JP2005137992A - Drainage treatment apparatus - Google Patents

Drainage treatment apparatus Download PDF

Info

Publication number
JP2005137992A
JP2005137992A JP2003375346A JP2003375346A JP2005137992A JP 2005137992 A JP2005137992 A JP 2005137992A JP 2003375346 A JP2003375346 A JP 2003375346A JP 2003375346 A JP2003375346 A JP 2003375346A JP 2005137992 A JP2005137992 A JP 2005137992A
Authority
JP
Japan
Prior art keywords
activated sludge
tank
anaerobic
magnetic powder
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003375346A
Other languages
Japanese (ja)
Other versions
JP4313647B2 (en
Inventor
Yasukura Sakai
保藏 酒井
Susumu Ishida
進 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2003375346A priority Critical patent/JP4313647B2/en
Publication of JP2005137992A publication Critical patent/JP2005137992A/en
Application granted granted Critical
Publication of JP4313647B2 publication Critical patent/JP4313647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drainage treatment apparatus which can improve a phosphorus removal effect by controlling the inflow of activated sludge into a dephosphorization means and maintain relatively strongly anaerobic condition required for phosphorus discharge by increasing sludge concentration in an anaerobic tank. <P>SOLUTION: The drainage treatment apparatus has the anaerobic tank 12 for anaerobically treating phosphorus-containing drainage with magnetic powder-containing activated sludge, and the dephosphorization means 17 for removing phosphorus from the anaerobically treated water drawn from the anaerobic tank 12. A magnetic separation means 16 for separating the magnetic powder-containing activated sludge and the anaerobically treated water is installed in the anaerobic tank. A passage 35 for supplying the separated anaerobically treated water to the dephosphorization means, a passage 38 for supplying the separated magnetic powder-containing activated sludge to the subsequent treatment tank, a passage 36 for returning dephosphorized water subjected to the dephosphorization treatment in the dephosphorization means to a treatment tank at the subsequent stage of the anaerobic tank, a separation means 18 for separating the magnetic powder-containing activated sludge from the activated sludge slurry flowing out from the subsequent treatment tank, and a passage 24 for returning the magnetic powder-containing activated sludge separated by the separation means to the anaerobic tank are installed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排水処理装置に関し、詳しくは、生物学的脱リン法を採用した排水処理装置におけるリンの除去を効率よく行うとともに、原水中のリン及びアンモニアを有用なリン酸マグネシウムアンモニウム六水和物として効果的に回収することができる排水処理装置に関する。   TECHNICAL FIELD The present invention relates to a wastewater treatment apparatus, and more specifically, efficiently removes phosphorus in a wastewater treatment apparatus that employs a biological dephosphorization method, and also useful phosphorus and ammonia in raw water for useful magnesium ammonium phosphate hexahydrate. The present invention relates to a wastewater treatment apparatus that can be effectively recovered as a product.

下水や有機排水中に含まれるBODの除去だけでなく、窒素及びリンを除去する排水処理装置として、嫌気槽の後段に、該嫌気槽内から引き抜いた活性汚泥の固液分離を行う固液分離手段を設けるとともに、該固液分離手段の分離液にマグネシウム化合物を添加して分離液中のアンモニア及びリンをリン酸マグネシウムアンモニウム六水和物として除去する脱リン手段を設けた装置が知られている(例えば、特許文献1参照。)。
特開2000−296399号公報
Solid-liquid separation that not only removes BOD contained in sewage and organic wastewater, but also performs solid-liquid separation of activated sludge extracted from the anaerobic tank at the latter stage of the anaerobic tank as a wastewater treatment device that removes nitrogen and phosphorus. There is known an apparatus provided with a dephosphorization means for adding a magnesium compound to a separation liquid of the solid-liquid separation means and removing ammonia and phosphorus in the separation liquid as magnesium ammonium phosphate hexahydrate. (For example, refer to Patent Document 1).
JP 2000-296399 A

しかし、嫌気槽の活性汚泥は、好気槽の活性汚泥に比べて微細なものであるため、通常の重力沈降では効果的な固液分離を行うことが困難であった。また、リンの除去を効率よく行うためには、嫌気槽において十分なリンの吐き出しが行われる必要があるが、下水のような低濃度排水の場合には、リンの吐き出しに必要な嫌気状態を維持することが困難なことがあった。   However, since the activated sludge in the anaerobic tank is finer than the activated sludge in the aerobic tank, it is difficult to perform effective solid-liquid separation by ordinary gravity sedimentation. In addition, in order to efficiently remove phosphorus, it is necessary to discharge sufficient phosphorus in an anaerobic tank. However, in the case of low-concentration drainage such as sewage, an anaerobic state necessary for discharging phosphorus is assumed. It was sometimes difficult to maintain.

そこで本発明は、脱リン手段への活性汚泥の流入を抑制することによって脱リン手段でのリンの除去効果を高めることができるとともに、嫌気槽における汚泥濃度を高く維持することができ、嫌気槽内をリンの吐き出しに必要な比較的強い嫌気状態に維持することができる排水処理装置を提供することを目的としている。   Therefore, the present invention can enhance the removal effect of phosphorus in the dephosphorization means by suppressing the inflow of activated sludge to the dephosphorization means, and can maintain a high sludge concentration in the anaerobic tank. An object of the present invention is to provide a wastewater treatment apparatus capable of maintaining the inside in a relatively strong anaerobic state necessary for discharging phosphorus.

上記目的を達成するため、本発明の排水処理装置は、リンを含む排水を、磁性粉を添加した磁性粉含有活性汚泥により嫌気処理を行う嫌気槽と、該嫌気槽から抜き出した嫌気処理液からリンを除去する脱リン手段とを備えた生物学的脱リン法を採用した排水処理装置であって、前記嫌気槽に、磁力によって活性汚泥懸濁液中の前記磁性粉含有活性汚泥と嫌気処理液とを分離する磁気分離手段を設けるとともに、分離した嫌気処理液を前記脱リン手段に供給する経路と、分離した磁性粉含有活性汚泥を嫌気槽後段の処理槽に供給する経路と、脱リン手段で脱リン処理を行った後の脱リン液を嫌気槽後段の前記処理槽に返送する経路と、該後段の処理槽から流出する活性汚泥懸濁液から磁性粉含有活性汚泥を分離する分離手段と、該分離手段で分離した磁性粉含有活性汚泥を前記嫌気槽に返送する経路とを備えていることを特徴としている。   In order to achieve the above-mentioned object, the waste water treatment apparatus of the present invention comprises an anaerobic tank that performs anaerobic treatment of waste water containing phosphorus with magnetic powder-containing activated sludge to which magnetic powder is added, and an anaerobic treatment liquid extracted from the anaerobic tank. A wastewater treatment apparatus adopting a biological dephosphorization method comprising a dephosphorization means for removing phosphorus, wherein the activated sludge and the anaerobic treatment containing the magnetic powder in the activated sludge suspension are magnetically applied to the anaerobic tank. A path for supplying the separated anaerobic treatment liquid to the dephosphorization means, a path for supplying the separated magnetic powder-containing activated sludge to the treatment tank downstream of the anaerobic tank, and a dephosphorization. The path for returning the dephosphorization liquid after the dephosphorization treatment by means to the treatment tank downstream of the anaerobic tank, and the separation for separating the magnetic powder-containing activated sludge from the activated sludge suspension flowing out of the subsequent treatment tank Means and the separation means It is characterized in that the the magnetic powder-containing active sludge and a route for returning to the anaerobic tank.

