JP2013124416A - Method for manufacturing bearing ring of rolling bearing - Google Patents

Method for manufacturing bearing ring of rolling bearing Download PDF

Info

Publication number
JP2013124416A
JP2013124416A JP2011275752A JP2011275752A JP2013124416A JP 2013124416 A JP2013124416 A JP 2013124416A JP 2011275752 A JP2011275752 A JP 2011275752A JP 2011275752 A JP2011275752 A JP 2011275752A JP 2013124416 A JP2013124416 A JP 2013124416A
Authority
JP
Japan
Prior art keywords
cooling
temperature
inner ring
induction
carbonitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011275752A
Other languages
Japanese (ja)
Inventor
Riichiro Matoba
理一郎 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011275752A priority Critical patent/JP2013124416A/en
Publication of JP2013124416A publication Critical patent/JP2013124416A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide, as the method for manufacturing the bearing ring of a rolling bearing, a method for obtaining a bearing ring, with which the deformation in heat treatment can be made small and the service life under foreign matter mixing lubrication can be made long, and which is also excellent in the stability of size.SOLUTION: To an inner ring 7, at first, heating is performed until the temperature exceeding an Atransformation point to perform carbonitriding treatment and then cooling is performed until the temperature lower than the Atransformation point in a carbonitriding treatment chamber 1. Next, induction heating is performed until the temperature at the heating temperature of carbonitriding or more in an induction-heating coil 20 of an induction-heating part 2. Next, a quenching and a reformation are performed in a cooling and reforming part 3. Before reaching the Mpoint on the way of the cooling, the inner ring 7 is inserted into an outer-diameter constraint mold 34, and is cooled until reaching the Mpoint or lower. Next, a high-frequency tempering is performed by a tempering part 4. Next, the oxidized film formed on the surface thereof is removed in an oxidized film removing chamber 5.

Description

この発明は、熱処理工程に特徴を有する転がり軸受軌道輪の製造方法に関する。   The present invention relates to a method of manufacturing a rolling bearing race having characteristics in a heat treatment process.

近年、転がり軸受においては、軌道輪の厚さを薄くすることが求められている。厚さの薄い軌道輪は、熱処理時の変形が大きい。熱処理時の変形に伴って真円度が悪くなった軌道輪には、研削工程で黒皮残りが生じ易い。黒皮を除去するために研削工程を繰り返すことで生産性が低下する。熱処理時の変形が非常に大きな場合は、研削工程を繰り返し行っても真円度が設定範囲にならず、不良品となっている。このように、転がり軸受の軌道輪には、熱処理時の変形を小さくすることが求められている。   In recent years, in rolling bearings, it has been required to reduce the thickness of the bearing rings. A thin bearing ring is greatly deformed during heat treatment. The raceway whose roundness has deteriorated due to deformation during heat treatment is likely to cause black skin residue in the grinding process. Productivity is reduced by repeating the grinding process to remove the black skin. If the deformation during heat treatment is very large, the roundness is not within the set range even if the grinding process is repeated, resulting in a defective product. As described above, it is required for the bearing ring of the rolling bearing to reduce deformation during heat treatment.

一方、自動車などの低燃費化の要求に伴って、機械部品の小型化や高効率化が行われている。そのため、機械部品の使用環境は、潤滑不良下や異物混入下などのより厳しい条件下となっている。
異物混入潤滑下で使用する転がり軸受の寿命を長くするためには、異物の噛み込みによって軌道面に生じた圧痕の周辺部に、応力が集中することを緩和する必要がある。このような応力集中の緩和を達成できる方法として、軌道面の残留オーステナイト量を多くする方法がある。軌道面に浸炭処理や浸炭窒化処理を行うことで、軌道面の残留オーステナイト量を多くすることができる。
On the other hand, along with demands for reducing fuel consumption of automobiles and the like, miniaturization and high efficiency of machine parts have been performed. For this reason, the use environment of machine parts is under more severe conditions such as poor lubrication and contamination with foreign matter.
In order to extend the life of the rolling bearing used under the contamination with foreign matter, it is necessary to alleviate the concentration of stress on the periphery of the indentation generated on the raceway surface due to the foreign matter being caught. As a method for achieving such relaxation of stress concentration, there is a method for increasing the amount of retained austenite on the raceway surface. By performing carburization or carbonitriding on the raceway surface, the amount of retained austenite on the raceway surface can be increased.

特許文献1には、軸受部品(内輪、外輪および転動体の少なくとも一つ)に対する熱処理として、A1 変態点(オーステナイト変態温度)を超える温度(T1)に加熱して浸炭窒化処理を行った後に、A1 変態点未満に冷却する浸炭窒化工程と、前記浸炭窒化工程後の軌道輪を、A1 変態点以上であって浸炭窒化工程の加熱温度(T1)未満の温度(T2<T1)に加熱(二次加熱)した後に冷却する焼入れ工程とを、この順に行う方法が記載されている。 In Patent Document 1, as a heat treatment for bearing parts (at least one of an inner ring, an outer ring, and a rolling element), after carbonitriding by heating to a temperature (T1) exceeding the A 1 transformation point (austenite transformation temperature). The carbonitriding step for cooling below the A 1 transformation point and the raceway after the carbonitriding step are set to a temperature (T2 <T1) that is equal to or higher than the A 1 transformation point and less than the heating temperature (T1) of the carbonitriding step. A method is described in which a quenching step of cooling after heating (secondary heating) is performed in this order.

特許文献1には、この方法によれば、オーステナイト結晶粒度の粒径が従来の2分の1以下となるミクロ組織を得ることができるため、一次加熱(浸炭窒化処理)に引き続いてそのまま1回焼入れし、二次加熱を行わない通常の浸炭窒化・焼入れ方法と比較して、表層部分を浸炭窒化しつつ、割れ強度を向上させ、経年寸法変化率を減少させることができるとの記載がある。   According to Patent Document 1, according to this method, a microstructure in which the grain size of austenite crystal grain size is less than or equal to the conventional one can be obtained. Therefore, the primary heating (carbonitriding treatment) is performed once as it is. There is a description that it is possible to improve the cracking strength and reduce the aging dimensional change rate while carbonitriding the surface layer portion, compared with the usual carbonitriding / quenching method without quenching and secondary heating. .

