JP2005136050A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method Download PDF

Info

Publication number
JP2005136050A
JP2005136050A JP2003368793A JP2003368793A JP2005136050A JP 2005136050 A JP2005136050 A JP 2005136050A JP 2003368793 A JP2003368793 A JP 2003368793A JP 2003368793 A JP2003368793 A JP 2003368793A JP 2005136050 A JP2005136050 A JP 2005136050A
Authority
JP
Japan
Prior art keywords
layer
conductor
wall
liquid crystal
crystal polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368793A
Other languages
Japanese (ja)
Inventor
Takayuki Neura
孝之 禰占
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003368793A priority Critical patent/JP2005136050A/en
Publication of JP2005136050A publication Critical patent/JP2005136050A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a good wiring board including liquid crystal polymer as an insulating layer, which improves reliability in connection of a through conductor and prevents the occurrence of blisters even in a through conductor containing tin or indium. <P>SOLUTION: The wiring board includes one or more liquid crystal polymer insulating layers 1 containing at least liquid crystal polymer, an inner wall hole 2a passing through the insulating layer 1, an inner wall layer 3 provided inside the hole 2a and containing a resin other than the liquid crystal polymer, and the through conductor 4 provided through the inner wall layer 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば、配線基板及び半導体素子収納用パッケージなどに適した配線基板及びその製造方法に関するものであり、特に絶縁層として液晶ポリマー絶縁層を用いたものに関するものである。   The present invention relates to a wiring board suitable for, for example, a wiring board and a package for housing a semiconductor element, and a method for manufacturing the wiring board, and particularly relates to a wiring board using a liquid crystal polymer insulating layer as an insulating layer.

従来より、配線基板は、ガラスクロスにエポキシ樹脂を含浸させてなるプリプレグと呼ばれる樹脂を含む絶縁層の表面に金属箔を接着した後、これをエッチングして微細な導体配線層を形成し、この導体配線層が形成された絶縁層を複数積層した後、所望位置にマイクロドリルにより貫通孔を形成し、貫通孔の内壁にめっき法により金属を付着させて貫通導体を形成して各層間の導体配線層を電気的に接続して作製される。   Conventionally, a wiring board is formed by bonding a metal foil to the surface of an insulating layer containing a resin called a prepreg formed by impregnating an epoxy resin into a glass cloth, and then etching this to form a fine conductor wiring layer. After laminating a plurality of insulating layers on which conductor wiring layers are formed, a through hole is formed at a desired position by a micro drill, and a metal is deposited on the inner wall of the through hole by a plating method to form a through conductor. It is manufactured by electrically connecting the wiring layers.

一般に、現在の電子機器は、移動体通信機器に代表されるように小型・薄型・軽量・高性能・高機能・高品質・高信頼性が要求されており、このような電子機器に搭載される混成集積回路等の電子部品も小型・高密度化が要求されるようになってきており、このような高密度化の要求に応えるために、電子部品を構成する配線基板も、導体配線層の微細化や絶縁層の薄層化・貫通孔の微細化が必要となってきている。   In general, current electronic devices are required to be small, thin, lightweight, high performance, high functionality, high quality, and high reliability, as represented by mobile communication devices. Electronic components such as hybrid integrated circuits are also required to be smaller and higher in density, and in order to meet such demands for higher density, the wiring boards that make up electronic components are also used as conductor wiring layers. Therefore, it is necessary to reduce the thickness of the insulating layer, the insulating layer, and the through hole.

ところが、従来の貫通孔の内壁にめっき法により貫通導体を形成する方法では、貫通孔が配線基板の上面から下面にかけて貫通したものであることから、積層数の増加に伴って貫通孔の数が増加すると配線に必要なスペースが確保できなくなってしまい、その結果、電子機器の軽薄短小化による配線基板へのより多層化への要求に対して対応できないという問題点を有していた。   However, in the conventional method of forming a through conductor on the inner wall of the through hole by plating, the through hole penetrates from the upper surface to the lower surface of the wiring board, so the number of through holes increases as the number of stacked layers increases. If it increases, it becomes impossible to secure a space necessary for wiring, and as a result, there is a problem that it is not possible to respond to the demand for more multilayer wiring boards due to light and thin electronic devices.

このような問題点を解決するために、絶縁層毎に上下の導体配線層を電気的に接続する貫通導体を形成した後に、絶縁層を積層して配線基板を製作する技術が開発されている。   In order to solve such problems, a technique has been developed for forming a wiring board by laminating insulating layers after forming through conductors for electrically connecting upper and lower conductive wiring layers for each insulating layer. .

このような配線基板は、絶縁層として一般の配線基板と同様にエポキシ樹脂系プリプレグが用いられ、また貫通導体は、貫通孔の内壁にめっき法により金属膜を被着させることによって形成される。しかしながらめっき法により貫通導体を形成する場合、化学的なめっき処理を施すのに用いられる薬品が高価であること、工程が複雑で処理時間が長いこと、あるいは有害な薬品を使用することによって環境への問題も発生する恐れがあること等から、貫通孔内に銅などの低抵抗金属粉末を含む導電性ペーストを充填することによって貫通導体を形成し、しかる後、絶縁層を積層して配線基板を製作する方法が提案されている(特許文献1〜3参照)。   In such a wiring board, an epoxy resin prepreg is used as an insulating layer in the same manner as a general wiring board, and the through conductor is formed by depositing a metal film on the inner wall of the through hole by a plating method. However, when penetrating conductors are formed by plating, the chemicals used to perform chemical plating are expensive, the process is complicated and the processing time is long, or harmful chemicals are used to the environment. The through conductor is formed by filling the through hole with a conductive paste containing a low-resistance metal powder such as copper, and then an insulating layer is laminated to form a wiring board. Has been proposed (see Patent Documents 1 to 3).

しかしながらエポキシ樹脂系プリプレグからなる絶縁層は、その樹脂自体の吸湿性が高いことから、耐マイグレーション性が低く、配線密度が高くなるとHASTや高温高湿バイアス試験といった絶縁信頼性試験において、導体配線層間でショートする等の問題点を有していた。また、エポキシ系樹脂は誘電率・誘電正接が高いことから高周波領域における電気特性にも問題点を有していた。   However, an insulating layer made of an epoxy resin prepreg has a high hygroscopic property of the resin itself, so that the migration resistance is low, and when the wiring density is high, in an insulation reliability test such as HAST or a high temperature and high humidity bias test, There was a problem such as short-circuiting. In addition, epoxy resin has a problem in electrical characteristics in a high frequency region because of its high dielectric constant and dielectric loss tangent.

このような問題点を解決するために、配線基板の絶縁層の材料として液晶ポリマーを用いることが検討されている。液晶ポリマーを含有してなる絶縁層は、剛直な分子で構成されているとともに分子同士がある程度規則的に並んだ構成をしており分子間力が強いことから、高耐熱性・高弾性率・高寸法安定性・低吸湿性を示し、ガラスクロスのような強化材を用いる必要がなく、また、微細加工性にも優れるという特徴を有している。さらに、高周波領域においても、低誘電率・低誘電正接であり高周波特性に優れるという特徴を有している。   In order to solve such problems, it has been studied to use a liquid crystal polymer as a material for an insulating layer of a wiring board. An insulating layer containing a liquid crystal polymer is composed of rigid molecules and has a structure in which the molecules are regularly arranged to some extent, and the intermolecular force is strong, so it has high heat resistance, high elastic modulus, It has high dimensional stability and low hygroscopicity, does not require the use of a reinforcing material such as glass cloth, and is excellent in fine workability. Furthermore, the high frequency region also has the characteristics of low dielectric constant and low dielectric loss tangent and excellent high frequency characteristics.

このような液晶ポリマーの特徴を活かし、液晶ポリマー絶縁層の上下面に熱硬化性樹脂を含有してなる被覆層を形成してなる絶縁フィルムの少なくとも一方の面に金属箔からなる導体配線層を配設し、これらを複数積層するとともに、絶縁フィルムを挟んで上下に位置する導体配線層間を、絶縁フィルムに形成した貫通孔に導電材を充填してなる貫通導体を介して電気的に接続してなる配線基板も提案されている(特許文献4参照)。   Taking advantage of such characteristics of the liquid crystal polymer, a conductive wiring layer made of metal foil is formed on at least one surface of the insulating film formed by forming a coating layer containing a thermosetting resin on the upper and lower surfaces of the liquid crystal polymer insulating layer. A plurality of these are laminated, and the conductive wiring layers positioned above and below the insulating film are electrically connected through a through conductor formed by filling a through hole formed in the insulating film with a conductive material. A wiring board is also proposed (see Patent Document 4).

なお、貫通孔に充填されて貫通導体となる導電材は、貫通孔への充填性を高めるとともに金属粒子間の結合するための樹脂を必須の成分として含有する必要があり、樹脂として金属粉末との結合性の高い熱硬化性エポキシ系樹脂が一般的に用いられてきた。   In addition, the conductive material that fills the through hole and becomes the through conductor needs to contain a resin for enhancing the filling property to the through hole and bond between the metal particles as an essential component, Thermosetting epoxy resins having a high bonding property have generally been used.

しかしながら、このような貫通導体と導体配線層との導通は、金属粉末と導体配線層との単なる接触によって行なわれており、金属粉末と導体配線層との接合強度が十分でなく、温度サイクル試験等においてその接触が離れてしまい、導通抵抗が増加したり断線してしまうという問題点を有していた。   However, such conduction between the through conductor and the conductor wiring layer is performed by simple contact between the metal powder and the conductor wiring layer, and the bonding strength between the metal powder and the conductor wiring layer is insufficient, and the temperature cycle test is performed. In such a case, the contact is separated and the conduction resistance is increased or the wire is disconnected.

また、絶縁層が樹脂を含有しているため、貫通導体を形成後、加熱して銅や銀等の低抵抗金属を焼結し、金属粉末と導体配線層とを結合させて両者の結合強度を増加させるということも困難であった。   In addition, since the insulating layer contains a resin, after the through conductor is formed, it is heated to sinter a low-resistance metal such as copper or silver, and the metal powder and the conductor wiring layer are bonded together to bond strength between them. It was also difficult to increase.

このような問題点を解決するために、貫通導体の導電材中の導電成分として一般的に用いられる金属である銅・銀といった金属の一部をインジウムあるいはスズといった低融点金属に置き換えて、銅・銀の金属粉末を低融点金属で結合することによって、金属粒子同士および貫通導体と導体配線層との接合部分の接続信頼性を向上させる手法が提案されている(特許文献5参照)。
特開昭56−101739号公報 特開昭58−49966号公報 特開平8−138437号公報 特開2002−261453号公報 特開1998−17054号公報
In order to solve such problems, a part of metal such as copper and silver, which is a metal generally used as a conductive component in the conductive material of the through conductor, is replaced with a low melting point metal such as indium or tin. A method has been proposed in which silver metal powder is bonded with a low-melting-point metal to improve the connection reliability of the metal particles and the joint portion between the through conductor and the conductor wiring layer (see Patent Document 5).
JP 56-101739 A JP 58-49966 A JP-A-8-138437 JP 2002-261453 A JP 1998-17054 A

しかしながら、貫通導体にインジウムあるいはスズといった低融点金属を配合した場合、貫通孔の内壁面に露出している液晶ポリマーと貫通導体とが接する部分において、導電材が硬化して貫通導体となる際に、インジウムあるいはスズなどの低融点金属の溶融に伴う急激な吸熱反応によって液晶ポリマー絶縁層が収縮し、その結果、貫通導体が貫通孔の内壁から剥離してしまうという問題点を有していた。   However, when a low melting point metal such as indium or tin is blended in the through conductor, when the conductive material is cured and becomes a through conductor in the portion where the liquid crystal polymer exposed on the inner wall surface of the through hole is in contact with the through conductor In addition, the liquid crystal polymer insulating layer contracts due to a rapid endothermic reaction accompanying melting of a low melting point metal such as indium or tin, and as a result, the through conductor is peeled off from the inner wall of the through hole.

また、インジウム及びスズを含まない貫通導体を用いた場合には、上記の問題点は解決できるものの、貫通導体と液層ポリマー絶縁層との接着性が低いために信頼性が低くなるという問題があった。   In addition, when a through conductor not containing indium and tin is used, the above problem can be solved, but the problem of low reliability due to low adhesion between the through conductor and the liquid polymer insulating layer. there were.

本発明は、かかる従来技術の問題点に鑑み案出されたものであり、接続信頼性に優れた配線基板及びその製造方法を提供することを目的とする。   The present invention has been devised in view of the problems of the prior art, and an object thereof is to provide a wiring board excellent in connection reliability and a manufacturing method thereof.

