JP2002353730A - Patch antenna - Google Patents

Patch antenna

Info

Publication number
JP2002353730A
JP2002353730A JP2001161150A JP2001161150A JP2002353730A JP 2002353730 A JP2002353730 A JP 2002353730A JP 2001161150 A JP2001161150 A JP 2001161150A JP 2001161150 A JP2001161150 A JP 2001161150A JP 2002353730 A JP2002353730 A JP 2002353730A
Authority
JP
Japan
Prior art keywords
patch antenna
power supply
hole
supply pin
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001161150A
Other languages
Japanese (ja)
Inventor
Takahito Morishima
隆仁 森島
Takeshi Furuno
剛 古野
Masahiro Watanabe
昌浩 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001161150A priority Critical patent/JP2002353730A/en
Publication of JP2002353730A publication Critical patent/JP2002353730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a patch antenna that suppresses a decrease in a gain due to deterioration in the reception efficiency by preventing a defect of the patch antenna from being floated from a board of a reception device. SOLUTION: The patch antenna is formed where a radiation electrode 3 is formed to one side of a dielectric ceramics 2 having a through-hole and a ground conductor 4 is formed to the other side respectively, and one end of a feeding pin 8 inserted to the through-hole is joined with the radiation electrode 3, and a projection is provided to an inserted part of the feeding pin 8 to the through-hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通信分野におい
て、特に衛星を利用した移動体通信に用いられるパッチ
アンテナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a patch antenna used in the field of communications, particularly for mobile communications using satellites.

【0002】[0002]

【従来の技術】近年、移動体通信の発達に伴い、グロー
バルポジショニングシステム(GlobalPositioning Syst
em)を利用した様々なシステムが提唱されている。中で
も位置情報機能を搭載した通信情報端末が広く使われる
ようになり、その受信用パッチアンテナの需要数量も莫
大な増加が見込まれている。
2. Description of the Related Art In recent years, with the development of mobile communication, a global positioning system (Global Positioning System) has been developed.
Various systems using em) have been proposed. Above all, communication information terminals equipped with a position information function have become widely used, and the demand for patch antennas for reception is expected to increase enormously.

【0003】以下に受信用パッチアンテナについて説明
する。図5はパッチアンテナの斜視図であり、図6は同
断面図である。パッチアンテナ1はセラミック材料で形
成された誘電体セラミックス2の片面に放射電極3を形
成し、また他面に接地導体4を形成して構成されてい
る。5は給電点、6は給電ピン、7は半田である。給電
ピン6は貫通孔13に挿入され、一端が半田7で放射電
極3と電気的に接続され、他端が接地導体4側に導出さ
れている。
[0003] A receiving patch antenna will be described below. FIG. 5 is a perspective view of the patch antenna, and FIG. 6 is a sectional view of the same. The patch antenna 1 has a structure in which a radiation electrode 3 is formed on one surface of a dielectric ceramic 2 formed of a ceramic material, and a ground conductor 4 is formed on the other surface. Reference numeral 5 denotes a feeding point, 6 denotes a feeding pin, and 7 denotes solder. The power supply pin 6 is inserted into the through hole 13, one end is electrically connected to the radiation electrode 3 by the solder 7, and the other end is led out to the ground conductor 4 side.

