JP2005142201A - 光集積回路 - Google Patents

光集積回路 Download PDF

Info

Publication number
JP2005142201A
JP2005142201A JP2003374263A JP2003374263A JP2005142201A JP 2005142201 A JP2005142201 A JP 2005142201A JP 2003374263 A JP2003374263 A JP 2003374263A JP 2003374263 A JP2003374263 A JP 2003374263A JP 2005142201 A JP2005142201 A JP 2005142201A
Authority
JP
Japan
Prior art keywords
layer
substrate
integrated circuit
optical integrated
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003374263A
Other languages
English (en)
Inventor
Nethaji Dharmarasu
ネタジ・ダルマラス
Shanmugam Saravanan
シャンムカム・サラバナン
Kazuyoshi Kubota
和芳 久保田
Baccalo Pablo
パブロ・バッカロ
Nobuo Saito
信雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR Advanced Telecommunications Research Institute International
Original Assignee
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR Advanced Telecommunications Research Institute International filed Critical ATR Advanced Telecommunications Research Institute International
Priority to JP2003374263A priority Critical patent/JP2005142201A/ja
Publication of JP2005142201A publication Critical patent/JP2005142201A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】 容易かつ正確に作製することができるとともに小型化が可能な光集積回路を提供することである。
【解決手段】 基板1上には、面発光型レーザダイオードLD、反射装置ML1、レンズLE、2つの反射装置ML2、反射装置ML3および複数のフォトダイオードPDが形成されている。反射装置ML1は、基板1上にヒンジ部HG0を介して起立した反射板PL0を含む。また、反射装置ML2は、基板1にヒンジ部HG1を介して起立した反射板PL1と、反射板PL1の垂直な一辺にヒンジ部HG2を介して連結された反射板P2と、基板1上にヒンジ部HG3を介して起立した反射板PL3と、反射板PL3の垂直な一辺にヒンジ部HG4を介して連結された反射板PL4とを含む。さらに、反射装置ML3は、基板1上にヒンジ部HG0を介して起立した反射板PL0を含む。
【選択図】 図1