本発明の配線基板は、少なくとも液晶ポリマーを含有する一層以上の液晶ポリマー絶縁層と、前記液晶ポリマー絶縁層を貫通する内壁孔と、前記内壁孔の内側に設けられた液晶ポリマーを除く樹脂を含有してなる内壁層と、前記内壁層を貫通して設けられた貫通導体とを具備することを特徴とする。   The wiring board of the present invention contains at least one liquid crystal polymer insulating layer containing at least a liquid crystal polymer, an inner wall hole penetrating the liquid crystal polymer insulating layer, and a resin excluding the liquid crystal polymer provided inside the inner wall hole. An inner wall layer formed through the inner wall layer and a through conductor provided through the inner wall layer.

また、本発明の配線基板は、内壁層が熱硬化性樹脂を含有してなることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable for an inner wall layer to contain a thermosetting resin.

また、本発明の配線基板は、内壁層が熱可塑性樹脂を含有してなることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable for an inner wall layer to contain a thermoplastic resin.

また、本発明の配線基板は、内壁層の厚みが0.1〜15μmであることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable for the thickness of an inner wall layer to be 0.1-15 micrometers.

また、本発明の配線基板は、液晶ポリマー絶縁層の熱膨張係数をA、内壁層の熱膨張数をB、貫通導体の熱膨張係数をCとしたとき、A<B<Cであることが望ましい。   In the wiring board of the present invention, when the thermal expansion coefficient of the liquid crystal polymer insulating layer is A, the thermal expansion number of the inner wall layer is B, and the thermal expansion coefficient of the through conductor is C, A <B <C. desirable.

また、本発明の配線基板は、液晶ポリマー絶縁層の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる被覆層が形成されていることが望ましい。   In the wiring board of the present invention, it is desirable that a coating layer containing a resin excluding the liquid crystal polymer is formed on at least one main surface of the liquid crystal polymer insulating layer.

また、本発明の配線基板は、被覆層が熱硬化性樹脂を含有してなることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable for a coating layer to contain a thermosetting resin.

また、本発明の配線基板は、被覆層が熱可塑性樹脂を含有してなることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable for a coating layer to contain a thermoplastic resin.

また、本発明の配線基板は、被覆層と内壁層とが、同一の樹脂を含有してなることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable for a coating layer and an inner wall layer to contain the same resin.

また、本発明の配線基板は、貫通導体が6〜15質量%の熱硬化性樹脂、2.5〜10質量%の銀および75〜91.5質量%の銅を含有してなる導電材で形成されていることが望ましい。   The wiring board of the present invention is a conductive material in which a through conductor contains 6 to 15% by mass of a thermosetting resin, 2.5 to 10% by mass of silver, and 75 to 91.5% by mass of copper. It is desirable that it be formed.

また、本発明の配線基板は、貫通導体が6〜15質量%の熱硬化性樹脂、2.5〜10質量%の銀および、45〜86.5質量%の銅および5〜30質量%のスズもしくはインジウムを含有してなる導電材で形成されていることが望ましい。   In the wiring board of the present invention, the through conductor is 6 to 15% by mass of thermosetting resin, 2.5 to 10% by mass of silver, 45 to 86.5% by mass of copper, and 5 to 30% by mass of copper. It is desirable that the conductive material is formed of a conductive material containing tin or indium.

また、本発明の配線基板の製造方法は、液晶ポリマー絶縁層の所定箇所を貫通する内壁孔を形成する工程と、予め作製した内壁層となる液晶ポリマーを除く樹脂を含有してなるワニスを前記内壁孔に充填し、該内壁孔内に内壁層を形成する工程と、前記内壁孔に形成された前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電材を充填して貫通導体を形成する工程と、前記液晶ポリマー絶縁層に、導体配線層を転写する工程と、上記の工程を繰り返して作製した内壁層と貫通導体と導体配線層とを具備する複数の液晶ポリマー絶縁層を積層して多層化する工程とを具備することを特徴とする。   Further, the method for producing a wiring board of the present invention includes a step of forming an inner wall hole penetrating a predetermined portion of the liquid crystal polymer insulating layer, and a varnish containing a resin excluding the liquid crystal polymer to be the inner wall layer prepared in advance. Filling the inner wall hole and forming an inner wall layer in the inner wall hole; forming a through hole penetrating the inner wall layer formed in the inner wall hole; and filling the through hole with a conductive material. A plurality of liquid crystal polymer insulations comprising a step of forming a through conductor, a step of transferring a conductor wiring layer to the liquid crystal polymer insulating layer, and an inner wall layer, a through conductor and a conductor wiring layer produced by repeating the above steps. And a step of stacking layers to form a multilayer.

また、本発明の配線基板の製造方法は、液晶ポリマー絶縁層の所定箇所を貫通する内壁孔を形成する工程と、予め作製した内壁層となる液晶ポリマーを除く樹脂を含有してなるワニスを前記内壁孔に充填し、該内壁孔内に内壁層を形成する工程と、前記内壁層を設けた前記液晶ポリマー絶縁層の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる被覆層を形成する工程と、前記被覆層と前記内壁孔に形成された前記内壁層とを貫通する貫通孔を形成する工程と、前記貫通孔に導電材を充填して貫通導体を形成する工程と、前記被覆層に、導体配線層を転写する工程と、上記の工程を繰り返して作製した内壁層と貫通導体と被覆層と導体配線層とを具備する複数の液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする。   Further, the method for producing a wiring board of the present invention includes a step of forming an inner wall hole penetrating a predetermined portion of the liquid crystal polymer insulating layer, and a varnish containing a resin excluding the liquid crystal polymer to be the inner wall layer prepared in advance. A step of filling the inner wall hole and forming an inner wall layer in the inner wall hole; and a coating layer comprising a resin excluding the liquid crystal polymer on at least one main surface of the liquid crystal polymer insulating layer provided with the inner wall layer. Forming a through hole penetrating the coating layer and the inner wall layer formed in the inner wall hole, filling the through hole with a conductive material to form a through conductor, A step of transferring the conductor wiring layer to the coating layer, and a plurality of liquid crystal polymer insulating layers each including an inner wall layer, a through conductor, a coating layer, and a conductor wiring layer produced by repeating the above steps are laminated to form a multilayer. And comprising a process And it features.

また、本発明の配線基板の製造方法は、実質的に同一の厚みを有する液晶ポリマー絶縁層と、内壁層となる液晶ポリマー以外の樹脂を含有してなる内壁層シートとを積層した積層体を作製する工程と、前記積層体の所定箇所を前記内壁層シート側から押圧して、前記内壁層シートの押圧部分を前記液晶ポリマー絶縁層側に移行させて、液晶ポリマー絶縁層と前記内壁層シートとが一体化した複合部材を作製する工程と、前記複合部材の前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電体を充填して貫通導体を形成する工程と、前記貫通導体が形成された複合部材の主面に、導体配線層を転写して複合部材の主面に導体配線層を形成する工程と、上記の工程を繰り返して作製した内壁層と貫通導体と導体配線層とを具備する複数の液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする。   In addition, the method for manufacturing a wiring board according to the present invention includes a laminate in which a liquid crystal polymer insulating layer having substantially the same thickness and an inner wall layer sheet containing a resin other than the liquid crystal polymer serving as an inner wall layer are laminated. A step of producing, pressing a predetermined portion of the laminate from the inner wall layer sheet side, and moving a pressing portion of the inner wall layer sheet to the liquid crystal polymer insulating layer side, whereby the liquid crystal polymer insulating layer and the inner wall layer sheet A step of forming a composite member integrated with each other, a step of forming a through hole penetrating the inner wall layer of the composite member, a step of filling the through hole with a conductor to form a through conductor, A step of transferring the conductor wiring layer to the main surface of the composite member on which the through conductor is formed to form a conductor wiring layer on the main surface of the composite member; and an inner wall layer, a through conductor and a conductor produced by repeating the above steps. A plurality of wiring layers. Characterized by the steps of multilayer laminated liquid crystal polymer insulating layer, the provided.

また、本発明の配線基板の製造方法は、実質的に同一の厚みを有する液晶ポリマー絶縁層と、内壁層となる液晶ポリマー以外の樹脂を含有してなる内壁層シートとを積層した積層体を作製する工程と、前記積層体の所定箇所を前記内壁層シート側から押圧して、前記内壁層シートの押圧部分を前記液晶ポリマー絶縁層側に移行させて、液晶ポリマー絶縁層と前記内壁層シートとが一体化した複合部材を作製する工程と、前記複合部材の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる被覆層を形成する工程と、前記被覆層と内壁層とを貫通する貫通孔を形成する工程と、前記貫通孔に導電体を充填して貫通導体を形成する工程と、前記貫通導体が形成された複合部材の主面に、導体配線層を転写して複合部材の主面に導体配線層を形成する工程と、上記の工程を繰り返して作製した貫通導体と導体配線層と被覆層とを具備する複数の複合部材を積層して多層化する工程と、を具備することを特徴とする。   In addition, the method for manufacturing a wiring board according to the present invention includes a laminate in which a liquid crystal polymer insulating layer having substantially the same thickness and an inner wall layer sheet containing a resin other than the liquid crystal polymer serving as an inner wall layer are laminated. A step of producing, pressing a predetermined portion of the laminate from the inner wall layer sheet side, and moving a pressing portion of the inner wall layer sheet to the liquid crystal polymer insulating layer side, whereby the liquid crystal polymer insulating layer and the inner wall layer sheet A composite member integrated with each other, a step of forming a coating layer containing a resin excluding a liquid crystal polymer on at least one main surface of the composite member, and a penetration through the coating layer and the inner wall layer A step of forming a through-hole, a step of filling the through-hole with a conductor to form a through-conductor, and a conductor wiring layer transferred to the main surface of the composite member on which the through-conductor is formed. Conductor wiring on the main surface Forming a, characterized by comprising the steps of multilayer by laminating a plurality of composite members comprising a covering layer and the through conductor and the conductor wiring layer produced by repeating the above steps.

また、本発明の配線基板の製造方法は、液晶ポリマー絶縁層の所定箇所を貫通する内壁孔を形成する工程と、予め作製した内壁層と被覆層となる液晶ポリマーを除く樹脂を含有してなるワニスに前記内壁孔を形成した液晶ポリマー絶縁層を浸漬し、前記内壁孔内に内壁層を形成するとともに、該内壁層を形成した前記液晶ポリマー絶縁層の表面に被覆層を形成する工程と、前記内壁孔に形成された前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電体を充填して貫通導体を形成する工程と、前記被覆層の主面に導体配線層を転写する工程と、上記の工程を繰り返して作製した被覆層と内壁層と貫通導体と導体配線層とを具備する複数の前記液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする。   In addition, the method for manufacturing a wiring board according to the present invention includes a step of forming an inner wall hole penetrating a predetermined portion of the liquid crystal polymer insulating layer, and a resin excluding the liquid crystal polymer to be the inner wall layer and the covering layer prepared in advance. Immersing the liquid crystal polymer insulating layer in which the inner wall hole is formed in a varnish, forming an inner wall layer in the inner wall hole, and forming a coating layer on a surface of the liquid crystal polymer insulating layer in which the inner wall layer is formed; A step of forming a through hole penetrating the inner wall layer formed in the inner wall hole, a step of filling the through hole with a conductor to form a through conductor, and a conductor wiring layer on a main surface of the covering layer A step of transferring, and a step of laminating a plurality of the liquid crystal polymer insulating layers each including a coating layer, an inner wall layer, a through conductor, and a conductor wiring layer produced by repeating the above-described steps. It is characterized by.

本発明の配線基板では、接着力の低い液層ポリマー絶縁層に換えて、貫通孔の内壁に貫通導体と液層ポリマー絶縁層とを接続するとともに、貫通導体と液層ポリマー絶縁層とを隔絶する液晶ポリマー以外の樹脂を含有してなる内壁層を設けることで、液晶ポリマー絶縁層と貫通導体の接続強度を高めることができる。   In the wiring board of the present invention, the through conductor and the liquid polymer insulating layer are connected to the inner wall of the through hole instead of the liquid polymer insulating layer having a low adhesive force, and the through conductor and the liquid polymer insulating layer are isolated from each other. By providing an inner wall layer containing a resin other than the liquid crystal polymer, the connection strength between the liquid crystal polymer insulating layer and the through conductor can be increased.

また、仮に、液晶ポリマー絶縁層と接触した場合に不具合を生じるような物質が貫通導体に入っていたとしても、貫通導体と液晶ポリマー絶縁層との接触を防止することができるため、不具合の発生を防止することができる。   In addition, even if a substance that would cause a malfunction when in contact with the liquid crystal polymer insulation layer is contained in the through conductor, contact between the through conductor and the liquid crystal polymer insulation layer can be prevented. Can be prevented.

