JP2005142868A - Dielectric resonance antenna and manufacturing method thereof - Google Patents

Dielectric resonance antenna and manufacturing method thereof Download PDF

Info

Publication number
JP2005142868A
JP2005142868A JP2003377509A JP2003377509A JP2005142868A JP 2005142868 A JP2005142868 A JP 2005142868A JP 2003377509 A JP2003377509 A JP 2003377509A JP 2003377509 A JP2003377509 A JP 2003377509A JP 2005142868 A JP2005142868 A JP 2005142868A
Authority
JP
Japan
Prior art keywords
dielectric
ground electrode
resonator
mounting
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003377509A
Other languages
Japanese (ja)
Inventor
Tetsuya Shibata
哲也 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003377509A priority Critical patent/JP2005142868A/en
Publication of JP2005142868A publication Critical patent/JP2005142868A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fix a dielectric resonator onto a packaging board with sufficient strength, and to reduce height in a dielectric resonance antenna. <P>SOLUTION: The dielectric resonance antenna comprises the dielectric resonator 11; the packaging board 12, where the dielectric resonance resonator 11 is mounted onto a packaging surface; a feeder 12a that is extended to one portion of a packaging region in the dielectric resonator 11 for formation on the packaging surface, transmits a feeding signal to the dielectric resonator 11, and fixes the dielectric resonator 11 and the packaging board 12; a first earthed electrode 12b that is formed on the packaging surface including another one portion of the packaging region in the dielectric resonator 11 via the feeder 12a and a gap, and fixes the dielectric resonator 11 and the packaging board 12; and a second earthed electrode 12c that is formed on a surface opposite to the packaging surface of the packaging board 12, and is electrically connected to the first earthed electrode 12b via a through hole 13. The through hole 13 is formed at a region including the packaging region of the dielectric resonator 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は誘電体共振アンテナおよびその製造方法に関するものである。   The present invention relates to a dielectric resonant antenna and a manufacturing method thereof.

誘電体共振アンテナ(DRA−Dielectric Resonator Antenna)は、マイクロストリップアンテナに比べて導体損失が少なく、また広帯域化および小型化が容易であることから、無線LANの基地局アンテナなどに用いられている。   A dielectric resonance antenna (DRA-Dielectric Resonator Antenna) is used for a wireless LAN base station antenna and the like because it has less conductor loss than a microstrip antenna and can easily be widened and reduced in size.

このような誘電体共振アンテナについては、たとえば特開2000−209019号公報、特開2000−209020号公報、特開2001−298318号公報などに記載がある。   Such dielectric resonant antennas are described in, for example, Japanese Patent Application Laid-Open Nos. 2000-209019, 2000-209020, and 2001-298318.

ここで、これらの公報にも記載のように、誘電体共振アンテナは、誘電体共振器(誘電体)とこれが搭載された実装基板とから構成されており、誘電体共振器にはプローブピン、スロット、マイクロストリップ等により給電が行われている。
特開2000−209019号公報 特開2000−209020号公報 特開2001−298318号公報
Here, as described in these publications, the dielectric resonant antenna is composed of a dielectric resonator (dielectric) and a mounting substrate on which the dielectric resonator is mounted. The dielectric resonator includes probe pins, Power is supplied by a slot, a microstrip or the like.
JP 2000-209019 A JP 2000-209020 A JP 2001-298318 A

誘電体共振アンテナが所期の周波数特性を得るためには、誘電体共振器が実装基板の所定位置に十分な強度を持って固定されていなければならない。   In order for the dielectric resonant antenna to obtain the desired frequency characteristics, the dielectric resonator must be fixed at a predetermined position on the mounting substrate with sufficient strength.

しかしながら、前述した公報に記載の技術では、誘電体共振器の固定については何ら言及されていない。   However, the technique described in the above-mentioned publication does not mention anything about fixing of the dielectric resonator.

そこで、本発明は、誘電体共振アンテナにおいて、誘電体を実装基板の所定位置に十分な強度で固定することのできる技術を提供することを目的とする。   Accordingly, an object of the present invention is to provide a technique capable of fixing a dielectric at a predetermined position on a mounting substrate with sufficient strength in a dielectric resonant antenna.

上記課題を解決するため、本発明に係る誘電体共振アンテナは、所定形状の誘電体と、実装面に前記誘電体が搭載された実装基板と、先端が少なくとも前記誘電体の実装領域の一部まで延びて前記実装面に形成され、前記誘電体に給電される信号を伝送するとともに前記誘電体と前記実装基板とを固定する導電性薄膜からなる給電線と、前記給電線とギャップを介して前記誘電体の実装領域の他の一部を含んだ前記実装面に形成され、前記誘電体と前記実装基板とを固定する導電性薄膜からなる第1の接地電極と、前記実装基板における前記実装面と反対面に形成され、前記第1の接地電極とスルーホールを介して電気的に接続された第2の接地電極と、を有することを特徴とする。   In order to solve the above problems, a dielectric resonant antenna according to the present invention includes a dielectric having a predetermined shape, a mounting substrate on which the dielectric is mounted on a mounting surface, and a tip at least a part of the mounting region of the dielectric. A power supply line formed of a conductive thin film extending to the mounting surface and transmitting a signal fed to the dielectric and fixing the dielectric and the mounting substrate; and via the power supply line and the gap A first ground electrode formed on the mounting surface including another part of the mounting region of the dielectric, and made of a conductive thin film that fixes the dielectric and the mounting substrate; and the mounting on the mounting substrate. And a second ground electrode formed on an opposite surface to the first ground electrode and electrically connected to the first ground electrode through a through hole.