Description

本発明は、半導体層の起立構造を有する光集積回路に関する。
起立構造を有するマイクロ光学ベンチが、シリコンを用いたMEMS(マイクロエレクトロ・メカニカル・システム)技術により実現されている。このMEMS技術を用いて、例えば、レーザ走査ディスプレイのための共振マイクロスキャナ、可動マイクロ反射器、半導体レーザの外部共振器のための走査マイクロミラー等を作製することが報告されている。
この従来のMEMS技術では、積層された半導体層の一部をエッチングにより剥離させた後、剥離した部分をスライドさせて起立させるとともにヒンジで接合することにより、起立構造を形成している。この起立構造を用いて基板上に所定の角度で起立したミラーが構成される。このようなミラーは、くし型ドライバ(comb driver)またはスライディング機構により操作される。
しかしながら、従来のMEMS技術を用いて半導体により起立構造を作製する場合、剥離した半導体層をスライドさせる際に磨耗が生じる。また、半導体層を所定の位置まで正確にスライドさせることは困難である。そのため、起立構造を構成する各部材の角度および位置を正確に制御することが困難であるとともに、作業性が悪い。したがって、従来のMEMS技術を用いて種々の構造を作製することは困難である。
一方、本発明者らは、格子定数の異なる複数の半導体層の積層構造を用いて起立構造を有する半導体装置を製造する方法を提案している(特許文献1参照)。
特開2001−260092号公報
上記の半導体装置およびその製造方法によれば、起立構造を構成する各部材の角度および位置を正確に制御することができる。
そこで、この方法を用いて光集積回路を容易に作製することが望まれる。
本発明の目的は、容易かつ正確に作製することができるとともに小型化が可能な光集積回路を提供することである。
本発明に係る光集積回路は、基板と、基板上に形成された積層構造と、基板または積層構造により構成され光を発生する発光素子と、積層構造により構成され発光素子により発生された光を反射する第1の反射装置とを備え、積層構造は、異なる格子定数を有する複数の半導体層を含み、第1の反射装置は、複数の半導体層の格子定数の差に起因する歪により基板上に起立したものである。
本発明に係る光集積回路においては、基板上に積層構造が形成され、積層構造により発光素子および第1の反射装置が構成される。第1の反射装置は、複数の半導体層の格子定数の差に起因する歪により基板上に起立する。
このように、複数の半導体層の格子定数の差に起因する歪を緩和するように第1の反射装置が自動的に基板上に起立するので、手動組み立てまたは複雑な組み立て機構を必要とすることなく、発光素子および第1の反射装置を有するモノリシック光集積回路の自己組み立てが可能となる。したがって、モノリシック光集積回路を容易かつ正確に作製することが可能になるとともに、モノリシック光集積回路の小型化が可能になる。
発光素子は、基板に対して略垂直な方向に光を発生する面発光型発光素子であり、第1の反射装置は、基板上にヒンジ部を介して設けられ、面発光型発光素子により発生された光を基板に対して略平行な方向に反射する反射板を含んでもよい。
この場合、通常のプレーナ技術により発光素子および第1の反射装置を有するモノリシック光集積回路を容易かつ安価に製造することができる。
積層構造は、第1の層、第2の層および第3の層を順に含み、第2の層は、異なる格子定数を有する複数の半導体層を含み、第1の反射装置のヒンジ部で第3の層が除去され、ヒンジ部を除く部分で反射板の領域を取り囲むように第3の層から第1の層に達する分離溝が形成されるとともに、反射板の領域における第1の層の部分が選択的に除去されることにより、第2の層に発生する歪により第2の層がヒンジ部で谷状に折曲され、反射板が基板に対して起立してもよい。
この場合、複数の半導体層の格子定数の差に起因する歪を緩和するようにヒンジ部が折曲されることにより反射板が基板に対して起立する。それにより、手動組み立てまたは複雑な組み立て機構を必要とすることなく、反射板が基板上に起立した第1の反射装置の自己組み立てが可能となる。
複数の半導体層の格子定数の差に起因する歪により基板上に起立するように積層構造に設けられ第1の反射装置からの光を反射する第2の反射装置をさらに備え、第2の反射装置は、基板上に第1のヒンジ部を介して略垂直に起立しかつ基板に対して略垂直な一辺を有する第1の反射板と、第1の反射板の一辺に第2のヒンジ部を介して連結された第2の反射板とを含んでもよい。
この場合、第1の反射板が基板上に第1のヒンジ部を介して略垂直に起立し、第2の反射板が第2のヒンジ部を介して垂直方向の軸の周りで回動可能に第1の反射板に連結される。それにより、第1の反射装置により反射された光の方向を第2の反射装置により変化させることができる。また、通常のプレーナ技術により発光素子、第1の反射装置および第2の反射装置を有するモノリシック光集積回路を容易かつ安価に製造することができる。
積層構造は、第1の層、第2の層および第3の層を順に含み、第2の層は、異なる格子定数を有する複数の半導体層を含み、第2の反射装置の第1および第2のヒンジ部で第3の層が除去され、第1のヒンジ部を除く部分で第1および第2の反射板の領域を取り囲むように第3の層から第1の層に達する分離溝が形成されるとともに、第1および第2の反射板の領域における第1の層の部分が選択的に除去されることにより、第2の層に発生する歪により第2の層が第1および第2のヒンジ部で谷状に折曲され、第1および第2の反射板が基板に対して起立してもよい。
この場合、複数の半導体層の格子定数の差に起因する歪を緩和するように第1および第2のヒンジ部が折曲されることにより第1の反射板が基板に対して起立し、第2の反射板が第1の反射板に対して折曲される。それにより、手動組み立てまたは複雑な組み立て機構を必要とすることなく、可動の第2の反射板を有する第2の反射装置の自己組み立てが可能となる。
基板または積層構造に設けられ発光素子からの光を受光する受光素子をさらに備えてもよい。