【0004】一般に、給電ピン6は図7(a)(b)に
示すような形状をしており、給電ピン6の先端径cは結
合される高周波部品との間において一義的に決定され、
給電ピン6の貫通孔部径dは誘電体セラミックス2の貫
通孔径eに応じて決められることが多い。
Generally, the power supply pin 6 has a shape as shown in FIGS. 7A and 7B, and the tip diameter c of the power supply pin 6 is uniquely determined between the power supply pin 6 and the high-frequency component to be coupled.
The through-hole diameter d of the power supply pin 6 is often determined according to the through-hole diameter e of the dielectric ceramic 2.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記構成
でパッチアンテナを作成すると、給電ピン6を放射電極
3へ半田付けする際に、加温により溶融した半田7が給
電ピン6の表面を伝わって貫通孔13へ流れ込んでしま
う現象が発生し、接地導体4側へ溶融半田が盛り出てし
まう不良が発生していた。図7(b)の様に給電ピン6
と貫通孔13との隙間を小さくした場合でも溶融半田が
伝わって流れ込んでしまう現象を止めることはできず、
接地導体4側へ盛り出てしまう不良は発生していた。そ
の結果、図8(a)に示すようにこのパッチアンテナを
実装用基板11に実装する際、正常な場合は接地導体4
と実装用基板11は密着しているが、上記の不都合によ
って接地導体4側に半田が盛り出てしまった場合は、図
8(b)に示すように盛り出た半田12によって接地導
体4と実装用基板11が密着せず浮き上がった状態とな
ってしまい、受信効率の劣化による利得値の低下を招い
ていた。
However, when the patch antenna is formed with the above configuration, when the power supply pin 6 is soldered to the radiation electrode 3, the solder 7 melted by heating is transmitted through the surface of the power supply pin 6 and penetrates. A phenomenon that the molten solder flows into the hole 13 occurs, and a defect that the molten solder protrudes toward the ground conductor 4 has occurred. As shown in FIG.
Even if the gap between the hole and the through hole 13 is reduced, the phenomenon that the molten solder is transmitted and flows in cannot be stopped,
A defect that protruded toward the ground conductor 4 occurred. As a result, when this patch antenna is mounted on the mounting substrate 11 as shown in FIG.
When the solder protrudes on the ground conductor 4 due to the above-described inconvenience, the solder 12 protrudes as shown in FIG. As a result, the mounting substrate 11 floats up without being in close contact with the mounting substrate 11, resulting in a decrease in the gain value due to a deterioration in the reception efficiency.

【0006】[0006]

【課題を解決するための手段】そこで本発明は上記の課
題を解決するため、貫通孔を有する誘電体セラミックス
の片面に放射電極を、他面には接地導体をそれぞれ形成
し、上記貫通孔に挿入された給電ピンの一端が放射電極
に接合されたパッチアンテナであって、上記給電ピンの
貫通孔への挿入部に凸部を設けたことを特徴とする。
In order to solve the above-mentioned problems, the present invention forms a radiation electrode on one side of a dielectric ceramic having a through-hole and a ground conductor on the other side, and forms a through hole in the through-hole. A patch antenna in which one end of the inserted power supply pin is joined to a radiation electrode, wherein a protrusion is provided at an insertion portion of the power supply pin into the through hole.

【0007】即ち、給電ピンの誘電体セラミックスへの
挿入部に凸部を設けることにより、溶融半田が接地導体
側へ流れ込む現象を抑えるものである。その結果、受信
機器の基板上などからパッチアンテナが浮き上がってし
まう不良発生を防止し、受信効率の劣化による利得値の
低下を抑えることができる。
That is, by providing a projection at the insertion portion of the power supply pin into the dielectric ceramic, the phenomenon that the molten solder flows into the ground conductor is suppressed. As a result, it is possible to prevent a defect in which the patch antenna is lifted up from the substrate of the receiving device or the like, and to suppress a decrease in the gain value due to the deterioration of the receiving efficiency.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態を図によ
って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0009】図1、図2に示すように、本発明のパッチ
アンテナ1はセラミック材料で形成された貫通孔13を
有する誘電体セラミックス2の片面に放射電極3を形成
し、また他面に接地導体4を形成し、上記貫通孔13に
挿入された給電ピン8の一端が放射電極3に接合され、
他端が接地導体4側に導出されている。
As shown in FIGS. 1 and 2, in a patch antenna 1 of the present invention, a radiation electrode 3 is formed on one surface of a dielectric ceramic 2 having a through hole 13 formed of a ceramic material, and grounded on the other surface. A conductor 4 is formed, and one end of the power supply pin 8 inserted into the through hole 13 is joined to the radiation electrode 3,
The other end is led out to the ground conductor 4 side.