本発明の好ましい形態において、前記スルーホールは、前記誘電体の実装領域を含んだ領域に形成されていることを特徴とする。   In a preferred aspect of the present invention, the through hole is formed in a region including a mounting region of the dielectric.

本発明のさらに好ましい形態において、前記誘電体の実装領域の外周であって前記第1の接地電極上にはレジスト層が形成されていることを特徴とする。   In a further preferred aspect of the present invention, a resist layer is formed on an outer periphery of the dielectric mounting region and on the first ground electrode.

本発明のさらに好ましい形態において、前記誘電体の高さは3.1〜3.7mmであることを特徴とする。   In a further preferred aspect of the present invention, the dielectric has a height of 3.1 to 3.7 mm.

上記課題を解決するため、本発明に係る誘電体共振アンテナの製造方法は、導電性薄膜からなる給電線および導電性薄膜からなり前記給電線とギャップを介して形成された第1の接地電極を実装面に有し、スルーホールを介して前記第1の接地電極と電気的に接続された第2の接地電極を前記実装面と反対面に有する実装基板を用意し、前記給電線と接合される導電性薄膜の共振器側給電線および前記第1の接地電極と接合される導電性薄膜の共振器側接地電極を有する誘電体を用意し、前記誘電体の実装領域の外周であって前記第1の接地電極上にレジスト層を形成し、前記共振器側給電線および前記誘電体の実装領域における前記給電線の少なくとも何れか一方と前記共振器側接地電極および前記誘電体の実装領域における前記第1の接地電極の少なくとも何れか一方にろう付け用部材を塗布し、前記共振器側給電線が前記給電線上に位置するようにして前記誘電体を前記実装基板の実装領域に載置し、前記ろう付け用部材を溶融して前記誘電体を前記実装基板に固着する、ことを特徴とする。   In order to solve the above-described problem, a dielectric resonant antenna manufacturing method according to the present invention includes a feed line made of a conductive thin film and a first ground electrode made of a conductive thin film and formed through the gap with the feed line. A mounting substrate having a second ground electrode on the mounting surface and having a second ground electrode electrically connected to the first ground electrode through a through hole on the surface opposite to the mounting surface is prepared and bonded to the feeder line A dielectric having a resonator-side power supply line of the conductive thin film and a resonator-side ground electrode of the conductive thin film to be joined to the first ground electrode, and an outer periphery of the dielectric mounting region, A resist layer is formed on the first ground electrode, and at least one of the feed line in the resonator-side feed line and the dielectric mounting region, and in the resonator-side ground electrode and the dielectric mount region Said first contact A brazing member is applied to at least one of the electrodes, and the dielectric is placed on a mounting region of the mounting board so that the resonator-side power supply line is positioned on the power supply line, The member is melted and the dielectric is fixed to the mounting substrate.

本発明の好ましい形態において、前記スルーホールは、前記誘電体の実装領域を含んだ領域に形成されていることを特徴とする。   In a preferred aspect of the present invention, the through hole is formed in a region including a mounting region of the dielectric.

本発明のさらに好ましい形態において、前記共振器側給電線および前記共振器側接地電極は、金属ペーストをスクリーン印刷により塗布して焼成することにより形成することを特徴とする。   In a further preferred aspect of the present invention, the resonator-side power supply line and the resonator-side ground electrode are formed by applying and baking a metal paste by screen printing.

本発明のさらに好ましい形態において、前記ろう付け用部材ははんだペーストであることを特徴とする。   In a further preferred aspect of the present invention, the brazing member is a solder paste.

本発明によれば以下の効果を奏することができる。   According to the present invention, the following effects can be obtained.

すなわち、誘電体と実装基板とが、給電線に加えて第1の接地電極でも接合して固定されているので、接合強度が向上して誘電体を実装基板の所定位置に十分な強度で固定することが可能になる。   That is, since the dielectric and the mounting substrate are bonded and fixed by the first ground electrode in addition to the power supply line, the bonding strength is improved and the dielectric is fixed at a predetermined position on the mounting substrate with sufficient strength. It becomes possible to do.

また、誘電体の高さを低くしても良好な共振特性が得られるので、アンテナの低背化を図ることが可能になる。   Also, even if the height of the dielectric is lowered, good resonance characteristics can be obtained, so that the height of the antenna can be reduced.

さらに、実装領域の外周にはギャップが必要ないことから、アンテナ占有面積を削減することが可能になる。   Furthermore, since no gap is required on the outer periphery of the mounting area, the area occupied by the antenna can be reduced.

溶融したろう付け部材は共振器側給電線、給電線、共振器側接地電極および第1の接地電極にのみ広がることにより誘電体が実装基板上で正確に位置決めされるので、誘電体を実装基板に十分な強度で、且つ正確な位置に固定することが可能になる。   Since the melted brazing member spreads only on the resonator-side power supply line, the power supply line, the resonator-side ground electrode, and the first ground electrode, the dielectric is accurately positioned on the mounting substrate. It is possible to fix it at an accurate position with sufficient strength.

