depth can be selected freely, rapid heating and quenching are possible, and fatigue strength can be increased by surface compressive residual stress. This is also beneficial for further cost reduction, higher quality, and improved fatigue life of bearing parts.

なお、以上の説明では熱処理の対象として軸受部品を例示したが、本発明はこれに限らず、高い転動疲労寿命が要求される機械部品(例えば等速自在継手の構成部品)、さらには鋼製部品一般に広く適用することができる。   In the above description, bearing parts are exemplified as heat treatment targets. However, the present invention is not limited to this, and mechanical parts (for example, components of constant velocity universal joints) that require a high rolling fatigue life, and steel are also included. Can be widely applied to manufactured parts in general.

本発明にかかる熱処理システムの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat processing system concerning this invention. 深溝玉軸受の断面図である。It is sectional drawing of a deep groove ball bearing. 上記熱処理システムにおける熱処理のサイクル図である。It is a cycle diagram of the heat processing in the said heat processing system.

符号の説明Explanation of symbols

1 一次熱処理装置
2 二次熱処理装置
3 洗浄装置
4 深溝玉軸受(転がり軸受)
5 洗浄装置
6 焼戻し装置
8 制御装置
9 センサ
11 加熱機
12 冷却機
21 加熱機(誘導加熱機)
22 冷却機
41 外輪
42 内輪
43 転動体
1 Primary heat treatment device 2 Secondary heat treatment device 3 Cleaning device 4 Deep groove ball bearing (rolling bearing)
5 Cleaning Device 6 Tempering Device 8 Control Device 9 Sensor 11 Heating Machine 12 Cooling Machine 21 Heating Machine (Induction Heating Machine)
22 Cooling machine 41 Outer ring 42 Inner ring 43 Rolling element

Claims (3)

鋼製部品をA1変態点を越える温度に加熱した後、A1変態点未満に冷却して表面に窒素富化層を形成する一次熱処理装置と、一次熱処理後の鋼製部品を、A1変態点を越える温度に加熱した後、A1変態点未満に冷却する二次熱処理装置とを備え、二次熱処理装置で誘導加熱を行うと共に、誘導加熱される鋼製部品の温度を検出し、この検出値に応じて誘導加熱機をフィードバック制御することを特徴とする熱処理システム。 After the steel parts were heated to a temperature above the A 1 transformation point, and primary heat treatment apparatus for forming a nitriding layer on the surface by cooling to below the A 1 transformation point, the steel parts after the primary heat treatment, A 1 after heating to a temperature exceeding the transformation point, and a second heat treatment apparatus for cooling to below the a 1 transformation point, performs induction heating in the secondary heat treatment device detects the temperature of the steel component to be inductively heated, A heat treatment system that performs feedback control of an induction heater according to the detected value. 誘導加熱される鋼製部品の温度を非接触型の温度センサで検出する請求項1記載の熱処理システム。   The heat treatment system according to claim 1, wherein the temperature of the steel part to be induction-heated is detected by a non-contact type temperature sensor. 一次熱処理装置でガス浸炭窒化を行う請求項1または2記載の熱処理システム。   The heat treatment system according to claim 1 or 2, wherein gas carbonitriding is performed by a primary heat treatment apparatus.
JP2004296167A 2003-10-08 2004-10-08 Heat treatment system Withdrawn JP2005133215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296167A JP2005133215A (en) 2003-10-08 2004-10-08 Heat treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003349673 2003-10-08
JP2004296167A JP2005133215A (en) 2003-10-08 2004-10-08 Heat treatment system

Publications (1)

Publication Number Publication Date
JP2005133215A true JP2005133215A (en) 2005-05-26

Family

ID=34656016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296167A Withdrawn JP2005133215A (en) 2003-10-08 2004-10-08 Heat treatment system

Country Status (1)

Country Link
JP (1) JP2005133215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221200A (en) * 2012-04-18 2013-10-28 Nsk Ltd Method for producing bearing ring of rolling bearing
JP2013221199A (en) * 2012-04-18 2013-10-28 Nsk Ltd Method for producing bearing ring of rolling bearing
JP2014005526A (en) * 2012-06-27 2014-01-16 Nsk Ltd Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221200A (en) * 2012-04-18 2013-10-28 Nsk Ltd Method for producing bearing ring of rolling bearing
JP2013221199A (en) * 2012-04-18 2013-10-28 Nsk Ltd Method for producing bearing ring of rolling bearing
JP2014005526A (en) * 2012-06-27 2014-01-16 Nsk Ltd Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing

Similar Documents

Publication Publication Date Title
CN100582253C (en) Cast iron series mould material thermal treatment method capable of acquiring controllable and uniform rigidity
CN100453661C (en) Bearing&#39;s component, heat treatment method thereof, heat treatment apparatus, and rolling bearing
JP2008106856A (en) Sheave member for belt type continuously variable transmission and manufacturing method
JP2009197312A (en) Method for correcting deformation of annular member
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
JP2013221199A (en) Method for producing bearing ring of rolling bearing
JP2016023346A (en) Carburization method of gear
US10508318B2 (en) Method for thermally treating ring-shaped member
WO2005035802A1 (en) Heat treatment system
JP2013221200A (en) Method for producing bearing ring of rolling bearing
JP2005113213A (en) Heat treatment system
JP2005133215A (en) Heat treatment system
JP2015531029A (en) Method for heat treating steel components and steel components
JP2005133212A (en) Heat treatment system
CN106755916A (en) The rolling bearing manufactured using special thermal treatment technique
JP2005133214A (en) Heat treatment system
KR101738503B1 (en) Method for heat treatment for reducing deformation of cold-work articles
JP2005133211A (en) Heat treatment system
CN110079652B (en) Method for producing a steel component
JP2005113210A (en) Heat treatment system
CN100460530C (en) Heat treatment system
JP2006045629A (en) Method for manufacturing bearing ring of rolling bearing
JP2005133213A (en) Heat treatment system
JP2005113218A (en) Heat treatment system
JP4318999B2 (en) Heat treatment system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108