また、本発明の配線基板は、内壁層に熱硬化性樹脂を用いることで、配線基板を加熱することにより液晶ポリマー絶縁層と貫通導体を内壁層の熱硬化性樹脂で接着し、液晶ポリマー絶縁層と貫通導体の接続を特に強固にし、貫通導体の接続信頼性を向上させることができる。   In addition, the wiring board of the present invention uses a thermosetting resin for the inner wall layer, and by heating the wiring board, the liquid crystal polymer insulating layer and the through conductor are bonded with the thermosetting resin of the inner wall layer. The connection between the layer and the through conductor can be particularly strengthened, and the connection reliability of the through conductor can be improved.

また、内壁層に熱可塑性樹脂を用いることで、配線基板を熱可塑性樹脂の軟化温度まで加熱することにより内壁層を溶融させ、液晶ポリマー絶縁層と貫通導体を内壁層で溶融接着し、液晶ポリマー絶縁層と貫通導体の接続を強固にし、貫通導体の接続信頼性を向上することができる。   Also, by using a thermoplastic resin for the inner wall layer, the wiring board is heated to the softening temperature of the thermoplastic resin to melt the inner wall layer, and the liquid crystal polymer insulating layer and the through conductor are melt bonded to each other by the inner wall layer. The connection between the insulating layer and the through conductor can be strengthened, and the connection reliability of the through conductor can be improved.

この内壁層の厚みを0.1μmより厚くすることで、液晶ポリマー絶縁層と貫通導体とを強固に接続することができる。また、液晶ポリマー絶縁層と貫通導体とを隔絶できるため、液晶ポリマー絶縁層と貫通導体との間にクラックや剥離が生じにくくなる。また、例えば、貫通導体組成にインジウムあるいはスズなどの低融点金属が含まれる場合、低融点金属の溶融に伴う急激な吸熱反応があっても、内壁層がその影響を吸収して、液晶ポリマー絶縁層と貫通導体の間のクラックや剥離を防止することができる。また、熱膨張係数が低い液晶ポリマー絶縁層と熱膨張係数が高い貫通導体との間には、熱膨張係数差による応力が発生するが、内壁層が存在することによりその応力を緩和することができる。また、内壁層の厚みを15μm以下にすることで、積層や硬化などの加熱加圧時に、内壁層の樹脂が流動しにくくなり、導体配線層や貫通導体が変形しない。また、貫通導体間のピッチを狭くすることができ、高密度配線基板を作製することができる。   By making the thickness of the inner wall layer greater than 0.1 μm, the liquid crystal polymer insulating layer and the through conductor can be firmly connected. Further, since the liquid crystal polymer insulating layer and the through conductor can be isolated from each other, cracks and peeling are less likely to occur between the liquid crystal polymer insulating layer and the through conductor. In addition, for example, when the through conductor composition contains a low melting point metal such as indium or tin, the inner wall layer absorbs the influence even if there is a sudden endothermic reaction accompanying the melting of the low melting point metal, and the liquid crystal polymer insulation Cracks and peeling between the layer and the through conductor can be prevented. In addition, stress due to the difference in thermal expansion coefficient is generated between the liquid crystal polymer insulating layer having a low thermal expansion coefficient and the through conductor having a high thermal expansion coefficient. However, the presence of the inner wall layer can alleviate the stress. it can. Further, by setting the thickness of the inner wall layer to 15 μm or less, the resin of the inner wall layer hardly flows during heating and pressurization such as lamination and curing, and the conductor wiring layer and the through conductor are not deformed. Further, the pitch between the through conductors can be reduced, and a high-density wiring board can be manufactured.

また、本発明の配線基板では、液晶ポリマー絶縁層の熱膨張係数をA、内壁層の熱膨張係数をB、貫通導体の熱膨張係数をCとしたとき、A<B<Cの関係を満足させることが望ましく、このような配線基板では、内壁層の熱膨張係数が、液晶ポリマー絶縁層と貫通導体の熱膨張係数の間の値となるため、内壁層が液晶ポリマー絶縁層と貫通導体の熱膨張係数差を緩和することができ、絶縁層と貫通導体間のクラックなどを防止することができる。   Further, in the wiring board of the present invention, when the thermal expansion coefficient of the liquid crystal polymer insulating layer is A, the thermal expansion coefficient of the inner wall layer is B, and the thermal expansion coefficient of the through conductor is C, the relationship of A <B <C is satisfied. In such a wiring board, since the thermal expansion coefficient of the inner wall layer is a value between the thermal expansion coefficients of the liquid crystal polymer insulating layer and the through conductor, the inner wall layer is formed between the liquid crystal polymer insulating layer and the through conductor. The difference in thermal expansion coefficient can be alleviated, and cracks between the insulating layer and the through conductor can be prevented.

また、融点以上(300℃)でしか熱溶着ができない液晶ポリマー絶縁層の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる接着性を有する被覆層を形成することで、液晶ポリマーの融点未満の温度域でも容易に液晶ポリマー絶縁層の主面に被覆層を介して導体配線層を形成することができる。   Further, by forming a coating layer having an adhesive property containing a resin excluding the liquid crystal polymer on at least one main surface of the liquid crystal polymer insulating layer which can be thermally welded only at a melting point or higher (300 ° C.), the liquid crystal polymer A conductor wiring layer can be easily formed on the main surface of the liquid crystal polymer insulating layer via a coating layer even in a temperature range below the melting point.

また、被覆層に熱硬化性樹脂を用いた場合には、被覆層に導体配線層を埋設して、配線基板を加熱することで、導体配線層と被覆層の熱硬化性樹脂とが接着し、導体配線層と被覆層との接続信頼性に優れた配線基板が得られる。   Also, when a thermosetting resin is used for the covering layer, the conductor wiring layer is embedded in the covering layer and the wiring board is heated, so that the conductor wiring layer and the thermosetting resin of the covering layer are bonded. Thus, a wiring board having excellent connection reliability between the conductor wiring layer and the coating layer can be obtained.

また、被覆層に熱可塑性樹脂を用いた場合には、被覆層に導体配線層を埋設して、配線基板を熱可塑性樹脂の軟化温度まで加熱することにより、被覆層を溶融させ、導体配線層と被覆層を溶融接着させることで、導体配線層と被覆層との接続信頼性に優れた配線基板が得られる。   When a thermoplastic resin is used for the coating layer, the conductor wiring layer is embedded in the coating layer, and the wiring board is heated to the softening temperature of the thermoplastic resin, so that the coating layer is melted. By melting and bonding the coating layer and the coating layer, a wiring substrate having excellent connection reliability between the conductor wiring layer and the coating layer can be obtained.

また、被覆層と内壁層とに同一の樹脂を用いることで、被覆層と内壁層の接続が良くなるため、被覆層と内壁層間へのクラックやマイグレーションの発生が抑制され、配線基板の信頼性を向上させることができる。また、被覆層と内壁層とに同じ樹脂を用いることで、同一材料によるコストダウン、また、同時形成プロセスによる工程の簡略、コスト削減を容易に行うことができる。   In addition, since the same resin is used for the coating layer and the inner wall layer, the connection between the coating layer and the inner wall layer is improved, so the occurrence of cracks and migration between the coating layer and the inner wall layer is suppressed, and the reliability of the wiring board Can be improved. Further, by using the same resin for the covering layer and the inner wall layer, it is possible to easily reduce the cost by the same material, simplify the process by the simultaneous formation process, and reduce the cost.

また、貫通導体を6〜15質量%の熱硬化性樹脂、2.5〜10質量%の銀および75〜91.5質量%の銅を含有してなる導電材で形成することで、酸化しやすい銅を酸化しにくい銀で被覆することができ、銀により銅の酸化が防止され、高温放置などの酸化による接続抵抗増加が小さくなり、貫通導体の接続信頼性を向上させることができる。   Moreover, it oxidizes by forming a penetration conductor with the electrically conductive material which contains 6-15 mass% thermosetting resin, 2.5-10 mass% silver, and 75-91.5 mass% copper. Copper that is easy to oxidize can be coated with silver that is difficult to oxidize, and the oxidation of copper is prevented by silver, and the increase in connection resistance due to oxidation such as being left at high temperature is reduced, and the connection reliability of the through conductor can be improved.

また、貫通導体を6〜15質量%の熱硬化性樹脂、2.5〜10質量%の銀および、45〜86.5質量%の銅および低融点の5〜30質量%のスズもしくはインジウムを含有してなる導電材で形成することで、導体配線層と貫通導体の界面及び貫通導体内部の金属粒子間に合金層のネックが形成され、導体配線層と貫通導体及び貫通導体内部の粒子間を強固に接続し、接続抵抗を小さくすることができるとともに、過酷な環境下において接続信頼性を向上することができる。   Further, the through conductor is made of 6 to 15% by mass of thermosetting resin, 2.5 to 10% by mass of silver, 45 to 86.5% by mass of copper, and low melting point of 5 to 30% by mass of tin or indium. By forming the conductive material, the neck of the alloy layer is formed between the interface between the conductor wiring layer and the through conductor and the metal particles inside the through conductor, and between the conductor wiring layer and the particles inside the through conductor and the through conductor. Can be firmly connected, connection resistance can be reduced, and connection reliability can be improved in harsh environments.

本発明の配線基板の製造方法は、液晶ポリマー絶縁層の所定箇所を貫通する内壁孔を形成する工程と、予め作製した内壁層となる液晶ポリマーを除く樹脂を含有してなるワニスを前記内壁孔に充填し、該内壁孔内に内壁層を形成する工程と、前記内壁孔に形成された前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電材を充填して貫通導体を形成する工程と、前記液晶ポリマー絶縁層に、導体配線層を転写する工程と、上記の工程を繰り返して作製した内壁層と貫通導体と導体配線層とを具備する複数の液晶ポリマー絶縁層を積層して多層化する工程とを具備することを特徴とする。   The method for producing a wiring board according to the present invention includes a step of forming an inner wall hole penetrating a predetermined portion of a liquid crystal polymer insulating layer, and a varnish containing a resin excluding the liquid crystal polymer to be a previously prepared inner wall layer. A step of forming an inner wall layer in the inner wall hole, a step of forming a through hole penetrating the inner wall layer formed in the inner wall hole, and a through conductor filled with a conductive material in the through hole A plurality of liquid crystal polymer insulation layers comprising an inner wall layer, a through conductor, and a conductor wiring layer produced by repeating the above steps, a step of transferring a conductor wiring layer to the liquid crystal polymer insulation layer, And laminating and multilayering.

このような配線基板の製造方法では、プリント板製造プロセスから大きく変更すること無しに簡易に内壁層を形成することができ、接続信頼性の高い配線基板を製造することができる。   In such a wiring board manufacturing method, the inner wall layer can be easily formed without greatly changing from the printed board manufacturing process, and a wiring board with high connection reliability can be manufactured.

また、上述した製造方法において、内壁層を設けた液晶ポリマー絶縁層の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる被覆層を形成することで、低い積層温度でも導体配線層を被覆層を介して液晶ポリマー絶縁層の主面に容易に形成することができる。   Moreover, in the manufacturing method described above, by forming a coating layer containing a resin excluding the liquid crystal polymer on at least one main surface of the liquid crystal polymer insulating layer provided with the inner wall layer, the conductor wiring layer can be formed even at a low lamination temperature. It can be easily formed on the main surface of the liquid crystal polymer insulating layer via the coating layer.

本発明の配線基板の製造方法は、実質的に同一の厚みを有する液晶ポリマー絶縁層と、内壁層となる液晶ポリマー以外の樹脂を含有してなる内壁層シートとを積層した積層体を作製する工程と、前記積層体の所定箇所を前記内壁層シート側から押圧して、前記内壁層シートの押圧部分を前記液晶ポリマー絶縁層側に移行させて、液晶ポリマー絶縁層と前記内壁層シートとが一体化した複合部材を作製する工程と、前記複合部材の前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電体を充填して貫通導体を形成する工程と、前記貫通導体が形成された複合部材の主面に、導体配線層を転写して複合部材の主面に導体配線層を形成する工程と、上記の工程を繰り返して作製した内壁層と貫通導体と導体配線層とを具備する複数の液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする。   The method for producing a wiring board of the present invention produces a laminate in which a liquid crystal polymer insulating layer having substantially the same thickness and an inner wall layer sheet containing a resin other than the liquid crystal polymer to be an inner wall layer are laminated. A step of pressing a predetermined portion of the laminate from the inner wall layer sheet side, shifting a pressing portion of the inner wall layer sheet to the liquid crystal polymer insulating layer side, and the liquid crystal polymer insulating layer and the inner wall layer sheet A step of producing an integrated composite member, a step of forming a through hole penetrating the inner wall layer of the composite member, a step of filling the through hole with a conductor to form a through conductor, and the through conductor A step of transferring the conductor wiring layer to the main surface of the composite member formed with the conductor member and forming the conductor wiring layer on the main surface of the composite member; and an inner wall layer, a through conductor and a conductor wiring layer produced by repeating the above steps A plurality of liquids comprising Characterized by comprising the steps of multilayer laminated polymeric insulating layer.