そして、誘電体共振器の実装領域にスルーホールを形成すれば、ろう付け部材がスルーホールから第2の接地電極にまで回り込むので、誘電体共振器の実装基板に対する固着強度を大幅に増加させることができる。   If a through hole is formed in the mounting region of the dielectric resonator, the brazing member goes from the through hole to the second ground electrode, so that the fixing strength of the dielectric resonator to the mounting substrate is greatly increased. Can do.

以下、本発明を実施するための最良の形態を、図面を参照しつつさらに具体的に説明する。ここで、添付図面において同一の部材には同一の符号を付しており、また、重複した説明は省略されている。なお、ここでの説明は本発明が実施される最良の形態であることから、本発明は当該形態に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described more specifically with reference to the drawings. Here, in the accompanying drawings, the same reference numerals are given to the same members, and duplicate descriptions are omitted. In addition, since description here is the best form by which this invention is implemented, this invention is not limited to the said form.

図1は本発明の一形態である誘電体共振アンテナを示す斜視図、図2は図1の誘電体共振アンテナにおける実装基板の実装面を示す説明図、図3は図1の誘電体共振アンテナにおける誘電体共振器を底面から示す説明図、図4は誘電体共振器の高さを3.1mmとした図1の誘電体共振アンテナの反射特性を示すグラフ、図5は誘電体共振器の高さを3.3mmとした図1の誘電体共振アンテナの反射特性を示すグラフ、図6は誘電体共振器の高さを3.5mmとした図1の誘電体共振アンテナの反射特性を示すグラフ、図7は誘電体共振器の高さを3.7mmとした図1の誘電体共振アンテナの反射特性を示すグラフ、図8は比較例である誘電体共振アンテナにおける実装基板の実装面を示す説明図、図9は図8の誘電体共振アンテナの反射特性を示すグラフである。   1 is a perspective view showing a dielectric resonant antenna according to one embodiment of the present invention, FIG. 2 is an explanatory view showing a mounting surface of a mounting board in the dielectric resonant antenna of FIG. 1, and FIG. 3 is a dielectric resonant antenna of FIG. FIG. 4 is a graph showing the reflection characteristics of the dielectric resonator antenna of FIG. 1 in which the height of the dielectric resonator is 3.1 mm, and FIG. 5 is a diagram of the dielectric resonator. 1 is a graph showing the reflection characteristics of the dielectric resonant antenna of FIG. 1 with a height of 3.3 mm, and FIG. 6 shows the reflection characteristics of the dielectric resonant antenna of FIG. 1 with a height of the dielectric resonator of 3.5 mm. FIG. 7 is a graph showing the reflection characteristics of the dielectric resonant antenna of FIG. 1 in which the height of the dielectric resonator is 3.7 mm, and FIG. 8 shows the mounting surface of the mounting board in the dielectric resonant antenna as a comparative example. FIG. 9 is a cross-sectional view of the dielectric resonant antenna of FIG. Is a graph showing characteristics.

図1および図2に示すように、本実施の形態の誘電体共振アンテナ10は、直方体形状をしたたとえば(Mg・Ca)TiOやBaTi20などの誘電性材料からなる誘電体共振器(誘電体)11と、この誘電体共振器11が搭載された実装基板12とを有している。また、本実施の形態において、誘電体共振器11のサイズは、縦10mm×横10mm×高さ3.1mmとなっている。但し、これ以外のサイズであってもよい。 As shown in FIGS. 1 and 2, the dielectric resonant antenna 10 according to the present embodiment is a dielectric made of a dielectric material such as (Mg · Ca) TiO 2 or Ba 2 Ti 9 O 20 having a rectangular parallelepiped shape. It has a resonator (dielectric) 11 and a mounting substrate 12 on which the dielectric resonator 11 is mounted. In the present embodiment, the size of the dielectric resonator 11 is 10 mm long × 10 mm wide × 3.1 mm high. However, other sizes may be used.

実装基板12の実装面には、誘電体共振器11に給電される信号を伝送してこれを励振する導電性薄膜からなる給電線12aが誘電体共振器11の実装領域の一部にまで延びて形成されている。また、誘電体共振器11の実装領域の他の一部を含んだ実装面には、誘電体共振器11と実装基板12とを固定する導電性薄膜からなる第1の接地電極12bが、給電線12aとギャップを介して形成されている。さらに、実装基板12における実装面と反対面には、第1の接地電極12bとスルーホール13を介して電気的に接続された第2の接地電極12cが形成されている。そして、誘電体共振器11の実装領域の外周であって第1の接地電極12b上にはレジスト層14が形成されている。   On the mounting surface of the mounting substrate 12, a power supply line 12 a made of a conductive thin film that transmits a signal fed to the dielectric resonator 11 and excites the signal extends to a part of the mounting region of the dielectric resonator 11. Is formed. A first ground electrode 12b made of a conductive thin film for fixing the dielectric resonator 11 and the mounting substrate 12 is supplied to the mounting surface including another part of the mounting region of the dielectric resonator 11. It is formed via the electric wire 12a and a gap. Further, a second ground electrode 12 c electrically connected to the first ground electrode 12 b through the through hole 13 is formed on the surface opposite to the mounting surface of the mounting substrate 12. A resist layer 14 is formed on the outer periphery of the mounting region of the dielectric resonator 11 and on the first ground electrode 12b.