特許文献1には、また、この方法により、軸受部品の窒素富化層における残留オーステナイト量を11%以上25%以下の範囲にすることで、耐表面損傷特性と耐経年寸法変化特性とのバランスをとることが記載されている。
特許文献2および3には、鋼製部品をA1 変態点を越える温度(T1)に加熱した後、A1 変態点未満に冷却して表面に窒素富化層を形成する一次熱処理装置と、一次熱処理後の鋼製部品を、A1 変態点を越える温度(T2)に加熱した後、A1 変態点未満に冷却する二次熱処理装置とを備え、二次熱処理装置が誘導加熱で加熱する装置であると共に、二次熱処理装置で型焼入れすることが記載されている。
Patent Document 1 also discloses that the balance between surface damage resistance and secular dimensional change characteristics can be achieved by setting the amount of retained austenite in the nitrogen-enriched layer of the bearing component in the range of 11% to 25% by this method. Is described.
Patent Documents 2 and 3 include a primary heat treatment apparatus in which a steel part is heated to a temperature exceeding the A 1 transformation point (T1) and then cooled to less than the A 1 transformation point to form a nitrogen-enriched layer on the surface; The steel part after the primary heat treatment is heated to a temperature exceeding the A 1 transformation point (T2) and then cooled to below the A 1 transformation point, and the secondary heat treatment device is heated by induction heating. In addition to being an apparatus, it is described that mold hardening is performed with a secondary heat treatment apparatus.

そして、特許文献2には、一次熱処理装置と二次熱処理装置とにおける加熱温度の関係をT2<T1とすることで、鋼中のオーステナイト粒が微細化されると記載されている。特許文献3にはT2<T1でもT2≧T1でもよいと記載されている。
特許文献4には、軌道輪をオーステナイト変態温度以上に誘導加熱した後、回転している軌道輪に向けて冷却液を噴射することにより、軌道輪の表面温度がマルテンサイト変態開始温度より高い温度から500℃までの温度範囲となるまで水冷した後、マルテンサイト変態開始温度以下となるまでガス冷する焼入れ工程を備え、前記水冷またはガス冷中に、軌道輪を筒状の外径矯正型に入れて拘束し、軌道輪の外形寸法を矯正することを特徴とする転がり軸受軌道輪の製造方法が記載されている。
And patent document 2 describes that the austenite grain in steel is refined | miniaturized by making the relationship of the heating temperature in a primary heat processing apparatus and a secondary heat processing apparatus into T2 <T1. Patent Document 3 describes that T2 <T1 or T2 ≧ T1 may be satisfied.
Patent Document 4 discloses a method in which the surface temperature of the raceway is higher than the martensite transformation start temperature by injecting the coolant toward the rotating raceway after induction heating the raceway to the austenite transformation temperature or higher. To a temperature range of from 500 to 500 ° C., followed by a quenching step of gas cooling until the temperature falls below the martensite transformation start temperature. During the water cooling or gas cooling, the raceway ring is formed into a cylindrical outer diameter correction mold. A method of manufacturing a rolling bearing race is described, which includes inserting and restraining and correcting the outer dimensions of the race.

特開2006−316821号公報JP 2006-316821 A 特開2005−113213号公報JP 2005-113213 A 特開2005−133212号公報JP 2005-133212 A 特開2009−203522号公報JP 2009-203522 A

この発明の課題は、転がり軸受の軌道輪を製造する方法として、熱処理時の変形を小さくでき、異物混入潤滑下での寿命を長くでき、寸法安定性にも優れた軌道輪が得られる方法を提供することである。   The subject of this invention is a method for producing a bearing ring for a rolling bearing, in which the deformation during heat treatment can be reduced, the life under lubrication mixed with foreign matter can be extended, and a bearing ring having excellent dimensional stability can be obtained. Is to provide.

上記課題を解決するために、この発明の転がり軸受軌道輪の製造方法は、転がり軸受を構成する軌道輪(内輪または外輪)を、A1 変態点(オーステナイト変態温度)を超える温度(T1)に加熱して浸炭窒化処理を行った後に、A1 変態点未満に冷却する浸炭窒化工程と、前記浸炭窒化工程後の軌道輪を、A1 変態点以上であって浸炭窒化工程の加熱温度以上の温度(T2≧T1)に誘導加熱した後に冷却し、冷却途中のMS 点(マルテンサイト変態開始温度)に到達する前に、外径拘束型に入れてMS 点以下になるまで冷却することで、焼入れと矯正を行う高周波焼入れ・矯正工程と、前記高周波焼入れ・矯正工程後の軌道輪を誘導加熱することで焼戻しを行う高周波焼戻し工程と、前記高周波焼戻し工程後の軌道輪の表面に形成された酸化膜を除去する酸化膜除去工程とをこの順に行うことを特徴とする。 In order to solve the above-mentioned problems, the rolling bearing raceway manufacturing method of the present invention has a bearing ring (inner ring or outer ring) constituting the rolling bearing at a temperature (T1) exceeding the A 1 transformation point (austenite transformation temperature). after heating to subjected to carbonitriding and carbonitriding step of cooling to below the a 1 transformation point, the carburization after nitriding step the raceway of, a 1 equal to or more than the transformation point above the heating temperature of the carbonitriding process Cool after induction heating to a temperature (T2 ≧ T1) and before reaching the M S point (martensitic transformation start temperature) in the middle of cooling, put it in the outer diameter constrained mold and cool it to below the M S point. Induction hardening and straightening process for quenching and straightening, induction tempering process for induction tempering by induction heating of the raceway after the induction hardening and straightening process, and formation on the surface of the raceway after the induction tempering process Oxidation The oxide film removing step for removing the film is performed in this order.

この発明の方法では、前記高周波焼入れ・矯正工程で、焼入れ時の冷却途中で軌道輪を外径拘束型に入れて矯正を行うにより、軌道輪の熱処理時の変形を小さくできる。
この発明の方法では、一次加熱(浸炭窒化処理)後の冷却後に行う二次加熱(焼入れ時の保持温度)を、一次加熱時の温度(T1)以上の温度(T2)で、誘導加熱法で行うことにより、表層部の残留オーステナイト量を多くしながら、芯部の残留オーステナイト量を少なくすることができる。具体例として、この発明の方法によれば、軌道面の表層部(表面から50μmまでの深さの範囲)の残留オーステナイト量を20体積%以上45体積%以下とし、芯部の残留オーステナイト量を15体積%以下にすることができる。
In the method of the present invention, in the induction hardening / correction step, the raceway can be reduced during heat treatment by performing the straightening by putting the raceway into an outer diameter constrained mold during cooling during quenching.
In the method of the present invention, secondary heating (holding temperature during quenching) performed after cooling after primary heating (carbonitriding) is performed by induction heating at a temperature (T2) equal to or higher than temperature (T1) during primary heating. By doing so, the amount of retained austenite in the core portion can be decreased while the amount of retained austenite in the surface layer portion is increased. As a specific example, according to the method of the present invention, the amount of retained austenite in the surface layer portion (in the depth range from the surface to 50 μm) of the raceway surface is set to 20% by volume or more and 45% by volume or less, and the amount of retained austenite in the core portion is set. It can be made into 15 volume% or less.