それにより、発光素子からの光が受光素子に導かれる。この場合、通常のプレーナ技術により発光素子、第1の反射装置および受光素子を有するモノリシック光集積回路を容易かつ安価に製造することができる。
複数の半導体層の格子定数の差に起因する歪により基板上に起立するように積層構造に設けられ、発光素子からの光を反射して受光素子に導く第3の反射装置をさらに備え、第3の反射装置は、基板にヒンジ部を介して設けられた反射板を含んでもよい。
それにより、発光素子からの光が第3の反射装置により反射され、受光素子に導かれる。この場合、通常のプレーナ技術により発光素子、第1の反射装置、受光素子および第3の反射装置を有するモノリシック光集積回路を容易かつ安価に製造することができる。
積層構造は、第1の層、第2の層および第3の層を順に含み、第2の層は、異なる格子定数を有する複数の半導体層を含み、第3の反射装置のヒンジ部で第3の層が除去され、ヒンジ部を除く部分で反射板の領域を取り囲むように第3の層から第1の層に達する分離溝が形成されるとともに、反射板の領域における第1の層の部分が選択的に除去されることにより、第2の層に発生する歪により第2の層がヒンジ部で谷状に折曲され、反射板が基板に対して起立してもよい。
この場合、複数の半導体層の格子定数の差に起因する歪を緩和するようにヒンジ部が折曲されることにより反射板が基板に対して起立する。それにより、手動組み立てまたは複雑な組み立て機構を必要とすることなく、反射板が基板上に起立した第3の反射装置の自己組み立てが可能となる。
複数の半導体層は化合物半導体からなってよい。それにより、起立構造を容易に作製することができる。
本発明によれば、複数の半導体層の格子定数の差に起因する歪を緩和するように第1の反射装置が自動的に基板上に起立するので、手動組み立てまたは複雑な組み立て機構を必要とすることなく、発光素子および第1の反射装置を有するモノリシック光集積回路の自己組み立てが可能となる。したがって、モノリシック光集積回路を容易かつ正確に作製することが可能になるとともに、モノリシック光集積回路の小型化が可能になる。
図1は本発明の一実施の形態におけるモノリシック光集積回路の模式的斜視図である。
図1において、基板1上には、面発光型レーザダイオードLD、反射装置ML1、レンズLE、2つの反射装置ML2、反射装置ML3および複数のフォトダイオードPDが形成されている。
反射装置ML1は、基板1上にヒンジ部HG0を介して起立した反射板PL0を含む。また、反射装置ML2は、基板1上にヒンジ部HG1を介して起立した反射板PL1と、反射板PL1の垂直な一辺にヒンジ部HG2を介して連結された反射板PL2と、基板1上にヒンジ部HG3を介して起立した反射板PL3と、反射板PL3の垂直な一辺にヒンジ部HG4を介して連結された反射板PL4とを含む。さらに、反射装置ML3は、基板1上にヒンジ部HG5を介して起立した反射板PL5を含む。
図2は図1のレーザダイオードLDおよび反射装置ML1の斜視図である。図2に示すように、基板1上に後述する半導体層の積層構造が設けられている。その積層構造にレーザダイオードLDおよび反射装置ML1が構成されている。
レーザダイオードLDは、基板1の表面に垂直な方向にレーザビームを出射する。反射装置ML1においては、基板1上にヒンジ部HG0を介して45度の角度で傾斜するように反射板PL0が形成されている。反射板PL0は、レーザダイオードLDにより出射されたレーザビームを基板1の表面に対して平行な方向に反射する。
レーザダイオードLDおよび反射装置ML1の作製方法については、後述する。
図3は図1の反射装置ML2の斜視図である。図3において、基板1上の積層構造に2組の起立構造S1,S2が設けられている。起立構造S1は、反射板PL1,PL2およびヒンジ部HG1,HG2により構成される。起立構造S2は、反射板PL3,PL4およびヒンジ部HG3,HG4により構成される。
起立構造S1の反射板PL1は、ヒンジ部HG1を介して基板1に対して垂直に起立している。反射板PL2は、ヒンジ部HG2により反射板PL1に連結され、基板1に対して垂直に起立している。起立構造S2の反射板PL3は、ヒンジ部HG3により基板1に対して垂直に起立している。反射板PL4は、ヒンジ部HG4により反射板PL3に連結され、基板1に対して垂直に起立している。反射板PL2と反射板PL4とは互いに対向している。
基板1には金属膜からなる電極パッド120が形成されている。反射板PL4に対向する反射板PL2の一面には、金属膜からなる静電板122が形成されている。電極パッド120と静電板122とを電気的に接続するように、基板1、ヒンジ部HG1、反射板PL1、ヒンジ部HG2および反射板PL2の表面に金属膜からなる配線層121が形成されている。
基板1上に金属膜からなる電極パッド220が形成されている。反射板PL2に対向する反射板PL4の一面には、金属膜からなる静電板222が形成されている。電極パッド220と静電板222とを電気的に接続するように、基板1、ヒンジ部HG3、反射板PL3、ヒンジ部HG4および反射板PL4の表面に金属膜からなる配線層221(後述する図4参照)が形成されている。
ヒンジ部HG2の湾曲により反射板PL2が反射板PL1に対してなす角度は可変となっている。同様に、ヒンジ部HG4の湾曲により反射板PL4が反射板PL3に対してなす角度が可変となっている。
電極パッド120,220間に電圧が印加されることにより反射板PL2の静電板122と反射板PL4の静電板222との間に静電力が働く。電極パッド120,220間に印加する電圧を変化させることにより、静電板122と静電板222との間に働く静電力が変化する。それにより、静電板122と静電板222とが平行状態を維持したまま静電板122と静電板222との間の距離が変化する。その結果、反射板PL2と反射板PL4とが平行状態を維持しつつ反射板PL2が反射板PL1に対してなす角度および反射板PL4が反射板PL3に対してなす角度が変化する。
反射板PL2に光が入射している場合、静電板122,222間に印加する電圧を変化させることにより、反射板PL1に対する反射板PL2のなす角度を変化させることができる。それにより、反射板PL2による反射光の方向を変化させることが可能となる。