また、前記脱リン手段が、前記嫌気処理液にマグネシウム化合物を添加して嫌気処理液中のアンモニア及びリンをリン酸マグネシウムアンモニウム六水和物として除去すること、あるいは、前記嫌気処理液中のリン酸イオンを、種結晶の表面にリン酸ヒドロキシアパタイトとして晶析させて除去することを特徴とし、前記嫌気槽後段の処理槽が好気槽であること、あるいは、前記嫌気槽後段の処理槽が無酸素槽と、該無酸素槽の後段に連設した好気槽とを有し、該好気槽内の活性汚泥懸濁液を前記無酸素槽に循環させる経路を有していることを特徴としている。   In addition, the dephosphorization means may add a magnesium compound to the anaerobic treatment solution to remove ammonia and phosphorus in the anaerobic treatment solution as magnesium ammonium phosphate hexahydrate, or may contain phosphorus in the anaerobic treatment solution. Acid ions are crystallized and removed as hydroxyapatite phosphate on the surface of the seed crystal, the treatment tank after the anaerobic tank is an aerobic tank, or the treatment tank after the anaerobic tank is It has an oxygen-free tank and an aerobic tank connected to the subsequent stage of the oxygen-free tank, and has a path for circulating the activated sludge suspension in the aerobic tank to the oxygen-free tank. It is a feature.

さらに、嫌気槽後段の処理槽である前記好気槽から流出する活性汚泥懸濁液中に含まれる前記磁性粉含有活性汚泥の一部を磁力によって液中から分離する第2磁気分離手段と、該第2磁気分離手段で分離した磁性粉活性汚泥を前記嫌気槽に返送する経路と、該第2磁気分離手段から流出した活性汚泥懸濁液中の磁性粉活性汚泥の残部を液中から分離する固液分離手段と、該固液分離手段で分離した処理水を抜き出す経路と、該固液分離手段で分離した磁性粉活性汚泥を前記嫌気槽に返送する経路とを備えていることを特徴とし、加えて、前記第2磁気分離手段で分離した活性汚泥及び前記固液分離手段で分離した活性汚泥に可溶化処理、減容化処理を施す可溶化・減容化手段を備えていることを特徴としている。   Furthermore, a second magnetic separation means for separating a part of the magnetic powder-containing activated sludge contained in the activated sludge suspension flowing out from the aerobic tank, which is a treatment tank subsequent to the anaerobic tank, from the liquid by magnetic force; The path for returning the magnetic powder activated sludge separated by the second magnetic separation means to the anaerobic tank and the remainder of the magnetic powder activated sludge in the activated sludge suspension flowing out from the second magnetic separation means are separated from the liquid. A solid-liquid separation means, a path for extracting treated water separated by the solid-liquid separation means, and a path for returning the magnetic powder activated sludge separated by the solid-liquid separation means to the anaerobic tank. In addition, the activated sludge separated by the second magnetic separation means and the solubilized / volume-reducing means for subjecting the activated sludge separated by the solid-liquid separation means to solubilization and volume reduction treatment are provided. It is characterized by.

本発明の排水処理装置によれば、嫌気槽の活性汚泥懸濁液中の活性汚泥を磁力によって強制的に分離するので、リン除去手段に対して活性汚泥濃度の低い嫌気処理液を供給することができ、リン除去手段における脱リン効率を向上させることができる。   According to the waste water treatment apparatus of the present invention, the activated sludge in the activated sludge suspension in the anaerobic tank is forcibly separated by magnetic force, so that an anaerobic treatment liquid having a low activated sludge concentration is supplied to the phosphorus removing means. It is possible to improve the dephosphorization efficiency in the phosphorus removing means.

図1は本発明の一形態例を示す排水処理装置の系統図、図2は磁気分離手段の一例を示す断面図である。本形態例に示す排水処理装置は、排水や下水(原水)中の懸濁成分や発泡成分を分離除去するための加圧浮上分離装置11と、磁性粉を添加した磁性粉含有活性汚泥(以下、単に活性汚泥ということがある。)によって水処理を行う嫌気槽12,無酸素槽13及び好気槽14を有する生物反応槽15と、前記嫌気槽12の水面部に設けられた第1磁気分離手段16と、該第1磁気分離手段16で分離した嫌気処理液に対して脱リン処理を行う脱リン手段17と、前記好気槽14から流出する活性汚泥懸濁液中に含まれる磁性粉含有活性汚泥の一部を磁力によって液中から分離する第2磁気分離手段18と、該第2磁気分離手段18から流出した活性汚泥懸濁液中の磁性粉含有活性汚泥の残部及び磁性粉を含有しない活性汚泥を重力によって沈降分離する固液分離手段としての最終沈殿池19とを備えている。   FIG. 1 is a system diagram of a wastewater treatment apparatus showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an example of magnetic separation means. The wastewater treatment apparatus shown in the present embodiment includes a pressurized flotation separation apparatus 11 for separating and removing suspended components and foaming components in wastewater and sewage (raw water), and magnetic powder-containing activated sludge (hereinafter referred to as magnetic powder). The anaerobic tank 12, the anaerobic tank 13 and the aerobic tank 14 for water treatment, and the first magnetic provided on the water surface of the anaerobic tank 12. Separation means 16, dephosphorization means 17 for dephosphorizing the anaerobic treatment liquid separated by the first magnetic separation means 16, and magnetism contained in the activated sludge suspension flowing out from the aerobic tank 14 The second magnetic separation means 18 for separating a part of the powder-containing activated sludge from the liquid by magnetic force, the remainder of the magnetic powder-containing activated sludge in the activated sludge suspension flowing out from the second magnetic separation means 18 and the magnetic powder Activated sludge containing no And a settling tank 19 as a solid-liquid separation means for separating.

前記第2磁気分離手段18及び前記最終沈殿池19には、磁気分離した活性汚泥及び沈降分離した活性汚泥を汚泥受槽21に抜き取って生物反応槽15に返送するための磁気分離汚泥返送経路22及び沈降分離汚泥返送経路23がそれぞれ設けられている。また、汚泥受槽21と生物反応槽15との間の汚泥返送経路24には、活性汚泥の可溶化及び減容化(滅菌)処理を行う可溶化・減容化手段25と、返送汚泥のpH調整を行うためのアルカリを添加するアルカリ添加槽26とが設けられている。また、最終沈殿池19には、活性汚泥を分離した処理水を抜き出す処理水流出経路27が設けられ、可溶化・減容化手段25には、該可溶化・減容化手段25及びアルカリ添加槽26をバイパスするバイパス経路28が設けられている。   In the second magnetic separation means 18 and the final sedimentation basin 19, a magnetic separation sludge return path 22 for extracting the magnetically separated activated sludge and the sedimented activated sludge to the sludge receiving tank 21 and returning them to the biological reaction tank 15, and A settling separation sludge return path 23 is provided. Further, in the sludge return path 24 between the sludge receiving tank 21 and the biological reaction tank 15, the solubilization / volume reduction means 25 for solubilizing and reducing the volume (sterilization) of activated sludge, and the pH of the return sludge are provided. An alkali addition tank 26 for adding an alkali for adjustment is provided. The final sedimentation basin 19 is provided with a treated water outflow passage 27 for extracting treated water from which activated sludge has been separated. The solubilizing / volume reducing means 25 includes the solubilizing / volume reducing means 25 and an alkali addition. A bypass path 28 for bypassing the tank 26 is provided.

前記嫌気槽12及び無酸素槽13内には、撹拌機31,32がそれぞれ設けられ、好気槽14内には、散気管33が設けられている。また、無酸素槽13と好気槽14との間には、好気槽13内の活性汚泥懸濁液(硝化液)を無酸素槽13に循環させる硝化液循環経路34が設けられている。脱リン手段17には、第1磁気分離手段16で分離した嫌気処理液が供給される嫌気処理液流入経路35と、脱リン処理を終えた脱リン処理液を無酸素槽13に返送循環する脱リン処理液返送経路36と、脱リン処理によって回収したリン化合物を抜き出すリン化合物抜出経路37とが設けられている。また、第1磁気分離手段16には、分離した磁性粉含有活性汚泥を後段の無酸素槽13に送る活性汚泥経路38が設けられている。   In the anaerobic tank 12 and the anaerobic tank 13, stirrers 31 and 32 are provided, and in the aerobic tank 14, an aeration tube 33 is provided. Further, a nitrification liquid circulation path 34 for circulating the activated sludge suspension (nitrification liquid) in the aerobic tank 13 to the anoxic tank 13 is provided between the anoxic tank 13 and the aerobic tank 14. . In the dephosphorization means 17, the anaerobic treatment liquid inflow path 35 to which the anaerobic treatment liquid separated by the first magnetic separation means 16 is supplied, and the dephosphorization treatment liquid after the dephosphorization treatment is returned and circulated to the anoxic tank 13. A dephosphorization liquid return path 36 and a phosphorus compound extraction path 37 for extracting the phosphorus compound recovered by the dephosphorization process are provided. The first magnetic separation means 16 is provided with an activated sludge path 38 for sending the separated magnetic powder-containing activated sludge to the anaerobic tank 13 at the subsequent stage.

