JP4208426B2 - Induction hardening method and bearing parts - Google Patents

Induction hardening method and bearing parts Download PDF

Info

Publication number
JP4208426B2
JP4208426B2 JP2001056301A JP2001056301A JP4208426B2 JP 4208426 B2 JP4208426 B2 JP 4208426B2 JP 2001056301 A JP2001056301 A JP 2001056301A JP 2001056301 A JP2001056301 A JP 2001056301A JP 4208426 B2 JP4208426 B2 JP 4208426B2
Authority
JP
Japan
Prior art keywords
induction hardening
quenching
induction
cooling
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001056301A
Other languages
Japanese (ja)
Other versions
JP2002256336A (en
Inventor
喜久男 前田
雅之 川北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2001056301A priority Critical patent/JP4208426B2/en
Publication of JP2002256336A publication Critical patent/JP2002256336A/en
Application granted granted Critical
Publication of JP4208426B2 publication Critical patent/JP4208426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ミクロ組織を微細化し、表層硬度を高くして、長寿命化をはかった高周波焼入れ方法、およびその高周波焼入れ方法を適用した鋼部品に関するものである。
【0002】
【従来の技術】
高周波焼入れ技術は、必要な部分だけを硬化することができ、エネルギーロスが少ないので、現在も盛んに用いられているが、エコロジー重視の傾向から、今後さらに多用されてゆく技術である。転がり軸受部品に対して高周波焼入れ法が適用される場合があるが、高周波焼入れが用いられる鋼は、元来、JISのS53Cのような中炭素鋼である。このような中炭素鋼は、化学成分上の制約から、通常の軸受用鋼であるCrを含むSUJ2等に比べて短寿命になりやすい。高周波焼入れ品を長寿命化するためには、従来から、化学成分を高合金化する方策がとられてきた。
【0003】
【発明が解決しようとする課題】
しかしながら、合金化すると、コストの上昇や加工性の劣化を招く欠点があった。また、高合金鋼では焼入性が高いため、わずかな加熱条件の違いで焼入温度が異なり、残留オーステナイトが過剰になり、所定の表層硬度が得られなかったり、焼き割れが発生するなどの問題を生じる。
【0004】
高周波焼入れ法では、短時間の加熱とそれに引き続く焼入れ処理のため、通常の炭素鋼の場合、炭化物が充分に素地に炭素として溶け込まない。溶け込みを促進するために、投入電力を高めたり、長時間加熱すると、高周波パターンが崩れたり、結晶粒が粗くなってしまい、転動寿命や割れ強度が向上しにくかった。また、最悪の場合には、オーバーヒート状態となって、焼き割れが発生する可能性もある。
【0005】
本発明は、高周波焼入れ方法を見直し、ミクロ組織を微細化し、高い表層硬度を得て、長寿命等を得ることができる高周波焼入れ方法およびその方法を適用した鋼部品を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の高周波焼入れ方法は、炭素含有率0.5質量%以上の鋼からなる軸受部品に対して高周波焼入れ処理を施す方法において、高周波加熱して焼入れる焼入工程と、焼入工程の前に、少なくとも1回、A変態点を超えて高周波加熱して一定温度に保持することにより炭素を素地に溶け込ませた後、変態点以下に冷却する工程とを備える(請求項1)。以後の説明で、A変態点およびA変態点を、それぞれ、A点およびA点と記す。