図4〜図10は図1の光集積回路のレーザダイオードLDおよび反射装置ML1の製造方法を示す工程断面図である。
まず、図4に示すように、GaAsからなる基板1上に、厚さ300nmのアンドープのGaAsからなるバッファ層2およびレーザダイオード構造10を順にエピタキシャル成長させる。
ここで、レーザダイオード構造10は、n型分布反射膜(Distributed Bragg Reflection膜:以下、DBR膜と呼ぶ)11、厚さ126nmのn型Al0.50Ga0.50Asからなるスペーサ層12、多重量子井戸活性層13、厚さ126nmのp型Al0.50Ga0.50Asからなるスペーサ層14、p型分布反射膜(以下、DBR膜と呼ぶ)15および厚さ100nmのp型GaAs層16を順に含む。
n型DBR膜11は、厚さ79nmのAl0.90Ga0.10As膜と厚さ67nmのGaAs膜とを交互に24層ずつ含む積層構造を有する。また、多重量子井戸活性層13は、厚さ8nmの3層のGaAs膜と厚さ8nmの2層のInGaAs膜とを交互に含む。p型DBR膜15は、厚さ79nmのAl0.90Ga0.10As膜と厚さ67nmのGaAs膜とを交互に21層ずつ含む積層構造を有する。
また、レーザダイオード構造10上に、厚さ300nmのアンドープのAl0.50Ga0.50Asからなるエッチング停止層17およびフォトダイオード構造20を順にエピタキシャル成長させる。フォトダイオード構造20は、厚さ100nmのp型GaAs層21、厚さ1000nmのi型(アンドープ)GaAs層22および厚さ200nmのn型GaAs層23を順に含む。
また、フォトダイオード構造20上に、犠牲層(sacrificial層)3をエピタキシャル成長させる。犠牲層3は、厚さ0.4nmの複数のアンドープのIn0.50Ga0.50As膜および厚さ0.4nmの複数のアンドープのAlAs膜の積層構造を有する。ここでは、In0.50Ga0.50As膜とAlAs膜とが交互に100層ずつ積層され、犠牲層3の厚さは80nmとなる。
さらに、犠牲層3上に、歪層(strain層)40をエピタキシャル成長させる。歪層40は、厚さ10nmのアンドープのInXGa1-XAs層4および厚さ80nmのアンドープのGaAs層5の積層構造を有する。InXGa1-XAs層4の格子定数は、GaAs層5の格子定数よりも大きい。そのため、格子定数の差による歪が発生する。ここで、InXGa1-XAs層4のIn組成比Xは例えば0.20である。
歪層40上に、厚さ150nmのアンドープのAl0.50Ga0.50Asからなるエッチング停止層6、厚さ450nmのアンドープのGaAsからなる構成要素層(component層)7、厚さ10nmのアンドープのIn0.20Ga0.80Asからなる歪補償層(strain compensation層)8およ厚さ10nmのアンドープのGaAsからなるキャップ層9を順にエピタキシャル成長させる。
これらの層2,11〜17,21〜23,3〜9は、MBE法(分子線エピタキシャル成長法)、MOCVD法(有機金属化学的気相成長法)、CVD法(化学的気相成長法)等のエピタキシャル成長技術を用いて形成される。
歪補償層8は、後の工程で剥離された構成要素層7の変形を防止するために設けられる。キャップ層9は、製造工程時におけるInGaAs中のInの蒸発を防止するために設けられる。
次に、図5に示すように、フォトリソグラフィおよびエッチングにより所定領域のキャップ層9からp型GaAs層16までを除去する。
次に、図6に示すように、フォトリソグラフィおよびエッチングにより所定領域に露出したp型DBR膜15からn型DBR膜11までを除去し、素子分離用の溝53を形成する。また、所定領域に露出したp型DBR膜15上にp側電極131を形成する。
その後、図7に示すように、フォトリソグラフィおよびエッチングによりキャップ層9、歪補償層8、構成要素層7およびエッチング停止層6を除去し、図1および図2のヒンジ部HG0を規定する折曲溝51を形成する。
次に、図8に示すように、フォトリソグラフィおよびエッチングにより図1の反射板PL0を形成すべき領域を取り囲むようにキャップ層9、歪補償層8、構成要素層7、エッチング停止層6、歪層40および犠牲層3を除去し、分離溝52を形成する。それにより、分離溝52で取り囲まれたキャップ層9、歪補償層8、構成要素層7、エッチング停止層6、歪層40および犠牲層3の領域が周囲の領域から分離される。
さらに、図9に示すように、基板1の裏面にn側電極132を形成する。それにより、レーザダイオードLDが作製される。また、歪層40下の犠牲層3をフッ酸等を用いたウェットエッチング法により選択的にエッチングする。
その結果、図10に示すように、歪層40を構成するInXGa1-XAs層4とGaAs層5との格子定数の差に起因する歪を緩和するように歪層40が折曲溝51で湾曲する。それにより、図1および図2に示したヒンジ部HG0が形成される。
なお、InXGa1-XAs層4におけるIn組成比Xを変化させることにより、InGaAsとGaAsとの格子定数の差を約7%まで変化させることができる。
InXGa1-XAs層4の厚さt1、GaAs層5の厚さt2、InXGa1-XAs層4におけるIn組成比Xおよび歪層40の曲率半径Rとの間には、次の関係がある。
R=(a/Δa)・{(t1+t2)/2}
ここで、aはGaAsの格子定数であり、5.6533Åである。また、ΔaはInXGa1-XAsの格子定数とGaAsの格子定数との差である。In0.20Ga0.80Asの格子定数は5.7343Åである。
したがって、InXGa1-XAs層4の厚さ、GaAs層5の厚さ、InXGa1-XAs層4におけるIn組成比Xおよび折曲溝51の幅を最適に選択することにより、キャップ層9、歪補償層8、構成要素層7、エッチング停止層6および歪層40の積層構造が基板1に対して45度に起立し、主として構成要素層7により図1および図2の反射板PL0が形成される。このようにして、反射装置ML0が作製される。
レーザダイオードLDは、図10に点線の矢印で示されるように、レーザビームを基板1の表面に対して垂直に上方へ出射する。