前記生物反応槽15で水処理を行う活性汚泥には、前記磁気分離手段16,18で活性汚泥を磁気分離可能な状態とするため、あらかじめ磁性粉が添加混合されており、磁性粉を活性汚泥に吸着保持させた状態にしておく必要がある。使用する磁性粉には、適当なものを選定できるが、10μm以上の大きさの磁性粉は活性汚泥に対して重すぎるため、重力によって活性汚泥から分離してしまうことが多いので、これよりも小さなものが好ましく、通常は0.05〜2μmの範囲のものが最適である。超微粒子状の磁性粉を使用することも可能であるが、磁性粉のコストが上昇するので好ましくない。   In order to make the activated sludge subjected to water treatment in the biological reaction tank 15 magnetically separable by the magnetic separation means 16, 18, magnetic powder is added and mixed in advance. It is necessary to keep it in a state of being adsorbed and held on the surface. As the magnetic powder to be used, an appropriate one can be selected. However, since magnetic powder having a size of 10 μm or more is too heavy for activated sludge, it is often separated from activated sludge by gravity. Smaller ones are preferred, and usually those in the range of 0.05 to 2 μm are optimal. Although it is possible to use ultrafine magnetic powder, it is not preferable because the cost of the magnetic powder increases.

また、磁性粉の保磁力は、0〜200Oeが適当であり、保磁力が大き過ぎる磁性粉は、自身の磁力によって凝集し、活性汚泥から分離して沈降してしまう欠点がある。さらに、長期の使用を考慮すると、常温の水中で溶解したり、変質したりすることがほとんどない酸化物系の磁性粉を使用することが好ましく、特に、コスト等を考慮すると、粒径が0.1〜1.0μm、例えば0.4μm程度の四三酸化鉄粉が最適である。   Further, the coercive force of the magnetic powder is suitably 0 to 200 Oe, and the magnetic powder having an excessively large coercive force has the disadvantage that it aggregates due to its own magnetic force and separates from the activated sludge and settles. Furthermore, in consideration of long-term use, it is preferable to use an oxide-based magnetic powder that hardly dissolves or deteriorates in water at room temperature. 0.1 to 1.0 μm, for example, about 0.4 μm of iron trioxide powder is optimal.

磁性粉の濃度(添加量)は、低すぎると活性汚泥を分離するために超電導磁石のような強力な磁石が必要となり、逆に濃度が高すぎると磁性粉のコストが上昇することになるので、活性汚泥のMLVSSが1に対して0.01から10の濃度範囲になるようにすることが好ましく、通常は、活性汚泥のMLVSSと同程度の濃度となるように設定すればよい。   If the concentration (addition amount) of the magnetic powder is too low, a strong magnet such as a superconducting magnet is required to separate the activated sludge. Conversely, if the concentration is too high, the cost of the magnetic powder will increase. The MLVSS of the activated sludge is preferably in a concentration range of 0.01 to 10 with respect to 1, and normally, it may be set to have a concentration similar to that of the activated sludge MLVSS.

このような磁性粉は、生物反応槽15等の適当な位置で活性汚泥懸濁液中に投入されると、直ちに活性汚泥に吸着保持された状態となり、磁石に引き寄せられる磁性粉含有活性汚泥となる。この磁性粉含有活性汚泥は、そのほとんどあるいは全量が返送汚泥と共に循環するので、活性汚泥懸濁液への磁性粉の添加混合は、通常は、磁気分離を開始する前に1回だけ行えばよいが、水処理施設の状況に応じて適宜追加することもできる。また、磁性粉を添加する際には、系内を循環する活性汚泥の全体に満遍なく磁性粉が吸着するように、活性汚泥を循環させながら適当な量の磁性粉を適当な間隔で添加することが好ましい。   When such magnetic powder is put into the activated sludge suspension at an appropriate position in the biological reaction tank 15 or the like, it is immediately adsorbed and held by the activated sludge, and the magnetic powder-containing activated sludge attracted to the magnet Become. Since most or all of this magnetic powder-containing activated sludge circulates with the return sludge, the addition and mixing of the magnetic powder to the activated sludge suspension usually only needs to be performed once before starting the magnetic separation. However, it can be added as appropriate according to the situation of the water treatment facility. Also, when adding magnetic powder, add an appropriate amount of magnetic powder at appropriate intervals while circulating the activated sludge so that the magnetic powder is evenly adsorbed to the entire activated sludge circulating in the system. Is preferred.

好気槽14で処理された曝気処理水と活性汚泥とは、第2磁気分離手段18のみで分離することも可能であるが、本形態例では、第2磁気分離手段18と最終沈殿池19との二段階で分離処理を行うようにしている。したがって、第2磁気分離手段18では、活性汚泥懸濁液中の磁性粉含有活性汚泥の全量を磁気分離する必要はなく、磁性粉含有活性汚泥の濃度と最終沈殿池19の負荷とに応じて、液中に存在する磁性粉含有活性汚泥の半分以上、すなわち、50〜99.5%を分離できるようにしておけばよい。また、第1磁気分離手段16においても、完全に磁性粉含有活性汚泥を完全に分離できることが好ましいが、僅かの磁性粉含有活性汚泥が脱リン手段17に流入しても差し支えないため、液中に存在する磁性粉含有活性汚泥の大部分を分離できるようにしておけばよい。   The aerated treated water and activated sludge treated in the aerobic tank 14 can be separated only by the second magnetic separation means 18, but in this embodiment, the second magnetic separation means 18 and the final sedimentation basin 19 are used. The separation process is performed in two stages. Therefore, it is not necessary for the second magnetic separation means 18 to magnetically separate the entire amount of the magnetic powder-containing activated sludge in the activated sludge suspension, depending on the concentration of the magnetic powder-containing activated sludge and the load of the final sedimentation basin 19. More than half of the activated sludge containing magnetic powder present in the liquid, that is, 50 to 99.5% may be separated. Also, in the first magnetic separation means 16, it is preferable that the activated sludge containing magnetic powder can be completely separated. However, since a small amount of activated sludge containing magnetic powder may flow into the dephosphorization means 17, What is necessary is just to be able to isolate | separate most magnetic powder containing activated sludge which exists in.

磁性粉含有活性汚泥を懸濁液中から分離するための磁気分離手段16,18には、様々な方式のものを利用することができる。例えば、図2に示すように、活性汚泥懸濁液の流入部41及び流出部42を有する磁気分離槽43と、外周面に磁石を配置した回転ドラム44と、回転ドラム44に付着した磁性粉含有活性汚泥45を掻き落とすスクレーパー46と、スクレーパー46で掻き落とした磁性粉含有活性汚泥45を回収する汚泥回収トラフ47とを備えた磁気分離装置を使用することができる。   Various types of magnetic separation means 16 and 18 for separating the magnetic powder-containing activated sludge from the suspension can be used. For example, as shown in FIG. 2, a magnetic separation tank 43 having an inflow portion 41 and an outflow portion 42 of an activated sludge suspension, a rotating drum 44 having a magnet disposed on the outer peripheral surface, and magnetic powder adhered to the rotating drum 44. A magnetic separator provided with a scraper 46 that scrapes off the contained activated sludge 45 and a sludge collection trough 47 that collects the magnetic powder-containing activated sludge 45 scraped off by the scraper 46 can be used.

前記流出部42は、第1磁気分離手段16では嫌気処理液流入経路35に接続し、第2磁気分離手段18では後段の最終沈殿池19に接続している。また、前記汚泥回収トラフ47は、第1磁気分離手段16では活性汚泥経路38に接続し、第2磁気分離手段18では磁気分離汚泥返送経路22に接続した状態となる。なお、各経路には、必要に応じて送出用ポンプが設置され、前記回転ドラム44には、図示しない駆動用のモーター等が接続されている。   The outflow portion 42 is connected to the anaerobic treatment liquid inflow path 35 in the first magnetic separation means 16, and is connected to the final sedimentation basin 19 in the subsequent stage in the second magnetic separation means 18. The sludge recovery trough 47 is connected to the activated sludge path 38 in the first magnetic separation means 16 and connected to the magnetic separation sludge return path 22 in the second magnetic separation means 18. A delivery pump is installed in each path as necessary, and a driving motor (not shown) is connected to the rotating drum 44.