このような配線基板の製造方法では内壁孔の形成と内壁層の形成が同時にできるため、製造工程の短縮化並びにコストの削減が可能となる。   In such a method of manufacturing a wiring board, the formation of the inner wall hole and the formation of the inner wall layer can be performed simultaneously, so that the manufacturing process can be shortened and the cost can be reduced.

また、上述した製造方法において、内壁層を設けた液晶ポリマー絶縁層の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる被覆層を形成することで、低い積層温度でも導体配線層を被覆層を介して液晶ポリマー絶縁層の主面に容易に形成することができる。   Moreover, in the manufacturing method described above, by forming a coating layer containing a resin excluding the liquid crystal polymer on at least one main surface of the liquid crystal polymer insulating layer provided with the inner wall layer, the conductor wiring layer can be formed even at a low lamination temperature. It can be easily formed on the main surface of the liquid crystal polymer insulating layer via the coating layer.

本発明の配線基板の製造方法は、液晶ポリマー絶縁層の所定箇所を貫通する内壁孔を形成する工程と、予め作製した内壁層と被覆層となる液晶ポリマーを除く樹脂を含有してなるワニスに前記内壁孔を形成した液晶ポリマー絶縁層を浸漬し、前記内壁孔内に内壁層を形成するとともに、該内壁層を形成した前記液晶ポリマー絶縁層の表面に被覆層を形成する工程と、前記内壁孔に形成された前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電体を充填して貫通導体を形成する工程と、前記被覆層の主面に導体配線層を転写する工程と、上記の工程を繰り返して作製した被覆層と内壁層と貫通導体と導体配線層とを具備する複数の前記液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする。このような配線基板の製造方法では、被覆層と内壁層を同時に形成することが可能であり、製造工程の簡略、低コスト化を行うことができる。   The method for manufacturing a wiring board according to the present invention includes a step of forming an inner wall hole penetrating a predetermined portion of a liquid crystal polymer insulating layer, and a varnish containing a resin excluding the liquid crystal polymer to be a previously prepared inner wall layer and covering layer. Immersing the liquid crystal polymer insulating layer in which the inner wall hole is formed to form an inner wall layer in the inner wall hole, and forming a coating layer on the surface of the liquid crystal polymer insulating layer in which the inner wall layer is formed; A step of forming a through hole penetrating the inner wall layer formed in the hole, a step of filling the through hole with a conductor to form a through conductor, and transferring the conductor wiring layer to the main surface of the coating layer And a step of laminating a plurality of the liquid crystal polymer insulating layers each including a coating layer, an inner wall layer, a through conductor, and a conductor wiring layer produced by repeating the above steps. And In such a method of manufacturing a wiring board, the covering layer and the inner wall layer can be formed at the same time, and the manufacturing process can be simplified and the cost can be reduced.

本発明の配線基板は、例えば、図1(a)に示すように、少なくとも液晶ポリマーを含有してなる一層以上の液晶ポリマー絶縁層1と、液晶ポリマー絶縁層1を貫通する内壁孔2aと、内壁孔2aに設けられた液晶ポリマーを除く樹脂を含有してなる内壁層3と、内壁層3を貫通して設けられた貫通孔2bと、貫通孔2bに充填された貫通導体4とで構成されている。   For example, as shown in FIG. 1A, the wiring board of the present invention includes one or more liquid crystal polymer insulating layers 1 containing at least a liquid crystal polymer, an inner wall hole 2a penetrating the liquid crystal polymer insulating layer 1, An inner wall layer 3 containing a resin excluding a liquid crystal polymer provided in the inner wall hole 2a, a through hole 2b provided through the inner wall layer 3, and a through conductor 4 filled in the through hole 2b Has been.

そして、液晶ポリマー絶縁層1の主面には導体配線層5が形成されており、貫通導体4は液晶ポリマー絶縁層1を狭持して配置された導体配線層5同士を電気的に接続している。   A conductor wiring layer 5 is formed on the main surface of the liquid crystal polymer insulating layer 1, and the through conductor 4 electrically connects the conductor wiring layers 5 arranged with the liquid crystal polymer insulating layer 1 sandwiched therebetween. ing.

内壁層3は液晶ポリマー絶縁層1と貫通導体4との間にあって、貫通導体4を液晶ポリマー絶縁層1に固定するとともに、貫通導体4と液晶ポリマー絶縁層1との接触を防止する機能を有している。そして、仮に、貫通導体4に液晶ポリマー絶縁層4と反応して、フクレを発生させるような物質が含まれていたとしても、反応が発生することを防止することができる。そのため、内壁層3は液晶ポリマーを除く樹脂から構成されることが重要で、液晶ポリマーを除く熱硬化性樹脂、または熱可塑性樹脂を用いることができる。   The inner wall layer 3 is located between the liquid crystal polymer insulating layer 1 and the through conductor 4, and has a function of fixing the through conductor 4 to the liquid crystal polymer insulating layer 1 and preventing contact between the through conductor 4 and the liquid crystal polymer insulating layer 1. doing. And even if the through conductor 4 contains a substance that reacts with the liquid crystal polymer insulating layer 4 to generate swelling, it is possible to prevent the reaction from occurring. Therefore, it is important that the inner wall layer 3 is made of a resin excluding the liquid crystal polymer, and a thermosetting resin or a thermoplastic resin excluding the liquid crystal polymer can be used.

このような熱硬化性樹脂、熱可塑性樹脂としてはPPE(ポリフェニレンエーテル)、BTレジン(ビスマレイミドトリアジン)、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、ポリアミノビスマレイミド等が好適に用いられる。   As such a thermosetting resin and thermoplastic resin, PPE (polyphenylene ether), BT resin (bismaleimide triazine), epoxy resin, polyimide resin, fluorine resin, phenol resin, polyamino bismaleimide and the like are preferably used.

これらの樹脂の中では、貫通導体や液晶ポリマー絶縁層との接着強度が高く、安価に入手できるという点でエポキシ樹脂が望ましい。また、高周波における伝送特性を考慮する必要がある場合は、誘電率や誘電損失の優れたフッ素樹脂やPPE樹脂が望ましい。   Among these resins, an epoxy resin is desirable because it has high adhesive strength with the through conductor and the liquid crystal polymer insulating layer and can be obtained at low cost. In addition, when it is necessary to consider transmission characteristics at high frequencies, fluororesins and PPE resins having excellent dielectric constant and dielectric loss are desirable.

また、内壁層3には熱膨張係数の調整や、機械的強度の向上のために、樹脂中に酸化アルミニウム・酸化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化珪素・チタン酸カリウム・チタン酸バリウム・チタン酸ストロンチウム・チタン酸カルシウム・ホウ酸アルミニウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン酸ストロンチウム等の充填材、あるいは繊維状ガラスを布状に織り込んだガラスクロスや耐熱性樹脂繊維の不織布等の補強材を含有してもよい。   In addition, the inner wall layer 3 contains aluminum oxide, silicon oxide, titanium oxide, titanium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide, zeolite, nitriding in the resin to adjust the thermal expansion coefficient and improve the mechanical strength. Filling material such as silicon, aluminum nitride, silicon carbide, potassium titanate, barium titanate, strontium titanate, calcium titanate, aluminum borate, barium stannate, barium zirconate, strontium zirconate, or cloth glass You may contain reinforcing materials, such as a glass cloth woven in the shape and the nonwoven fabric of a heat resistant resin fiber.

なお、上記の充填材の粒子形状は、略球状・針状・フレーク状等があり、充填性の観点からは略球状が好ましい。また、粒子径は、通常0.1〜15μm程度であり、内壁層3の厚みよりも小さい方が望ましい。   In addition, the particle shape of the above filler includes a substantially spherical shape, a needle shape, a flake shape, and the like, and a substantially spherical shape is preferable from the viewpoint of filling properties. The particle diameter is usually about 0.1 to 15 μm, and is preferably smaller than the thickness of the inner wall layer 3.

この内壁層3の厚みは0.1〜15μmであることが望ましい。内壁層3の厚みを0.1μmより厚くすることで、液晶ポリマー絶縁層1と貫通導体4とを強固に接続することができ、また、液晶ポリマー絶縁層1と貫通導体4とを隔絶できるため、液晶ポリマー絶縁層1と貫通導体4との間にクラックや剥離が生じにくくなる。また、例えば、貫通導体組成にインジウムあるいはスズなどの低融点金属が含まれる場合、低融点金属の溶融に伴う急激な吸熱反応があっても、内壁層3がその影響を吸収して、液晶ポリマー絶縁層1と貫通導体4の間のクラックや剥離を防止することができる。また、内壁層3の厚みを15μm以下にすることで、積層や硬化などの加熱加圧時に、内壁層3の樹脂が流動しにくくなり、導体配線層5や貫通導体4が変形しない。また、貫通導体4間のピッチを狭くすることができ、高密度配線基板を作製することができる。   The inner wall layer 3 preferably has a thickness of 0.1 to 15 μm. By making the inner wall layer 3 thicker than 0.1 μm, the liquid crystal polymer insulating layer 1 and the through conductor 4 can be firmly connected, and the liquid crystal polymer insulating layer 1 and the through conductor 4 can be isolated. Further, cracks and peeling are less likely to occur between the liquid crystal polymer insulating layer 1 and the through conductor 4. For example, when the through conductor composition contains a low melting point metal such as indium or tin, even if there is a sudden endothermic reaction accompanying the melting of the low melting point metal, the inner wall layer 3 absorbs the influence and the liquid crystal polymer Cracks and peeling between the insulating layer 1 and the through conductor 4 can be prevented. Further, by setting the thickness of the inner wall layer 3 to 15 μm or less, the resin of the inner wall layer 3 hardly flows during heating and pressurization such as lamination and curing, and the conductor wiring layer 5 and the through conductor 4 are not deformed. Further, the pitch between the through conductors 4 can be narrowed, and a high-density wiring board can be manufactured.

また、例えば、液晶ポリマー絶縁層1と貫通導体4の熱膨張係数差が大きい場合、内壁層3がその応力を緩和するため、特に、内壁層3の厚みを2μm以上にすることが望ましい。   In addition, for example, when the difference in thermal expansion coefficient between the liquid crystal polymer insulating layer 1 and the through conductor 4 is large, the inner wall layer 3 relieves the stress. Therefore, the thickness of the inner wall layer 3 is particularly preferably 2 μm or more.

また、液晶ポリマー絶縁層1の熱膨張係数をA、内壁層3の熱膨張係数をB、貫通導体4の熱膨張係数をCとしたとき、導電性金属を含有する比較的、熱膨張係数が大きい貫通導体4と比較的熱膨張係数が小さい液晶ポリマー絶縁層1との熱応力を緩和するためには、A<B<Cの関係を満足することが望ましい。内壁層3の熱膨張係数が液晶ポリマー絶縁層1と貫通導体4の熱膨張係数の間になることにより、液晶ポリマー絶縁層1と貫通導体4の熱膨張係数差による液晶ポリマー絶縁層1と貫通導体4との間のクラックや剥離が低減される。   When the thermal expansion coefficient of the liquid crystal polymer insulating layer 1 is A, the thermal expansion coefficient of the inner wall layer 3 is B, and the thermal expansion coefficient of the through conductor 4 is C, the thermal expansion coefficient containing the conductive metal is relatively high. In order to relieve the thermal stress between the large through conductor 4 and the liquid crystal polymer insulating layer 1 having a relatively small thermal expansion coefficient, it is desirable to satisfy the relationship of A <B <C. Since the thermal expansion coefficient of the inner wall layer 3 is between the thermal expansion coefficients of the liquid crystal polymer insulation layer 1 and the through conductor 4, the liquid crystal polymer insulation layer 1 and the penetration through the difference in thermal expansion coefficient between the liquid crystal polymer insulation layer 1 and the through conductor 4. Cracks and peeling between the conductors 4 are reduced.