【0007】
上記の構成の予備加熱において、あらかじめワークである鋼のA3点を超えて加熱し、オーステナイト単相にすることにより、炭化物を固溶させて炭素を素地に溶け込ませることができる。
【0008】
冷却工程において、A1点を切る温度まで冷却し、再び焼入れ加熱することにより、結晶粒を微細化し、安定して高硬度を得ることができる。この冷却工程で、たとえば、炭素が素地に溶け込む温度域を時間をかけて冷却する場合には、ワークがこの温度域を冷却されてゆく間にも炭素は素地に溶け込むことが可能となる。また、この冷却工程では、たとえば、水冷などを適用することにより、スピードアップをはかり製造能率を向上させることができる。この結果、転動寿命と割れ強度とに優れた高周波焼入れ部品を高能率で製造することが可能となる。なお、上記の高周波焼入れでは、表層部への焼入れを前提にしているので、上記の処理は、表層部を対象にしている。また、A3点は、高周波加熱において略オーステナイト単相になる温度であり、A1点は、残留オーステナイト等を除いて、冷却時にオーステナイトからのパーライト変態がおよそ終了する温度である。
【0013】
上記本発明の高周波焼入れ方法では、たとえば、A点以下に冷却する工程では、高周波電源を切って放置する処理、および強制的に冷却する強制冷却処理のうちの少なくとも1つの処理により、軸受部品を冷却することができる。
【0014】
炭素を素地に溶け込ませた後にA点以下に冷却することにより、その後で、焼入れ温度に加熱した際に生じるオーステナイト粒度をはじめミクロ組織を微細にすることができる。上記したように、放置処理には、高周波コイルに囲まれた状態で空冷される場合、高周波コイルまたはワークを移動させて、ワークの周りから高周波コイルをなくした状態で空冷される場合等が含まれる
【0015】
本発明の高周波焼入れ方法では、たとえば、焼入工程の前に、焼入れ温度に高周波加熱して焼き入れる処理を1回以上行なうことができる。
【0016】
焼入れを繰り返すことにより、素地への炭素の溶け込みを十分行なうとともに、A1点を繰り返し上下する熱処理パターンによって最終的な焼入温度を下げても充分に炭素が固溶しているためオーステナイト結晶粒度、ミクロ組織を細かくして、硬度、転動寿命、割れ強度に優れる高周波鋼部品を得ることができる。また、焼入れ回数を所定回数以内にすることにより、第1の局面の高周波焼入れ方法よりも、スピードアップをはかることができる場合がある。
【0017】
上記本発明の高周波焼入れ方法では、高周波焼入れが行なわれたワークに対してさらに焼戻しを行なうことが望ましい。焼戻しにより、固溶した炭素を析出させて、安定化させることにより、寸法等の経年変化を無くしたり、靭性を向上させたり、残留応力等を除去することができる。焼戻しを低温域で行なうことにより、硬度の低下は最小限に抑えることができる。
【0018】
本発明の軸受部品は、上記のいずれかの高周波焼入れ方法を適用して得られた軸受部品であって、軸受部品の表層部の、JIS規格G0551に規定されるオーステナイト結晶粒度番号が平均9番以上である。
【0019】
オーステナイト結晶粒を細かくすることにより、硬度を上昇させ、また、細かいオーステナイト結晶粒独自の効果により、転動疲労や割れ強度を改善することができる。
【0020】
上記本発明の軸受部品では、炭素を0.5質量%以上含み、さらに表層硬度HV700以上を備えることができる。
【0021】
炭素を0.5質量%以上含むことにより、繰り返し変態によるミクロ組織の微細化を促進し、かつ硬度を高くすることができる。また、このような高硬度を得ることにより、耐摩耗性、転動疲労、割れ強度等を改善することができる。
【0023】
本発明の高周波焼入れ方法を軸受部品に用いることにより、耐摩耗性、転動疲労、割れ強度に優れた軸受部品を得ることができる。
【0024】
【実施例】
次に、本発明の実施例について説明する。図1(a)と図1(b)とに、本実施例で用いた2種類の高周波焼入れ方法のヒートパターンを示す。これらの高周波焼入れ方法を適用した鋼を表1に示す。
【0025】
【表1】