前記回転ドラム44に設けられる磁石は、超電導磁石や電磁石等の特殊な磁石を採用することもできるが、磁性粉含有活性汚泥の全てを懸濁液から分離する必要がないため、一般的で、安価に入手が可能な永久磁石、例えばフェライト磁石を用いることができる。ドラム周面における磁極の配列は、2〜20mmの着磁間隔でN極とS極とを交互に配列した状態とすることが好ましい。この着磁間隔が狭くなると磁性粉含有活性汚泥の飽和付着量が減少し、着磁間隔が広くなると磁性粉含有活性汚泥の付着力が弱くなる。回転ドラム44の大きさ(直径及び長さ)や磁気分離処理時の回転数は任意であり、処理量に応じて選定することが可能で、設置スペースや製造コスト、運転コスト等を考慮して設定すればよい。   The magnet provided on the rotating drum 44 can be a special magnet such as a superconducting magnet or an electromagnet, but it is not necessary to separate all of the magnetic powder-containing activated sludge from the suspension. Permanent magnets that can be obtained at low cost, such as ferrite magnets, can be used. The arrangement of the magnetic poles on the drum peripheral surface is preferably in a state where N poles and S poles are alternately arranged at a magnetization interval of 2 to 20 mm. When this magnetization interval is narrowed, the saturated adhesion amount of the magnetic powder-containing activated sludge is reduced, and when the magnetization interval is widened, the adhesion force of the magnetic powder-containing activated sludge is weakened. The size (diameter and length) of the rotating drum 44 and the number of rotations during the magnetic separation process are arbitrary and can be selected according to the processing amount, taking into consideration the installation space, manufacturing cost, operating cost, etc. You only have to set it.

磁力により懸濁液から分離した磁性粉含有活性汚泥の回収は、磁石の構造や形状に応じて任意の方法で行うことができ、板状、円盤状、棒状等の様々な形状の磁石と、これらの磁石の形状等に合わせた汚泥回収手段とを組み合わせることができるが、前記回転ドラム44とスクレーパー46との組み合わせにより、磁気分離した磁性粉含有活性汚泥45を連続状態で容易に回収することができる。また、回転ドラム形状の磁石を使用することにより、装置構成も単純化でき、磁気分離装置の製作コストが削減できるだけでなく、保守点検も容易に行うことができる。   Collection of the magnetic powder-containing activated sludge separated from the suspension by magnetic force can be performed by any method depending on the structure and shape of the magnet, and various shapes of magnets such as plates, disks, rods, etc. The sludge recovery means can be combined with the shape of these magnets, etc., but the magnetic powder-containing activated sludge 45 separated magnetically can be easily recovered in a continuous state by the combination of the rotating drum 44 and the scraper 46. Can do. In addition, by using a rotating drum-shaped magnet, the configuration of the apparatus can be simplified, the manufacturing cost of the magnetic separation apparatus can be reduced, and maintenance and inspection can be easily performed.

ここで、活性汚泥を構成する微生物の中で、磁性粉を保持しやすいフロック形成菌は、そのほとんどが第2磁気分離手段18で分離するが、単独では磁性粉を保持できない糸状菌や分散性の微生物は、その多くが第2磁気分離手段18を通過して最終沈殿池19で沈降分離することになる。したがって、第2磁気分離手段18と最終沈殿池19とを組み合わせることにより、より確実に活性汚泥を処理水から分離することができる。   Here, among the microorganisms constituting the activated sludge, most of the floc-forming bacteria that easily hold the magnetic powder are separated by the second magnetic separation means 18, but filamentous fungi and dispersibility that cannot hold the magnetic powder alone. Most of the microorganisms pass through the second magnetic separation means 18 and are settled and separated in the final sedimentation tank 19. Therefore, the activated sludge can be more reliably separated from the treated water by combining the second magnetic separation means 18 and the final sedimentation basin 19.

一方、磁気分離手段18で分離回収したフロック形成菌のみを生物反応槽15に返送することにより、生物反応槽15内の活性汚泥をフロック形成菌を主としたものとすることができるので、バルキングの発生を防止することができるが、この場合は、最終沈殿池19から余剰汚泥が発生することになる。この余剰汚泥の発生を防止するため、前記汚泥受槽21から生物反応槽15に返送される返送汚泥の一部又は全量を、系内の活性汚泥濃度に応じて前記可溶化・減容化手段25に導入し、オゾン、塩素、過酸化水素、超音波等を用いて活性汚泥の可溶化処理、減容化処理を行うようにする。   On the other hand, since only the floc-forming bacteria separated and recovered by the magnetic separation means 18 are returned to the biological reaction tank 15, the activated sludge in the biological reaction tank 15 can be mainly composed of floc-forming bacteria. However, in this case, excess sludge is generated from the final sedimentation basin 19. In order to prevent the generation of this excess sludge, part or all of the returned sludge returned from the sludge receiving tank 21 to the biological reaction tank 15 is solubilized and reduced in volume according to the activated sludge concentration in the system. The activated sludge is solubilized and volume-reduced using ozone, chlorine, hydrogen peroxide, ultrasonic waves, or the like.

これにより、系内の活性汚泥濃度を適当な範囲に維持できるとともに、バルキングの原因菌となる糸状菌等を駆除することができ、最終沈殿池19から余剰汚泥が発生することもなくなる。なお、可溶化・減容化手段25を沈降分離汚泥返送経路23に設置し、最終沈殿池19で分離した沈降分離汚泥に対してのみ活性汚泥の可溶化処理、減容化処理を行うようにしてもよい。   Thereby, while the activated sludge density | concentration in a system can be maintained in a suitable range, the filamentous fungi etc. which are the causative bacteria of a bulking can be extinguished, and an excess sludge does not generate | occur | produce from the final sedimentation basin 19. The solubilization / volume reduction means 25 is installed in the sedimentation / separation sludge return path 23 so that the activated sludge is solubilized / volume-reduced only for the sedimentation / separation sludge separated in the final sedimentation basin 19. May be.

前記加圧浮上分離装置11は、原水流入経路51から流入する原水と、加圧水経路52から供給される加圧空気溶解水とを混合させて槽内に導入し、加圧空気溶解水から発生する微細気泡により原水中の浮遊物や懸濁成分、発泡成分を浮上させて分離するものであって、原水中の浮遊物や懸濁成分は、加圧空気溶解水から発生する微細気泡に付着して見掛けの比重が小さくなり、加圧浮上分離装置11の槽上部に浮上汚泥(フロス)として浮上し、同時に原水中の界面活性剤等の発泡成分は、前記微細気泡により発泡して槽上部に浮上する。   The pressurized levitation separator 11 mixes the raw water flowing in from the raw water inflow path 51 and the pressurized air dissolved water supplied from the pressurized water path 52, introduces them into the tank, and generates from the pressurized air dissolved water. Floating matters, suspended components, and foaming components in raw water are lifted and separated by fine bubbles. Floating matters and suspended components in raw water adhere to fine bubbles generated from pressurized air-dissolved water. As a result, the apparent specific gravity is reduced and floats as flotation sludge (floss) on the tank upper part of the pressurized flotation separation device 11. At the same time, foaming components such as surfactants in the raw water are foamed by the fine bubbles and are formed in the upper part of the tank. Surface.