また、図1(b)に示すように、液晶ポリマー絶縁層1の主面に液晶ポリマーを除く樹脂を含有してなる被覆層6を形成することが望ましい。液晶ポリマーは融点が高い(300℃以上)ため、液晶ポリマー絶縁層1の主面に被覆層6を形成することにより、液層ポリマー絶縁層1を300℃未満の低温で簡易に積層することができる。また、液層ポリマー絶縁層1の主面に被覆層6を介して導体配線層5を容易に形成することができる。   Further, as shown in FIG. 1B, it is desirable to form a coating layer 6 containing a resin excluding the liquid crystal polymer on the main surface of the liquid crystal polymer insulating layer 1. Since the liquid crystal polymer has a high melting point (300 ° C. or higher), the liquid layer polymer insulating layer 1 can be easily laminated at a low temperature of less than 300 ° C. by forming the coating layer 6 on the main surface of the liquid crystal polymer insulating layer 1. it can. Further, the conductor wiring layer 5 can be easily formed on the main surface of the liquid layer polymer insulating layer 1 via the coating layer 6.

また、被覆層6が熱硬化性樹脂であることが望ましく、被覆層6を熱硬化性樹脂とすることで、被覆層6に導体配線層5を埋設して配線基板を加熱することで、導体配線層5と被覆層6の熱硬化性樹脂が接着し、導体配線層5と被覆層6とが強固に接着された信頼性の高い配線基板となる。   Moreover, it is desirable that the coating layer 6 is a thermosetting resin, and by making the coating layer 6 a thermosetting resin, the conductor wiring layer 5 is embedded in the coating layer 6 and the wiring board is heated, thereby providing a conductor. The thermosetting resin of the wiring layer 5 and the covering layer 6 is bonded, and the conductive wiring layer 5 and the covering layer 6 are firmly bonded to form a highly reliable wiring board.

また、被覆層6が熱可塑性樹脂であることが望ましく、被覆層6を熱可塑性樹脂とした場合には、被覆層6に導体配線層5を埋設して、配線基板を熱可塑性樹脂の軟化温度まで加熱することにより被覆層6を溶融させ、導体配線層5と被覆層6とを溶融接着することで、被覆層6に導体配線層5を形成することができる。   Further, it is desirable that the coating layer 6 is a thermoplastic resin. When the coating layer 6 is a thermoplastic resin, the conductor wiring layer 5 is embedded in the coating layer 6 so that the wiring board is softened by the thermoplastic resin. The conductor wiring layer 5 can be formed on the coating layer 6 by melting the coating layer 6 by heating up to a temperature and melting and bonding the conductor wiring layer 5 and the coating layer 6.

また、被覆層6と内壁層3とに用いる樹脂を同一の樹脂とすることが望ましく、被覆層6と内壁層3とがなじみやすいことから、信頼性を向上させることができる。また、あわせて、プロセスの簡略化、コスト低下が容易にできる。   In addition, it is desirable that the resin used for the covering layer 6 and the inner wall layer 3 is the same resin, and the covering layer 6 and the inner wall layer 3 are easily compatible, so that the reliability can be improved. In addition, the process can be simplified and the cost can be easily reduced.

また、貫通導体4が6〜15質量%の熱硬化性樹脂、2.5〜10質量%の銀および75〜91.5質量%の銅を含有してなる導電材で形成されていることが望ましい。   Further, the through conductor 4 may be formed of a conductive material containing 6 to 15% by mass of thermosetting resin, 2.5 to 10% by mass of silver, and 75 to 91.5% by mass of copper. desirable.

導電材に含有される熱硬化性樹脂は、金属粉末の結合用樹脂としての作用を有し、金属粉末との結合性の高いエポキシ樹脂や熱硬化性ポリフェニレンエーテル樹脂・フェノール樹脂・メラミン樹脂・アルキド樹脂・ウレタン樹脂・イミド樹脂等の熱硬化性樹脂やこれらの混合体が用いられる。   The thermosetting resin contained in the conductive material acts as a resin for bonding metal powders, and has high bonding properties with metal powders such as epoxy resins, thermosetting polyphenylene ether resins, phenol resins, melamine resins, and alkyds. Thermosetting resins such as resins, urethane resins and imide resins, and mixtures thereof are used.

このような導電材に含まれる熱硬化性樹脂の含有量を6質量%以上とすることで、導電材の粘度が低くなり、埋め込み性が高くなる傾向があり、15質量%以下とすることで、貫通導体4の抵抗を十分低くすることができる。したがって、導電材に含まれる熱硬化性樹脂の含有量が6〜15質量%であることが望ましい。   By setting the content of the thermosetting resin contained in such a conductive material to 6% by mass or more, the viscosity of the conductive material tends to be low and the embedding property tends to be high, and by setting the content to 15% by mass or less. The resistance of the through conductor 4 can be made sufficiently low. Therefore, it is desirable that the content of the thermosetting resin contained in the conductive material is 6 to 15% by mass.

また、導電材に含まれる銀の含有量を2.5質量%以上とすることで、粒子間の接合が十分となり貫通導体4の抵抗が低くなる傾向があり、また、10質量%以下とすることで、信頼性試験において銀のイオンマイグレーションを防止できるとともに導電材をコストダウンすることができる。したがって、導電材に含まれる銀の含有量が2.5〜10質量%であることが望ましい。   Further, by setting the silver content in the conductive material to 2.5% by mass or more, there is a tendency that the bonding between the particles becomes sufficient and the resistance of the through conductor 4 tends to be low, and 10% by mass or less. Thus, in the reliability test, silver ion migration can be prevented and the cost of the conductive material can be reduced. Therefore, it is desirable that the content of silver contained in the conductive material is 2.5 to 10% by mass.

また、さらに、導電材に含まれる銅の含有量を75質量%以上とすることで、導電材中の金属成分充填量が十分となり導電性を確保することができる。また、91.5質量%以下とすることで、導電材の粘度を低く維持することができ、埋め込み性を維持できる。したがって、導電材に含まれる銅の含有量が75〜91.5質量%であることが望ましい。   Furthermore, by setting the content of copper contained in the conductive material to 75% by mass or more, the metal component filling amount in the conductive material becomes sufficient, and the conductivity can be ensured. Moreover, by setting it as 91.5 mass% or less, the viscosity of a electrically conductive material can be maintained low and embedding property can be maintained. Therefore, it is desirable that the content of copper contained in the conductive material is 75 to 91.5% by mass.

また、本発明の配線基板は、貫通導体4が6〜15質量%の熱硬化性樹脂、2.5〜10質量%の銀および、45〜86.5質量%の銅および5〜30質量%のスズもしくはインジウムを含有してなる導電材で構成されることが望ましい。   In the wiring board of the present invention, the through conductor 4 is 6 to 15% by mass of thermosetting resin, 2.5 to 10% by mass of silver, 45 to 86.5% by mass of copper, and 5 to 30% by mass. It is desirable to be made of a conductive material containing tin or indium.

配線基板を熱処理する工程で貫通導体4に含まれる低融点金属であるスズもしくはインジウムが溶融し、その結果、貫通導体に含まれる導電材の金属と導体配線層5と合金を形成し、3次元的な面接触によって接続し、貫通導体4と導体配線層5との接続が強固なものとなり、接続信頼性に優れた配線基板とすることができる。また、貫通導体4と液晶ポリマー絶縁層1の間に内壁層3が形成されていることから、吸熱反応による液晶ポリマー絶縁層1と貫通導体4との間のクラックや剥離が低減される。   In the process of heat-treating the wiring board, tin or indium that is a low melting point metal contained in the through conductor 4 is melted, and as a result, a metal of the conductive material contained in the through conductor and the conductor wiring layer 5 are formed to form an alloy. Therefore, the connection between the through conductor 4 and the conductor wiring layer 5 becomes strong, and a wiring board having excellent connection reliability can be obtained. In addition, since the inner wall layer 3 is formed between the through conductor 4 and the liquid crystal polymer insulating layer 1, cracks and peeling between the liquid crystal polymer insulating layer 1 and the through conductor 4 due to endothermic reaction are reduced.

また、スズ、もしくはインジウムの含有量は、5〜30質量%が望ましい。スズ、もしくはインジウムの含有量を5質量%以上とすることで、合金形成による3次元貫通導体接続が形成しやすくなり、電気抵抗が比較的大きいスズ、もしくはインジウムの含有量を、30質量%以下とすることで貫通導体4の抵抗を、小さくすることができる。   Moreover, as for content of tin or indium, 5-30 mass% is desirable. By setting the tin or indium content to 5% by mass or more, it becomes easy to form a three-dimensional through conductor connection by alloy formation, and the tin or indium content having a relatively large electric resistance is set to 30% by mass or less. As a result, the resistance of the through conductor 4 can be reduced.

このような貫通導体4は、例えば、従来周知のスクリーン印刷法により形成することができる。   Such a through conductor 4 can be formed by, for example, a conventionally known screen printing method.

貫通導体4を形成する導電材に含有される金属粉末の形状は、充填性の観点からは略球状であることが好ましく、また、その平均粒径を、2μm以上とすることで、金属粉末の比表面積を小さくすることができ、ペースト化が容易となる。また、10μm以下とすることで、導電材の埋め込み性・充填性を良好にすることできる。従って、金属粉末の平均粒径は、2〜10μm、特に3〜7μm、最適には3〜5μmとすることが望ましい。   The shape of the metal powder contained in the conductive material forming the through conductor 4 is preferably substantially spherical from the viewpoint of filling properties, and the average particle diameter is 2 μm or more, so that the metal powder The specific surface area can be reduced, and pasting becomes easy. Moreover, the embedding property and filling property of a conductive material can be made favorable by setting it as 10 micrometers or less. Accordingly, the average particle size of the metal powder is desirably 2 to 10 μm, particularly 3 to 7 μm, and most preferably 3 to 5 μm.

次に、本発明の配線基板の製造方法の一形態を図2(a)〜図3(f)を用いて説明する。   Next, one form of the manufacturing method of the wiring board of this invention is demonstrated using Fig.2 (a)-FIG.3 (f).

まず、図2(a)に示すような液晶ポリマー絶縁層1の所定箇所に対してドリル加工やレーザー加工、金型打ち抜き等を行ない、図2(b)に示すように内壁孔2aを形成する。   First, drilling, laser processing, die punching or the like is performed on a predetermined portion of the liquid crystal polymer insulating layer 1 as shown in FIG. 2A to form an inner wall hole 2a as shown in FIG. 2B. .

次に、図2(c)に示すように、予め作製した内壁層3となる液晶ポリマーを除く樹脂を含有してなるワニスを内壁孔2aに充填し、内壁孔2a内に内壁層3を形成する。ワニスの充填は埋め込み印刷やディスペンサー等を用いて行う。   Next, as shown in FIG. 2 (c), the inner wall hole 2a is filled with a varnish containing a resin excluding the liquid crystal polymer to be the inner wall layer 3 prepared in advance, and the inner wall layer 3 is formed in the inner wall hole 2a. To do. The filling of the varnish is performed using embedded printing or a dispenser.

そして、図3(d)に示すように、レーザー加工やドリル加工、金型打ち抜き等の手段を用いて、内壁孔2aに形成された内壁層3内に内壁層3を貫通する貫通孔2bを形成する。   And as shown in FIG.3 (d), the through-hole 2b which penetrates the inner-wall layer 3 in the inner-wall layer 3 formed in the inner-wall hole 2a using means, such as a laser processing, a drill process, and die stamping, is formed. Form.

つぎに、図3(e)に示すように、埋め込み印刷やディスペンサー等により、貫通孔2bに導電材を充填して貫通導体4を形成する。   Next, as shown in FIG. 3E, the through conductor 4 is formed by filling the through hole 2b with a conductive material by embedded printing, a dispenser, or the like.

そして、図3(f)に示すように、液晶ポリマー絶縁層1に、導体配線層5を転写し、一層分の配線基板が形成できる。そして、必要に応じ、上記の工程を繰り返して作製した内壁層3と貫通導体4と導体配線層5とを具備する液晶ポリマー絶縁層1を複数、積層し、硬化するなどして多層化することで図1(a)に示すような配線基板を作製することができる。   And as shown in FIG.3 (f), the conductor wiring layer 5 is transcribe | transferred to the liquid crystal polymer insulating layer 1, and the wiring board for one layer can be formed. Then, if necessary, a plurality of liquid crystal polymer insulating layers 1 each including the inner wall layer 3, the through conductor 4, and the conductor wiring layer 5 prepared by repeating the above steps are laminated and cured to be multilayered. Thus, a wiring board as shown in FIG. 1A can be manufactured.

また、上述の製造方法において、内壁層3となるワニスを内壁層2aに充填した後に、液晶ポリマー絶縁層1の主面に被覆層6を形成することにより、図1(b)に示すような配線基板を作製することもできる。   Further, in the above-described manufacturing method, after filling the inner wall layer 2a with the varnish to be the inner wall layer 3, the coating layer 6 is formed on the main surface of the liquid crystal polymer insulating layer 1, as shown in FIG. A wiring board can also be produced.