Figure 0004208426
【0026】
また、図1(c)に比較のための高周波焼入れのヒートパターンを示す。本実施例の2種類の高周波焼入れのヒートパターンは、次のものである。
(A)いったん、所定温度まで高周波加熱(予備加熱工程)後、空冷または空冷後水冷して、A1点以下まで降温し、その後、再度、焼入れ温度まで高周波加熱し、焼入れを行なう。(Aパターン)
(B)焼入温度まで高周波加熱した後水冷する操作を1サイクルとして、複数サイクル繰り返す。(Bパターン)
一方、比較のための熱処理ヒートパターンは、図1(c)に示すように、通常の高周波焼入れ法であるが、炭化物の溶け込みが十分生じるように保持時間を変化させた。(C、D、Eパターン)
表2〜表4に高周波焼入れの詳細な条件を示す。
【0027】
【表2】
Figure 0004208426
【0028】
【表3】
Figure 0004208426
【0029】
【表4】
Figure 0004208426
【0030】
高周波焼入れを適用する鋼としては、表1に示すJISの炭素鋼S53CおよびS53Cに対して若干の合金元素を含有させた鋼を用いた。表1に示す鋼について、直径12mmの円筒転動試験片、リング回転割れ試験片、ミクロ組織試験片を採取して、それぞれに上記A〜Eパターンの高周波焼入れ処理を施し、それぞれ、転動試験、回転割れ試験、ミクロ組織検査の試験を行なった。なお、パターンAの高周波焼入れ条件を示す表2の欄の「空冷時間」は、高周波コイルの電源を切って、高周波コイルが試験片を取り囲んだ状態で冷却した時間を表わす。高周波加熱の場合、表層のみに電力が投入されるので、高周波電源を切って放置することにより、熱が内部に伝導し、また外部に放散されるので、比較的大きな冷却速度を得ることができる。また、実施例および比較例ともに、高周波焼入れ装置における加熱コイル、焼入れ装置は同じであり、上記のようにヒートパターンを変化させた。焼戻しはいずれも150℃で行なった。それぞれの試験の条件は次のとおりである。
(1)転動疲労試験
転動疲労試験は、所定の高周波焼入れ深さを得た試験片を高面圧、高負荷速度の条件下で、加速的にサンプルを疲労させて評価する試験である。この試験では、サンプル数Nを10とし、疲労強度をL10寿命(サンプルの90%が破損しない負荷回数)により評価した。詳細な条件は次のとおりである。
・試験片寸法 :外径12mm、長さ22mm
・相手鋼球寸法 :直径19.05mm
・接触応力Pmax :5.88GPa
・負荷速度 :46240回/分
・硬化深さ :2mm〜2.5mm(外径部を表面から高周波焼入れ後、研磨して確認)
(2)割れ強度試験
割れ強度試験は、静的および動的な割れ強度を確認するための試験である。詳細な条件は次のとおりである。
・試験片寸法 :φ60×φ45×L15リング
・硬化深さ :2.1±0.1mm(内径、外径から高周波焼入れ後に研磨して確認)
・静的割れ試験:アムスラ試験機で静的に圧壊。試験数3個
・動的疲労割れ試験
(a)試験機 :リング回転割れ疲労試験機
(b)荷重 :9.8kN
(c)負荷速度 :8000回/分(回転速度4000rpm)
(d)応力振幅 :-410MPa〜+627MPa
(e)潤滑 :タービンVG68
(f)試験個数 :4個
上記の転動試験および割れ強度試験の結果を、併せて表5に示す。
【0031】
【表5】
Figure 0004208426
【0032】
(転動疲労試験結果): 比較例は通常の高周波焼入れを1回行なったものであるが、標準条件のパターンCでは短寿命である。加熱時間を長くすると、パターンDのように長寿命になる傾向があるが、時間が長すぎると表層硬度を得にくく、パターンEのように転動寿命も低下する傾向にある。これに対して、実施例のうち、パターンAにおいて、いったんA3点以上の所定温度まで加熱後、16秒間空冷し、その後、再び焼入れ温度まで加熱して焼き入れたものは、安定して長寿命である。このパターンAでは、熱処理時間はやや長くなるが、炭化物が十分溶け込む時間があるので、表層硬度が安定してくるため長寿命が確保される。また、パターンBの複数回高周波焼入れを行なったものは、表層硬度はさほど向上しないが、転動寿命はやや長寿命になる傾向がある。この長寿命の傾向は、繰り返し回数が多くなるほど促進される。
【0033】
表6に示すミクロ組織や表層硬度の結果から、パターンAとパターンBとは、どちらも硬度むらができ難く、オーステナイト結晶粒度番号は9以上で、かつ表層硬度HV700以上が得られている。このため、結晶粒度、ミクロ組織が微細であることが転動疲労寿命や割れ強度に好影響を与えている。
【0034】
【表6】
Figure 0004208426
【0035】
(割れ強度試験結果): 比較例である標準的な高周波焼入れ品(パターンC)に比べ、実施例のパターンAやパターンBは、静的強度で1.2倍以上、疲労寿命で2倍以上となっている。表6のミクロ組織や表層硬度の結果によれば、パターンA、パターンBのいずれも、硬度むらが生じにくく、オーステナイト結晶粒度番号9番以上、かつ表層硬度HV700以上が得られている。このように、結晶粒度、ミクロ組織が細かく表層硬度が高いことが、割れ強度試験に好影響を及ぼしていると判断できる。
【0036】
本実施例では、パターンAとして、高周波加熱後に空冷する例を示したが、十分な炭素や合金元素の溶け込みが得られれば、変態点を切る速度は本発明の効果に影響はなく、水冷やガス冷却等を採用することができる。また、パターンBでは、3サイクルの焼入れ処理の例を示したが、結晶粒度が細かくなる複数回の焼入れ処理であるかぎり、回数によらず採用することができる。また、鋼の代表例としてS53C鋼をベースとして実験を組み立てたが、炭素含有率0.5質量%以上の鋼ならば、本実施例の熱処理パターンを用いることにより、表層硬度HV700以上、オーステナイト結晶粒度番号9番以上を得ることができる。このため、炭素含有率0.5質量%以上であるかぎり、化学成分上の制約はほとんどないといえる。
【0037】
上記において、本発明の実施の形態について説明を行なったが、上記に開示された本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
【図面の簡単な説明】
【図1】 本発明の実施例における高周波焼入れパターンを示す図である。(a)は本発明の実施例のパターンAであり、(b)は本発明の他の実施例のパターンBであり、(c)は比較のためのパターンC,D,Eである。
【図2】 オーステナイト結晶粒度を示す図である。(a)は、本発明の実施例のオーステナイト結晶粒を示す図であり、(b)は比較材のオーステナイト結晶粒を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction hardening method in which the microstructure is refined, the surface layer hardness is increased, and the life is extended, and to a steel part to which the induction hardening method is applied.
[0002]
[Prior art]
Induction hardening technology can be used to harden only the necessary parts and has little energy loss, so it is still widely used, but it is a technology that will be used more frequently in the future due to the emphasis on ecology. Although induction hardening may be applied to rolling bearing parts, steel used for induction hardening is originally a medium carbon steel such as JIS S53C. Such medium carbon steel tends to have a shorter life compared to SUJ2 or the like containing Cr, which is a normal bearing steel, due to restrictions on chemical components. In order to extend the life of induction-hardened products, conventionally, measures have been taken to make the chemical components highly alloyed.
[0003]
[Problems to be solved by the invention]
However, when alloyed, there are disadvantages that increase costs and deteriorate workability. In addition, since the hardenability of high alloy steel is high, the quenching temperature differs due to slight differences in heating conditions, the retained austenite becomes excessive, the prescribed surface layer hardness cannot be obtained, and cracking occurs. Cause problems.
[0004]
In the induction hardening method, carbide is not sufficiently dissolved as carbon in the base material in the case of ordinary carbon steel because of a short time heating and subsequent quenching treatment. When the input power is increased or the heating is performed for a long time in order to promote the melting, the high frequency pattern is broken or the crystal grains are coarsened, and it is difficult to improve the rolling life and crack strength. Further, in the worst case, there is a possibility that an overheating state occurs and a burning crack occurs.