【0010】誘電体セラミックス2の材料としては、B
a−Nd−Ti系材料(比誘電率80〜120)、Nd
−Al−Ca−Ti系材料(比誘電率43〜46)、L
a−Al−Sr−Ti系材料(比誘電率38〜41)、
Ba−Ti系材料(比誘電率34〜36)、Ba−Mg
−W系材料(比誘電率20〜22)、Mg−Ca−Ti
系材料(比誘電率19〜21)、サファイヤ(比誘電率
9〜10)、アルミナセラミックス(比誘電率9〜1
0)、コージライトセラミックス(比誘電率4〜6)な
どを使用する。5は給電点、7は半田である。放射電極
3及び接地導体4は銀、銀−パラジウム、銀−白金、銅
などの電極用ペースト材を用いてスクリーン印刷や転写
などの方法によって形成した後、所定の温度条件によっ
て焼き付け処理を行って得る。
The material of the dielectric ceramics 2 is B
a-Nd-Ti-based material (dielectric constant: 80 to 120), Nd
-Al-Ca-Ti-based material (dielectric constant 43 to 46), L
a-Al-Sr-Ti-based material (relative dielectric constant 38 to 41),
Ba-Ti-based material (dielectric constant 34-36), Ba-Mg
-W material (dielectric constant: 20 to 22), Mg-Ca-Ti
Based materials (relative dielectric constant 19-21), sapphire (relative dielectric constant 9-10), alumina ceramics (relative dielectric constant 9-1)
0), cordierite ceramics (relative permittivity 4 to 6) or the like is used. Reference numeral 5 denotes a power supply point, and reference numeral 7 denotes solder. The radiation electrode 3 and the ground conductor 4 are formed by a method such as screen printing or transfer using an electrode paste material such as silver, silver-palladium, silver-platinum, or copper, and then baked under a predetermined temperature condition. obtain.

【0011】図3に拡大図を示すように、本発明にかか
る給電ピン8は貫通孔13への挿入部に凸部10が設け
てある。この凸部10を設けることにより、溶融して流
れ込んできた半田7の液だまり9を作って受け止める効
果があり、接地導体4側へ溶融半田が盛り出てしまう現
象を防止することができる。また同時に貫通孔13内に
おける給電ピン8の偏心を抑えることもできるため、寸
法精度の良いパッチアンテナ1が形成でき実装用基板1
1への自動装着を容易に行うことができる。
As shown in an enlarged view in FIG. 3, the power supply pin 8 according to the present invention has a projection 10 at a portion inserted into the through hole 13. Providing the convex portion 10 has an effect of forming and receiving a liquid pool 9 of the solder 7 that has flowed in by melting, and can prevent a phenomenon in which the molten solder bulges to the ground conductor 4 side. At the same time, since the eccentricity of the power supply pin 8 in the through hole 13 can be suppressed, the patch antenna 1 with high dimensional accuracy can be formed, and the mounting substrate 1 can be formed.
1 can be easily mounted.

【0012】凸部10の高さaは0.03mm以上好ま
しくは0.06mm以上、且つクリアランスbが0.0
1mm以上とすることが望ましい。高さaが0.03m
mよりも小さいと流れ込んできた溶融半田を受け止める
液だまり9が充分でなく、受け止められなかった溶融半
田が接地導体4側まで盛り出てしまう不良が発生する。
また、クリアランスbが0.01mmより小さいと、誘
電体セラミックス1の寸法バラツキにより給電ピン8を
貫通孔13へ挿入する際に給電ピン8が挿入できないピ
ン挿入不良が発生してしまう。
The height a of the projection 10 is 0.03 mm or more, preferably 0.06 mm or more, and the clearance b is 0.0
It is desirable that the thickness be 1 mm or more. Height a is 0.03m
If it is smaller than m, the liquid pool 9 for receiving the flowing molten solder is not sufficient, and a defect that the unreceivable molten solder protrudes to the ground conductor 4 side occurs.
If the clearance b is smaller than 0.01 mm, a pin insertion failure in which the power supply pin 8 cannot be inserted when the power supply pin 8 is inserted into the through hole 13 occurs due to a dimensional variation of the dielectric ceramic 1.