上記の図5〜図8の工程におけるエッチングとしては、ウェットエッチング法またはドライエッチング法を用いることができる。
図11は図1のレンズLEの製造方法を示す図であり、(a)は模式的平面図、(b)は模式的断面図である。図11はレンズLEの起立前の状態を示している。
図4の工程の後、図7の工程時に、フォトリソグラフィおよびエッチングによりキャップ層9、歪補償層8、構成要素層7およびエッチング停止層6を除去し、図1のレンズLEのヒンジ部(図示せず)を規定する折曲溝51を形成する。また、図8の工程時に、レンズLEを形成すべき矩形領域を取り囲むようにフォトリソグラフィおよびエッチングによりキャップ層9、歪補償層8、構成要素層7、エッチング停止層6、歪層40および犠牲層3を除去し、分離溝52を形成する。それにより、分離溝52で取り囲まれたキャップ層9、歪補償層8、構成要素層7、エッチング停止層6、歪層40および犠牲層3の矩形領域が、図11(a)に示すように、周囲の領域から分離される。
さらに、キャップ層9上に膜厚2000nmのフォトレジストRを塗布し、フォトレジストRにフォトリソグラフィによりフレネルレンズのパターンを有するレンズLEを形成する。
また、図9の工程時に、図11(b)に示すように、歪層40下の犠牲層3をフッ酸等を用いたウェットエッチング法により選択的にエッチングする。その結果、歪層40を構成するInXGa1-XAs層4とGaAs層5との格子定数の差に起因する歪を緩和するように歪層40が折曲溝51で湾曲する。それにより、レンズLEが基板1上に起立する。
この場合、InXGa1-XAs層4の厚さ、GaAs層5の厚さ、InXGa1-XAs層4におけるIn組成比Xおよび折曲溝51の幅を最適に選択することにより、キャップ層9、歪補償層8、構成要素層7、エッチング停止層6および歪層40の積層構造とともにレンズLEが基板1に対して垂直に起立する。
図12は図1のフォトダイオードPDの製造方法を示す模式的断面図である。
図4の工程後、図12に示すように、フォトリソグラフィおよびエッチングにより所定領域のキャップ層9から犠牲層3までを除去し、n型GaAs層23を露出させる。また、フォトリソグラフィおよびエッチングにより一部領域のn型GaAs層23およびi型GaAs層22を除去し、p型GaAs層21を露出させる。露出したn型GaAs層23にn側電極141を形成し、露出したp型GaAs層21にp側電極142を形成する。このようにして、p型GaAs層21、i型GaAs層22およびn型GaAs層23からなるフォトダイオードPDが作製される。
図13〜図16は図1および図3の反射装置ML2の製造方法を示す工程図であり、図13〜図15の(a)は模式的平面図、図13〜図15の(b)および図16はA−A線模式的断面図である。
図4の工程後、図15に示すように、フォトリソグラフィおよびエッチングによりキャップ層9、歪補償層8、構成要素層7およびエッチング停止層6を除去し、図1および図3のヒンジ部HG1,HG2.HG3,HG4を規定する2組のL字状の折曲溝51を形成する。
次に、図14に示すように、キャップ層9上に、金属膜からなる配線層121,221を形成する。また、キャップ層9上に金属膜からなる電極パッド120,220および静電板122,222を形成する。配線層121,221は、図1および図3のヒンジ部HG1,HG2,HG3,HG4と交差するため、電極パッド120,220および静電板122,222に比べて小さな厚みを有する。
本実施の形態の光集積回路では、静電板122,222に静電力を発生させるために、電極パッド120,220間に電圧が印加されるが、配線層121,221に電流は流れない。そのため、配線層121,221の厚さを薄くすることにより、ヒンジ部HG1,HG2,HG3,HG4の湾曲を可能にするとともにヒンジ部HG1,HG2,HG3,HG4の湾曲による配線層121,221の切れを防止することができる。電極パッド120,220は、ワイヤボンディングを確実にするために、ある程度大きな厚みを有することが好ましい。
例えば、配線層121,221は、厚さ4nmのTi(チタン)および厚さ40nmのAu(金)の積層構造からなる。電極パッド120,220および静電板122,222は、厚さ4nmのTiおよび厚さ200nmのAuの積層構造からなる。そのため、薄い配線層121,221の堆積工程は、厚い電極パッド120,220および静電板122,222の堆積工程とは別に行われる。
次に、図15に示すように、フォトリソグラフィおよびエッチングにより図1および図3の反射板PL1,PL2を形成すべき領域および反射板PL3,PL4を形成すべき領域を取り囲むようにキャップ層9、歪補償層8、構成要素層7、エッチング停止層6、歪層40および犠牲層3を除去し、分離溝52を形成する。それにより、分離溝52で取り囲まれたキャップ層9、歪補償層8、構成要素層7、エッチング停止層6、歪層40および犠牲層3の領域が周囲の領域から分離される。その後、電極パッド120,220へのワイヤボンディングを行う。
次に、図16に示すように、歪層40下の犠牲層3をフッ酸等を用いたウェットエッチング法により選択的にエッチングする。その結果、歪層40を構成するInXGa1-XAs層4とGaAs層5との格子定数の差に起因する歪を緩和するように歪層40が折曲溝51で湾曲する。それにより、図1および図3に示したヒンジ部HG1,HG2,HG3,HG4が形成される。
この場合、InXGa1-XAs層4の厚さ、GaAs層5の厚さ、InXGa1-XAs層4におけるIn組成比Xおよび折曲溝51の幅を最適に選択することにより、キャップ層9、歪補償層8、構成要素層7、エッチング停止層6および歪層40の積層構造が基板1に対して垂直に起立し、主として構成要素層7により図1および図3の反射板PL1,PL2,PL3,PL4が形成される。このようにして、反射装置ML2が作製される。
上記の図13および図15の工程におけるエッチングとしては、ウェットエッチング法またはドライエッチング法を用いることができる。
なお、図1の反射装置ML3の製造方法は、図4〜図10に示した反射装置ML1の製造方法と同様である。