[0005]
An object of the present invention is to review an induction hardening method, refine a microstructure, obtain a high surface layer hardness, obtain a long life and the like, and provide a steel part to which the method is applied. .
[0006]
[Means for Solving the Problems]
The induction hardening method of the present invention is a method of subjecting a bearing part made of steel having a carbon content of 0.5% by mass or more to induction hardening treatment. to comprise at least once, after the carbon was dissolve into a green body by exceeding the a 3 transformation point to retain a constant temperature by high-frequency heating, and a step of cooling below the a 1 transformation point (claim 1) . In the following description, A 3 transformation point and the A 1 transformation point, respectively, you referred to as 3-point and A 1 point A.
[0007]
In the preheating of the above structure, heated above three points A steel in advance workpiece by the single-phase austenite, carbides is a solid solution can dissolve carbon into a green body.
[0008]
In the cooling step, by cooling to a temperature below A 1 point and quenching and heating again, the crystal grains can be refined and high hardness can be obtained stably. In this cooling step, for example, when the temperature range in which carbon dissolves in the substrate is cooled over time, the carbon can dissolve in the substrate while the workpiece is cooled in this temperature range. Further, in this cooling step, for example, by applying water cooling or the like, the speed can be increased and the manufacturing efficiency can be improved. As a result, it is possible to manufacture an induction-hardened part excellent in rolling life and crack strength with high efficiency. In addition, since said induction hardening presupposes hardening to a surface layer part, said process makes object the surface layer part. Further, A 3 point is a temperature at which a substantially austenite single phase is obtained in high-frequency heating, and A 1 point is a temperature at which the pearlite transformation from austenite is almost completed during cooling, except for retained austenite and the like.
[0013]
In the induction hardening method of the present invention, for example, in the step of cooling to A 1 point or less, the bearing component is obtained by at least one of a process of leaving the high frequency power supply off and a forced cooling process of forcibly cooling. Ru can be cooled.
[0014]
After the carbon is dissolved in the substrate, the microstructure is refined including the austenite grain size generated when heated to the quenching temperature after cooling to A 1 point or less. As described above, the neglecting process includes a case where air cooling is performed in a state surrounded by a high frequency coil, a case where air cooling is performed in a state where the high frequency coil or the work is moved, and the high frequency coil is removed from around the work. It is .
[0015]
The induction hardening method of the present invention, for example, prior to the quenching step, Ru can be processed to put baked by high-frequency heating in quenching temperature at least once.
[0016]
By repeating quenching, the carbon is sufficiently dissolved in the substrate, and the austenite grain size is sufficient even if the final quenching temperature is lowered by the heat treatment pattern that repeatedly raises and lowers the A 1 point. By making the microstructure fine, it is possible to obtain a high-frequency steel part having excellent hardness, rolling life and crack strength. Moreover, by setting the number of times of quenching within a predetermined number of times, it may be possible to increase the speed as compared with the induction hardening method of the first aspect.
[0017]
In the induction hardening method of the present invention, it is desirable to further temper the workpiece that has been induction hardened. By tempering, solid solution carbon is precipitated and stabilized, so that it is possible to eliminate aging and other changes over time, improve toughness, and remove residual stress. By performing tempering in a low temperature range, the decrease in hardness can be minimized.
[0018]