【0013】通常、給電ピン8の先端径cは結合される
高周波部品との間でφ0.8mmと一義的に決定され、
貫通孔径eは給電ピン8の先端径cより大きくすればよ
く、通常φ0.8mmからφ2.0mmで形成される。
しかし、誘電体セラミックス2の寸法バラツキにより貫
通孔径eがφ0.8mmよりも小さくなってしまうこと
があるため、寸法バラツキを考慮して貫通孔径eを決定
することが好ましい。
Usually, the tip diameter c of the power supply pin 8 is uniquely determined to be φ0.8 mm between the power supply pin 8 and the high-frequency component to be coupled.
The diameter e of the through hole may be larger than the diameter c of the tip of the power supply pin 8, and is usually formed from φ0.8 mm to φ2.0 mm.
However, the through-hole diameter e may be smaller than φ0.8 mm due to the dimensional variation of the dielectric ceramics 2. Therefore, it is preferable to determine the through-hole diameter e in consideration of the dimensional variation.

【0014】また、図4に本発明の他の実施形態を示
す。凸部10aはピン部14の同心円上に断続的に形成
したもので、凸部10bはピン部14の同心円上に連続
的に形成したものである。図4(a)(b)は凸部10
aが給電点5の直下に、凸部10bがピン部14の中央
付近にあり、図4(c)(d)は凸部10a及び凸部1
0bともにピン部14の中央付近にある。図4(e)は
凸部10bがピン部14の中央付近に2カ所ある。図
(f)は凸部10bが給電点5の直下とピン部14の中
央付近にある。図4(g)は凸部10aが給電点5の直
下とピン部14の中央付近にある。図4(h)は凸部1
0bがピン部14の中央付近に1カ所だけあり、図4
(i)は凸部10aがピン部14の中央付近に1カ所だ
けある。なお、ピン部14の中央付近には連続的に形成
された凸部10bを設けた方が液だまり9のための面積
が広くなるため、より好ましい。さらに、凸部を複数設
けることで偏心を抑える効果を高くできる。
FIG. 4 shows another embodiment of the present invention. The protrusion 10a is formed intermittently on the concentric circle of the pin portion 14, and the protrusion 10b is formed continuously on the concentric circle of the pin portion 14. FIGS. 4A and 4B show the convex portions 10.
a is immediately below the feeding point 5 and the protrusion 10b is near the center of the pin 14. FIGS. 4C and 4D show the protrusion 10a and the protrusion 1 respectively.
0b is near the center of the pin portion 14. FIG. 4E shows two convex portions 10 b near the center of the pin portion 14. In FIG. 5F, the protrusion 10 b is located immediately below the feeding point 5 and near the center of the pin 14. In FIG. 4G, the protrusion 10 a is located immediately below the feeding point 5 and near the center of the pin 14. FIG. 4H shows the convex portion 1.
0b is located at only one location near the center of the pin portion 14, and FIG.
In (i), there is only one convex portion 10a near the center of the pin portion 14. It is more preferable to provide a continuously formed convex portion 10b near the center of the pin portion 14 because the area for the liquid pool 9 becomes large. Further, by providing a plurality of convex portions, the effect of suppressing eccentricity can be enhanced.

【0015】また、図示していないが3カ所以上の凸部
10を設けても同様の効果が得られる。
Although not shown, the same effect can be obtained even if three or more convex portions 10 are provided.