本実施の形態に係る光集積回路においては、レーザダイオードLDから垂直上方へレーザビームが出射され、そのレーザビームが反射装置ML1の反射板PL0で基板1の表面に平行な方向に反射される。そのレーザビームはレンズLEにより集束され、一方の反射装置ML2の反射板PL2により反射され、さらに他方の反射装置ML2の反射板PL2により反射される。そのレーザビームは、反射装置ML3の反射板PL5により垂直下方へ反射され、複数のフォトダイオードPDのいずれかに入射する。
この場合、図3に示した電極パッド120,220間に印加する電圧を変化させることにより、反射装置ML2の反射板PL2を垂直方向の軸の周りで回動させることができる。それにより、レーザビームを入射させるフォトダイオードPDを切り替えることができる。
したがって、図1の光集積回路によれば、光の経路を切り替える光スイッチが実現される。
図1の光集積回路では、2つの反射装置ML2が設けられているが、1つの反射装置ML2のみが設けられてもよい。
なお、図1の光集積回路に反射装置ML3およびフォトダイオードPDを設けない場合には、光集積回路を光学スキャナとして用いることができる。
本実施の形態の光集積回路は、通常のフォトリソグラフィ、エッチング、エピタキシャル成長等のプレーナ技術により容易かつ安価に製造することができる。
また、本実施の形態に係る光集積回路の製造方法によれば、手動組み立てまたは複雑な組み立て機構を必要とすることなく、反射装置ML1,ML2,ML3の自己組み立てが可能となる。
本実施の形態では、レーザダイオードLDが発光素子に相当し、反射装置ML1、反射装置ML2または反射装置ML3が第1の反射装置に相当し、反射装置ML2が第2の反射装置に相当し、反射装置ML3が第3の反射装置に相当する。また、フォトダイオードPDが受光素子に相当する。さらに、犠牲層3が第1の層に相当し、歪層40が第2の層に相当し、構成要素層7および歪補償層8が第3の層に相当し、InXGa1-XAs層4およびGaAs層5が複数の半導体層に相当する。さらに、反射板PL1が第1の反射板に相当し、反射板PL2が第2の反射板に相当し、ヒンジ部HG1が第1のヒンジ部に相当し、ヒンジ部HG2が第2のヒンジ部に相当する。
また、上記実施の形態では、積層構造をGaAs系半導体により構成しているが、積層構造をInGaP系、GaN系等の他の化合物半導体等により構成してもよい。
上記実施の形態では、発光素子として面発光型レーザダイオードLDを用いているが、端面発光型レーザダイオード、発光ダイオード等の他の発光素子を用いてもよい。
また、上記実施の形態では、受光素子としてフォトダイオードPDを用いているが、フォトトランジスタ、CCD(電荷結合素子)等の他の受光素子を用いてもよい。
上記実施の形態では、GaAsからなる基板1を用いているが、犠牲層3、歪層40および構成要素層7等の材料を考慮してSi(シリコン)基板等の他の基板を用いてもよい。
また、上記実施の形態では、犠牲層3の材料は、上記の実施の形態に限定されず、選択エッチングを考慮して他の材料を用いてもよい。
また、上記実施の形態では、歪層40としてInXGa1-XAs層4とGaAs層5との積層構造を用いているが、これに限定されず、異なる格子定数を有する種々の半導体層の組み合わせを用いることができる。歪層40として他のIII −V族化合物半導体の積層構造、II−VI族化合物半導体の積層構造を用いてもよい。また、歪層としてSiおよびGe(ゲルマニウム)を含む半導体層の積層構造を用いてもよい。
また、上記実施の形態では、構成要素層7がGaAsからなるが、構成要素層7の材料は、上記実施の形態に限定されず、構成要素層7の用途に応じて任意の材料を用いることができる。例えば、複数のAlGaAs層および複数のGaAs層を交互に含むDBR膜を用いてもよい。また、AlAsを酸化することにより得られる酸化アルミニウム層とAlGaAs層とを交互に積層することにより得られるDBR膜を用いてもよい。
本発明に係る光集積回路は、光スイッチ、光学セレクタ、光学スキャナ等の種々の光学装置、光回路等として利用することができる。
本発明の一実施の形態におけるモノリシック光集積回路の模式的斜視図である。 図1のレーザダイオードおよび反射装置の斜視図である。 図1の反射装置の斜視図である。 図1の光集積回路のレーザダイオードおよび反射装置の製造方法を示す工程断面図である。 図1の光集積回路のレーザダイオードおよび反射装置の製造方法を示す工程断面図である。 図1の光集積回路のレーザダイオードおよび反射装置の製造方法を示す工程断面図である。 図1の光集積回路のレーザダイオードおよび反射装置の製造方法を示す工程断面図である。 図1の光集積回路のレーザダイオードおよび反射装置の製造方法を示す工程断面図である。 図1の光集積回路のレーザダイオードおよび反射装置の製造方法を示す工程断面図である。 図1の光集積回路のレーザダイオードおよび反射装置の製造方法を示す工程断面図である。 図1のレンズの製造方法を示す図である。 図1のフォトダイオードの製造方法を示す模式的断面図である。 図1および図3の反射装置の製造方法を示す工程図である。 図1および図3の反射装置の製造方法を示す工程図である。 図1および図3の反射装置の製造方法を示す工程図である。 図1および図3の反射装置の製造方法を示す工程図である。
符号の説明
1 基板
2 バッファ層
3 犠牲層
4 InXGa1-XAs層
5 GaAs層
6,17 エッチング停止層
7 構成要素層
8 歪補償層
9 キャップ層
10 レーザダイオード構造
11 n型DBR膜
12 スペーサ層
13 多重量子井戸活性層
14 スペーサ層
15 p型DBR膜
16 p型GaAs層
20 フォトダイオード構造
40 歪層
120,220 電極パッド
122,222 静電板
121,221 配線層
LD 面発光型レーザダイオード
LE レンズ
HG0,HG1,HG2,HG3,HG4 ヒンジ部
ML1,ML2,ML3 反射装置
PD フォトダイオード
PL0,PL1,PL2,PL3,PL4,PL5 反射板
R フォトレジスト