The bearing component of the present invention is a bearing component obtained by applying any of the above-described induction hardening methods, and has an average austenite grain size number of 9 in the surface layer of the bearing component as defined in JIS G0551. Ru der above.
[0019]
By making the austenite crystal grains fine, the hardness can be increased, and rolling fatigue and crack strength can be improved by the unique effects of the fine austenite crystal grains.
[0020]
The bearing component of the present invention comprises more than 0.5 wt% carbon, Ru may further comprise a surface layer hardness HV700 or more.
[0021]
By containing 0.5% by mass or more of carbon, it is possible to promote the refinement of the microstructure by repeated transformation and to increase the hardness. Further, by obtaining such high hardness, it is possible to improve wear resistance, rolling fatigue, crack strength, and the like.
[0023]
By using the induction hardening method of the present invention for a bearing component, a bearing component having excellent wear resistance, rolling fatigue, and crack strength can be obtained.
[0024]
【Example】
Next, examples of the present invention will be described. FIG. 1 (a) and FIG. 1 (b) show the heat patterns of the two types of induction hardening methods used in this example. Table 1 shows steels to which these induction hardening methods are applied.
[0025]
[Table 1]
Figure 0004208426
[0026]
Moreover, the heat pattern of the induction hardening for a comparison is shown in FIG.1 (c). The heat patterns of the two types of induction hardening according to the present embodiment are as follows.
(A) After high-frequency heating to a predetermined temperature (preliminary heating step), air cooling or air cooling and then water cooling to lower the temperature to A 1 point or less, and then high-frequency heating to the quenching temperature again for quenching. (A pattern)
(B) The operation of high-frequency heating to the quenching temperature followed by water cooling is repeated as one cycle for a plurality of cycles. (B pattern)
On the other hand, the heat treatment heat pattern for comparison is a normal induction hardening method as shown in FIG. 1 (c), but the holding time was changed so that the carbide was sufficiently dissolved. (C, D, E pattern)
Tables 2 to 4 show the detailed conditions of induction hardening.
[0027]
[Table 2]
Figure 0004208426
[0028]
[Table 3]
Figure 0004208426
[0029]
[Table 4]
Figure 0004208426
[0030]
As steel to which induction hardening is applied, steel containing some alloy elements with respect to JIS carbon steels S53C and S53C shown in Table 1 was used. About the steel shown in Table 1, a cylindrical rolling test piece having a diameter of 12 mm, a ring rotation cracking test piece, and a microstructure test piece were sampled and subjected to induction hardening with the above-described A to E patterns, respectively. Then, a rotating crack test and a microstructure inspection test were conducted. The “air cooling time” in the column of Table 2 showing the induction hardening conditions for pattern A represents the time during which the high frequency coil was turned off and cooled while the high frequency coil surrounded the test piece. In the case of high-frequency heating, power is applied only to the surface layer, so by leaving the high-frequency power supply off, heat is conducted to the inside and dissipated to the outside, so that a relatively large cooling rate can be obtained. . Moreover, the heating coil and the quenching apparatus in the induction hardening apparatus are the same in both the example and the comparative example, and the heat pattern was changed as described above. All tempering was performed at 150 ° C. The conditions of each test are as follows.
(1) Rolling fatigue test The rolling fatigue test is a test in which a specimen obtained with a predetermined induction hardening depth is evaluated by accelerating the sample to fatigue under conditions of high surface pressure and high load speed. . In this test, the number of samples N was 10, and the fatigue strength was evaluated based on the L10 life (the number of loads at which 90% of the samples were not damaged). The detailed conditions are as follows.
・ Test specimen dimensions: 12 mm outer diameter, 22 mm length
-Counter steel ball dimensions: Diameter 19.05mm
Contact stress Pmax: 5.88 GPa
・ Loading speed: 46240 times / minute ・ Curing depth: 2 mm to 2.5 mm (externally quenching the outer diameter portion from the surface and then polishing)
(2) Crack strength test The crack strength test is a test for confirming static and dynamic crack strength. The detailed conditions are as follows.