【0016】凸部10を設けた給電ピン8は金型を用い
てプレス成形により形成される。針金状をしたピンの材
料を金型の片方のパンチで掴んでおき、もう一方のパン
チには凸部10を形作るための形状があらかじめ彫られ
てあり、それを押し当てて針金をつぶすことで目的の形
状を得る。給電ピン8の材料は導電性のあるものであれ
ば良いが、抵抗値が小さくプレスにより形状加工が行い
やすい銅、アルミニウムなどの金属材料が選択される。
The power supply pins 8 provided with the projections 10 are formed by press molding using a mold. The material of the wire-shaped pin is gripped by one punch of the mold, and the other punch is engraved with a shape for forming the convex portion 10 in advance, and is pressed against the wire to crush the wire. Obtain the desired shape. The material of the power supply pin 8 may be any material as long as it has conductivity, but a metal material such as copper or aluminum having a small resistance value and easily formed by pressing is selected.

【0017】[0017]

【実施例】本発明の実施例として、図1、図2に示すパ
ッチアンテナを作成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, a patch antenna shown in FIGS. 1 and 2 was prepared.

【0018】誘電体セラミックス2はMg−Ca−Ti
系材料(比誘電率約20)で形成された25mm×25
mm×厚み4mmとし、給電ピン8を挿入する貫通孔径
eはφ1.0mmとした。放射電極3、接地導体4はい
ずれも銀ペーストをスクリーン印刷し、大気中約870
℃で焼き付けを行って形成した。放射電極3は誘電体セ
ラミックス2のほぼ中央部に約20mm×約20mm、
接地導体4は約25mm×約25mmとした。
The dielectric ceramics 2 is made of Mg-Ca-Ti
25mm x 25 formed of a series material (relative dielectric constant about 20)
mm × 4 mm in thickness, and the diameter e of the through hole into which the power supply pin 8 is inserted was φ1.0 mm. Both the radiation electrode 3 and the ground conductor 4 are screen-printed with silver paste, and approximately 870 in air.
It was formed by baking at ℃. The radiation electrode 3 is approximately 20 mm × approximately 20 mm approximately in the center of
The ground conductor 4 was about 25 mm × about 25 mm.

【0019】なお、誘電体セラミックス2はスプレード
ライにて造粒された原料を粉末プレス成形にて金型を用
いて成形した後、大気中約1300℃で焼成して得た。
The dielectric ceramics 2 was obtained by molding a raw material granulated by spray drying by using a metal mold by powder press molding, and then firing at about 1300 ° C. in the air.

【0020】次に、放射電極3及び接地導体4を形成し
た誘電体セラミックス2を受信機器などの基板上に接続
するための給電ピン8を、接地導体4からは絶縁し、誘
電体セラミックス2を貫通して放射電極3の給電点5に
半田7で接合し、パッチアンテナ1を完成させた。給電
ピン8は材料に銅を使用し、表面には半田メッキ処理を
した。また、給電ピン8の先端径cはφ0.8mmで固
定とした。なお、給電ピン8は図3に示す様な形状と
し、金型を用いて一体に形成した。
Next, a power supply pin 8 for connecting the dielectric ceramic 2 on which the radiation electrode 3 and the ground conductor 4 are formed on a substrate such as a receiving device is insulated from the ground conductor 4, and the dielectric ceramic 2 is separated. The patch antenna 1 was penetrated and joined to the feeding point 5 of the radiation electrode 3 with solder 7 to complete the patch antenna 1. The power supply pin 8 used copper as a material, and the surface was subjected to solder plating. The tip diameter c of the power supply pin 8 was fixed at φ0.8 mm. The power supply pins 8 were formed as shown in FIG. 3 and were integrally formed using a mold.