ここで、給電線12aの幅は1.11mm、レジスト層14の幅は、給電線12aが露出している側が0.5mm、それ以外の場所が1.5mmとなっている。但し、これ以外の寸法であってもよい。   Here, the width of the power supply line 12a is 1.11 mm, the width of the resist layer 14 is 0.5 mm on the side where the power supply line 12a is exposed, and 1.5 mm in other locations. However, other dimensions may be used.

なお、本実施の形態において、給電線12aは角形となった誘電体共振器11の実装領域における一辺の全長にわたって形成されているが、その先端が当該実装領域の一部にかかっていれば足りる。さらに、先端が実装領域の外部にまで延びていてもよい。つまり、給電線12aは、その先端が少なくとも誘電体共振器11の実装領域の一部まで延びて形成されていればよい。   In the present embodiment, the feed line 12a is formed over the entire length of one side in the mounting region of the dielectric resonator 11 having a rectangular shape, but it is sufficient that the tip thereof covers a part of the mounting region. . Furthermore, the tip may extend to the outside of the mounting area. That is, it is only necessary that the feed line 12 a has its tip extended to at least a part of the mounting region of the dielectric resonator 11.

また、図示する場合において、スルーホール13は、誘電体共振器11の実装領域およびそれ以外の領域に形成されている。後述する誘電体共振器11の固着強度の点から、このようにスルーホール13は誘電体共振器11の実装領域にも形成されていることが望ましいが、当該領域には形成されていなくてもよい。   Further, in the illustrated case, the through hole 13 is formed in the mounting region of the dielectric resonator 11 and other regions. From the viewpoint of fixing strength of the dielectric resonator 11 to be described later, it is desirable that the through hole 13 is formed in the mounting region of the dielectric resonator 11 as described above. Good.

誘電体共振器11の底面には、図3に示すように、実装領域における給電線12aの形状に対応した導電性薄膜からなる共振器側給電線11a、および同じく実装領域における第1の接地電極12bの形状に対応した導電性薄膜からなる共振器側接地電極11bが形成されている。なお、本実施の形態において、共振器側給電線11aの幅は1.11mm、共振器側接地電極11bの幅は5mmとなっている。但し、これ以外の寸法であってもよい。   On the bottom surface of the dielectric resonator 11, as shown in FIG. 3, the resonator-side power supply line 11a made of a conductive thin film corresponding to the shape of the power supply line 12a in the mounting region, and the first ground electrode in the mounting region are also provided. A resonator-side ground electrode 11b made of a conductive thin film corresponding to the shape of 12b is formed. In the present embodiment, the resonator-side power supply line 11a has a width of 1.11 mm, and the resonator-side ground electrode 11b has a width of 5 mm. However, other dimensions may be used.

そして、後述するようにはんだを介して給電線12aと共振器側給電線11aとが、第1の接地電極12bと共振器側接地電極11bとがそれぞれ接合されることにより、誘電体共振器11と実装基板12とが相互に固定される。このように、誘電体共振器11と実装基板12とが、給電線12aと共振器側給電線11aとの接合に加えて、第1の接地電極12bと共振器側接地電極11bとの接合により固定されるので、両者間の接合強度が向上する。これにより、誘電体共振器11を実装基板12の所定位置に十分な強度で固定することが可能になる。   Then, as will be described later, the power supply line 12a and the resonator-side power supply line 11a are joined to each other via the solder, and the first ground electrode 12b and the resonator-side ground electrode 11b are joined to each other. And the mounting substrate 12 are fixed to each other. As described above, the dielectric resonator 11 and the mounting substrate 12 are joined by joining the first ground electrode 12b and the resonator-side ground electrode 11b in addition to joining the feeder line 12a and the resonator-side feeder line 11a. Since it is fixed, the joint strength between the two is improved. As a result, the dielectric resonator 11 can be fixed at a predetermined position on the mounting substrate 12 with sufficient strength.

なお、誘電体共振器11に用いられる誘電性材料は前述したもの以外を適用することができる。また、誘電体共振器11の形状は直方体に限定されるものではなく、たとえば円柱形、楔形、球形など、種々の形状をとることができる。   In addition, the dielectric material used for the dielectric resonator 11 can be applied other than those described above. Moreover, the shape of the dielectric resonator 11 is not limited to a rectangular parallelepiped, and can take various shapes such as a cylindrical shape, a wedge shape, and a spherical shape.

ここで、以上の構成を有する誘電体共振アンテナの製造方法について説明する。   Here, a manufacturing method of the dielectric resonant antenna having the above configuration will be described.

先ず、前述した実装基板12と誘電体共振器11とを用意する。つまり、給電線12aおよび第1の接地電極12bを実装面に有し、スルーホール13を介して第1の接地電極12bと電気的に接続された第2の接地電極12cを実装面と反対面に有する実装基板12と、給電線12aと接合される共振器側給電線11aおよび第1の接地電極12bと接合される共振器側接地電極11bを有する誘電体共振器11を用意する。なお、実装基板12においては、誘電体共振器11の実装領域の外周が位置する第1の接地電極12bにはレジスト層14を形成する。   First, the mounting substrate 12 and the dielectric resonator 11 described above are prepared. That is, the second ground electrode 12c that has the feeder 12a and the first ground electrode 12b on the mounting surface and is electrically connected to the first ground electrode 12b through the through hole 13 is opposite to the mounting surface. A dielectric resonator 11 having a mounting substrate 12, a resonator-side power supply line 11 a joined to the power supply line 12 a, and a resonator-side ground electrode 11 b joined to the first ground electrode 12 b is prepared. In the mounting substrate 12, a resist layer 14 is formed on the first ground electrode 12 b where the outer periphery of the mounting region of the dielectric resonator 11 is located.