槽上部に浮上したフロスや泡は、掻取機53等により掻取られて浮上物回収経路54に抜き取られる。また、加圧浮上分離装置11の底部に沈殿した固形物(初沈汚泥)は、沈殿物回収経路55に抜き取られる。このような加圧浮上分離装置11は、通常の沈殿処理に比べて懸濁成分の除去率が高く、粗大な浮遊物や糸状浮遊物である髪の毛等の他、発泡成分、油分、スカム等も、短時間の処理で略完全に除去することができるという利点を有している。   The floss and foam that have floated to the upper part of the tank are scraped off by the scraper 53 or the like and extracted to the floating material collection path 54. In addition, the solid matter (primary sedimentation sludge) that has settled at the bottom of the pressurized flotation separation device 11 is extracted to the sediment collection path 55. Such a pressure levitation separation device 11 has a higher removal rate of suspended components than ordinary precipitation treatment, and also has foam components, oil, scum, etc., in addition to coarse suspended matter and threadlike suspended hair. This has the advantage that it can be removed almost completely in a short time.

さらに、加圧浮上分離装置11で分離したフロスや固形物は、前記浮上物回収経路54及び前記沈殿物回収経路55からメタン発酵手段56に導入してメタン発酵処理を行い、続いて、初沈汚泥用の可溶化・減容化処理手段57に導入して可溶化処理及び減容化処理を施した後、初沈汚泥経路58により生物反応槽15に導入するようにしている。   Further, the floss and solids separated by the pressurized flotation separation device 11 are introduced into the methane fermentation means 56 from the levitated substance recovery path 54 and the sediment recovery path 55 and subjected to methane fermentation treatment, followed by initial precipitation. After being introduced into the sludge solubilization / volume reduction treatment means 57 and subjected to the solubilization treatment and volume reduction treatment, the sludge is introduced into the biological reaction tank 15 through the initial sedimentation sludge path 58.

このように、加圧浮上分離装置11で分離したフロスや固形物に対してメタン発酵手段56でメタン発酵処理を行うことにより、発酵性のよい初沈汚泥を原料とすることができるので、メタン発酵の効率を向上できるとともに、メタン発酵後の余剰汚泥量も減量できる。さらに、この余剰汚泥に対して可溶化・減容化処理手段57でオゾン処理やアルカリ処理、超音波処理等の可溶化及び減量化処理を施してから生物反応槽15に投入することにより、加圧浮上分離装置11からの余剰汚泥の発生も無くすことも可能であるが、本形態例では、初沈汚泥の一部は、脱水機59に分岐して脱水され、コンポスト等の有効利用が図られ、あるいは、処分される。   In this way, by performing methane fermentation treatment with the methane fermentation means 56 on the floss and solid matter separated by the pressurized flotation separation device 11, it is possible to use primary sedimentation sludge with good fermentability as a raw material. While improving the efficiency of fermentation, the amount of excess sludge after methane fermentation can also be reduced. Further, the surplus sludge is subjected to solubilization and volume reduction treatment such as ozone treatment, alkali treatment and ultrasonic treatment by the solubilization / volume reduction treatment means 57, and then added to the biological reaction tank 15 to add the excess sludge. Although it is possible to eliminate the generation of excess sludge from the pressure levitation separation device 11, in this embodiment, a part of the initial settling sludge is branched to the dehydrator 59 and dehydrated, so that effective use of compost and the like is achieved. Or disposed of.

前記加圧浮上分離装置11の前段には、流入原水の前処理設備として、粗大固形物を除去するスクリーン61及び原水の均一化を図るための撹拌機62を有する原水槽63と、原水にpH調整剤及び凝集剤を添加するための薬剤槽64,65を有する調整槽66とが設けられている。なお、pH調整剤及び凝集剤には、一般的なものを使用することができ、原水の性状に応じて適当なものを選択することができ、省略することもできる。また、加圧浮上分離装置11には、分離水出口側から浮上分離水の一部を抜き取る加圧経路67と、該加圧経路67に抜き取られてポンプで加圧された水とコンプレッサーで加圧された空気と混合して前記加圧空気溶解水を発生させる空気溶解槽68とが設けられ、該空気溶解槽68で発生した加圧空気溶解水が前記加圧水経路52を通って流入経路51の原水に合流するように形成されている。   In the previous stage of the pressurized flotation separation device 11, as a pretreatment facility for the inflow raw water, a raw water tank 63 having a screen 61 for removing coarse solids and a stirrer 62 for homogenizing the raw water, and a pH in the raw water An adjusting tank 66 having chemical tanks 64 and 65 for adding the adjusting agent and the flocculant is provided. In addition, a general thing can be used for a pH adjuster and a flocculant, and a suitable thing can be selected according to the property of raw | natural water, and it can also abbreviate | omit. The pressurized flotation separation device 11 includes a pressurization path 67 for extracting a part of the flotation separation water from the separation water outlet side, water added to the pressurization path 67 and pressurized by a pump and a compressor. An air dissolution tank 68 for generating the pressurized air dissolved water by mixing with the pressurized air is provided, and the pressurized air dissolved water generated in the air dissolution tank 68 passes through the pressurized water path 52 and enters the inflow path 51. It is formed to join the raw water.

さらに、このような加圧浮上分離装置11と嫌気槽12とを組み合わせることにより、加圧浮上分離装置11で原水中の発泡成分の大部分を除去することができ、嫌気槽12では、浮上分離水中に残存する発泡成分を活性汚泥(微生物フロック)に吸着させたり、活性汚泥によって分解させたりすることによって除去することができるので、発泡成分が下流側の好気槽14に流入することがほとんどなくなり、好気槽14での発泡によって第2磁気分離手段18の磁気分離効果が損なわれることを防止できる。   Furthermore, by combining such a pressurized flotation separation device 11 and the anaerobic tank 12, most of the foam components in the raw water can be removed by the pressurized flotation separation apparatus 11. Since the foam component remaining in the water can be removed by adsorbing the activated sludge (microbe floc) or decomposing it with the activated sludge, the foam component almost always flows into the aerobic tank 14 on the downstream side. Thus, it is possible to prevent the magnetic separation effect of the second magnetic separation means 18 from being impaired by foaming in the aerobic tank 14.

このように形成した排水処理装置に流入する原水は、加圧浮上分離装置11を経て生物反応槽15の嫌気槽12に流入し、汚泥返送経路24から循環する返送汚泥(磁性粉含有活性汚泥)及び初沈汚泥経路58からの初沈汚泥と混合した状態となる。この嫌気槽12での嫌気処理により、活性汚泥中のリン蓄積細菌が好気槽14で摂取したリンを嫌気槽12内に吐き出し、嫌気槽12内の活性汚泥懸濁液中のリン濃度が増加する。この活性汚泥懸濁液は、第1磁気分離手段16で磁性粉含有活性汚泥から分離し、高濃度にリンを含む嫌気処理液として脱リン手段17に導入され、所定の脱リン操作が行われる。   The raw water flowing into the wastewater treatment apparatus formed in this way flows into the anaerobic tank 12 of the biological reaction tank 15 via the pressurized flotation separation apparatus 11 and circulates from the sludge return path 24 (activated sludge containing magnetic powder). And it will be in the state mixed with the primary sedimentation sludge from the primary sedimentation sludge path | route 58. FIG. By the anaerobic treatment in the anaerobic tank 12, the phosphorus accumulating bacteria in the activated sludge discharges the phosphorus taken in the aerobic tank 14 into the anaerobic tank 12, and the phosphorus concentration in the activated sludge suspension in the anaerobic tank 12 increases. To do. The activated sludge suspension is separated from the magnetic powder-containing activated sludge by the first magnetic separation means 16 and introduced into the dephosphorization means 17 as an anaerobic treatment liquid containing phosphorus at a high concentration, and a predetermined dephosphorization operation is performed. .