Claims (9)

  1. 基板と、
    前記基板上に形成された積層構造と、
    前記基板または前記積層構造により構成され光を発生する発光素子と、
    前記積層構造により構成され前記発光素子により発生された光を反射する第1の反射装置とを備え、
    前記積層構造は、異なる格子定数を有する複数の半導体層を含み、
    前記第1の反射装置は、前記複数の半導体層の格子定数の差に起因する歪により前記基板上に起立したことを特徴とする光集積回路。
  2. 前記発光素子は、前記基板に対して略垂直な方向に光を発生する面発光型発光素子であり、
    前記第1の反射装置は、前記基板上にヒンジ部を介して設けられ、前記面発光型発光素子により発生された光を前記基板に対して略平行な方向に反射する反射板を含むことを特徴とする請求項1記載の光集積回路。
  3. 前記積層構造は、第1の層、第2の層および第3の層を順に含み、
    前記第2の層は、異なる格子定数を有する前記複数の半導体層を含み、
    前記第1の反射装置の前記ヒンジ部で前記第3の層が除去され、前記ヒンジ部を除く部分で前記反射板の領域を取り囲むように前記第3の層から前記第1の層に達する分離溝が形成されるとともに、前記反射板の領域における前記第1の層の部分が選択的に除去されることにより、前記第2の層に発生する歪により前記第2の層が前記ヒンジ部で谷状に折曲され、前記反射板が基板に対して起立したことを特徴とする請求項2記載の光集積回路。
  4. 前記複数の半導体層の格子定数の差に起因する歪により前記基板上に起立するように前記積層構造に設けられ前記第1の反射装置からの光を反射する第2の反射装置をさらに備え、
    前記第2の反射装置は、
    前記基板上に第1のヒンジ部を介して略垂直に起立しかつ前記基板に対して略垂直な一辺を有する第1の反射板と、
    前記第1の反射板の前記一辺に第2のヒンジ部を介して連結された第2の反射板とを含むことを特徴とする請求項1〜3のいずれかに記載の光集積回路。
  5. 前記積層構造は、第1の層、第2の層および第3の層を順に含み、
    前記第2の層は、異なる格子定数を有する前記複数の半導体層を含み、
    前記第2の反射装置の前記第1および第2のヒンジ部で前記第3の層が除去され、前記第1のヒンジ部を除く部分で前記第1および第2の反射板の領域を取り囲むように前記第3の層から前記第1の層に達する分離溝が形成されるとともに、前記第1および第2の反射板の領域における前記第1の層の部分が選択的に除去されることにより、前記第2の層に発生する歪により前記第2の層が前記第1および第2のヒンジ部で谷状に折曲され、前記第1および第2の反射板が基板に対して起立したことを特徴とする請求項4記載の光集積回路。
  6. 前記基板または前記積層構造に設けられ前記発光素子からの光を受光する受光素子をさらに備えたことを特徴とする請求項1〜5のいずれかに記載の光集積回路。
  7. 前記複数の半導体層の格子定数の差に起因する歪により前記基板上に起立するように前記積層構造に設けられ前記発光素子からの光を反射して前記受光素子に導く第3の反射装置をさらに備え、
    前記第3の反射装置は、前記基板にヒンジ部を介して設けられた反射板を含むことを特徴とする請求項1〜6のいずれかに記載の光集積回路。
  8. 前記積層構造は、第1の層、第2の層および第3の層を順に含み、
    前記第2の層は、異なる格子定数を有する前記複数の半導体層を含み、
    前記第3の反射装置の前記ヒンジ部で前記第3の層が除去され、前記ヒンジ部を除く部分で前記反射板の領域を取り囲むように前記第3の層から前記第1の層に達する分離溝が形成されるとともに、前記反射板の領域における前記第1の層の部分が選択的に除去されることにより、前記第2の層に発生する歪により前記第2の層が前記ヒンジ部で谷状に折曲され、前記反射板が基板に対して起立したことを特徴とする請求項7記載の光集積回路。
  9. 前記複数の半導体層は化合物半導体からなることを特徴とする請求項1〜8のいずれかに記載の光集積回路。
JP2003374263A 2003-11-04 2003-11-04 光集積回路 Pending JP2005142201A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374263A JP2005142201A (ja) 2003-11-04 2003-11-04 光集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374263A JP2005142201A (ja) 2003-11-04 2003-11-04 光集積回路