次に、本発明の配線基板の他の製造方法を図4(a)〜図5(f)を用いて説明する。   Next, another method for manufacturing the wiring board of the present invention will be described with reference to FIGS. 4 (a) to 5 (f).

先ず、実質的に同一の厚みを有する液晶ポリマー絶縁層1と、内壁層3となる内壁層シート3を周知のドクターブレード法などのシート作製法を用いて作製する。   First, the liquid crystal polymer insulating layer 1 having substantially the same thickness and the inner wall layer sheet 3 to be the inner wall layer 3 are manufactured by using a known sheet manufacturing method such as a doctor blade method.

そして、図4(a)に示すように、液晶ポリマー絶縁層1と、内壁層3となる内壁層シート3とを積層する。   And as shown to Fig.4 (a), the liquid crystal polymer insulation layer 1 and the inner wall layer sheet | seat 3 used as the inner wall layer 3 are laminated | stacked.

次に、図4(b)に示すように、液晶ポリマー絶縁層1と、内壁層3となる内壁層シート3との積層体の所定箇所に金型等を内壁層シート3側から押圧して、内壁層シート3の押圧された部分を液晶ポリマー絶縁層1側に移行させる。   Next, as shown in FIG. 4B, a mold or the like is pressed from a side of the inner wall layer sheet 3 to a predetermined position of the laminate of the liquid crystal polymer insulating layer 1 and the inner wall layer sheet 3 that becomes the inner wall layer 3. The pressed portion of the inner wall layer sheet 3 is moved to the liquid crystal polymer insulating layer 1 side.

そして、図4(c)に示すように、液晶ポリマー絶縁層1側に移行していない内壁層シート3と、液晶ポリマー絶縁層1から、内壁層シート3によって押し出された液晶ポリマー絶縁層1を除去し、液晶ポリマー絶縁層1と内壁層3とが一体化した複合部材を作製する。このような工程で、液晶ポリマー絶縁層1に内壁孔2aと内壁層3とを同時に形成することができる。   And as shown in FIG.4 (c), the liquid crystal polymer insulation layer 1 extruded by the inner wall layer sheet | seat 3 from the inner wall layer sheet | seat 3 which has not transfered to the liquid crystal polymer insulation layer 1 side, and the liquid crystal polymer insulation layer 1 is shown. A composite member in which the liquid crystal polymer insulating layer 1 and the inner wall layer 3 are integrated is removed. Through such a process, the inner wall hole 2a and the inner wall layer 3 can be simultaneously formed in the liquid crystal polymer insulating layer 1.

そして、図5(d)に示すように、この内壁層3にレーザー加工やドリル加工、金型打ち抜き等の手段を用いて、内壁層3内に内壁層3を貫通する貫通孔2bを形成する。   Then, as shown in FIG. 5 (d), a through hole 2b penetrating the inner wall layer 3 is formed in the inner wall layer 3 using means such as laser processing, drilling, and die punching. .

次に、図5(e)に示すように、埋め込み印刷やディスペンサー等により、貫通孔2bに導電材を充填して貫通導体4を形成する。   Next, as shown in FIG. 5E, the through conductor 4 is formed by filling the through hole 2b with a conductive material by embedded printing, a dispenser, or the like.

次に、図5(f)に示すように、貫通導体4が形成された複合部材に、予め、フィルム上に形成しておいた導体配線層5を転写して、貫通導体4が形成された複合部材に導体配線層5を形成する。   Next, as shown in FIG. 5 (f), the conductor wiring layer 5 previously formed on the film was transferred to the composite member in which the through conductor 4 was formed, and the through conductor 4 was formed. The conductor wiring layer 5 is formed on the composite member.

そして、必要に応じ、上記の工程を繰り返して作製した貫通導体4と導体配線層5とを具備する複合部材を複数、積層し、硬化するなどして多層化することで図1(a)に示すような配線基板を作製することができる。   Then, if necessary, a plurality of composite members each including the through conductor 4 and the conductor wiring layer 5 manufactured by repeating the above steps are stacked and cured to be multilayered as shown in FIG. A wiring board as shown can be manufactured.

また、上述の製造方法において、図4(c)に示すような、液晶ポリマー絶縁層1と内壁層3とが一体化した後で、複合部材の主面に被覆層6を形成することにより、図1(b)に示すような配線基板を作製することもできる。   Further, in the above manufacturing method, after the liquid crystal polymer insulating layer 1 and the inner wall layer 3 are integrated as shown in FIG. 4C, the covering layer 6 is formed on the main surface of the composite member, A wiring board as shown in FIG. 1B can also be produced.

また、本発明のさらに他の製造方法を図6(a)〜(d)を用いて説明する。   Still another manufacturing method of the present invention will be described with reference to FIGS.

まず、図6(a)に示すように、液晶ポリマー絶縁層1の所定箇所に対してレーザ加工やドリル加工、金型打ち抜き等で、内壁孔2aを形成する。   First, as shown in FIG. 6A, an inner wall hole 2a is formed at a predetermined position of the liquid crystal polymer insulating layer 1 by laser processing, drilling, die punching, or the like.

次に、図6(b)に示すように内壁孔2aを設けた液晶ポリマー絶縁層1を、内壁層3並びに被覆層6となるワニスに浸漬して、内壁孔2a内に内壁層3を形成するとともに、液晶ポリマー絶縁層1の表面に被覆層6を形成する。そして、レーザー加工やドリル加工、金型打ち抜き等により、内壁孔2aに形成された内壁層3内に内壁層3を貫通する貫通孔2bを形成する。   Next, as shown in FIG. 6 (b), the liquid crystal polymer insulating layer 1 provided with the inner wall hole 2a is immersed in a varnish that becomes the inner wall layer 3 and the coating layer 6 to form the inner wall layer 3 in the inner wall hole 2a. At the same time, a coating layer 6 is formed on the surface of the liquid crystal polymer insulating layer 1. And the through-hole 2b which penetrates the inner-wall layer 3 is formed in the inner-wall layer 3 formed in the inner-wall hole 2a by laser processing, drilling, die punching, etc.

次に、図6(c)に示すように、埋め込み印刷やディスペンサー等で貫通孔2bに導電材を充填して貫通導体4を形成する。   Next, as illustrated in FIG. 6C, the through conductor 4 is formed by filling the through hole 2 b with a conductive material using embedded printing, a dispenser, or the like.

そして、図6(d)に示すように、被覆層6に、導体配線層5を位置合わせし、温度100℃〜150℃、圧力1〜5MPaで加熱加圧することにより導体配線層5を被覆層6に転写する。そして、必要に応じ、上記の工程を繰り返して作製した貫通導体4と導体配線層5とを具備する複合部材を複数、積層し、硬化するなどして多層化することで、図1(b)に示すような配線基板を作製することができる。   And as shown in FIG.6 (d), the conductor wiring layer 5 is aligned with the coating layer 6, and the conductor wiring layer 5 is heat-pressed at the temperature of 100 to 150 degreeC and the pressure of 1 to 5 MPa, and the coating layer 6 is covered. Transfer to 6. Then, if necessary, a plurality of composite members each including the through conductor 4 and the conductor wiring layer 5 produced by repeating the above steps are laminated and cured to be multilayered, thereby forming a multilayer structure as shown in FIG. A wiring board as shown in FIG.

なお、図6を用いて説明した製造方法では、内壁孔2aの穴経並びに内壁層3、被覆層6となるワニスの粘度を適宜、調製することで、内壁層2aを形成した液晶ポリマー絶縁層1をワニスに浸漬して、内壁層3と、被覆層6に加え、貫通孔2bをも、併せて形成することができる。   In addition, in the manufacturing method demonstrated using FIG. 6, the liquid crystal polymer insulating layer which formed the inner wall layer 2a by adjusting suitably the viscosity of the varnish used as the inner wall hole 2a and the inner wall layer 3 and the coating layer 6 1 can be immersed in the varnish, and in addition to the inner wall layer 3 and the coating layer 6, the through-hole 2 b can also be formed.

また、本発明の配線基板は図1で示した形態以外にも、例えば、一つの内壁層3に複数の貫通孔2bを設け、一つの内壁層3内に、複数の貫通導体4を設けてもよく、この場合には、加工時間が短縮されるという利点がある。   In addition to the embodiment shown in FIG. 1, the wiring board of the present invention has, for example, a plurality of through holes 2 b in one inner wall layer 3 and a plurality of through conductors 4 in one inner wall layer 3. In this case, there is an advantage that the processing time is shortened.

また、複数の液晶ポリマー絶縁層1を、液晶ポリマー絶縁層1間に配線導体層5を形成せずに積層してもよいことはいうまでもない。   Needless to say, the plurality of liquid crystal polymer insulating layers 1 may be laminated without forming the wiring conductor layer 5 between the liquid crystal polymer insulating layers 1.

また、本発明の配線基板に、さらに、ビルドアップ配線層を積層するなどしてもよく、この場合には、信頼性と、さらなる高密度配線とを併せて実現することができる。   Further, a build-up wiring layer may be further laminated on the wiring board of the present invention. In this case, reliability and higher density wiring can be realized together.

また、上記の例では、貫通導体4は導電性ペーストを充填して形成しているが、抵抗の低いめっきにより貫通導体4を形成してもよく、さらに、めっきと導電性ペーストにより形成した場合には、さらに貫通導体4の抵抗を小さくすることができる。また、めっきと樹脂により形成してもよい。   Further, in the above example, the through conductor 4 is formed by filling a conductive paste. However, the through conductor 4 may be formed by plating with low resistance, and further, formed by plating and a conductive paste. In addition, the resistance of the through conductor 4 can be further reduced. Moreover, you may form by plating and resin.

なお、貫通孔2bの形成には、微細な貫通孔2aを形成できる点で、レーザー光を用いることが望ましい。   In addition, it is desirable to use a laser beam for the formation of the through hole 2b in that a fine through hole 2a can be formed.

先ず、貫通孔2bに充填する導電材4として、表1に示す配合比で金属粉末と、熱硬化性樹脂としてビスフェノールA型エポキシ樹脂(油化シェルエポキシ製、エピコート828)と、硬化剤としてアミンアダクト硬化剤(味の素製、MY−24)とを3本ロールにて混練し、導電ペーストを作製した。   First, as the conductive material 4 filled in the through-hole 2b, metal powder with a blending ratio shown in Table 1, a bisphenol A type epoxy resin (manufactured by Yuka Shell Epoxy, Epicoat 828) as a thermosetting resin, and an amine as a curing agent An adduct curing agent (manufactured by Ajinomoto Co., Inc., MY-24) was kneaded with three rolls to produce a conductive paste.

次に、エポキシ樹脂に平均粒径が0.6μmの球状溶融シリカをその含有量が30体積%となるようにして加え、これに溶剤としてMEK(メチルエチルケトン)、さらに樹脂の硬化を促進させるための触媒を添加し、1時間混合してワニスを調整した。   Next, spherical fused silica having an average particle size of 0.6 μm is added to the epoxy resin so that the content thereof is 30% by volume, MEK (methyl ethyl ketone) as a solvent, and further for promoting the curing of the resin The catalyst was added and mixed for 1 hour to prepare the varnish.

そして、内壁孔2aを形成していない融点が320℃で厚みが50μmの液晶ポリマー絶縁層1の表層にドクタブレードでワニスを塗布し、厚み10μmの被覆層6を両面に形成した液晶ポリマー絶縁層1を作製した。   Then, a varnish was applied with a doctor blade to the surface layer of the liquid crystal polymer insulating layer 1 having a melting point of 320 ° C. and a thickness of 50 μm, in which the inner wall hole 2a was not formed, and a coating layer 6 having a thickness of 10 μm was formed on both surfaces. 1 was produced.

次に、被覆層6を設けた液晶ポリマー絶縁層1の所定の箇所にレーザー光で表1に示す孔径の内壁孔2aを形成し、上記ワニスを内壁孔2aに充填して、液晶ポリマー絶縁層1表層及び内壁孔2a内部に被覆層6並びに内壁層3を形成した。   Next, an inner wall hole 2a having a hole diameter shown in Table 1 is formed by laser light at a predetermined portion of the liquid crystal polymer insulating layer 1 provided with the coating layer 6, and the inner wall hole 2a is filled with the varnish, whereby the liquid crystal polymer insulating layer is formed. 1 The coating layer 6 and the inner wall layer 3 were formed in the surface layer and the inner wall hole 2a.