軌道面の表層部の残留オーステナイト量が20体積%以上45体積%以下で、芯部の残留オーステナイト量が15体積%以下になっている軌道輪を有する転がり軸受は、異物混入潤滑下での寿命が長く、寸法安定性にも優れたものとなる。
軌道面の表層部の残留オーステナイト量が20体積%未満であると、異物混入潤滑下で転がり疲労特性が不十分である。軌道面の表層部の残留オーステナイト量が45体積%を超えると、軌道面の十分な硬さが得られず、転がり疲労特性が不十分である。芯部の残留オーステナイト量が15体積%を超えると、時効変形による膨張量が大きく、寸法安定性が不十分である。
A rolling bearing having a bearing ring in which the amount of retained austenite in the surface layer portion of the raceway surface is 20% by volume or more and 45% by volume or less and the amount of retained austenite in the core portion is 15% by volume or less has a life under lubrication mixed with foreign matter. Is long and excellent in dimensional stability.
When the amount of retained austenite in the surface layer portion of the raceway surface is less than 20% by volume, rolling fatigue characteristics are insufficient under the contamination with foreign matter. When the amount of retained austenite in the surface layer portion of the raceway surface exceeds 45% by volume, sufficient hardness of the raceway surface cannot be obtained, and rolling fatigue characteristics are insufficient. When the amount of retained austenite in the core exceeds 15% by volume, the amount of expansion due to aging deformation is large, and the dimensional stability is insufficient.

この発明の方法は、転がり軸受の軌道輪を製造する方法であって、熱処理時の変形を小さくでき、異物混入潤滑下での寿命を長くでき、寸法安定性にも優れた軌道輪が得られる方法である。   The method of the present invention is a method of manufacturing a bearing ring for a rolling bearing, which can reduce deformation during heat treatment, can extend the life under the contamination with foreign matter, and can provide a bearing ring with excellent dimensional stability. Is the method.

実施形態の方法を実施可能な処理ラインを示す概略構成図である。It is a schematic block diagram which shows the processing line which can implement the method of embodiment. 図1の処理ラインを構成する誘導加熱部で、内輪を加熱している状態を示す図である。It is a figure which shows the state which is heating the inner ring | wheel by the induction heating part which comprises the processing line of FIG. 図1の処理ラインを構成する冷却・矯正部で、内輪を冷却している状態と矯正している状態を示す図である。It is a figure which shows the state which is cooling and correct | amending the inner ring | wheel in the cooling and correction part which comprises the processing line of FIG. 図1の処理ラインを構成する焼戻し部で、内輪を加熱している状態を示す図である。It is a figure which shows the state which is heating the inner ring | wheel in the tempering part which comprises the processing line of FIG.

以下、この発明の実施形態について説明する。
この実施形態の方法では、図1に示す処理ラインを使用して、転がり軸受の内輪(軌道輪)に対する処理を行う。
この処理ラインは、浸炭窒化処理室1と、誘導加熱部2と、冷却・矯正部3と、焼戻し部4と、酸化膜除去室5と、コンベヤ6とを有する。内輪7は、各室および部間をコンベヤ6で搬送される。
Embodiments of the present invention will be described below.
In the method of this embodiment, the processing line shown in FIG. 1 is used to perform processing on the inner ring (race ring) of the rolling bearing.
This treatment line includes a carbonitriding treatment chamber 1, an induction heating unit 2, a cooling / correcting unit 3, a tempering unit 4, an oxide film removing chamber 5, and a conveyor 6. The inner ring 7 is conveyed by a conveyor 6 between each chamber and part.

浸炭窒化処理室1は、加熱炉と冷却室を有する。加熱炉は、浸炭窒化処理の雰囲気ガスが導入でき、内部をA1 変態点以上に加熱できる炉である。冷却室には、空冷、油冷、水冷を行うことができる装置が設置されている。
誘導加熱部2には、回転テーブル21と、環状の誘導加熱コイル22と、ピストン23が配置されている。回転テーブル21は、下方に延びる回転軸21aを有し、この回転軸21aに沿って昇降自在に構成されている。回転テーブル21はコンベヤ6とほぼ同じ高さの位置に待機している。
The carbonitriding chamber 1 has a heating furnace and a cooling chamber. The heating furnace is a furnace in which an atmosphere gas for carbonitriding can be introduced and the inside can be heated to the A 1 transformation point or higher. A device capable of air cooling, oil cooling, and water cooling is installed in the cooling chamber.
In the induction heating unit 2, a rotary table 21, an annular induction heating coil 22, and a piston 23 are arranged. The rotary table 21 has a rotary shaft 21a extending downward, and is configured to be movable up and down along the rotary shaft 21a. The rotary table 21 stands by at a position substantially the same height as the conveyor 6.

誘導加熱コイル22は、回転テーブル21の回転軸21aと中心を合わせて、コンベヤ6より高い位置に配置されている。誘導加熱コイル22としては、処理対象の内輪7の外側に一定の間隔が生じる内径のものを使用する。
ピストン23は、円板状の押え板23aと上方に延びる軸23bを有し、軸23bに沿って昇降自在に構成されている。ピストン23は、回転テーブル21の回転軸21aと中心を合わせて、誘導加熱コイル22よりも高い位置に配置されている。
The induction heating coil 22 is arranged at a position higher than the conveyor 6 with the rotation axis 21 a of the turntable 21 being centered. As the induction heating coil 22, an induction heating coil having an inner diameter that produces a constant interval outside the inner ring 7 to be processed is used.
The piston 23 has a disc-shaped presser plate 23a and a shaft 23b extending upward, and is configured to be movable up and down along the shaft 23b. The piston 23 is arranged at a position higher than the induction heating coil 22 so as to be aligned with the rotation shaft 21 a of the turntable 21.