・ Specimen size: φ60 × φ45 × L15 ring ・ Hardening depth: 2.1 ± 0.1 mm (confirmed by polishing after induction hardening from inner and outer diameters)
・ Static cracking test: Crush statically with Amsla testing machine. Number of tests: 3 Dynamic fatigue crack test (a) Test machine: Ring rotation crack fatigue test machine (b) Load: 9.8kN
(C) Load speed: 8000 times / minute (rotational speed 4000 rpm)
(D) Stress amplitude: -410 MPa to +627 MPa
(E) Lubrication: Turbine VG68
(F) Number of tests: 4 Table 5 shows the results of the above rolling test and crack strength test.
[0031]
[Table 5]
Figure 0004208426
[0032]
(Rolling fatigue test result): In the comparative example, normal induction hardening was performed once, but the pattern C under standard conditions has a short life. If the heating time is lengthened, the life tends to be long like pattern D. However, if the time is too long, it is difficult to obtain the surface hardness, and the rolling life tends to be lowered like pattern E. In contrast, among the embodiments, the pattern A, once after heating to a predetermined temperature of the three or more points A, and 16 seconds cooling, then, is that quenching by heating again to a quenching temperature, long stable It is a lifetime. In this pattern A, although the heat treatment time is slightly longer, there is a time for the carbide to dissolve sufficiently, so that the surface layer hardness is stabilized and a long life is ensured. Moreover, although the surface layer hardness does not improve so much when the pattern B is subjected to induction hardening a plurality of times, the rolling life tends to be slightly longer. This long life tendency is promoted as the number of repetitions increases.
[0033]
From the results of the microstructure and surface hardness shown in Table 6, it is difficult for pattern A and pattern B to be uneven in hardness, the austenite grain size number is 9 or more, and surface hardness HV700 or more is obtained. For this reason, the fine grain size and microstructure have a positive effect on the rolling fatigue life and crack strength.
[0034]
[Table 6]
Figure 0004208426
[0035]
(Crack strength test results): Compared to the standard induction-hardened product (pattern C), which is a comparative example, the pattern A and pattern B of the example are 1.2 times or more in static strength and 2 times or more in fatigue life. It has become. According to the results of the microstructure and surface hardness in Table 6, hardness unevenness hardly occurs in both pattern A and pattern B, and an austenite grain size number of 9 or more and a surface hardness of HV700 or more are obtained. Thus, it can be judged that the crystal grain size and the microstructure are fine and the surface hardness is high have a positive effect on the crack strength test.
[0036]
In this example, an example of air cooling after high-frequency heating was shown as pattern A. However, if sufficient carbon or alloy element penetration is obtained, the speed at which the transformation point is cut does not affect the effect of the present invention, and water cooling or Gas cooling or the like can be employed. In pattern B, an example of a three-cycle quenching process is shown. However, the pattern B can be employed regardless of the number of times as long as the quenching process is performed a plurality of times to reduce the crystal grain size. In addition, an experiment was assembled based on S53C steel as a representative example of steel. If the steel has a carbon content of 0.5% by mass or more, the surface layer hardness HV700 or more, austenite crystal can be obtained by using the heat treatment pattern of this example. A particle size number of 9 or more can be obtained. For this reason, as long as the carbon content is 0.5 mass % or more, it can be said that there are almost no restrictions on chemical components.
[0037]
While the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is not limited to these embodiments. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
[Brief description of the drawings]
FIG. 1 is a diagram showing an induction hardening pattern in an embodiment of the present invention. (A) is the pattern A of the embodiment of the present invention, (b) is the pattern B of another embodiment of the present invention, and (c) is the patterns C, D, and E for comparison.
FIG. 2 is a diagram showing austenite grain size. (A) is a figure which shows the austenite crystal grain of the Example of this invention, (b) is a figure which shows the austenite crystal grain of a comparative material.