そして、レーザー光により内壁孔2a内に形成された内壁層3内に内壁層3を貫通するφ50μmの貫通孔2bを形成した。なお、このときの内壁層3の厚さは表1に示す値となるように変化させた。   And the through-hole 2b of (phi) 50 micrometers which penetrates the inner-wall layer 3 was formed in the inner-wall layer 3 formed in the inner-wall hole 2a with the laser beam. In addition, the thickness of the inner wall layer 3 at this time was changed so as to have a value shown in Table 1.

比較のために、内壁層3を設けない試料も、ワニスを充填しないことで作製した。   For comparison, a sample without the inner wall layer 3 was also prepared by not filling the varnish.

そして、貫通孔2bと、比較のための内壁層3を具備しない液晶ポリマー絶縁層1の貫通孔2bに、上述した導電ペーストを従来周知のスクリーン印刷法により埋め込んで、貫通導体4を形成した。   Then, the above-described conductive paste was embedded in the through-hole 2b and the through-hole 2b of the liquid crystal polymer insulating layer 1 not provided with the inner wall layer 3 for comparison to form the through-conductor 4 by a conventionally known screen printing method.

次に、回路状に形成した厚さ12μmの樹脂フィルム付き金属箔と、貫通導体4が形成された液晶ポリマー絶縁層1とを位置合わせして、真空積層機により、130℃、3MPaの圧力で30秒加圧した後、樹脂フィルムを剥離して導体配線層5を被覆層6に埋設させた。最後に、この導体配線層5と内壁層3と貫通導体4とが形成された液晶ポリマー絶縁層1を4枚重ね合わせ、3MPaの圧力下で200℃の温度で5時間加熱処理して完全硬化させて配線基板を得た。   Next, the metal foil with a resin film having a thickness of 12 μm formed in a circuit shape is aligned with the liquid crystal polymer insulating layer 1 on which the through conductors 4 are formed, and is subjected to a pressure of 130 ° C. and 3 MPa by a vacuum laminator. After pressurizing for 30 seconds, the resin film was peeled off and the conductor wiring layer 5 was embedded in the coating layer 6. Finally, four liquid crystal polymer insulating layers 1 on which the conductor wiring layer 5, the inner wall layer 3 and the through conductor 4 are formed are stacked and heat-treated at a temperature of 200 ° C. for 5 hours under a pressure of 3 MPa for complete curing. To obtain a wiring board.

また、内壁層3を具備しない液晶ポリマー絶縁層1についても同様に積層した。   Further, the liquid crystal polymer insulating layer 1 not having the inner wall layer 3 was laminated in the same manner.

なお、導通信頼性の評価を行なうためのテスト基板は、その内部に配線基板の液晶ポリマー絶縁層1を介して位置する上下の2層の導体配線層5と、両者を電気的に接続する貫通導体4とで貫通導体チェーンを形成したものとした。また、導通信頼性の評価は、試料を温度が−55℃の条件で30分、125℃の条件で30分を1サイクルとする温度サイクル試験(TCT)を行ない、1000サイクル後の貫通導体チェーンの導通抵抗を測定し、試験前後の導通抵抗の変化率を比較することにより評価した。表1に導通信頼性の評価結果を示す。   Note that the test substrate for conducting conduction reliability evaluation has two upper and lower conductor wiring layers 5 located inside through the liquid crystal polymer insulating layer 1 of the wiring substrate, and a through hole that electrically connects the two. A through-conductor chain was formed with the conductor 4. Conductive reliability is evaluated by conducting a temperature cycle test (TCT) in which the sample is 30 minutes at a temperature of −55 ° C. and 30 minutes at a temperature of 125 ° C. for one cycle. The conduction resistance was measured and evaluated by comparing the rate of change in conduction resistance before and after the test. Table 1 shows the results of evaluation of conduction reliability.

また、フクレやクラックの評価は、配線基板の断面をSEM(走査型電子顕微鏡分析)観察し、それぞれ50個の貫通導体を評価し、絶縁層と貫通導体間に存在するフクレやクラックの数を評価した。なお、界面において界面を形成する二つの層の間に5μm未満のわずかな隙間が存在する場合をクラック有りと判定した。また、界面において界面を形成する二つの層の間に5μm以上の比較的大きな隙間が存在する場合をフクレ有りと判定した。

Figure 2005136050
In addition, for the evaluation of blisters and cracks, the cross section of the wiring board is observed by SEM (scanning electron microscope analysis), each of the 50 through conductors is evaluated, and the number of blisters and cracks existing between the insulating layer and the through conductors is determined. evaluated. In addition, it was determined that there was a crack when there was a slight gap of less than 5 μm between the two layers forming the interface. Further, when there is a relatively large gap of 5 μm or more between the two layers forming the interface at the interface, it was determined that there was swelling.
Figure 2005136050

本発明の範囲外である内壁層3が無く、貫通導体4にスズまたはインジウムが入った試料No.1、2では、液晶ポリマー絶縁層1と貫通導体4の界面に全数フクレが発生し、接続信頼性が著しく劣ることがわかった。   There is no inner wall layer 3 which is outside the scope of the present invention, and the sample No. 1 and 2, it was found that all the blisters occurred at the interface between the liquid crystal polymer insulating layer 1 and the through conductor 4, and the connection reliability was extremely inferior.

また、本発明の範囲外である貫通導体4にスズまたはインジウムを含んではいないものの、内壁層3が無い試料No.3では、液晶ポリマー絶縁層1と貫通導体4の界面のフクレはなかったが、液晶ポリマー絶縁層1と貫通導体4の界面の接着力が低く、50個の貫通導体4のうち、9つにクラックが認められた。このクラックは、界面の隙間が1〜3μm程度であり、非常に小さなものであったが、温度サイクル後の抵抗変化率が若干大きくなっており、長期の接続信頼性に難があることが判る。   In addition, although the through conductor 4 which is outside the scope of the present invention does not contain tin or indium, the sample no. 3, there was no swelling at the interface between the liquid crystal polymer insulating layer 1 and the penetrating conductor 4, but the adhesive strength at the interface between the liquid crystal polymer insulating layer 1 and the penetrating conductor 4 was low. Cracks were observed. This crack was very small with a gap of about 1 to 3 μm at the interface, but the resistance change rate after the temperature cycle was slightly increased, and it was found that long-term connection reliability was difficult. .

一方、本発明の内壁層3を備えた試料No.4〜10では、いずれも液晶ポリマー絶縁層1と内壁層3との界面においても、内壁層3と貫通導体4との界面においてもフクレが全くなく、また、クラックについても一部の試料でわずかに確認される程度で非常に良好な信頼性を示した。   On the other hand, the sample No. provided with the inner wall layer 3 of the present invention. Nos. 4 to 10 have no blisters at the interface between the liquid crystal polymer insulating layer 1 and the inner wall layer 3 and the interface between the inner wall layer 3 and the through conductor 4, and cracks are slightly observed in some samples. As shown in the figure, it showed very good reliability.

以下に、本発明の試料について詳細に説明する。   Below, the sample of this invention is demonstrated in detail.

内壁層3の厚みを変化させた試料No.4〜7のうち、内壁層3の厚みが0.1〜15μmの範囲である試料No.4〜6では、フクレもクラックも内壁層3の樹脂流動も全く確認できず、特に信頼性に優れていることが判る。   Sample No. 5 in which the thickness of the inner wall layer 3 was changed. 4-7, sample No. 4 in which the thickness of the inner wall layer 3 is in the range of 0.1 to 15 μm. In Nos. 4 to 6, neither swelling nor cracking nor resin flow of the inner wall layer 3 can be confirmed, and it can be seen that the reliability is particularly excellent.

一方、内壁層3の厚みが15μmを超えて、20μmである試料No.7では、実用上問題ないものの、若干樹脂流動がみられ、積層時の加圧において貫通導体4の変形が発生したものと推測される。   On the other hand, the thickness of the inner wall layer 3 exceeds 15 μm and is 20 μm. In No. 7, although there is no problem in practical use, a slight resin flow is observed, and it is estimated that the through conductor 4 is deformed by pressurization during lamination.

また、内壁層3の熱膨張係数を変化させた試料No.8〜10においては、内壁層3の熱膨張係数が液晶ポリマー絶縁層1と貫通導体4の熱膨張係数の間になるようにした試料No.9では、液晶ポリマー絶縁層1と内壁層3との界面においても、内壁層3と貫通導体4との界面においてもフクレが全くなく、また、クラックについても全く、確認されず、非常に良好な信頼性を示した。   Further, the sample No. 1 in which the coefficient of thermal expansion of the inner wall layer 3 was changed. In Samples Nos. 8 to 10, the thermal expansion coefficient of the inner wall layer 3 is between the thermal expansion coefficients of the liquid crystal polymer insulating layer 1 and the through conductor 4. 9, there is no swelling at the interface between the liquid crystal polymer insulating layer 1 and the inner wall layer 3 and at the interface between the inner wall layer 3 and the through conductor 4, and no cracks are confirmed, which is very good. Showed reliability.

一方、内壁層3の熱膨張係数が液晶ポリマー絶縁層1と貫通導体4の熱膨張係数の間にない試料No.8、10では、内壁層3と貫通導体4との界面においてわずかではあるが、クラックが確認されたが、初期抵抗も、温度サイクル後の抵抗変化率もほとんど影響を受けることはなかった。   On the other hand, Sample No. 2 in which the thermal expansion coefficient of the inner wall layer 3 is not between the thermal expansion coefficients of the liquid crystal polymer insulating layer 1 and the through conductor 4. In 8, 10, although a slight crack was observed at the interface between the inner wall layer 3 and the through conductor 4, the initial resistance and the rate of change in resistance after the temperature cycle were hardly affected.

本発明の配線基板の概略を示す概略図である。It is the schematic which shows the outline of the wiring board of this invention. 本発明の配線基板の製造方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing method of the wiring board of this invention.

符号の説明Explanation of symbols

1・・・液晶ポリマー絶縁層
2a・・・内壁孔
2b・・・貫通孔
3・・・内壁層
4・・・貫通導体
5・・・導体配線層
6・・・被覆層
DESCRIPTION OF SYMBOLS 1 ... Liquid crystal polymer insulating layer 2a ... Inner wall hole 2b ... Through-hole 3 ... Inner wall layer 4 ... Through-conductor 5 ... Conductor wiring layer 6 ... Covering layer

Claims (16)