誘導加熱部2で内輪7を加熱する際には、内輪7を載せた回転テーブル21を上昇させて、図2に示すように、誘導加熱コイル22内に内輪7を配置し、ピストン23を下降させて押え板23aで内輪7を上から押える。この状態で、回転テーブル21を回転させ、誘導加熱コイル22に通電する。
冷却・矯正部3には、回転テーブル31と、環状の冷却ジャケット32と、内部冷却装置33と、円筒形の外径矯正型34と、ピストン35が配置されている。回転テーブル31は、下方に延びる回転軸31aを有し、この回転軸31aに沿って昇降自在に構成されている。回転テーブル31はコンベヤ6とほぼ同じ高さの位置に待機している。
When the inner ring 7 is heated by the induction heating unit 2, the rotary table 21 on which the inner ring 7 is placed is raised, and the inner ring 7 is disposed in the induction heating coil 22 as shown in FIG. Then, the inner ring 7 is pressed from above with the presser plate 23a. In this state, the rotary table 21 is rotated and the induction heating coil 22 is energized.
The cooling / correcting unit 3 includes a rotary table 31, an annular cooling jacket 32, an internal cooling device 33, a cylindrical outer diameter correcting die 34, and a piston 35. The rotary table 31 has a rotary shaft 31a extending downward, and is configured to be movable up and down along the rotary shaft 31a. The rotary table 31 stands by at a position substantially the same height as the conveyor 6.

冷却ジャケット32は、外径矯正型34より内径および軸方向寸法が大きい環状体からなる。冷却ジャケット32の内側には多数のノズルが配置されている。冷却ジャケット32に冷却液を供給する冷却液供給装置が、冷却ジャケット32に接続されている。この冷却液供給装置により、所定のタイミングで設定量の冷却液が、冷却ジャケット32のノズルから噴射される。冷却ジャケット32は、回転テーブル31の回転軸31aと中心を合わせて、コンベヤ6より高い位置に配置されている。   The cooling jacket 32 is made of an annular body having an inner diameter and an axial dimension larger than those of the outer diameter correcting die 34. A large number of nozzles are arranged inside the cooling jacket 32. A cooling liquid supply device that supplies a cooling liquid to the cooling jacket 32 is connected to the cooling jacket 32. By this coolant supply device, a predetermined amount of coolant is injected from the nozzle of the cooling jacket 32 at a predetermined timing. The cooling jacket 32 is arranged at a position higher than the conveyor 6 so as to be aligned with the rotation shaft 31 a of the turntable 31.

内部冷却装置33はピストン35の下部に固定されている。内部冷却装置33の外側には多数のノズルが配置されている。内部冷却装置33に冷却液を供給する冷却液供給装置が、ピストン35を介して内部冷却装置33に接続されている。この冷却液供給装置により、所定のタイミングで設定量の冷却液が、内部冷却装置33のノズルから内輪7に向けて噴射される。   The internal cooling device 33 is fixed to the lower part of the piston 35. A large number of nozzles are arranged outside the internal cooling device 33. A coolant supply device that supplies coolant to the internal cooling device 33 is connected to the internal cooling device 33 via the piston 35. By this coolant supply device, a predetermined amount of coolant is injected from the nozzle of the internal cooling device 33 toward the inner ring 7 at a predetermined timing.

外径矯正型34は、冷却ジャケット32の内部の上側に、回転テーブル31の回転軸31aと中心を合わせて配置されている。
ピストン35は、円板状の押え板35aと上方に延びる軸35bを有し、軸35bに沿って昇降自在に構成されている。押え板35aの下面の中央部に内部冷却装置33が固定されている。ピストン35は、回転テーブル31の回転軸31aと中心を合わせて、外径矯正型34の内部の上側に配置されている。
The outer diameter correction die 34 is arranged on the upper side inside the cooling jacket 32 so as to be aligned with the rotation shaft 31 a of the rotary table 31.
The piston 35 has a disc-shaped presser plate 35a and a shaft 35b extending upward, and is configured to be movable up and down along the shaft 35b. An internal cooling device 33 is fixed to the central portion of the lower surface of the presser plate 35a. The piston 35 is arranged on the upper side of the outer diameter correction die 34 so as to align with the rotation shaft 31a of the rotary table 31.

冷却・矯正部3で内輪7を冷却する際には、内輪7を載せた回転テーブル31を上昇させて、図3(a)に示すように、冷却ジャケット32内の内径矯正型34より下側に内輪7を配置する。また、ピストン35を下降させて押え板34aで内輪7を上から押える。これにより、内部冷却装置33が内輪7の内部に入る。この状態で、冷却ジャケット32および内部冷却装置33を作動させて、回転テーブル31を回転させる。   When the inner ring 7 is cooled by the cooling / correcting unit 3, the rotary table 31 on which the inner ring 7 is placed is lifted, and as shown in FIG. The inner ring 7 is disposed on the inner side. Further, the piston 35 is lowered and the inner ring 7 is pressed from above by the pressing plate 34a. Thereby, the internal cooling device 33 enters the inner ring 7. In this state, the cooling jacket 32 and the internal cooling device 33 are operated to rotate the rotary table 31.

冷却・矯正部3で内輪7を矯正する際には、内輪7を載せた回転テーブル31を、図3(a)の状態からさらに上昇させて、図3(b)に示すように、内輪7を外径矯正型34に圧入する。この状態で、冷却ジャケット32および内部冷却装置33を作動させて、回転テーブル31を回転させる。
焼戻し部4には、回転テーブル41と、環状の誘導加熱コイル42とが配置されている。回転テーブル41は、下方に延びる回転軸41aを有し、この回転軸41aに沿って昇降自在に構成されている。回転テーブル41はコンベヤ6とほぼ同じ高さの位置に待機している。
When the inner ring 7 is corrected by the cooling / correcting unit 3, the rotary table 31 on which the inner ring 7 is placed is further raised from the state shown in FIG. 3A, and as shown in FIG. Is pressed into the outer diameter correction die 34. In this state, the cooling jacket 32 and the internal cooling device 33 are operated to rotate the rotary table 31.
In the tempering unit 4, a rotary table 41 and an annular induction heating coil 42 are arranged. The rotary table 41 has a rotary shaft 41a extending downward, and is configured to be movable up and down along the rotary shaft 41a. The rotary table 41 stands by at a position almost the same height as the conveyor 6.