【0021】給電ピン8の凸部10の高さaを変化させ
たサンプルを各50個ずつ作成し、溶融半田が流れ込ん
で接地導体4よりも盛り出ているものを不良品として、
その不良率を表1に示す。また、各々の場合におけるサ
ンプルを日本ヒューレット・パッカード社製のネットワ
ークアナライザーを用いて電波暗室内における利得値を
測定し、従来の給電ピンを用いた場合との特性比較を行
い、利得値が向上していれば◎、同等であれば○、劣化
していれば×とした。その結果も表1にあわせて示す。
電波暗室内での測定時には、大きさ70mm角のアルミ
製グランド板を測定標準治具として用いた。また、偏心
は貫通孔13の穴径中心と給電ピン8の先端との距離を
投影機により測定して得た。
Fifty samples each of which the height a of the projection 10 of the power supply pin 8 was changed were prepared, and a sample in which the molten solder flowed and protruded from the ground conductor 4 was regarded as a defective product.
Table 1 shows the defective rates. In addition, the gain value of each sample was measured in a anechoic chamber using a network analyzer manufactured by Hewlett-Packard Company of Japan, and the characteristics were compared with those using a conventional power supply pin.れ ば, if equivalent, and れ ば if deteriorated. The results are also shown in Table 1.
At the time of measurement in an anechoic chamber, an aluminum ground plate having a size of 70 mm square was used as a measurement standard jig. The eccentricity was obtained by measuring the distance between the center of the diameter of the through hole 13 and the tip of the power supply pin 8 using a projector.

【0022】[0022]

【表1】 [Table 1]

【0023】表1より明らかなように、凸部の高さaは
0.03mm以上とすれば溶融半田の流れ込みに起因す
る不良率を抑えることができる。また、凸部の高さaを
0.06mm以上とすれば不良率をさらに抑えることが
できる。表1におけるピン挿入不良とは、誘電体セラミ
ックスの寸法バラツキの影響によりクリアランスbが小
さくなりすぎたために、給電ピン8が挿入できない場合
が発生するものである。従って、クリアランスbは0.
01mm以上とする方が良い。なお、凸部を設けること
により偏心を抑えることも可能となる。
As is clear from Table 1, when the height a of the convex portion is 0.03 mm or more, the defective rate due to the flow of the molten solder can be suppressed. Further, when the height a of the convex portion is 0.06 mm or more, the defective rate can be further suppressed. The pin insertion failure in Table 1 occurs when the power supply pin 8 cannot be inserted because the clearance b has become too small due to the dimensional variation of the dielectric ceramics. Therefore, the clearance b is equal to 0.
It is better to be at least 01 mm. It is to be noted that eccentricity can be suppressed by providing the convex portion.

【0024】また、本発明の給電ピン8を用いてパッチ
アンテナを作成した場合、電波暗室内における利得値は
従来の給電ピンを用いた場合と同等であり、問題ないレ
ベルであることも確認できた。
Also, when a patch antenna is prepared using the power supply pin 8 of the present invention, the gain value in the anechoic chamber is equivalent to that when the conventional power supply pin is used, and it can be confirmed that there is no problem. Was.

【0025】[0025]

【発明の効果】以上のように本発明によれば、貫通孔を
有する誘電体セラミックスの片面に放射電極を、他面に
は接地導体をそれぞれ形成し、上記貫通孔に挿入された
給電ピンの一端が放射電極に接合されたパッチアンテナ
であって、上記給電ピンの貫通孔への挿入部に凸部を設
けることにより、溶融半田が接地導体側へ流れ込む現象
を抑えることができる。その結果、受信機器の基板上な
どからパッチアンテナが浮き上がってしまう不良発生を
防止し、受信効率の劣化による利得値の低下を抑えるこ
とができる。
As described above, according to the present invention, a radiation electrode is formed on one surface of a dielectric ceramic having a through hole, and a ground conductor is formed on the other surface. The patch antenna having one end joined to the radiation electrode, and by providing a projection at the insertion portion of the power supply pin into the through hole, it is possible to suppress the phenomenon that the molten solder flows into the ground conductor. As a result, it is possible to prevent a defect in which the patch antenna is lifted up from the substrate of the receiving device or the like, and to suppress a decrease in the gain value due to the deterioration of the receiving efficiency.