脱リン手段17には、適当な脱リン方法を適用することが可能であり、MAP法や晶析法を採用することができる。例えば、MAP法は、嫌気処理液中に含まれるアンモニウムイオンと、活性汚泥から放出されたリン酸イオンと、必要量が添加されるマグネシウム化合物からのマグネシウムイオンとを、所定のpHで反応させることによって結晶状態のリン酸マグネシウムアンモニウム六水和物(MAP:ストラバイト:MgNHPO・6HO)を生成させ、これを分離回収するものである。回収したMAPは、例えば緩効性肥料として使用することができ、さらに、カリウム塩を混合して造粒等の加工を施すことにより、植物の三大栄養素を含む肥料として有効にリサイクルすることができる。また、晶析法では、嫌気処理液中に含まれるリン酸イオンをケイ酸カルシウム水和物等の種結晶にリン酸ヒドロキシアパタイト(HAP:Ca10(OH)(PO)として晶析させることにより、リンを回収するものであり、これは、そのまま肥料として使用できる。脱リン手段17でリンが除去された脱リン液は、無酸素槽13に戻されて再処理される。 An appropriate dephosphorization method can be applied to the dephosphorization means 17, and a MAP method or a crystallization method can be employed. For example, in the MAP method, ammonium ions contained in an anaerobic treatment liquid, phosphate ions released from activated sludge, and magnesium ions from a magnesium compound to which a necessary amount is added are reacted at a predetermined pH. Produces crystalline ammonium ammonium phosphate hexahydrate (MAP: Strabite: MgNH 4 PO 4 .6H 2 O), which is separated and recovered. The collected MAP can be used, for example, as a slow-acting fertilizer, and can be effectively recycled as a fertilizer containing the three major nutrients of plants by mixing with potassium salts and processing such as granulation. it can. In the crystallization method, phosphate ions contained in the anaerobic treatment liquid are crystallized as phosphate hydroxyapatite (HAP: Ca 10 (OH) 2 (PO 4 ) 6 ) in a seed crystal such as calcium silicate hydrate. By analyzing, phosphorus is collected, and this can be used as it is as a fertilizer. The dephosphorization solution from which phosphorus has been removed by the dephosphorization means 17 is returned to the oxygen-free tank 13 and reprocessed.

また、原水中の有機物等は、嫌気槽12、無酸素槽13及び好気槽14で活性汚泥により順次処理されることによって浄化され、好気槽14で活性汚泥がリンを摂取することにより原水中のリンが除去される。また、好気槽14から無酸素槽13に硝化液を循環させることにより、原水中の窒素も無酸素槽13で除去される。好気槽14で曝気処理後の活性汚泥懸濁液は、第2磁気分離手段18に流入し、懸濁液中の磁性粉含有活性汚泥の一部が磁気分離される。   In addition, the organic matter in the raw water is purified by being sequentially treated with activated sludge in the anaerobic tank 12, the oxygen-free tank 13, and the aerobic tank 14, and the activated sludge ingests phosphorus in the aerobic tank 14. Underwater phosphorus is removed. Further, by circulating the nitrification liquid from the aerobic tank 14 to the oxygen-free tank 13, nitrogen in the raw water is also removed in the oxygen-free tank 13. The activated sludge suspension after the aeration treatment in the aerobic tank 14 flows into the second magnetic separation means 18, and a part of the magnetic powder-containing activated sludge in the suspension is magnetically separated.

第2磁気分離手段18における活性汚泥の分離量は、生物反応槽15における活性汚泥の増殖分と自己酸化とのバランス、及び、最終沈殿池19の負荷に応じて設定されるものであるが、通常は、最終沈殿池19に流入する活性汚泥懸濁液中の活性汚泥濃度が3000mg/L以下、好ましくは2000mg/L以下、特に、1500mg/L以下になるように設定することが好ましい。   The amount of activated sludge separated in the second magnetic separation means 18 is set according to the balance between the activated sludge growth and auto-oxidation in the biological reaction tank 15 and the load of the final sedimentation basin 19. Usually, it is preferable that the activated sludge concentration in the activated sludge suspension flowing into the final sedimentation basin 19 is set to 3000 mg / L or less, preferably 2000 mg / L or less, particularly 1500 mg / L or less.

一般的に、下水処理場に流入する下水のBOD濃度は、100〜200mg/L程度である。この負荷条件における好気槽14では、活性汚泥濃度が5000〜10000mg/Lの範囲となったときに、活性汚泥の増殖分と自己酸化とがバランスして余剰汚泥がほとんど発生しない状態となる。したがって、第2磁気分離手段18によって活性汚泥の80%を分離することにより、最終沈殿池19に流入する活性汚泥濃度を1000〜2000mg/Lとすることができる。この活性汚泥濃度範囲ならば、最終沈殿池19において十分な沈降分離を行うことが可能となる。   Generally, the BOD concentration of sewage flowing into the sewage treatment plant is about 100 to 200 mg / L. In the aerobic tank 14 under this load condition, when the activated sludge concentration is in the range of 5000 to 10000 mg / L, the activated sludge is balanced with the self-oxidation, and the surplus sludge is hardly generated. Therefore, by separating 80% of the activated sludge by the second magnetic separation means 18, the activated sludge concentration flowing into the final sedimentation basin 19 can be 1000 to 2000 mg / L. Within this activated sludge concentration range, it is possible to perform sufficient sedimentation separation in the final sedimentation basin 19.

このとき、第2磁気分離手段18及び最終沈殿池19で分離した活性汚泥の全量を生物反応槽15に返送しても、通常の条件の場合は、活性汚泥自身の増殖分と自己酸化とのバランスによって活性汚泥濃度の上昇が自動的に停止するので、活性汚泥濃度の維持管理を不要なものとすることができる。このとき、平衡状態にある活性汚泥濃度は、負荷変動に伴って自然に変動するが、最大負荷のときでも最終沈殿池19の許容汚泥濃度を超えないように第2磁気分離手段18での活性汚泥分離量を設定しておくことにより、負荷変動に関係なく活性汚泥濃度が高い状態で水処理を継続することができる。   At this time, even if the entire amount of the activated sludge separated by the second magnetic separation means 18 and the final sedimentation basin 19 is returned to the biological reaction tank 15, in the normal conditions, the growth of the activated sludge itself and auto-oxidation are reduced. Since the increase in the activated sludge concentration is automatically stopped by the balance, the maintenance and management of the activated sludge concentration can be made unnecessary. At this time, the activated sludge concentration in the equilibrium state naturally fluctuates with the load variation, but the activity in the second magnetic separation means 18 does not exceed the allowable sludge concentration in the final sedimentation basin 19 even at the maximum load. By setting the amount of sludge separation, water treatment can be continued in a state where the activated sludge concentration is high regardless of load fluctuations.

このようにして活性汚泥濃度を十分に高い状態に維持することにより、好気槽14におけるリンの摂取及び嫌気槽12におけるリンの吐き出しを高効率で行うことができ、特に、活性汚泥濃度を高くできることにより、下水のような低濃度排水を処理する場合でも、嫌気槽12におけるリンの吐き出しに必要な比較的強い嫌気状態を維持し易くなり、効果的な脱リン処理を行うことができる。   By maintaining the activated sludge concentration in a sufficiently high state in this way, the intake of phosphorus in the aerobic tank 14 and the discharge of phosphorus in the anaerobic tank 12 can be performed with high efficiency. In particular, the activated sludge concentration is increased. Since it can do, even when processing low concentration drainage like sewage, it becomes easy to maintain the comparatively strong anaerobic state required for the discharge of the phosphorus in the anaerobic tank 12, and an effective dephosphorization process can be performed.

さらに、第2磁気分離手段18で活性汚泥の大部分を分離することにより、生物反応槽15における活性汚泥濃度がある程度高くなっても最終沈殿池19が許容汚泥濃度以上になることを防止できるので、外部からの余剰汚泥を生物反応槽15に投入して自己酸化させるマイナスエミッションも可能である。また、雨水の流入によって最終沈殿池19に流入する水量が増加するような場合でも、磁性粉を捕捉した活性汚泥は、通常の活性汚泥よりも比重が大きく沈降性が良好なため、さらに、前述のようにフロック形成菌を優先的に増殖させることができるため、最終沈殿池19で十分な沈降分離を行うことができる。例えば、第2磁気分離手段18の能力を、雨水による流量増加時でも最終沈殿池19に流入するMLVSS濃度が1000mg/L程度になるように設定しておけば、通常3〜4時間程度に設定されている最終沈殿池19の滞留時間が半分程度になっても、沈降分離への悪影響をほとんどなくすことができる。   Furthermore, by separating most of the activated sludge with the second magnetic separation means 18, it is possible to prevent the final sedimentation basin 19 from exceeding the allowable sludge concentration even if the activated sludge concentration in the biological reaction tank 15 increases to some extent. Further, negative emission in which excess sludge from the outside is introduced into the biological reaction tank 15 and auto-oxidized is also possible. Further, even when the amount of water flowing into the final sedimentation basin 19 increases due to the inflow of rainwater, the activated sludge that has captured the magnetic powder has a higher specific gravity and better sedimentation than ordinary activated sludge. Thus, since floc-forming bacteria can be preferentially grown, sufficient sedimentation separation can be performed in the final sedimentation basin 19. For example, if the capacity of the second magnetic separation means 18 is set so that the MLVSS concentration flowing into the final sedimentation basin 19 is about 1000 mg / L even when the flow rate is increased by rainwater, it is usually set to about 3 to 4 hours. Even if the residence time of the final sedimentation basin 19 is about half, adverse effects on sedimentation separation can be almost eliminated.