誘導加熱コイル42は、回転テーブル41の回転軸41aと中心を合わせて、コンベヤ6より高い位置に配置されている。誘導加熱コイル42としては、処理対象の内輪7の外側に一定の間隔が生じる内径のものを使用する。
焼戻し部4で内輪7を加熱する際には、内輪7を載せた回転テーブル41を上昇させて、図4に示すように、誘導加熱コイル42内に内輪7を配置する。この状態で、回転テーブル21を回転させ、誘導加熱コイル42に通電する。
The induction heating coil 42 is arranged at a position higher than the conveyor 6 with the rotation axis 41 a of the turntable 41 being centered. As the induction heating coil 42, an induction heating coil having an inner diameter that generates a constant interval outside the inner ring 7 to be processed is used.
When the inner ring 7 is heated by the tempering unit 4, the rotary table 41 on which the inner ring 7 is placed is raised, and the inner ring 7 is disposed in the induction heating coil 42 as shown in FIG. 4. In this state, the rotary table 21 is rotated and the induction heating coil 42 is energized.

酸化膜除去室5内には、ショットブラスト装置が配置されている。
図1の処理ラインを使用し、以下の方法で、内輪7に対する処理を行う。
先ず、浸炭窒化処理室1の加熱炉に内輪7を入れて、加熱炉の内部を浸炭窒化雰囲気に保持し、加熱炉の内部の温度をA1 変態点(726℃)を超える温度T1(800〜900℃)に所定時間保持する。これにより、内輪7に対する浸炭窒化処理を行う。次に、内輪7を冷却室に移動して、MS 点以下の温度になるまで冷却することにより、内輪7に対して一次焼入れを行う。
A shot blasting device is disposed in the oxide film removal chamber 5.
Using the processing line shown in FIG. 1, the inner ring 7 is processed by the following method.
First, the inner ring 7 is placed in the heating furnace of the carbonitriding chamber 1, the inside of the heating furnace is maintained in a carbonitriding atmosphere, and the temperature inside the heating furnace is set to a temperature T1 (800 ° C.) exceeding the A 1 transformation point (726 ° C.). ˜900 ° C.) for a predetermined time. Thereby, the carbonitriding process for the inner ring 7 is performed. Next, the inner ring 7 is moved to the cooling chamber and cooled to a temperature equal to or lower than the M S point, whereby the inner ring 7 is primarily quenched.

次に、内輪7をコンベヤ6に載せて誘導加熱部2まで搬送して、回転テーブル21の上に載せる。次に、内輪7を載せた回転テーブル21を上昇させて図2に示す状態とし、回転テーブル21を回転させて、誘導加熱コイル22に高周波(5〜15kHz)を短時間(2〜3秒)通電する。これにより、内輪7の軌道面71を、A1 変態点以上であって浸炭窒化工程の加熱温度T1以上の温度T2(800〜900℃)に加熱する。通電終了後、軌道面71からの熱が内輪7の軌道面71以外の表面と芯部に伝達されて、軌道面71の深さ方向に温度勾配が形成される。 Next, the inner ring 7 is placed on the conveyor 6, conveyed to the induction heating unit 2, and placed on the rotary table 21. Next, the rotary table 21 on which the inner ring 7 is placed is raised to the state shown in FIG. 2, the rotary table 21 is rotated, and a high frequency (5 to 15 kHz) is applied to the induction heating coil 22 for a short time (2 to 3 seconds). Energize. Thereby, the raceway surface 71 of the inner ring 7 is heated to a temperature T2 (800 to 900 ° C.) that is equal to or higher than the A 1 transformation point and higher than the heating temperature T1 in the carbonitriding step. After the energization is completed, heat from the raceway surface 71 is transmitted to the surface of the inner ring 7 other than the raceway surface 71 and the core, and a temperature gradient is formed in the depth direction of the raceway surface 71.

次に、回転テーブル21をコンベヤ6の高さまで降下して、内輪7をコンベヤ6に載せて冷却・矯正部3まで搬送する。次に、コンベヤ6上の内輪7を回転テーブル31の上に載せて、回転テーブル31を上昇させるとともに、ピストン35を降下して図3(a)に示す状態とする。この状態で、冷却ジャケット32および内部冷却装置33を作動させて、回転テーブル31を回転させることにより、内輪7を冷却する。   Next, the rotary table 21 is lowered to the height of the conveyor 6, and the inner ring 7 is placed on the conveyor 6 and conveyed to the cooling / correcting unit 3. Next, the inner ring 7 on the conveyor 6 is placed on the rotary table 31, the rotary table 31 is raised, and the piston 35 is lowered to the state shown in FIG. In this state, the inner ring 7 is cooled by operating the cooling jacket 32 and the internal cooling device 33 and rotating the rotary table 31.

この冷却により、内輪7がMS 点より少し高い温度になった時点で、回転テーブル31をさらに上昇させて、図3(b)に示すように、内輪7を外径矯正型34に圧入する。この状態でMS 点以下の温度になるまで冷却を行う。これにより、内輪7の外径の矯正が焼入れ時に行われる。また、図3(a)および(b)の工程により、内輪7に対する二次焼入れが行われる。 By this cooling, when the inner ring 7 reaches a temperature slightly higher than the point M S , the rotary table 31 is further raised and the inner ring 7 is press-fitted into the outer diameter correction die 34 as shown in FIG. . In this state, cooling is performed until the temperature is equal to or lower than the M S point. Thereby, the outer diameter of the inner ring 7 is corrected at the time of quenching. Further, secondary quenching of the inner ring 7 is performed by the steps of FIGS. 3 (a) and 3 (b).

次に、回転テーブル31をコンベヤ6の高さまで降下して、内輪7をコンベヤ6に載せて焼戻し部4まで搬送する。次に、コンベヤ6上の内輪7を回転テーブル41の上に載せて、回転テーブル41を上昇させることで、図4に示す状態とする。この状態で、回転テーブル31を回転させて、誘導加熱コイル42に高周波(3〜10kHz)を短時間(1〜2秒)通電する。これにより、内輪7の軌道面71を、焼戻し加熱温度(180〜300℃)に加熱する。   Next, the rotary table 31 is lowered to the height of the conveyor 6, and the inner ring 7 is placed on the conveyor 6 and conveyed to the tempering unit 4. Next, the inner ring 7 on the conveyor 6 is placed on the rotary table 41, and the rotary table 41 is raised to obtain the state shown in FIG. In this state, the rotary table 31 is rotated, and the induction heating coil 42 is energized with a high frequency (3 to 10 kHz) for a short time (1 to 2 seconds). Thereby, the raceway surface 71 of the inner ring 7 is heated to a tempering heating temperature (180 to 300 ° C.).