【0026】また、従来の給電ピンは切削により製造し
ていたのに比べ、金型を用いて形成することで製造効率
が良くなり経済的にも有利である。その結果、安価なパ
ッチアンテナを提供することができる。
In addition, as compared with a conventional power supply pin manufactured by cutting, a power supply pin is formed by using a metal mold, thereby improving the manufacturing efficiency and is economically advantageous. As a result, an inexpensive patch antenna can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のパッチアンテナを示す斜視図である。FIG. 1 is a perspective view showing a patch antenna of the present invention.

【図2】本発明のパッチアンテナを示す断面図である。FIG. 2 is a sectional view showing a patch antenna of the present invention.

【図3】本発明のパッチアンテナを示す拡大断面図であ
る。
FIG. 3 is an enlarged sectional view showing a patch antenna of the present invention.

【図4】(a)〜(i)は本発明のパッチアンテナに用
いる給電ピンのさまざまな実施形態を示す図である。
FIGS. 4A to 4I are diagrams showing various embodiments of a feed pin used in the patch antenna of the present invention.

【図5】従来のパッチアンテナを示す斜視図である。FIG. 5 is a perspective view showing a conventional patch antenna.

【図6】従来のパッチアンテナを示す断面図である。FIG. 6 is a sectional view showing a conventional patch antenna.

【図7】(a)(b)は従来のパッチアンテナを示す拡
大断面図である。
FIGS. 7A and 7B are enlarged sectional views showing a conventional patch antenna.

【図8】(a)(b)はパッチアンテナを実装用基板に
接地した状態の側面図である。
FIGS. 8A and 8B are side views of a state in which the patch antenna is grounded to a mounting substrate.

【符号の説明】[Explanation of symbols]

1:パッチアンテナ 2:誘電体セラミックス 3:放射電極 4:接地導体 5:給電点 6:給電ピン 7:半田 8:給電ピン 9:液だまり 10a:凸部 10b:凸部 11:実装用基板 12:半田 13:貫通孔 14:ピン部 a:高さ b:クリアランス c:先端径 d:貫通孔部径 e:貫通孔径 1: Patch antenna 2: Dielectric ceramic 3: Radiation electrode 4: Ground conductor 5: Power supply point 6: Power supply pin 7: Solder 8: Power supply pin 9: Liquid reservoir 10a: Convex part 10b: Convex part 11: Mounting substrate 12 : Solder 13: Through hole 14: Pin part a: Height b: Clearance c: Tip diameter d: Through hole diameter e: Through hole diameter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J045 AA01 AB06 DA10 EA07 HA06 MA04 NA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5J045 AA01 AB06 DA10 EA07 HA06 MA04 NA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】貫通孔を有する誘電体セラミックスの片面
に放射電極を、他面には接地導体をそれぞれ形成し、上
記貫通孔に挿入された給電ピンの一端が放射電極に接合
されたパッチアンテナであって、上記給電ピンの貫通孔
への挿入部に凸部を設けたことを特徴とするパッチアン
テナ。
1. A patch antenna in which a radiation electrode is formed on one surface of a dielectric ceramic having a through hole, and a ground conductor is formed on the other surface, and one end of a feed pin inserted into the through hole is joined to the radiation electrode. A patch antenna, wherein a projection is provided at an insertion portion of the power supply pin into the through hole.
【請求項2】上記凸部を複数設けたことを特徴とする請
求項1記載のパッチアンテナ。
2. The patch antenna according to claim 1, wherein a plurality of said convex portions are provided.
JP2001161150A 2001-05-29 2001-05-29 Patch antenna Pending JP2002353730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161150A JP2002353730A (en) 2001-05-29 2001-05-29 Patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161150A JP2002353730A (en) 2001-05-29 2001-05-29 Patch antenna

Publications (1)

Publication Number Publication Date
JP2002353730A true JP2002353730A (en) 2002-12-06

Family

ID=19004470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161150A Pending JP2002353730A (en) 2001-05-29 2001-05-29 Patch antenna