Claims (5)

炭素含有率0.5質量%以上の鋼からなる軸受部品に対して高周波焼入れ処理を施す方法において、
高周波加熱して焼入れる焼入工程と、
前記焼入工程の前に、少なくとも1回、A変態点を超えて高周波加熱して一定温度に保持することにより炭素を素地に溶け込ませた後、変態点以下に冷却する工程とを備える、高周波焼入れ方法。
In a method of subjecting a bearing part made of steel having a carbon content of 0.5 mass% or more to induction hardening,
Quenching process by induction heating and quenching;
Before the quenching step, at least once, after the carbon was dissolve into a green body by exceeding the A 3 transformation point to retain a constant temperature by high-frequency heating, and a step of cooling below the A 1 transformation point Induction hardening method.
前記A変態点以下に冷却する工程では、高周波電源を切って放置する処理、および強制的に冷却する強制冷却処理のうちの少なくとも1つの処理により、前記軸受部品を冷却する、請求項1に記載の高周波焼入れ方法。In the step of cooling below the A 1 transformation point, the process of leaving off the high frequency power source, and by at least one treatment of the forced cooling process for forcibly cooling, to cool the bearing components, to claim 1 The induction hardening method as described. 前記焼入工程の前に、焼入れ温度に高周波加熱して焼き入れる処理を1回以上行なう、請求項1に記載の高周波焼入れ方法。  The induction hardening method according to claim 1, wherein the hardening process is performed at least once by induction heating to a hardening temperature before the hardening step. 前記請求項1〜のいずれかに記載の高周波焼入れ方法を適用して得られた軸受部品であって、
前記軸受部品の表層部の、JIS規格G0551に規定されるオーステナイト結晶粒度番号が平均9番以上である、軸受部品。
A bearing component obtained by applying the induction hardening method according to any one of claims 1 to 3 ,
The bearing part whose austenite crystal grain size number prescribed | regulated to JIS specification G0551 of the surface layer part of the said bearing part is 9 or more on average.
前記軸受部品が炭素を0.5質量%以上含み、さらに表層硬度HV700以上を備える、請求項に記載の軸受部品。The bearing part according to claim 4 , wherein the bearing part includes 0.5% by mass or more of carbon and further has a surface hardness of HV700 or more.
JP2001056301A 2001-03-01 2001-03-01 Induction hardening method and bearing parts Expired - Lifetime JP4208426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001056301A JP4208426B2 (en) 2001-03-01 2001-03-01 Induction hardening method and bearing parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001056301A JP4208426B2 (en) 2001-03-01 2001-03-01 Induction hardening method and bearing parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008215576A Division JP5130150B2 (en) 2008-08-25 2008-08-25 Induction hardening method and bearing parts