次に、回転テーブル41をコンベヤ6の高さまで降下して、内輪7をコンベヤ6に載せて酸化膜除去室5まで搬送する。酸化膜除去室5で、内輪7をショットブラスト装置にかけて、表面の酸化膜を除去する。
この実施形態の方法によれば、焼入れ時に内輪7の外径の矯正を行うことにより、内輪7の熱処理時の変形を小さくできる。
Next, the rotary table 41 is lowered to the height of the conveyor 6, and the inner ring 7 is placed on the conveyor 6 and conveyed to the oxide film removing chamber 5. In the oxide film removal chamber 5, the inner ring 7 is applied to a shot blasting apparatus to remove the oxide film on the surface.
According to the method of this embodiment, the deformation of the inner ring 7 during heat treatment can be reduced by correcting the outer diameter of the inner ring 7 during quenching.

この実施形態の方法では、浸炭窒化処理後の冷却後に行う二次加熱を、誘導加熱部2で浸炭窒化処理の加熱温度以上の温度で行うことにより、表層部の残留オーステナイト量を多くしながら、芯部の残留オーステナイト量を少なくすることができる。
なお、この実施形態の方法では、浸炭窒化工程の冷却温度をMS 点以下の温度としているが、A1 変態点未満の温度であればMS 点より高い温度であってもよい。その場合、焼入れは高周波焼入れ・矯正工程のみで行われる。
また、酸化膜除去工程はショットブラスト処理でなくてもよい。ショットブラスト処理以外の酸化膜除去工程としては、例えば、光輝バレル処理、ホーニング加工などが挙げられる。
In the method of this embodiment, secondary heating performed after cooling after the carbonitriding process is performed at a temperature equal to or higher than the heating temperature of the carbonitriding process in the induction heating unit 2, thereby increasing the amount of retained austenite in the surface layer part, The amount of retained austenite in the core can be reduced.
In the method of this embodiment, the cooling temperature of the carbonitriding process is set to M S point below the temperature may be a temperature higher than M S point, if a temperature lower than the A 1 transformation point. In that case, quenching is performed only by induction quenching / correction process.
Further, the oxide film removal step may not be shot blasting. Examples of the oxide film removing process other than the shot blasting include a bright barrel process and a honing process.

以下、この発明の実施例について説明する。
SUJ2(MS 点:275℃)からなる素材を旋削することで、所定寸法(外径101.3mm、内径94.6mm、幅13mm、溝底厚さ2mm)の内輪に加工した。この内輪に対して、サンプルNo. 1〜5では、図1の処理ラインを用いて、上述の実施形態の方法に基づき、浸炭窒化工程、高周波焼入れ・矯正工程、高周波焼戻し工程、酸化膜除去工程を行った。サンプルNo. 6〜10では、高周波焼入れ・矯正工程および高周波焼戻し工程に変えて、炉加熱後に油冷却する油焼入れと、炉加熱による焼戻しを行った。
Examples of the present invention will be described below.
SUJ2 (M S point: 275 ° C.) by turning the material consisting of, by processing a predetermined size (OD 101.3Mm, inner diameter 94.6Mm, width 13 mm, groove bottom thickness 2 mm) to the inner ring of. With respect to this inner ring, in sample Nos. 1 to 5, using the processing line of FIG. 1, the carbonitriding step, induction hardening / correction step, induction tempering step, oxide film removal step based on the method of the above-described embodiment Went. In sample Nos. 6 to 10, instead of the induction hardening / correction process and the induction tempering process, oil quenching for oil cooling after furnace heating and tempering by furnace heating were performed.

浸炭窒化工程の加熱条件は、全サンプルについて同じ条件で行った。すなわち、同じ浸炭窒化ガス雰囲気とし、加熱炉内の温度も同じ850℃として、この温度に各内輪を3時間保持した。冷却方法は、表1に示すように、各サンプル毎に、空冷、油冷、水冷のいずれかの方法で行った。空冷、油冷、水冷はそれぞれ同じ方法で行った。
No. 1〜3では、誘導加熱部2における加熱条件を、高周波(周波数10kHz)で2秒間行うことで、軌道面の温度を850℃とした。No. 4では、高周波焼入れ・矯正工程の誘導加熱を、高周波(周波数10kHz)で3秒間行うことで、軌道面の温度を880℃とした。No. 5では、高周波焼入れ・矯正工程の誘導加熱を、高周波(周波数10kHz)で1秒間行うことで、軌道面の温度を820℃とした。
The heating conditions for the carbonitriding process were the same for all samples. That is, the same carbonitriding gas atmosphere was used, and the temperature in the heating furnace was the same 850 ° C., and each inner ring was held at this temperature for 3 hours. As shown in Table 1, the cooling method was performed by air cooling, oil cooling, or water cooling for each sample. Air cooling, oil cooling, and water cooling were performed in the same manner.
In Nos. 1 to 3, the temperature of the raceway surface was set to 850 ° C. by performing the heating conditions in the induction heating unit 2 at a high frequency (frequency 10 kHz) for 2 seconds. In No. 4, the temperature of the raceway surface was set to 880 ° C. by performing induction heating in the induction hardening / correction process at a high frequency (frequency 10 kHz) for 3 seconds. In No. 5, the temperature of the raceway surface was set to 820 ° C. by performing induction heating in the induction hardening / correction process at a high frequency (frequency 10 kHz) for 1 second.

次に、No. 1〜5では、誘導加熱コイル22に対する通電を終えた後に図2に示す状態を3秒間保持することにより、軌道面以外の部分に軌道面からの熱を伝導して温度勾配を形成した。次に、No. 1〜5では、冷却・矯正部3での冷却を、図3(a)の状態で2秒間行うことで内輪の表面温度を300℃とした後に、図3(b)の状態として、さらに10間冷却することで内輪の表面温度を30℃とした。   Next, in Nos. 1 to 5, after the energization to the induction heating coil 22 is finished, the state shown in FIG. 2 is held for 3 seconds to conduct the heat from the raceway surface to a portion other than the raceway surface, thereby causing a temperature gradient. Formed. Next, in No. 1-5, after cooling in the cooling / correcting section 3 for 2 seconds in the state of FIG. 3A, the surface temperature of the inner ring is set to 300 ° C., and then in FIG. As a state, the surface temperature of the inner ring was set to 30 ° C. by further cooling for 10 minutes.