なお、共振器側給電線11a、共振器側接地電極11b、給電線12a、第1の接地電極12bおよび第2の接地電極12cは、銅や銀などの金属導体層をパターニングして形成される。具体的には、たとえば銀等の金属ペーストをスクリーン印刷して焼き付ける方法、金属パターン層をメッキで形成する方法、薄い金属膜をエッチングによりパターニングする方法などにより形成することができる。   The resonator-side feed line 11a, the resonator-side ground electrode 11b, the feed line 12a, the first ground electrode 12b, and the second ground electrode 12c are formed by patterning a metal conductor layer such as copper or silver. . Specifically, for example, a metal paste such as silver can be formed by screen printing and baking, a method of forming a metal pattern layer by plating, a method of patterning a thin metal film by etching, or the like.

次に、誘電体共振器11の実装領域における給電線12aおよび第1の接地電極12bに、たとえばはんだペーストなどのろう付け用部材をスクリーン印刷により塗布する。なお、共振器側給電線11aおよび共振器側接地電極11bに塗布してもよく、共振器側給電線11a、給電線12a、共振器側接地電極11bおよび第1の接地電極12bに塗布してもよい。なお、ろう付け用部材には、塗布ができてリフローが可能な導体の部材であれば、はんだペースト以外を用いてもよい。   Next, a brazing member such as a solder paste is applied to the power supply line 12a and the first ground electrode 12b in the mounting region of the dielectric resonator 11 by screen printing. It may be applied to the resonator-side power supply line 11a and the resonator-side ground electrode 11b, or may be applied to the resonator-side power supply line 11a, the power supply line 12a, the resonator-side ground electrode 11b, and the first ground electrode 12b. Also good. As the brazing member, other than the solder paste may be used as long as it is a conductor member that can be applied and can be reflowed.

はんだペーストを塗布したならば、共振器側給電線11aが給電線12a上に位置するようにして誘電体共振器11を実装基板の実装領域に載置し、これらを加熱する。これにより、はんだペーストが溶融され、給電線12aと共振器側給電線11aとが接合し、第1の接地電極12bと共振器側接地電極11bとが接合する。   When the solder paste is applied, the dielectric resonator 11 is placed on the mounting region of the mounting board so that the resonator-side power supply line 11a is positioned on the power supply line 12a, and these are heated. Thereby, the solder paste is melted, the power supply line 12a and the resonator-side power supply line 11a are joined, and the first ground electrode 12b and the resonator-side ground electrode 11b are joined.

このとき、溶融したはんだペーストは、接触角が小さくなる共振器側給電線11a、給電線12a、共振器側接地電極11bおよび第1の接地電極12bには広がるが、接触角が大きくなるこれら導電性薄膜の形成されていない領域には広がらない。したがって、給電線12aと共振器側給電線11aとが、また第1の接地電極12bと共振器側接地電極11bとが、それぞれ正確に相対するように誘電体共振器11が実装基板12上で位置決めされる。   At this time, the melted solder paste spreads to the resonator-side power supply line 11a, the power supply line 12a, the resonator-side ground electrode 11b, and the first ground electrode 12b with a small contact angle, but these conductive materials with a large contact angle. It does not spread in the region where the conductive thin film is not formed. Therefore, the dielectric resonator 11 is mounted on the mounting substrate 12 so that the power supply line 12a and the resonator-side power supply line 11a and the first ground electrode 12b and the resonator-side ground electrode 11b face each other accurately. Positioned.

最後に、このように位置決めされた後に常温下におくことではんだペーストが硬化し、誘電体共振器11は実装基板12に正確に位置決め固定される。これにより、誘電体共振器11を実装基板12に十分な強度で、且つ正確な位置に固定することが可能になる。よって、給電位置を正確にレイアウトすることが可能になり、所望のアンテナ特性を安定して得ることができる。   Finally, after being positioned in this way, the solder paste is hardened by leaving it at room temperature, and the dielectric resonator 11 is accurately positioned and fixed to the mounting substrate 12. This makes it possible to fix the dielectric resonator 11 to the mounting substrate 12 at a sufficient strength and at an accurate position. Therefore, it is possible to accurately lay out the feeding positions, and desired antenna characteristics can be stably obtained.

そして、誘電体共振器11の実装領域にスルーホール13が形成されているので、はんだペーストを用いて誘電体共振器11を実装基板12に実装すると、はんだがスルーホール13から第2の接地電極12cにまで回り込む。これにより、誘電体共振器11の固着強度を大幅に増加させることができる。   Since the through hole 13 is formed in the mounting region of the dielectric resonator 11, when the dielectric resonator 11 is mounted on the mounting substrate 12 using a solder paste, the solder passes from the through hole 13 to the second ground electrode. Go around to 12c. Thereby, the fixing strength of the dielectric resonator 11 can be greatly increased.