Publications (2)

Publication Number Publication Date
JP2002256336A JP2002256336A (en) 2002-09-11
JP4208426B2 true JP4208426B2 (en) 2009-01-14

Family

ID=18916344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056301A Expired - Lifetime JP4208426B2 (en) 2001-03-01 2001-03-01 Induction hardening method and bearing parts

Country Status (1)

Country Link
JP (1) JP4208426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069068A1 (en) 2012-10-29 2014-05-08 日本精工株式会社 Rolling bearing

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438477B2 (en) 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
JP4718781B2 (en) 2003-02-28 2011-07-06 Ntn株式会社 Transmission components and tapered roller bearings
JP2004301321A (en) 2003-03-14 2004-10-28 Ntn Corp Bearing for alternator and bearing for pulley
JP2006083417A (en) * 2004-09-15 2006-03-30 Kyushu Institute Of Technology Surface modification method for iron alloy-made mechanism parts
JP2007046717A (en) 2005-08-10 2007-02-22 Ntn Corp Rolling-contact shaft with joint claw
JP4708158B2 (en) * 2005-10-26 2011-06-22 高周波熱錬株式会社 Surface hardened steel and surface hardening method of steel
JP2007231323A (en) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology Method for reforming surface of iron alloy-made structural part
JP5152832B2 (en) * 2007-06-04 2013-02-27 株式会社不二越 Hardening method of high carbon chromium bearing steel, high carbon chromium bearing steel, bearing parts and rolling bearing
JP5775422B2 (en) * 2011-10-28 2015-09-09 Ntn株式会社 Heat treatment method for ring-shaped member and method for manufacturing ring-shaped member
CN113106204A (en) * 2021-04-01 2021-07-13 王思琪 Elastic rod, production method thereof and mattress with elastic rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069068A1 (en) 2012-10-29 2014-05-08 日本精工株式会社 Rolling bearing
US9394583B2 (en) 2012-10-29 2016-07-19 Nsk Ltd. Rolling bearing

Also Published As

Publication number Publication date
JP2002256336A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
Farrahi et al. An investigation into the effect of various surface treatments on fatigue life of a tool steel
JP4208426B2 (en) Induction hardening method and bearing parts
JP4627776B2 (en) High concentration carburizing / low strain quenching member and method of manufacturing the same
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP2009079294A (en) Workpiece produced for rolling load and composed of steel whose core zone can be hardened and heat-treatment method thereof
JP5045491B2 (en) Large rolling bearing
JP2006200003A (en) Heat-treated article and heat treatment method
JP5130150B2 (en) Induction hardening method and bearing parts
JP3697725B2 (en) Carburized and hardened power transmission member
JP3699773B2 (en) Induction hardening method
JP2013221199A (en) Method for producing bearing ring of rolling bearing
JP2013124416A (en) Method for manufacturing bearing ring of rolling bearing
JP3752577B2 (en) Manufacturing method of machine parts
JP4079139B2 (en) Carburizing and quenching method
JP2015531029A (en) Method for heat treating steel components and steel components
JP2015232164A (en) Manufacturing method for rolling bearing and heat treatment apparatus
KR102192892B1 (en) heat treatment and Surface propagation method of Metalwork
JP4360178B2 (en) Manufacturing method of toroidal type continuously variable transmission
JP2005113213A (en) Heat treatment system
CN110939658A (en) Large rolling bearing ring, method for producing a large rolling bearing ring and use thereof
JP2007024250A (en) Pinion shaft
JP2005133212A (en) Heat treatment system
CN106636570A (en) Heat treatment method for repairing of carburization pin bush
JP2005133214A (en) Heat treatment system
JP2006002194A (en) Method for manufacturing shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4208426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term