Country Status (1)

Country Link
JP (1) JP2002353730A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008163A1 (en) * 2007-07-09 2009-01-15 Mitsubishi Electric Corporation Antenna for rfid reader/writer
JP2010154236A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Patch antenna
WO2010123245A2 (en) * 2009-04-20 2010-10-28 (주)파트론 Antenna having a pipe structure in which a magnetic medium or a dielectric medium is inserted
CN105958187A (en) * 2016-05-19 2016-09-21 深圳市轱辘软件开发有限公司 Antenna and vehicle possessing same
GB2556185A (en) * 2016-09-26 2018-05-23 Taoglas Group Holdings Ltd Patch antenna construction
WO2018169239A1 (en) * 2017-03-14 2018-09-20 주식회사 아모텍 Multilayer patch antenna
WO2023068617A1 (en) * 2021-10-20 2023-04-27 주식회사 아모텍 Feed pin, and patch antenna comprising same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008163A1 (en) * 2007-07-09 2009-01-15 Mitsubishi Electric Corporation Antenna for rfid reader/writer
KR100963477B1 (en) 2007-07-09 2010-06-17 미쓰비시덴키 가부시키가이샤 Patch antenna
US7812769B2 (en) 2007-07-09 2010-10-12 Mitsubishi Electric Corporation RFID reader/writer antenna
JP2010154236A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Patch antenna
WO2010123245A2 (en) * 2009-04-20 2010-10-28 (주)파트론 Antenna having a pipe structure in which a magnetic medium or a dielectric medium is inserted
WO2010123245A3 (en) * 2009-04-20 2011-03-31 (주)파트론 Antenna having a pipe structure in which a magnetic medium or a dielectric medium is inserted
CN105958187A (en) * 2016-05-19 2016-09-21 深圳市轱辘软件开发有限公司 Antenna and vehicle possessing same
GB2556185A (en) * 2016-09-26 2018-05-23 Taoglas Group Holdings Ltd Patch antenna construction
WO2018169239A1 (en) * 2017-03-14 2018-09-20 주식회사 아모텍 Multilayer patch antenna
US11189926B2 (en) 2017-03-14 2021-11-30 Amotech Co., Ltd. Multilayer patch antenna
WO2023068617A1 (en) * 2021-10-20 2023-04-27 주식회사 아모텍 Feed pin, and patch antenna comprising same

Similar Documents

Publication Publication Date Title
CN101923928B (en) High-frequency patch resistor and manufacturing method thereof
US6323824B1 (en) Dielectric resonator antenna
KR100785651B1 (en) Chip antenna, radio communications terminal and radio communications system using the same and method for production of the same
JP2004194211A (en) Surface-mounted antenna and antenna device
JPH0851313A (en) Surface mount antenna and its frequency adjustment method
KR101107146B1 (en) Small antenna, and antenna apparatus and radio communication apparatus using the small antenna
JP2004023624A (en) Surface mount antenna and antenna system
JP2002353730A (en) Patch antenna
JP2005260875A (en) Surface mounted patch antenna and its mounting method
JP4415295B2 (en) Surface mount antenna
JP2004208202A (en) Antenna and communication equipment using the same
JP2006238430A (en) Patch antenna
JP2001077612A (en) Rf unit
JP3851219B2 (en) Planar antenna
JPH08186431A (en) Dielectric ceramic antenna
JP2006303946A (en) Antenna and antenna adjusting method
JP4199640B2 (en) Planar antenna and communication information terminal using the same
JP2005108865A (en) Chip resistor and manufacturing method thereof
CN210535815U (en) Double-frequency positioning ceramic antenna
JP2012015852A (en) Antenna
JP3178469B2 (en) Antenna device and antenna device assembly
JP2001168624A (en) Antenna system and manufacturing method of antenna system
JPH10233613A (en) Antenna system and its mount structure
JP3752472B2 (en) Package for storing semiconductor elements
JP2000068103A (en) Chip electronic part