Publications (1)

Publication Number Publication Date
JP2005142201A true JP2005142201A (ja) 2005-06-02

Family

ID=34686030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374263A Pending JP2005142201A (ja) 2003-11-04 2003-11-04 光集積回路

Country Status (1)

Country Link
JP (1) JP2005142201A (ja)

Similar Documents

Publication Publication Date Title
US20230197906A1 (en) Semiconductor light emitting device
US6658041B2 (en) Wafer bonded vertical cavity surface emitting laser systems
JPH10303515A (ja) 長波長vcsel
EP2847834A1 (en) Lasers with beam-shape modification
EP2604574B1 (en) Transmissive image modulator using multi-fabry-perot resonant mode and multi-absorption mode
US8175128B2 (en) Semiconductor laser element and semiconductor laser device
US10958042B2 (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP2011029339A (ja) 半導体素子およびその製造方法
JP2015162566A (ja) 発光装置およびその製造方法、並びにプロジェクター
JP2000164982A (ja) 面発光レーザ
CN113316875A (zh) 表面发射激光器模块、光学装置和表面发射激光基板
JP2016178234A (ja) 半導体受光デバイス
JP2005142201A (ja) 光集積回路
JP2010225737A (ja) 発光装置および発光モジュール
JP2001260092A (ja) 半導体装置およびその製造方法
US6534838B1 (en) Semiconductor device and method of fabricating the same
JP3933602B2 (ja) 半導体装置およびその製造方法
US6930376B2 (en) Semiconductor device having a folded layer structure
JP2006190762A (ja) 半導体レーザ
JPH1154846A (ja) 共振型面発光素子
JP3762893B2 (ja) 反射装置およびその製造方法
JP2005116926A (ja) 半導体レーザ及び半導体レーザの製造方法
JP2005238337A (ja) 半導体装置およびその製造方法
JP2011014819A (ja) 発光装置およびプロジェクター
JP2006259592A (ja) ディスプレイ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916