ここで、固着強度は誘電体共振器11の横から荷重を加えていき、この誘電体共振器11が剥離したときの荷重、つまり最大の加重で求められる。実装領域にスルーホール13がある実装基板12では固着強度が887(N)であったのに対し、実装領域にスルーホールがない実装基板では固着強度が682(N)であった。つまり、実装領域にスルーホール13を形成することにより固着強度が1.3倍に増加した。なお、固着強度の測定装置には、島津製作所製、精密万能試験機AUTO GRAPH AG−I/R 50kNを用いた。   Here, the fixing strength is obtained by applying a load from the side of the dielectric resonator 11 and by the load when the dielectric resonator 11 is peeled off, that is, the maximum load. The mounting strength of the mounting board 12 having the through hole 13 in the mounting area was 887 (N), whereas the fixing strength of the mounting board having no through hole in the mounting area was 682 (N). That is, by forming the through hole 13 in the mounting region, the fixing strength increased 1.3 times. A precision universal testing machine AUTO GRAPH AG-I / R 50 kN manufactured by Shimadzu Corporation was used as an adhesion strength measuring device.

さて、本発明者は、誘電体共振器11の高さと反射特性との関係について検討を行った。   The inventor has examined the relationship between the height of the dielectric resonator 11 and the reflection characteristics.

すなわち、前述のように誘電体共振器11の高さを3.1mmとした場合の反射特性に加えて、誘電体共振器11の高さを3.3mmとした場合、3.5mmとした場合、3.7mmとした場合の反射特性についてデータを得た。誘電体共振器11をそれぞれの高さにした場合の反射特性を図4、図5、図6および図7に示す。   That is, in addition to the reflection characteristics when the height of the dielectric resonator 11 is 3.1 mm as described above, when the height of the dielectric resonator 11 is 3.3 mm, and when it is 3.5 mm Data was obtained on the reflection characteristics when the thickness was 3.7 mm. FIG. 4, FIG. 5, FIG. 6 and FIG. 7 show the reflection characteristics when the dielectric resonator 11 is at the respective heights.

図示するように、何れの高さについても、すなわち図4に示す高さ3.1mmの誘電体共振器11を用いた誘電体共振アンテナ10においても良好な反射特性が得られ、広帯域化が図られている。そして、誘電体共振器11の高さを変化させることにより反射特性を調整できることが分かる。   As shown in the figure, good reflection characteristics can be obtained at any height, that is, the dielectric resonant antenna 10 using the dielectric resonator 11 having a height of 3.1 mm shown in FIG. It has been. It can be seen that the reflection characteristics can be adjusted by changing the height of the dielectric resonator 11.

また、比較例として、誘電体共振器11の高さを3.7mmとした誘電体共振アンテナを作成し、その反射特性についてのデータを得た。比較例である誘電体共振アンテナの実装基板の実装面を図8に、この誘電体共振アンテナの反射特性を図9に、それぞれ示す。   In addition, as a comparative example, a dielectric resonant antenna having a height of 3.7 mm for the dielectric resonator 11 was created, and data on its reflection characteristics was obtained. FIG. 8 shows a mounting surface of a mounting board of a dielectric resonant antenna as a comparative example, and FIG. 9 shows reflection characteristics of the dielectric resonant antenna.

図8において、比較例である誘電体共振アンテナにおける実装基板12の実装面は、コプレーナウエーブガイドと呼ばれるもので、誘電体共振器11の実装領域以外には、給電線12aおよびこれとギャップを介して接地電極12dが形成されている。また、実装領域には、実装領域外から延びた給電線12a、および給電線12aならびに接地電極12dとギャップを介してランド12eが形成されている。したがって、ランド12eは誘電体共振器11を実装基板12に固定する役割を果たしているのみであり、その電位は不定になっている。   In FIG. 8, the mounting surface of the mounting substrate 12 in the dielectric resonant antenna as a comparative example is called a coplanar wave guide. In addition to the mounting region of the dielectric resonator 11, the feeder line 12 a and a gap therebetween are provided. Thus, a ground electrode 12d is formed. In the mounting area, a power supply line 12a extending from outside the mounting area, a power supply line 12a, and a ground electrode 12d and a land 12e are formed through a gap. Accordingly, the land 12e only serves to fix the dielectric resonator 11 to the mounting substrate 12, and its potential is indefinite.

そして、この誘電体共振器11の高さを3.7mmとした図8に示す誘電体共振アンテナにおける反射特性(図9)と、誘電体共振器11の高さを3.1mmとした本願の誘電体共振アンテナ10の反射特性(図4)とを比較すると、ほぼ同じ共振周波数になっている。   Then, the reflection characteristics (FIG. 9) of the dielectric resonator antenna shown in FIG. 8 in which the height of the dielectric resonator 11 is 3.7 mm and the present invention in which the height of the dielectric resonator 11 is 3.1 mm are shown. Comparing the reflection characteristics of the dielectric resonant antenna 10 (FIG. 4), the resonance frequencies are almost the same.