また、No. 6では、加熱炉内の温度を820℃に保持して1時間加熱した後、油冷却した。No. 7〜9では、加熱炉内の温度を850℃に保持して1時間加熱した後、油冷却した。No. 10では、加熱炉内の温度を880℃に保持して1時間加熱した後、油冷却した。
最後に、全てのサンプルについて同じ条件で酸化膜除去工程を行った。すなわち、SiC粒子を49〜196kPaの圧縮空気で投射するショットブラスト処理を行うことで、内輪の表面に形成された酸化膜を除去した。
In No. 6, the temperature in the heating furnace was kept at 820 ° C. and heated for 1 hour, and then cooled with oil. In Nos. 7-9, the temperature in the heating furnace was kept at 850 ° C. and heated for 1 hour, and then oil-cooled. In No. 10, the temperature in the heating furnace was kept at 880 ° C. and heated for 1 hour, and then cooled with oil.
Finally, the oxide film removal process was performed under the same conditions for all samples. That is, the oxide film formed on the surface of the inner ring was removed by performing a shot blasting process in which SiC particles were projected with compressed air of 49 to 196 kPa.

各サンプルについて、軌道面の表層部と芯部における残留オーステナイト量を測定した。表層部の残留オーステナイト量は、表面から50μmの深さまでの範囲での平均値を算出した。芯部の残留オーステナイト量は、表面から深さ1mmの範囲での平均値を算出した。その結果と各サンプルの熱処理方法の違いを表1に示す。   For each sample, the amount of retained austenite in the surface layer portion and core portion of the raceway surface was measured. The amount of retained austenite in the surface layer portion was calculated as an average value in a range from the surface to a depth of 50 μm. The amount of retained austenite in the core was calculated as an average value in a range of 1 mm from the surface. Table 1 shows the difference between the results and the heat treatment method of each sample.

Figure 2013124416
Figure 2013124416

この結果から、この発明の方法に含まれる方法を実施したNo. 1〜4では、軌道面の表層部の残留オーステナイト量が26〜36体積%で、芯部の残留オーステナイト量が8〜12体積%となっている。すなわち、「表層部の残留オーステナイト量が20体積%以上45体積%以下で、芯部の残留オーステナイト量が15体積%以下」を満たしている。   From this result, in No. 1-4 which implemented the method included in the method of this invention, the amount of retained austenite of the surface layer part of a raceway surface is 26-36 volume%, and the amount of retained austenite of a core part is 8-12 volume. %. That is, “the amount of retained austenite in the surface layer part is 20% by volume or more and 45% by volume or less, and the amount of retained austenite in the core part is 15% by volume or less” is satisfied.

これに対して、この発明の方法の範囲外である方法を実施したNo. 5〜10では、軌道面の表層部の残留オーステナイト量が26〜36体積%で、芯部の残留オーステナイト量が8〜12体積%となっている。すなわち、「表層部の残留オーステナイト量が20体積%以上45体積%以下で、芯部の残留オーステナイト量が15体積%以下」を満たしていない。   On the other hand, in No. 5-10 which implemented the method which is outside the range of the method of this invention, the amount of retained austenite of the surface layer part of a raceway surface is 26-36 volume%, and the amount of retained austenite of a core part is 8 It is ˜12% by volume. That is, it does not satisfy “the amount of retained austenite in the surface layer part is 20% by volume or more and 45% by volume or less and the amount of retained austenite in the core part is 15% by volume or less”.

したがって、No. 1〜4の内輪を有する転がり軸受は、No. 5〜10の内輪を有する転がり軸受と比較して、異物混入潤滑下での寿命が長く、No. 1〜4の内輪はNo. 5〜10の内輪よりも寸法安定性にも優れたものとなる。   Therefore, the rolling bearings having the inner rings of No. 1 to 4 have a longer life under lubrication mixed with foreign matters than the rolling bearings having the inner rings of No. 5 to 10, and the inner rings of No. 1 to 4 Dimensional stability is better than 5-10 inner rings.

1 浸炭窒化処理室
2 誘導加熱部
21 回転テーブル
21a 回転軸
22 誘導加熱コイル
23 ピストン
23a 押え板
23b 軸
3 冷却・矯正部
31 回転テーブル
31a 回転軸
32 冷却ジャケット
33 内部冷却装置
34 外径矯正型
35 ピストン
35a 押え板
35b 軸
4 焼戻し部
41 回転テーブル
41a 回転軸
42 誘導加熱コイル
5 酸化膜除去室
6 コンベヤ
7 内輪(軌道輪)
71 軌道面
DESCRIPTION OF SYMBOLS 1 Carbonitriding process chamber 2 Induction heating part 21 Rotary table 21a Rotating shaft 22 Induction heating coil 23 Piston 23a Holding plate 23b Shaft 3 Cooling / correcting part 31 Rotating table 31a Rotating shaft 32 Cooling jacket 33 Internal cooling device 34 Outer diameter correcting type 35 Piston 35a Presser plate 35b Shaft 4 Tempering part 41 Rotating table 41a Rotating shaft 42 Induction heating coil 5 Oxide film removal chamber 6 Conveyor 7 Inner ring (track ring)
71 Track surface

Claims (2)