少なくとも液晶ポリマーを含有する一層以上の液晶ポリマー絶縁層と、該液晶ポリマー絶縁層を貫通する内壁孔と、該内壁孔の内側に設けられた液晶ポリマーを除く樹脂を含有してなる内壁層と、該内壁層を貫通して設けられた貫通導体とを具備することを特徴とする配線基板。 One or more liquid crystal polymer insulating layers containing at least a liquid crystal polymer, an inner wall hole penetrating the liquid crystal polymer insulating layer, and an inner wall layer containing a resin excluding the liquid crystal polymer provided inside the inner wall hole; A wiring board comprising a through conductor provided through the inner wall layer. 内壁層が、熱硬化性樹脂を含有してなることを特徴とする請求項1記載の配線基板。 The wiring board according to claim 1, wherein the inner wall layer contains a thermosetting resin. 内壁層が、熱可塑性樹脂を含有してなることを特徴とする請求項1記載の配線基板。 The wiring board according to claim 1, wherein the inner wall layer contains a thermoplastic resin. 内壁層の厚みが、0.1〜15μmであることを特徴とする請求項1乃至3のうちいずれかに記載の配線基板。 The wiring board according to claim 1, wherein the inner wall layer has a thickness of 0.1 to 15 μm. 液晶ポリマー絶縁層の熱膨張係数をA、内壁層の熱膨張係数をB、貫通導体の熱膨張係数をCとしたとき、A<B<Cであることを特徴とする請求項1乃至4のうちいずれかに記載の配線基板。 5. A <B <C, wherein A <B <C, where A is the thermal expansion coefficient of the liquid crystal polymer insulating layer, B is the thermal expansion coefficient of the inner wall layer, and C is the thermal expansion coefficient of the through conductor. A wiring board according to any one of the above. 液晶ポリマー絶縁層の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる被覆層が形成されていることを特徴とする請求項1乃至5のうちいずれかに記載の配線基板。 6. The wiring board according to claim 1, wherein a coating layer containing a resin excluding the liquid crystal polymer is formed on at least one main surface of the liquid crystal polymer insulating layer. 被覆層が、熱硬化性樹脂を含有してなることを特徴とする請求項6記載の配線基板。 The wiring board according to claim 6, wherein the coating layer contains a thermosetting resin. 被覆層が、熱可塑性樹脂を含有してなることを特徴とする請求項6記載の配線基板。 The wiring board according to claim 6, wherein the coating layer contains a thermoplastic resin. 被覆層と内壁層とが、同一の樹脂を含有してなることを特徴とする請求項6乃至8のうちいずれかに記載の配線基板。 The wiring board according to claim 6, wherein the coating layer and the inner wall layer contain the same resin. 貫通導体が、6〜15質量%の熱硬化性樹脂、2.5〜10質量%の銀および75〜91.5質量%の銅を含有してなる導電材で形成されていることを特徴とする請求項1乃至9のうちいずれかに記載の配線基板。 The through conductor is formed of a conductive material containing 6 to 15% by mass of thermosetting resin, 2.5 to 10% by mass of silver, and 75 to 91.5% by mass of copper. The wiring board according to claim 1. 貫通導体が6〜15質量%の熱硬化性樹脂、2.5〜10質量%の銀および、45〜86.5質量%の銅および5〜30質量%のスズもしくはインジウムを含有してなる導電材で形成されていることを特徴とする請求項1乃至9のうちいずれかに記載の配線基板。 Conductive conductor in which through conductor contains 6 to 15% by mass of thermosetting resin, 2.5 to 10% by mass of silver, 45 to 86.5% by mass of copper and 5 to 30% by mass of tin or indium The wiring board according to claim 1, wherein the wiring board is made of a material. 液晶ポリマー絶縁層の所定箇所を貫通する内壁孔を形成する工程と、予め作製した内壁層となる液晶ポリマーを除く樹脂を含有してなるワニスを前記内壁孔に充填し、該内壁孔内に内壁層を形成する工程と、前記内壁孔に形成された前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電材を充填して貫通導体を形成する工程と、前記液晶ポリマー絶縁層に、導体配線層を転写する工程と、上記の工程を繰り返して作製した内壁層と貫通導体と導体配線層とを具備する複数の液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする配線基板の製造方法。 A step of forming an inner wall hole penetrating a predetermined portion of the liquid crystal polymer insulating layer, and filling the inner wall hole with a varnish containing a resin excluding the liquid crystal polymer to be the inner wall layer prepared in advance, and the inner wall hole has an inner wall A step of forming a layer, a step of forming a through hole penetrating the inner wall layer formed in the inner wall hole, a step of filling the through hole with a conductive material to form a through conductor, and the liquid crystal polymer insulation A step of transferring the conductor wiring layer to the layer, and a step of laminating a plurality of liquid crystal polymer insulating layers each including an inner wall layer, a through conductor, and a conductor wiring layer produced by repeating the above-described steps. A method of manufacturing a wiring board, comprising: 液晶ポリマー絶縁層の所定箇所を貫通する内壁孔を形成する工程と、予め作製した内壁層となる液晶ポリマーを除く樹脂を含有してなるワニスを前記内壁孔に充填し、該内壁孔内に内壁層を形成する工程と、前記内壁層を設けた前記液晶ポリマー絶縁層の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる被覆層を形成する工程と、前記被覆層と前記内壁孔に形成された前記内壁層とを貫通する貫通孔を形成する工程と、前記貫通孔に導電材を充填して貫通導体を形成する工程と、前記被覆層に、導体配線層を転写する工程と、上記の工程を繰り返して作製した内壁層と貫通導体と被覆層と導体配線層とを具備する複数の液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする配線基板の製造方法。 A step of forming an inner wall hole penetrating a predetermined portion of the liquid crystal polymer insulating layer, and filling the inner wall hole with a varnish containing a resin excluding the liquid crystal polymer to be the inner wall layer prepared in advance, and the inner wall hole has an inner wall A step of forming a layer, a step of forming a coating layer containing a resin excluding the liquid crystal polymer on at least one main surface of the liquid crystal polymer insulating layer provided with the inner wall layer, the coating layer and the inner wall hole Forming a through hole penetrating the inner wall layer formed on the inner wall layer, filling the through hole with a conductive material to form a through conductor, and transferring the conductor wiring layer to the coating layer; And a step of laminating a plurality of liquid crystal polymer insulating layers each including an inner wall layer, a through conductor, a covering layer, and a conductor wiring layer produced by repeating the above-described steps, to form a multilayer A method for manufacturing a substrate. 実質的に同一の厚みを有する液晶ポリマー絶縁層と、内壁層となる液晶ポリマー以外の樹脂を含有してなる内壁層シートとを積層した積層体を作製する工程と、前記積層体の所定箇所を前記内壁層シート側から押圧して、前記内壁層シートの押圧部分を前記液晶ポリマー絶縁層側に移行させて、液晶ポリマー絶縁層と前記内壁層シートとが一体化した複合部材を作製する工程と、前記複合部材の前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電体を充填して貫通導体を形成する工程と、前記貫通導体が形成された複合部材の主面に、導体配線層を転写して複合部材の主面に導体配線層を形成する工程と、上記の工程を繰り返して作製した内壁層と貫通導体と導体配線層とを具備する複数の液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする配線基板の製造方法。 A step of producing a laminate in which a liquid crystal polymer insulating layer having substantially the same thickness and an inner wall layer sheet containing a resin other than the liquid crystal polymer to be an inner wall layer are laminated; and a predetermined portion of the laminate Pressing from the inner wall layer sheet side, moving the pressed portion of the inner wall layer sheet to the liquid crystal polymer insulating layer side, and producing a composite member in which the liquid crystal polymer insulating layer and the inner wall layer sheet are integrated; and A step of forming a through hole penetrating the inner wall layer of the composite member, a step of filling the through hole with a conductor to form a through conductor, and a main surface of the composite member on which the through conductor is formed A plurality of liquid crystal polymer insulating layers comprising: a step of transferring a conductor wiring layer to form a conductor wiring layer on the main surface of the composite member; and an inner wall layer, a through conductor, and a conductor wiring layer produced by repeating the above steps Multi-layered Method for manufacturing a wiring substrate, characterized by comprising the steps of, a. 実質的に同一の厚みを有する液晶ポリマー絶縁層と、内壁層となる液晶ポリマー以外の樹脂を含有してなる内壁層シートとを積層した積層体を作製する工程と、前記積層体の所定箇所を前記内壁層シート側から押圧して、前記内壁層シートの押圧部分を前記液晶ポリマー絶縁層側に移行させて、液晶ポリマー絶縁層と前記内壁層シートとが一体化した複合部材を作製する工程と、前記複合部材の少なくとも一方の主面に液晶ポリマーを除く樹脂を含有してなる被覆層を形成する工程と、前記被覆層と内壁層とを貫通する貫通孔を形成する工程と、前記貫通孔に導電体を充填して貫通導体を形成する工程と、前記貫通導体が形成された複合部材の主面に、導体配線層を転写して複合部材の主面に導体配線層を形成する工程と、上記の工程を繰り返して作製した貫通導体と導体配線層と被覆層とを具備する複数の複合部材を積層して多層化する工程と、を具備することを特徴とする配線基板の製造方法。 A step of producing a laminate in which a liquid crystal polymer insulating layer having substantially the same thickness and an inner wall layer sheet containing a resin other than the liquid crystal polymer to be an inner wall layer are laminated; and a predetermined portion of the laminate Pressing from the inner wall layer sheet side, moving the pressed portion of the inner wall layer sheet to the liquid crystal polymer insulating layer side, and producing a composite member in which the liquid crystal polymer insulating layer and the inner wall layer sheet are integrated; and A step of forming a coating layer containing a resin excluding a liquid crystal polymer on at least one main surface of the composite member, a step of forming a through hole penetrating the coating layer and the inner wall layer, and the through hole Filling the conductor with a conductor to form a through conductor; and transferring the conductor wiring layer to the main surface of the composite member on which the through conductor is formed to form a conductor wiring layer on the main surface of the composite member; Repeat the above steps Method for manufacturing a wiring substrate, characterized by comprising the steps of multilayer by laminating a plurality of composite members and the through conductor and the conductor wiring layer prepared by comprising a covering layer. 液晶ポリマー絶縁層の所定箇所を貫通する内壁孔を形成する工程と、予め作製した内壁層と被覆層となる液晶ポリマーを除く樹脂を含有してなるワニスに前記内壁孔を形成した液晶ポリマー絶縁層を浸漬し、前記内壁孔内に内壁層を形成するとともに、該内壁層を形成した前記液晶ポリマー絶縁層の表面に被覆層を形成する工程と、前記内壁孔に形成された前記内壁層を貫通する貫通孔を形成する工程と、前記貫通孔に導電体を充填して貫通導体を形成する工程と、前記被覆層の主面に導体配線層を転写する工程と、上記の工程を繰り返して作製した被覆層と内壁層と貫通導体と導体配線層とを具備する複数の前記液晶ポリマー絶縁層を積層して多層化する工程と、を具備することを特徴とする配線基板の製造方法。 A step of forming an inner wall hole penetrating a predetermined portion of the liquid crystal polymer insulating layer, and a liquid crystal polymer insulating layer in which the inner wall hole is formed in a varnish containing a resin excluding the liquid crystal polymer to be the inner wall layer and the coating layer prepared in advance A step of forming an inner wall layer in the inner wall hole, and forming a coating layer on the surface of the liquid crystal polymer insulating layer on which the inner wall layer is formed, and penetrating the inner wall layer formed in the inner wall hole A step of forming a through hole to be formed, a step of filling the through hole with a conductor to form a through conductor, a step of transferring a conductor wiring layer to the main surface of the coating layer, and the above steps are repeated. And a step of laminating a plurality of the liquid crystal polymer insulating layers each including a covering layer, an inner wall layer, a through conductor, and a conductor wiring layer.
JP2003368793A 2003-10-29 2003-10-29 Wiring board and its manufacturing method Pending JP2005136050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368793A JP2005136050A (en) 2003-10-29 2003-10-29 Wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368793A JP2005136050A (en) 2003-10-29 2003-10-29 Wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005136050A true JP2005136050A (en) 2005-05-26

Family

ID=34646352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368793A Pending JP2005136050A (en) 2003-10-29 2003-10-29 Wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005136050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116806A1 (en) * 2006-03-31 2007-10-18 Pioneer Corporation Low resistance substrate manufacturing method
KR102244833B1 (en) * 2019-12-10 2021-04-27 주식회사 유텔 Stacked lcp electronic device
EP3817527A4 (en) * 2018-06-28 2022-04-06 Kyocera Corporation Laminated uncured sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116806A1 (en) * 2006-03-31 2007-10-18 Pioneer Corporation Low resistance substrate manufacturing method
JP4755246B2 (en) * 2006-03-31 2011-08-24 パイオニア株式会社 Low resistance substrate fabrication method
US8142601B2 (en) 2006-03-31 2012-03-27 Pioneer Corporation Method for manufacturing low resistance substrate
EP3817527A4 (en) * 2018-06-28 2022-04-06 Kyocera Corporation Laminated uncured sheet
US11426970B2 (en) 2018-06-28 2022-08-30 Kyocera Corporation Laminated uncured sheet
KR102244833B1 (en) * 2019-12-10 2021-04-27 주식회사 유텔 Stacked lcp electronic device

Similar Documents

Publication Publication Date Title
US6518514B2 (en) Circuit board and production of the same
US8178191B2 (en) Multilayer wiring board and method of making the same
JP4279893B2 (en) Manufacturing method of circuit component built-in module
JP3375555B2 (en) Circuit component built-in module and method of manufacturing the same
JP3051700B2 (en) Method of manufacturing multilayer wiring board with built-in element
US6753483B2 (en) Printed circuit board and method of manufacturing the same
JPH11126978A (en) Multilayered wiring board
JPH10173097A (en) Sheetlike substance for heat conductive substrate, its manufacture, heat conductive substrate using it and its manufacture
JP4268476B2 (en) Conductive paste, wiring board and manufacturing method thereof
JP2004274035A (en) Module having built-in electronic parts and method of manufacturing same
JP4409325B2 (en) Wiring board and manufacturing method thereof
JP3574738B2 (en) Wiring board
KR101281898B1 (en) Multilayer printed wiring board and method for producing same
JP2007109697A (en) Multilayer printed wiring board and method of manufacturing same
JP2004273575A (en) Multilayer printed wiring board and its manufacturing method
JP2005136050A (en) Wiring board and its manufacturing method
JP2005159268A (en) Wiring substrate and its manufacturing method
JPH1070363A (en) Method for manufacturing printed wiring board
JPH08264939A (en) Manufacture of printed wiring board
JPH118472A (en) Multilevel interconnection board
JP2000208946A (en) Multilayer wiring board and manufacture thereof
JP3614844B2 (en) Thermal conductive substrate
JP2001102708A (en) Printed wiring board
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2002141628A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020