したがって、実装基板12における誘電体共振器11の実装領域にスルーホール13を設けて接地電位とした構造を有する本実施の形態の誘電体共振アンテナ10によれば、アンテナの低背化を図ることが可能になる。しかも、実装領域の外周にはギャップが必要ないことから、アンテナ占有面積を削減することも可能になる。   Therefore, according to the dielectric resonant antenna 10 of the present embodiment having a structure in which the through hole 13 is provided in the mounting region of the dielectric resonator 11 on the mounting substrate 12 to have the ground potential, the antenna can be reduced in height. Is possible. In addition, since no gap is required on the outer periphery of the mounting area, the area occupied by the antenna can be reduced.

本発明の一形態である誘電体共振アンテナを示す斜視図である。It is a perspective view which shows the dielectric resonance antenna which is one form of this invention. 図1の誘電体共振アンテナにおける実装基板の実装面を示す説明図である。It is explanatory drawing which shows the mounting surface of the mounting board | substrate in the dielectric resonance antenna of FIG. 図1の誘電体共振アンテナにおける誘電体共振器を底面から示す説明図である。It is explanatory drawing which shows the dielectric resonator in the dielectric resonance antenna of FIG. 1 from a bottom face. 誘電体共振器の高さを3.1mmとした図1の誘電体共振アンテナの反射特性を示すグラフである。2 is a graph showing reflection characteristics of the dielectric resonant antenna of FIG. 1 in which the height of the dielectric resonator is 3.1 mm. 誘電体共振器の高さを3.3mmとした図1の誘電体共振アンテナの反射特性を示すグラフである。2 is a graph showing reflection characteristics of the dielectric resonant antenna of FIG. 1 in which the height of the dielectric resonator is 3.3 mm. 誘電体共振器の高さを3.5mmとした図1の誘電体共振アンテナの反射特性を示すグラフである。2 is a graph showing the reflection characteristics of the dielectric resonant antenna of FIG. 1 in which the height of the dielectric resonator is 3.5 mm. 誘電体共振器の高さを3.7mmとした図1の誘電体共振アンテナの反射特性を示すグラフである。2 is a graph showing reflection characteristics of the dielectric resonant antenna of FIG. 1 in which the height of the dielectric resonator is 3.7 mm. 比較例である誘電体共振アンテナにおける実装基板の実装面を示す説明図である。It is explanatory drawing which shows the mounting surface of the mounting board | substrate in the dielectric resonance antenna which is a comparative example. 図8の誘電体共振アンテナの反射特性を示すグラフである。It is a graph which shows the reflective characteristic of the dielectric material resonant antenna of FIG.

符号の説明Explanation of symbols

10 誘電体共振アンテナ
11 誘電体共振器(誘電体)
11a 共振器側給電線
11b 共振器側接地電極
12 実装基板
12a 給電線
12b 第1の接地電極
12c 第2の接地電極
12d 接地電極
12e ランド
13 スルーホール
14 レジスト層
10 Dielectric Resonant Antenna 11 Dielectric Resonator (Dielectric)
11a Resonator-side feed line 11b Resonator-side ground electrode 12 Mounting substrate 12a Feed line 12b First ground electrode 12c Second ground electrode 12d Ground electrode 12e Land 13 Through hole 14 Resist layer

Claims (8)