転がり軸受を構成する軌道輪を、A1 変態点を超える温度に加熱して浸炭窒化処理を行った後に、A1 変態点未満に冷却する浸炭窒化工程と、
前記浸炭窒化工程後の軌道輪を、A1 変態点以上であって浸炭窒化工程の加熱温度以上の温度に誘導加熱した後に冷却し、冷却途中のMS 点に到達する前に、外径拘束型に入れてMS 点以下になるまで冷却することで、焼入れと矯正を行う高周波焼入れ・矯正工程と、
前記高周波焼入れ・矯正工程後の軌道輪を誘導加熱することで焼戻しを行う高周波焼戻し工程と、
前記高周波焼戻し工程後の軌道輪の表面に形成された酸化膜を除去する酸化膜除去工程とをこの順に行うことを特徴とする転がり軸受軌道輪の製造方法。
A carbonitriding step in which the bearing ring constituting the rolling bearing is heated to a temperature exceeding the A 1 transformation point and subjected to carbonitriding, and then cooled to a temperature below the A 1 transformation point;
The bearing ring after the carbonitriding step, before cooling after induction heating comprising at A 1 transformation point or above to a temperature above the heating temperature in the carbonitriding process, reaches the M S point of the middle cooling, the outer diameter constraining Induction hardening and straightening process to quench and straighten by cooling into the mold and below the M S point,
An induction tempering step in which tempering is performed by induction heating of the raceway after the induction hardening and correction step;
A method of manufacturing a rolling bearing bearing ring, comprising performing an oxide film removing process for removing an oxide film formed on a surface of the bearing ring after the induction tempering process in this order.
請求項1記載の方法で製造され、軌道面の表層部の残留オーステナイト量が20体積%以上45体積%以下で、芯部の残留オーステナイト量が15体積%以下になっていることを特徴とする転がり軸受の軌道輪。   The amount of retained austenite in the surface layer portion of the raceway surface is 20% by volume or more and 45% by volume or less, and the amount of retained austenite in the core part is 15% by volume or less. Rolling bearing raceway.
JP2011275752A 2011-12-16 2011-12-16 Method for manufacturing bearing ring of rolling bearing Pending JP2013124416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011275752A JP2013124416A (en) 2011-12-16 2011-12-16 Method for manufacturing bearing ring of rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275752A JP2013124416A (en) 2011-12-16 2011-12-16 Method for manufacturing bearing ring of rolling bearing

Publications (1)

Publication Number Publication Date
JP2013124416A true JP2013124416A (en) 2013-06-24

Family

ID=48775866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275752A Pending JP2013124416A (en) 2011-12-16 2011-12-16 Method for manufacturing bearing ring of rolling bearing

Country Status (1)

Country Link
JP (1) JP2013124416A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199599A1 (en) * 2014-06-27 2015-12-30 Aktiebolaget Skf Method for surface hardening a metal component
CN105567943A (en) * 2014-10-29 2016-05-11 高周波热錬株式会社 Workpiece heat treatment method
US20180347623A1 (en) * 2015-10-29 2018-12-06 Ntn Corporation Method for producing bearing ring, double row tapered roller bearing, and method for producing double row tapered roller bearing
CN114058792A (en) * 2021-11-05 2022-02-18 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Operating mechanism and method for induction quenching of segmented surface of bearing ring with super-large diameter
CN115094369A (en) * 2022-06-13 2022-09-23 浙江理工大学常山研究院有限公司 Quenching heat treatment process for light and thin bearing ring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004003A (en) * 2000-06-22 2002-01-09 Nsk Ltd Rolling shaft
JP2005133214A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2007217725A (en) * 2006-02-14 2007-08-30 Nsk Ltd Pinion shaft for epicyclic gear mechanism
JP2009024708A (en) * 2007-07-17 2009-02-05 Nsk Ltd Method of manufacturing rolling bearing ring
JP2009203522A (en) * 2008-02-27 2009-09-10 Nsk Ltd Method for manufacturing race ring of rolling bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004003A (en) * 2000-06-22 2002-01-09 Nsk Ltd Rolling shaft
JP2005133214A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2007217725A (en) * 2006-02-14 2007-08-30 Nsk Ltd Pinion shaft for epicyclic gear mechanism
JP2009024708A (en) * 2007-07-17 2009-02-05 Nsk Ltd Method of manufacturing rolling bearing ring
JP2009203522A (en) * 2008-02-27 2009-09-10 Nsk Ltd Method for manufacturing race ring of rolling bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199599A1 (en) * 2014-06-27 2015-12-30 Aktiebolaget Skf Method for surface hardening a metal component
CN105567943A (en) * 2014-10-29 2016-05-11 高周波热錬株式会社 Workpiece heat treatment method
JP2016089183A (en) * 2014-10-29 2016-05-23 高周波熱錬株式会社 Heat treatment method for workpiece
US20180347623A1 (en) * 2015-10-29 2018-12-06 Ntn Corporation Method for producing bearing ring, double row tapered roller bearing, and method for producing double row tapered roller bearing
US10718377B2 (en) * 2015-10-29 2020-07-21 Ntn Corporation Method for producing bearing ring, double row tapered roller bearing, and method for producing double row tapered roller bearing
CN114058792A (en) * 2021-11-05 2022-02-18 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Operating mechanism and method for induction quenching of segmented surface of bearing ring with super-large diameter
CN115094369A (en) * 2022-06-13 2022-09-23 浙江理工大学常山研究院有限公司 Quenching heat treatment process for light and thin bearing ring

Similar Documents

Publication Publication Date Title
JP2014005526A (en) Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing
JP6572530B2 (en) Heat treatment apparatus and heat treatment method
JP2013124416A (en) Method for manufacturing bearing ring of rolling bearing
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
WO2013061822A1 (en) Ring-shaped member heat treatment method and ring-shaped member manufacturing method
JP2009197312A (en) Method for correcting deformation of annular member
EP3315619A1 (en) Method for producing bearing part
JP6819108B2 (en) Heat treatment method and heat treatment equipment
JP2013221199A (en) Method for producing bearing ring of rolling bearing
JP5446410B2 (en) Heat treatment method for annular workpiece
JP5779887B2 (en) Heat treatment method for raceway member
WO2017175756A1 (en) Race for roller bearings, production method for race for roller bearings, and roller bearing
CN1863931A (en) Thin-walled part producing method, bearing raceway ring, thrust needle roller bearing, rolling bearing raceway ring producing method, rolling bearing raceway ring, and rolling bearing
JP4208426B2 (en) Induction hardening method and bearing parts
JP2016080097A (en) Bearing ring and rolling bearing
JP2014055306A (en) Quenching method of annular work and quenching device used therefor
JP6769470B2 (en) Heat treatment method
US10393180B2 (en) Bearing ring for roller bearing, manufacturing method of bearing ring for roller bearing, and needle roller bearing
JP2009001837A (en) Method for correcting deformation of annular material
JP2013221200A (en) Method for producing bearing ring of rolling bearing
JP4627981B2 (en) Manufacturing method of thin bearing race
JP5130150B2 (en) Induction hardening method and bearing parts
JP2005113213A (en) Heat treatment system
JP2009203522A (en) Method for manufacturing race ring of rolling bearing
JP2005133212A (en) Heat treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160927