加えて、第2磁気分離手段18は、磁性粉含有活性汚泥の全量を分離する必要がないため、極めて短時間で所要量の活性汚泥を分離することができ、例えば、磁性粉含有活性汚泥の分離除去率が99.5%の場合でも、数秒から数十秒で磁気分離処理ができるから、最終沈殿池18の容積の1/100〜1/10000程度の容積で処理可能となる。したがって、第2磁気分離手段18は、既存の水処理施設における生物反応槽15と最終沈殿池19との間に挿入するようにしてもよく、好気槽14の流出部や最終沈殿池19の流入部にも小規模な改造で設置可能であるから、新設の水処理施設への適用だけでなく、既存の水処理施設への適用も容易である。同様に、第1磁気分離手段16も任意の位置に設置することが可能である。   In addition, since the second magnetic separation means 18 does not need to separate the entire amount of the magnetic powder-containing activated sludge, the required amount of activated sludge can be separated in a very short time. Even when the separation / removal rate is 99.5%, the magnetic separation can be performed in several seconds to several tens of seconds, so that the treatment can be performed in a volume of about 1/100 to 1/10000 of the volume of the final sedimentation tank 18. Therefore, the second magnetic separation means 18 may be inserted between the biological reaction tank 15 and the final sedimentation basin 19 in the existing water treatment facility. Since it can be installed in the inflow section with small modifications, it can be easily applied not only to new water treatment facilities but also to existing water treatment facilities. Similarly, the first magnetic separation means 16 can also be installed at an arbitrary position.

また、本形態例では、第2磁気分離手段後段の固液分離手段として、活性汚泥を重力により沈降分離する最終沈殿池19を例示したが、この固液分離手段として膜分離を採用した場合でも、膜の目詰まりを抑制し、洗浄操作の間隔を従来より広くとることが可能となるので、膜の長寿命化等が図れ、膜分離におけるコストを削減することができる。さらに、排水処理において窒素を除去する必要がない場合は、無酸素槽13を省略することができる。この場合は、脱リン手段17からの脱リン液は、好気槽14に送るようにすればよい。   In the present embodiment, the final sedimentation basin 19 that settles and separates activated sludge by gravity is exemplified as the solid-liquid separation means subsequent to the second magnetic separation means, but even when membrane separation is adopted as the solid-liquid separation means. Further, since clogging of the membrane can be suppressed and the interval between cleaning operations can be made wider than before, the lifetime of the membrane can be increased, and the cost for membrane separation can be reduced. Furthermore, when it is not necessary to remove nitrogen in the wastewater treatment, the oxygen-free tank 13 can be omitted. In this case, the dephosphorization solution from the dephosphorization means 17 may be sent to the aerobic tank 14.

本発明の排水処理装置は、リンを含有する排水中からリンを有用物として回収する用途に好適に使用できる。   The waste water treatment apparatus of the present invention can be suitably used for the purpose of recovering phosphorus as a useful substance from waste water containing phosphorus.

本発明の一形態例を示す排水処理装置の系統図である。It is a systematic diagram of the waste water treatment equipment showing an example of the present invention. 磁気分離手段の一例を示す断面図である。It is sectional drawing which shows an example of a magnetic separation means.

符号の説明Explanation of symbols

11…加圧浮上分離装置、12…嫌気槽、13…無酸素槽、14…好気槽、15…生物反応槽、16…第1磁気分離手段、17…脱リン手段、18…第2磁気分離手段、19…最終沈殿池、21…汚泥受槽、22…磁気分離汚泥返送経路、23…沈降分離汚泥返送経路、24…汚泥返送経路、25…可溶化・減容化手段、26…アルカリ添加槽、27…処理水流出経路、28…バイパス経路、31,32…撹拌機、33…散気管、34…硝化液循環経路、35…嫌気処理液流入経路、36…脱リン処理液返送経路、37…リン化合物抜出経路、38…活性汚泥経路、41…流入部、42…流出部、43…磁気分離槽、44…回転ドラム、45…磁性粉含有活性汚泥、46…スクレーパー、47…汚泥回収トラフ、51…原水流入経路、52…加圧水経路、53…掻取機、54…浮上物回収経路、55…沈殿物回収経路、56…メタン発酵手段、57…可溶化・減容化処理手段、58…初沈汚泥経路、59…脱水機、61…スクリーン、62…撹拌機、63…原水槽、64,65…薬剤槽、66…調整槽、67…加圧経路、68…空気溶解槽   DESCRIPTION OF SYMBOLS 11 ... Pressure floating separator, 12 ... Anaerobic tank, 13 ... Anoxic tank, 14 ... Aerobic tank, 15 ... Biological reaction tank, 16 ... 1st magnetic separation means, 17 ... Dephosphorization means, 18 ... 2nd magnetism Separation means, 19 ... final sedimentation basin, 21 ... sludge receiving tank, 22 ... magnetic separation sludge return path, 23 ... sedimentation separation sludge return path, 24 ... sludge return path, 25 ... solubilization / volume reduction means, 26 ... alkali addition Tank, 27 ... treated water outflow route, 28 ... bypass route, 31, 32 ... stirrer, 33 ... diffuser tube, 34 ... nitrification solution circulation route, 35 ... anaerobic treatment solution inflow route, 36 ... dephosphorization treatment solution return route, 37 ... Phosphorus compound extraction path, 38 ... Activated sludge path, 41 ... Inflow part, 42 ... Outflow part, 43 ... Magnetic separation tank, 44 ... Rotating drum, 45 ... Magnetic powder containing activated sludge, 46 ... Scraper, 47 ... Sludge Recovery trough, 51 ... Raw water inflow path, 52 ... Pressurized water path, 53 ... scraper, 54 ... floated material recovery path, 55 ... sediment recovery path, 56 ... methane fermentation means, 57 ... solubilization / volume reduction processing means, 58 ... first sedimentation sludge path, 59 ... Dehydrator, 61 ... screen, 62 ... stirrer, 63 ... raw water tank, 64, 65 ... chemical tank, 66 ... adjustment tank, 67 ... pressure path, 68 ... air dissolution tank

Claims (7)