所定形状の誘電体と、
実装面に前記誘電体が搭載された実装基板と、
先端が少なくとも前記誘電体の実装領域の一部まで延びて前記実装面に形成され、前記誘電体に給電される信号を伝送するとともに前記誘電体と前記実装基板とを固定する導電性薄膜からなる給電線と、
前記給電線とギャップを介して前記誘電体の実装領域の他の一部を含んだ前記実装面に形成され、前記誘電体と前記実装基板とを固定する導電性薄膜からなる第1の接地電極と、
前記実装基板における前記実装面と反対面に形成され、前記第1の接地電極とスルーホールを介して電気的に接続された第2の接地電極と、
を有することを特徴とする誘電体共振アンテナ。
A dielectric with a predetermined shape;
A mounting board on which the dielectric is mounted on the mounting surface;
The front end is formed on the mounting surface extending to at least a part of the mounting region of the dielectric, and includes a conductive thin film that transmits a signal fed to the dielectric and fixes the dielectric and the mounting substrate. A feeder line;
A first ground electrode made of a conductive thin film formed on the mounting surface including another part of the dielectric mounting region via the power supply line and a gap and fixing the dielectric and the mounting substrate When,
A second ground electrode formed on a surface opposite to the mounting surface of the mounting substrate and electrically connected to the first ground electrode through a through hole;
A dielectric resonant antenna comprising:
前記スルーホールは、前記誘電体の実装領域を含んだ領域に形成されていることを特徴とする請求項1記載の誘電体共振アンテナ。 2. The dielectric resonant antenna according to claim 1, wherein the through hole is formed in a region including a mounting region of the dielectric. 前記誘電体の実装領域の外周であって前記第1の接地電極上にはレジスト層が形成されていることを特徴とする請求項1または2記載の誘電体共振アンテナ。 3. The dielectric resonant antenna according to claim 1, wherein a resist layer is formed on an outer periphery of the dielectric mounting region and on the first ground electrode. 前記誘電体の高さは3.1〜3.7mmであることを特徴とする請求項1〜3の何れか一項に記載の誘電体共振アンテナ。 The dielectric resonant antenna according to any one of claims 1 to 3, wherein the height of the dielectric is 3.1 to 3.7 mm. 導電性薄膜からなる給電線および導電性薄膜からなり前記給電線とギャップを介して形成された第1の接地電極を実装面に有し、スルーホールを介して前記第1の接地電極と電気的に接続された第2の接地電極を前記実装面と反対面に有する実装基板を用意し、
前記給電線と接合される導電性薄膜の共振器側給電線および前記第1の接地電極と接合される導電性薄膜の共振器側接地電極を有する誘電体を用意し、
前記誘電体の実装領域の外周であって前記第1の接地電極上にレジスト層を形成し、
前記共振器側給電線および前記誘電体の実装領域における前記給電線の少なくとも何れか一方と前記共振器側接地電極および前記誘電体の実装領域における前記第1の接地電極の少なくとも何れか一方にろう付け用部材を塗布し、
前記共振器側給電線が前記給電線上に位置するようにして前記誘電体を前記実装基板の実装領域に載置し、
前記ろう付け用部材を溶融して前記誘電体を前記実装基板に固着する、
ことを特徴とする誘電体共振アンテナの製造方法。
A power supply line made of a conductive thin film and a first ground electrode made of a conductive thin film and formed through a gap with the power supply line are provided on the mounting surface and electrically connected to the first ground electrode through a through hole. A mounting board having a second ground electrode connected to the mounting surface on the opposite side of the mounting surface;
Preparing a dielectric having a resonator-side power supply line of a conductive thin film bonded to the power supply line and a resonator-side ground electrode of a conductive thin film bonded to the first ground electrode;
Forming a resist layer on the outer periphery of the dielectric mounting region on the first ground electrode;
At least one of the power supply line in the resonator-side power supply line and the dielectric mounting region and at least one of the first ground electrode in the resonator-side ground electrode and the dielectric mounting region Apply the attachment material,
The dielectric is placed in a mounting region of the mounting substrate so that the resonator-side power supply line is positioned on the power supply line,
Melting the brazing member and fixing the dielectric to the mounting substrate;
A method for manufacturing a dielectric resonant antenna.
前記スルーホールは、前記誘電体の実装領域を含んだ領域に形成されていることを特徴とする請求項5記載の誘電体共振アンテナの製造方法。 6. The method for manufacturing a dielectric resonant antenna according to claim 5, wherein the through hole is formed in a region including a mounting region of the dielectric. 前記共振器側給電線および前記共振器側接地電極は、金属ペーストをスクリーン印刷により塗布して焼成することにより形成することを特徴とする請求項5または6記載の誘電体共振アンテナの製造方法。 7. The method for manufacturing a dielectric resonant antenna according to claim 5, wherein the resonator-side feed line and the resonator-side ground electrode are formed by applying a metal paste by screen printing and baking. 前記ろう付け用部材ははんだペーストであることを特徴とする請求項5〜7の何れか一項に記載の誘電体共振アンテナの製造方法。 The method for manufacturing a dielectric resonant antenna according to claim 5, wherein the brazing member is a solder paste.
JP2003377509A 2003-11-06 2003-11-06 Dielectric resonance antenna and manufacturing method thereof Pending JP2005142868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377509A JP2005142868A (en) 2003-11-06 2003-11-06 Dielectric resonance antenna and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377509A JP2005142868A (en) 2003-11-06 2003-11-06 Dielectric resonance antenna and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005142868A true JP2005142868A (en) 2005-06-02

Family

ID=34688202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377509A Pending JP2005142868A (en) 2003-11-06 2003-11-06 Dielectric resonance antenna and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005142868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124684A (en) * 2009-12-09 2011-06-23 Tdk Corp Antenna device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124684A (en) * 2009-12-09 2011-06-23 Tdk Corp Antenna device

Similar Documents

Publication Publication Date Title
JP4265654B2 (en) Circularly polarized microstrip antenna and wireless communication device including the same
JP2005526436A (en) Improved dielectric antenna with antenna structure attached to feed structure and method of manufacturing the same
TWI259606B (en) A planar broadband inverted F-type antenna and information terminal
JPH11312881A (en) Substrate welding method, and high-frequency circuit, antenna, waveguide, line converter, line branching circuit and communication system
WO2007099926A1 (en) Chip antenna
JP7049500B2 (en) Substrate for mounting semiconductor devices and semiconductor devices
US20080003846A1 (en) Circuit board unit
US6927655B2 (en) Optical transmission module
CN111988910A (en) Electronic component mounting structure and electronic component mounting method
JP2013078027A (en) Patch antenna
JP4903738B2 (en) Electronic component storage package and electronic device
JP4128129B2 (en) Dielectric resonant antenna
JP2005142868A (en) Dielectric resonance antenna and manufacturing method thereof
JP2000278036A (en) Stacked chip antenna
JP4086238B2 (en) Dielectric resonant antenna and method for manufacturing the same
JP5279424B2 (en) High frequency transmission equipment
JP4665698B2 (en) Antenna device
JP2006303946A (en) Antenna and antenna adjusting method
JP3183457B2 (en) Helical antenna
JP2002353730A (en) Patch antenna
JP3619398B2 (en) High frequency wiring board and connection structure
JP3638479B2 (en) High frequency wiring board and connection structure thereof
JP2002290143A (en) Surface-mounted antenna, substrate on which the same is mounted and mounting method of the surface-mounted antenna
WO2024084746A1 (en) Antenna
JPH09135117A (en) Spiral antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081010