リンを含む排水を、磁性粉を添加した磁性粉含有活性汚泥により嫌気処理を行う嫌気槽と、該嫌気槽から抜き出した嫌気処理液からリンを除去する脱リン手段とを備えた生物学的脱リン法を採用した排水処理装置であって、前記嫌気槽に、磁力によって活性汚泥懸濁液中の前記磁性粉含有活性汚泥と嫌気処理液とを分離する磁気分離手段を設けるとともに、分離した嫌気処理液を前記脱リン手段に供給する経路と、分離した磁性粉含有活性汚泥を嫌気槽後段の処理槽に供給する経路と、脱リン手段で脱リン処理を行った後の脱リン液を嫌気槽後段の前記処理槽に返送する経路と、該後段の処理槽から流出する活性汚泥懸濁液から磁性粉含有活性汚泥を分離する分離手段と、該分離手段で分離した磁性粉含有活性汚泥を前記嫌気槽に返送する経路とを備えていることを特徴とする排水処理装置。   Biological desorption provided with an anaerobic tank in which wastewater containing phosphorus is anaerobically treated with magnetic powder-containing activated sludge to which magnetic powder is added, and a dephosphorization means for removing phosphorus from the anaerobic liquid extracted from the anaerobic tank. A wastewater treatment apparatus employing a phosphorus method, wherein the anaerobic tank is provided with magnetic separation means for separating the magnetic powder-containing activated sludge and the anaerobic treatment liquid in the activated sludge suspension by magnetic force, and the separated anaerobic A path for supplying the treatment liquid to the dephosphorization means, a path for supplying the separated magnetic powder-containing activated sludge to the treatment tank downstream of the anaerobic tank, and a dephosphorization liquid after dephosphorization treatment by the dephosphorization means are anaerobic A path for returning to the treatment tank at the rear stage of the tank, a separation means for separating the magnetic powder-containing activated sludge from the activated sludge suspension flowing out of the latter-stage treatment tank, and a magnetic powder-containing activated sludge separated by the separation means. Return to the anaerobic tank Wastewater treatment apparatus characterized by comprising and. 前記脱リン手段は、前記嫌気処理液にマグネシウム化合物を添加して嫌気処理液中のアンモニア及びリンをリン酸マグネシウムアンモニウム六水和物として除去することを特徴とする請求項1記載の排水処理装置。   The waste water treatment apparatus according to claim 1, wherein the dephosphorization means removes ammonia and phosphorus in the anaerobic treatment liquid as magnesium ammonium phosphate hexahydrate by adding a magnesium compound to the anaerobic treatment liquid. . 前記脱リン手段は、前記嫌気処理液中のリン酸イオンを、種結晶の表面にリン酸ヒドロキシアパタイトとして晶析させて除去することを特徴とする請求項1記載の排水処理装置。   The waste water treatment apparatus according to claim 1, wherein the dephosphorization means removes phosphate ions in the anaerobic treatment liquid by crystallization on the surface of seed crystals as phosphate hydroxyapatite. 前記嫌気槽後段の処理槽が好気槽であることを特徴とする請求項1記載の排水処理装置。   The waste water treatment apparatus according to claim 1, wherein the treatment tank downstream of the anaerobic tank is an aerobic tank. 前記嫌気槽後段の処理槽が無酸素槽と、該無酸素槽の後段に連設した好気槽とを有し、該好気槽内の活性汚泥懸濁液を前記無酸素槽に循環させる経路を有していることを特徴とする請求項1記載の排水処理装置。   The treatment tank subsequent to the anaerobic tank has an oxygen-free tank and an aerobic tank connected to the latter stage of the oxygen-free tank, and the activated sludge suspension in the aerobic tank is circulated to the oxygen-free tank. The wastewater treatment apparatus according to claim 1, further comprising a path. 前記好気槽から流出する活性汚泥懸濁液中に含まれる前記磁性粉含有活性汚泥の一部を磁力によって液中から分離する第2磁気分離手段と、該第2磁気分離手段で分離した磁性粉活性汚泥を前記嫌気槽に返送する経路と、該第2磁気分離手段から流出した活性汚泥懸濁液中の磁性粉活性汚泥の残部を液中から分離する固液分離手段と、該固液分離手段で分離した処理水を抜き出す経路と、該固液分離手段で分離した磁性粉活性汚泥を前記嫌気槽に返送する経路とを備えていることを特徴とする請求項4又は5記載の排水処理装置。   A second magnetic separation means for separating a part of the magnetic powder-containing activated sludge contained in the activated sludge suspension flowing out from the aerobic tank from the liquid by magnetic force, and a magnetic material separated by the second magnetic separation means. A path for returning the powder activated sludge to the anaerobic tank, a solid-liquid separation means for separating the remainder of the magnetic powder activated sludge in the activated sludge suspension flowing out of the second magnetic separation means from the liquid, and the solid-liquid The waste water according to claim 4 or 5, comprising a path for extracting treated water separated by the separation means and a path for returning the magnetic powder activated sludge separated by the solid-liquid separation means to the anaerobic tank. Processing equipment. 前記第2磁気分離手段で分離した活性汚泥及び前記固液分離手段で分離した活性汚泥に可溶化処理、減容化処理を施す可溶化・減容化手段を備えていることを特徴とする請求項6記載の排水処理装置。   The activated sludge separated by the second magnetic separation means and the solubilization / volume reduction means for subjecting the activated sludge separated by the solid-liquid separation means to solubilization and volume reduction treatment are provided. Item 7. A wastewater treatment apparatus according to item 6.
JP2003375346A 2003-11-05 2003-11-05 Wastewater treatment equipment Expired - Fee Related JP4313647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375346A JP4313647B2 (en) 2003-11-05 2003-11-05 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375346A JP4313647B2 (en) 2003-11-05 2003-11-05 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2005137992A true JP2005137992A (en) 2005-06-02
JP4313647B2 JP4313647B2 (en) 2009-08-12

Family

ID=34686745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375346A Expired - Fee Related JP4313647B2 (en) 2003-11-05 2003-11-05 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4313647B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507673A (en) * 2007-09-03 2011-03-10 ピーエムシー コリア カンパニー リミテッド Sludge treatment apparatus and method
CN110342646A (en) * 2019-07-03 2019-10-18 王超 A kind of microorganism sewage water processing system and sewage water treatment method
CN110386725A (en) * 2019-07-19 2019-10-29 青岛思普润水处理股份有限公司 A kind of sewage based on MBBR and Magneto separate imitates processing system and method entirely
CN110395849A (en) * 2019-08-13 2019-11-01 青岛思普润水处理股份有限公司 A kind of sewage disposal system and technique isolated based on super effect
CN111533407A (en) * 2020-04-13 2020-08-14 浙江大学 Method for recovering phosphorus from sludge alkaline fermentation liquor
CN116813087A (en) * 2023-07-17 2023-09-29 宜兴市苏嘉环保设备有限公司 Barrel type activated sludge biochemical system and use method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507673A (en) * 2007-09-03 2011-03-10 ピーエムシー コリア カンパニー リミテッド Sludge treatment apparatus and method
CN110342646A (en) * 2019-07-03 2019-10-18 王超 A kind of microorganism sewage water processing system and sewage water treatment method
CN110386725A (en) * 2019-07-19 2019-10-29 青岛思普润水处理股份有限公司 A kind of sewage based on MBBR and Magneto separate imitates processing system and method entirely
CN110395849A (en) * 2019-08-13 2019-11-01 青岛思普润水处理股份有限公司 A kind of sewage disposal system and technique isolated based on super effect
CN111533407A (en) * 2020-04-13 2020-08-14 浙江大学 Method for recovering phosphorus from sludge alkaline fermentation liquor
CN116813087A (en) * 2023-07-17 2023-09-29 宜兴市苏嘉环保设备有限公司 Barrel type activated sludge biochemical system and use method
CN116813087B (en) * 2023-07-17 2023-12-01 宜兴市苏嘉环保设备有限公司 Barrel type activated sludge biochemical system and use method

Also Published As

Publication number Publication date
JP4313647B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
EP3403996B1 (en) Granule-forming method and waste water treatment method
US7060185B2 (en) Sewage treatment apparatus using self-granulated activated sludge and sewage treatment method thereof
JP2007038107A (en) Method for treating organic drainage
JP2004160300A (en) Method of treating organic waste water and sludge, and treatment apparatus thereof
JP4313647B2 (en) Wastewater treatment equipment
JP2001276851A (en) Drain treatment equipment
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
JP2007021285A (en) Method and apparatus for reducing volume of excess sludge
JP2005137991A (en) Drainage treatment apparatus
JP5743448B2 (en) Sewage treatment equipment
JP3478321B2 (en) Activated sludge settling promoter and activated sludge treatment method for wastewater using the same
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
JPH09150180A (en) Activated sludge recovering device and method thereof
JP4551650B2 (en) Biological treatment equipment
JP3907867B2 (en) Wastewater treatment system
JP2005125249A (en) Sludge treating apparatus
JP3150734B2 (en) Wastewater or sludge treatment method and apparatus
JP7303643B2 (en) Water treatment method and water treatment equipment
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP3846562B2 (en) Organic wastewater treatment method
JP2006247493A (en) Wastewater treatment apparatus
JP2002316191A (en) Method and apparatus for treating organic foul water
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
JP2003205297A (en) Waste water treating system
JP2006305555A (en) Apparatus and method for treating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4313647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees