JP2005134577A - 自己形成光導波路構造体、光電気複合配線構造体 - Google Patents

自己形成光導波路構造体、光電気複合配線構造体 Download PDF

Info

Publication number
JP2005134577A
JP2005134577A JP2003369612A JP2003369612A JP2005134577A JP 2005134577 A JP2005134577 A JP 2005134577A JP 2003369612 A JP2003369612 A JP 2003369612A JP 2003369612 A JP2003369612 A JP 2003369612A JP 2005134577 A JP2005134577 A JP 2005134577A
Authority
JP
Japan
Prior art keywords
core
optical waveguide
light
main surface
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003369612A
Other languages
English (en)
Inventor
Takeshi Ono
大野  猛
Toshikatsu Takada
俊克 高田
Toshifumi Kojima
敏文 小嶋
Masaki Ono
正樹 大野
Atsushi Suzuki
敦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003369612A priority Critical patent/JP2005134577A/ja
Publication of JP2005134577A publication Critical patent/JP2005134577A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

【課題】比較的製造しやすく低コストにも関らず、コア数増加に対応しやすい構造の自己形成光導波路構造体を提供する。
【解決手段】この自己形成光導波路構造体31は、光導波路主面32、第1コア34、第2コア38、クラッド37、光路変換部21、複数の屈曲部40等を有する。第1コア34は、光導波路主面32に対して略平行に延設され、光導波路主面32から相対的に近い位置に配置される。第2コア38は、光導波路主面32に対して略平行に延設され、光導波路主面32から相対的に遠い位置に配置される。クラッド37は第1コア34及び第2コア38を取り囲んでいる。光路変換部21は、第1コア34内、第2コア38内を伝搬する光を反射する光反射面22を有する。第1コア34及び第2コア38は、光反射面22に向けて光を照射して感光性媒質層61を選択的に光硬化して形成される。屈曲部40は光路変換部21のある位置に対応して存在する。
【選択図】 図1

Description

本発明は、コアやクラッド等を有する自己形成光導波路構造体、及びそれを含んで構成される光電気複合配線構造体に関するものである。
近年、インターネットに代表される情報通信技術の発達や、情報処理装置の処理速度の飛躍的向上などに伴って、画像等の大容量データを送受信するニーズが高まりつつある。かかる大容量データを情報通信設備を通じて自由にやり取りするためには10Gbps以上の情報伝達速度が望ましく、そのような高速通信環境を実現しうる技術として光通信技術に大きな期待が寄せられている。一方、機器内の配線基板間での接続、配線基板内の半導体チップ間での接続、半導体チップ内での接続など、比較的短い距離における信号伝達経路に関しても、高速で信号を伝送することが近年望まれている。このため、従来一般的であった金属製の伝送媒体から、光伝送媒体へと移行することが理想的である。
光伝送媒体としては例えば光導波路構造体が従来よく知られており、その中でも最近では自己形成光導波路技術が注目されている(例えば、特許文献1,2参照)。自己形成光導波路技術とは、光導波路形成用の感光性媒質層に光を照射することにより、光照射部分のみを選択的に重合して硬化させ、周囲の部分よりも屈折率の高いコアを形成する技術のことをいう。自己形成と呼ばれる所以は、感光性媒質層内を伝搬する光が自らコアを形成しながら進む点にある。そして、この技術によれば、光軸ずれのないコアを比較的容易に形成可能であると考えられている。
特開2002−98863号公報
特開2002−365459号公報
ところで、自己形成光導波路を用いた光回路は今後いっそう高密度化していくと予想され、これに伴い光導波路の光路であるコアの数も確実に増えていくと予想される。そして、例えば、コア及びそれを取り囲むクラッドを複数層形成すれば、コア数の増加に対応でき、もってコアを高密度に形成できるものと一応考えられる。
しかしながら、このような構造体を製造するためには、感光性媒質層の形成、光路変換部の設置、コア形成のための光照射、クラッド形成のための光照射等をそれぞれ複数回ずつ実施する必要があり、工数が相当多くなる。その結果、自己形成光導波路構造体を製造しにくくなるばかりでなく、製造のためのコストが高くなるという問題があった。
本発明は上記の課題に鑑みてなされたものであり、その目的は、比較的製造しやすくて低コストであるにもかかわらず、コア数の増加に対応しやすい構造を備えた自己形成光導波路構造体、光電気複合配線構造体を提供することにある。
課題を解決するための手段、作用及び効果
そして上記課題を解決するための手段としては、光導波路主面と、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に近い位置に配置された第1コアと、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に遠い位置に配置された第2コアと、前記第1コア及び前記第2コアを取り囲むクラッドと、前記第1コア内及び前記第2コア内を伝搬する光を反射する光反射面を有する光路変換部とを備え、前記第1コア及び前記第2コアは、前記光反射面に向けて光を照射して感光性媒質層を選択的に光硬化させることで形成され、前記光路変換部のある位置に対応して屈曲部を有することを特徴とする自己形成光導波路構造体、がある。
また、上記課題を解決するための別の手段としては、自己形成光導波路構造体と光学素子とを備える光電気複合配線構造体において、前記自己形成光導波路構造体は、光導波路主面と、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に近い位置に配置された第1コアと、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に遠い位置に配置された第2コアと、前記第1コア及び前記第2コアを取り囲むクラッドと、前記第1コア内及び前記第2コア内を伝搬する光を反射する光反射面を有する光路変換部と、前記光導波路主面上に配置された導体回路と、前記導体回路の一部に形成された光学素子搭載用の接続端子とを備え、前記第1コア及び前記第2コアは、前記光反射面に向けて光を照射して感光性媒質層を選択的に光硬化させることで形成され、前記光路変換部のある位置に対応して屈曲部を有し、前記光学素子は、前記接続端子上に搭載されていることを特徴とする光電気複合配線構造体、がある。
従って、これら解決手段では、同じクラッド内における異なる深さ位置に、第1コア及び第2コアを備えた構成となっているので、クラッド形成工程や光路変換部形成工程等を1回実施すれば足りる。このため、コア及びそれを取り囲むクラッドを複数層形成した構造物を製造する場合とは異なり、工数の増加を殆ど伴わない。よって、比較的製造しやすくて低コストであるにもかかわらず、コア数の増加に対応しやすい構造を備えた自己形成光導波路構造体、光電気複合配線構造体を提供することができる。また、この構成によると全体の厚肉化も防止することができる。
前記自己形成光導波路構造体は、光導波路主面を有するとともに、ポリマ材料からなる薄層状、板状またはフィルム状の部材である。前記ポリマ材料としては、具体的には、フッ素化ポリイミド等のポリイミド系樹脂、エポキシ系樹脂、PMMA(ポリメチルメタクリレート)、重水素化PMMA、重水素フッ素化PMMA等のアクリル系樹脂、ポリオレフィン系樹脂などが好適である。なお、このようなポリマ材料には感光性が付与されている。
前記自己形成光導波路構造体は、ともに光導波路主面に対して略平行に延設された第1コア及び第2コアを備えている。第1コアは光導波路主面から相対的に近い位置に配置され、第2コアは光導波路主面から相対的に遠い位置に配置されている。第1コア及び第2コアは、クラッドよりも屈折率が相対的に高くなっており、いずれも一端から他端へ光を伝搬させる機能を有している。本発明において第1コア及び第2コアは、光反射面に向けて光を照射して感光性媒質層を選択的に光硬化させることで形成されたものである。感光性材料とはいわゆる自己形成光導波路材のことを意味し、具体例を挙げると、感光性を付与したポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などがある。このような感光性材料を、塗布後に乾燥することにより、感光性媒質層が形成される。感光性媒質層中にはコア形成用樹脂及びクラッド形成用樹脂が含まれる。コア形成用樹脂及びクラッド形成用樹脂は、同じ種類の樹脂の組み合わせであってもよく、異なる種類の樹脂の組み合わせであってもよい。この場合において好ましくは、互いに異なる重合反応プロセスを経て光硬化するコア形成用樹脂とクラッド形成用樹脂とを組み合わせることがよい。前記コア形成用樹脂の好適例としては、ラジカルによる逐次重合反応によって重合が進行するラジカル重合系感光性樹脂(例えばアクリル系樹脂など)がある。一方、前記クラッド形成用樹脂としては、イオン対を介して重合が進行するカチオン重合系感光性樹脂(例えばエポキシ系樹脂など)がある。このように重合反応プロセスが互いに異なる組み合わせとすれば、共重合が起こらないため、所望形状のコアを確実に形成することができる。もっとも、同じ重合反応を経て光硬化する樹脂を組み合わせて用いた場合であっても、いずれか一方のものを選択的に光硬化させることは可能である。もしくは、露光の有無等の硬化条件によって屈折率差を生じさせ、コアとクラッドとを作りわけることが可能である。
コア形成のために照射される光としては、感光性媒質層を光重合させることが可能な波長及び強度の光がよい。具体的には、赤色、青色または緑色のレーザ光やUV光などが好適である。
ここで、第1コア形成時及び第2コア形成時には、光反射面に向けて双方向から光を照射して感光性媒質層を選択的に光硬化させることが好ましい。この場合、高効率接続された第1コア及び第2コアを得ることができ、光の伝送ロスを低減することができる。また、上記特許文献1,2記載の従来技術では、高効率接続の実現のために各部品の位置を微調整するという煩雑な作業が必須となるが、双方向から光照射を行えばこの作業が不要になる。従って、高効率接続が実現できるにもかかわらず、工数の増加を回避することができる。なお、光は、光反射面に向けて双方向からほぼ等しい時間、略同じタイミングで照射されることが、よりいっそう好ましい。その理由は、コアの自己形成に要する時間を短縮でき、生産性が確実に向上するからである。
コアの両端(即ち入光部及び出光部)は、自己形成光導波路構造体の有する任意の面に配置することが可能である。即ち、自己形成光導波路構造体における光導波路主面、光導波路主面とは反対側に位置する光導波路裏面、光導波路主面に垂直な光導波路端面のいずれにも、コアの両端を配置することが可能である。この場合、コアの両端が同じ面上に配置されていることが好ましく、特にはそれらが導波路主面上に配置されていることが好ましい。
その理由は、コアの両端を光導波路主面上に配置した場合、光学素子の一形態である面受発光素子の搭載に適した構造となるからである。また、この場合には双方向から光照射を行いやすくなり、自己形成光導波路構造体の製造がいっそう容易になるからである。
前記自己形成光導波路構造体を構成するクラッドは、第1コア及び第2コアよりも屈折率が相対的に低く設定されるとともに、第1コア及び第2コアを取り囲むようにして形成されている。クラッドは感光性媒質層を硬化させることにより形成される。感光性媒質層を硬化させる具体的手法としては、感光性媒質層の全体に光を照射することがよい。また、感光性媒質層に熱硬化性を付与しておき、感光性媒質層を所定温度に加熱して硬化させることも可能である。
前記自己形成光導波路構造体は、1つまたは複数の光路変換部を有し、より詳細には1本のコアの経路上の1箇所または複数箇所に光路変換部を有している。コアにおいて光路変換部のある位置には屈曲部が設けられている。前記光路変換部は、第1コア内または第2コア内を伝搬する光を反射する光反射面を1箇所または2箇所以上有している。好適な光路変換部としては、例えば、V字溝のような凹部を挙げることができ、この場合にはV字溝の傾斜面が光反射面として機能する。なお、V字溝の内面に金属膜が形成されていると、光の反射効率を向上させることができる。金属膜の形成に使用される金属材料としては、金、銀、銅、ロジウム、ニッケルなどが好適である。
また、別の好適な光路変換部としては、傾斜した光反射面を有する金属小塊状の光路変換部品などを挙げることができる。このような光路変換部品は、例えばキャピラリボンディングの技術を利用して比較的簡単にかつ精度よく作製することが可能である。
第1コア内及び第2コア内を伝搬する光は、1つの光反射面内における異なる部位にて反射されることが好ましい。例えば、第1コア内及び第2コア内を伝搬する光を別々の光路変換部の光反射面にて反射させる構成であると、光路変換部を多数形成しなければならず、構造も複雑化しやすい。そのため、生産性の低下やコスト高につながるおそれがある。これに対して上記の構成とすれば、光路変換部の数が少なくて済み、構造もそれほど複雑にはならないため、生産性の低下やコスト高を回避することができる。
また、第1コア内及び第2コア内を伝搬する光が1つの光反射面内における異なる部位にて反射される構成を採用した場合、第1コア及び第2コアは、互いに交差しないように配置されていることが好ましい。このように構成しておけば、一方のコア内を伝搬する光が他方のコア内に入り込む可能性が極めて小さくなる。よって、それぞれのコアの接続効率も高くなり、光の伝送ロスも確実に低減される。
前記光導波路主面上には導体回路が配置され、前記導体回路の一部には光学素子搭載用の接続端子が形成されていることが好ましい。このような構造であると、自己形成光導波路構造体上に光学素子が搭載可能となるため、それらを一体物として取り扱うことができるようになる。また、光導波路主面上の導体回路に、例えば光学素子以外の電子部品を搭載することが可能となり、光学素子と電子部品との距離が短くなる。よって、高速応答化を達成しやすくなる。
前記導体回路及び前記光学素子搭載用の接続端子は、導電性金属を材料として用いて従来公知の手法により形成される。導電性金属としては、金、銀、銅、ニッケル、クロム、チタン、アルミニウムなどを挙げることができる。導電性金属からなる薄膜を光導波路主面上に形成する手法としては、例えば、スパッタ、CVD、PVD、真空蒸着、めっきなどがある。その後、薄膜はフォトリソグラフィによりパターニングされる。
接続端子が形成された光導波路主面(即ち硬化したクラッドの表面)上には、光学素子が1つまたは2つ以上搭載される。その搭載方法としては、例えば、ワイヤボンディングやフリップチップボンディング等の手法、異方導電性材料を用いた手法などを採用することができる。発光部を有する光学素子(即ち発光素子)としては、例えば、発光ダイオード(Light Emitting Diode;LED)、半導体レーザダイオード(Laser Diode ;LD)、面発光レーザ(Vertical Cavity Surface Emitting Laser;VCSEL)等を挙げることができる。これらの発光素子は、入力した電気信号を光信号に変換した後、その光信号を所定部位に向けて発光部から出射する機能を備えている。一方、受光部を有する光学素子(即ち受光素子)としては、例えば、pinフォトダイオード(pin Photo Diode;pin PD)、アバランシェフォトダイオード(APD)等を挙げることができる。これらの受光素子は、光信号を受光部にて入射し、その入射した光信号を電気信号に変換して出力する機能を有している。なお、前記光学素子は発光部及び受光部の両方を有するものであってもよい。前記光学素子に使用する好適な材料としては、例えば、Si、Ge、InGaAs、GaAsP、GaAlAsなどを挙げることができる。
また、接続端子が形成された光導波路主面上には、光学素子のほかに、ドライバ素子やレシーバ素子等といった電子部品が1つまたは2つ以上搭載されてもよい。より確実に高速応答化を達成するためには、ドライバ素子を発光素子の近傍に配置することが好ましく、レシーバ素子を受光素子の近傍に配置することが好ましい。
自己形成光導波路構造体は、支持体なしで単独で存在していてもよいが、支持基板の基板主面により支持されていることが好ましい。支持基板があると、自己形成光導波路構造体が補強される結果、反りや破損の発生を未然に防止することができるからである。支持基板の好適例としては、例えば、樹脂、セラミック、ガラス等からなる絶縁層と導体層とを有する配線基板がある。前記導体層は基板外表面に形成されていてもよく、基板内部に形成されていてもよい。これらの導体層同士の接続を図るために、基板内部にビアホール導体が形成されていてもよい。なお、導体層やビアホール導体は、例えば、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、タングステン(W)、モリブデン(Mo)などを用いて形成される。
前記支持基板は、前記基板主面上に位置合わせ基準部を有していることが好ましく、光路変換部及び接続端子は、ともに前記位置合わせ基準部を基準として形成されたものであることが好ましい。この構成によると、光路変換部と、コアと、接続端子上に搭載される光学素子との位置ずれを低減することができる。ゆえに、より容易にかつ確実に高効率接続を実現することができ、光の伝送ロスがいっそう低減される。
位置合わせ基準部の具体例としては、支持基板の基板主面上に形成された導体層の一部(例えばパッド)や、印刷にて形成されたマークなどがあるほか、支持基板の基板主面上にて現れるビアホール導体やスルーホール導体の端面などがある。また、位置合わせ基準部を基準として複数の光路変換部を形成する手法としては、従来公知の手法を採用することが可能である。例えば、CCDカメラ等の撮像手段で位置合わせ基準部を含む領域を撮影し、この画像を解析した結果に基づいて、複数の光路変換部の形成位置を各々決定する方法などが好適である。位置合わせ基準部を基準として接続端子を形成する手法についても、同様の手法を採用することが可能である。
以下、本発明を具体化した実施形態の光電気複合配線構造体10及びその製造方法を、図1〜図15に基づき詳細に説明する。
図1には、本実施形態の光電気複合配線構造体10が示されている。この光電気複合配線構造体10は、自己形成光導波路構造体31をセラミック配線基板11(支持基板)の上面12(基板主面)に設けた構造となっている。自己形成光導波路構造体31は、光導波路本体30、光路変換部品21(光路変換部)、VCSEL41(光学素子)、フォトダイオード51(光学素子)等によって構成されている。
セラミック配線基板11は、上面12及び下面13を有する略矩形状の板部材であり、アルミナ焼結体を主成分として構成されている。このセラミック配線基板11は、いわゆる多層配線基板であって、その内部には配線層(図示略)が形成されている。セラミック配線基板11の上面12における外周部は、ICチップ26等のような各種電子部品を実装するための接続パッド14が複数箇所に形成されている。また、上面12における略中央部は、自己形成光導波路構造体31を搭載するためのエリアとして設定されている、その搭載エリアには、位置合わせ用パッド16(位置合わせ用基準部)及び光路変換部品用パッド17が配置されている。位置合わせ用パッド16は搭載エリアにおける外周部に位置している。セラミック配線基板11の内部には、層間接続のための図示しないビアホール導体が形成されている。また、セラミック配線基板11の下面13全体には、複数の接続端子15が設けられている。本実施形態の場合、配線層、ビアホール導体、接続パッド14、接続端子15、位置合わせ用パッド16及び光路変換部品用パッド17が、いずれもタングステン(W)を用いて形成されている。なお、光路変換部品用パッド17上には、略四角錐形状の金バンプからなる光路変換部品21が接合されている。光路変換部品21における4つの側面は、基板主面である上面12に対して約45°傾斜している。かかる側面のうちの1つが、光の進行方向を約90°変更する光反射面22としての役割を果たすようになっている。
図1に示されるように、自己形成光導波路構造体31は上面12略中央部に位置する搭載エリアに搭載されている。自己形成光導波路構造体31の主要部分である光導波路本体30は、薄層状に形成され、上面32(光導波路主面)及び下面33を有している。図1,図3に示されるように、光導波路本体30は、光が伝搬する下層コア34(第2コア)、同じく光が伝搬する上層コア38(第1コア)及びそれらを上下左右から取り囲むクラッド37を有している。本実施形態の場合、下層コア34及び上層コア38がアクリル系樹脂からなり、クラッド37がエポキシ系樹脂からなる。下層コア34、上層コア38の屈折率は、クラッド37の屈折率よりも若干高くなっている。本実施形態では、クラッド37の厚さは50μm以上150μm以下に設定され、下層コア34及び上層コア38の厚さは10μm以上50μm以下に設定されている。
図1に示されるように、下層コア34は、光導波路本体30の上面32における所定箇所(即ち入光部44)を起点とし、同じく上面32における別の箇所(出光部54)を終点として延設されている。上層コア38も、光導波路本体30の上面32における所定箇所(即ち入光部44)を起点とし、同じく上面32における別の箇所(出光部54)を終点として延設されている。
下層コア34及び上層コア38は、光導波路本体30の上面32に沿って平行に延びる水平部35と、光導波路本体30の上面32に対して垂直に延びる垂直部36とによって構成されている。ただし、下層コア34の水平部35は光導波路本体30の上面32から相対的に遠い位置に配置され、上層コア38の水平部35は光導波路本体30の上面32から相対的に遠い位置に配置されている。つまり、下層コア34の水平部35は、上層コア38の水平部35よりも深い位置に配置されている。水平部35と垂直部36とが連結する部分は、略直角に屈曲した屈曲部40となっている。そして、本実施形態の上層コア38及び下層コア34は、このような屈曲部40をそれぞれ2箇所に有している。従って、いずれについても伝搬光の進行方向が2回変換されるようになっている。
また、上層コア38を基準とした場合において下層コア34は、図3の左側方向に若干ずらした状態(具体的には20μm以上100μm以下ずらした状態)で配置されている。その結果、上層コア38及び下層コア34が互いに交差しないようになっている。
図1,図3に示されるように、光導波路本体30の上面32には、その一部に接続パッド39(光学素子搭載用の接続端子)を有する導体回路が形成されている。導体回路は接続パッド39同士を接続している。接続パッド39のうちの一部のものは、図示しないボンディングワイヤを介して、セラミック配線基板11側の導体に接続されている。また、発光側垂直部36を包囲して配置された複数の接続パッド39上には、発光手段の一種であるVCSEL41(光学素子)がはんだ付けされている。受光側垂直部36を包囲して配置された複数の接続パッド39上には、受光手段の一種であるフォトダイオード51(光学素子)がはんだ付けされている。
VCSEL41は発光面を下向きにして搭載され、その発光面内においては複数(ここでは2個)の発光部42が設けられている。各々の発光部42は、各々の発光側垂直部35の直上に位置している。従って、各発光部42は、図1の鉛直下方向)に所定波長のレーザ光を出射するようになっている。一方、フォトダイオード51は受光面を下向きにして搭載され、その受光面内においては複数(ここでは2個)の受光部52が設けられている。各々の受光部52は、各々の受光側垂直部35の直上に位置している。従って、各受光部52は、図1,図3の鉛直下方向)からやってくる所定波長のレーザ光を受光可能となっている。
光導波路本体30の上面32においてVCSEL41のすぐ隣には、VCSEL41を駆動するためのドライバIC(図示略)が搭載されている。ドライバICとVCSEL41とは、上面32に形成された比較的短い導体回路を介して電気的に接続されている。また、光導波路本体30の上面32においてフォトダイオード51のすぐ隣には、レシーバIC(図示略)が搭載されている。レシーバICとフォトダイオード51とは、上面32に形成された比較的短い導体回路を介して電気的に接続されている。
ここで、上記構成の自己形成光導波路構造体31の一般的な動作について簡単に述べておく。
VCSEL41、ドライバIC、フォトダイオード51及びレシーバICは、セラミック配線基板11側からの電力供給により、動作可能な状態となる。ドライバICからVCSEL41に電気信号が出力されると、VCSEL41は入力した電気信号を光信号(レーザ光)に変換した後、その信号を含むレーザ光を各々の発光部42から下方に向けて出射する。
下側コア34の発光側垂直部36の上方に位置する発光部42からの出射光は、発光側垂直部36の上端面から下側コア34の内部に入り込む。その光は、発光側垂直部36を伝搬して光反射面22に到り、そこで進行方向を約90°変更して、水平部35に入り込む。なお、このとき光は、光反射面22の比較的深い位置にて反射される。水平部35を伝搬した光は、再び光反射面22にて進行方向を約90°変更し、受光側垂直部36に入り込む。受光側垂直部36を伝搬した光は、その上端面から下側コア34の外部に出て、最終的にはフォトダイオード51の受光部52に入射する。
一方、上側コア38の発光側垂直部36の上方に位置する発光部42からの出射光は、発光側垂直部36の上端面から上側コア38の内部に入り込む。その光は、発光側垂直部36を伝搬して光反射面22に到り、そこで進行方向を約90°変更して、水平部35に入り込む。なお、このとき光は、光反射面22の比較的浅い位置にて反射される。水平部35を伝搬した光は、再び光反射面22にて進行方向を約90°変更し、受光側垂直部36に入り込む。受光側垂直部36を伝搬した光は、その上端面から上側コア38の外部に出て、最終的にはフォトダイオード51の受光部52に入射する。
フォトダイオード51は受光した光信号を電気信号に変換してレシーバICに出力する。レシーバICはそれを元の電気信号の状態に戻し増幅して外部に出力するようになっている。
次に、光電気複合配線構造体10の製造方法について説明する。その前に図2に基づいて自己形成光導波路構造体製造用の光照射装置101について述べる。
本実施形態の光照射装置101は、制御コンピュータ102、一対の光照射手段(第1受発光手段111及び第2受発光手段121)、第1駆動手段112、第2駆動手段122、レーザ光源114、第1光強度測定手段113、第2光強度測定手段123、面照射ランプ115、CCDカメラ116等を備えている。
制御コンピュータ102は、制御部103と、キーボード等の入力操作部104と、液晶ディスプレイ等のディスプレイ105を備えている。制御部103は、CPU106、RAM107、ROM108及び入出力インターフェース(I/F)109を備えている。CPU106は、RAM107、ROM108及び入出力インターフェース109に対して電気的に接続されている。ROM108には、各種のプログラム(画像処理プログラム、入光位置決定プログラム、光照射手段位置調整プログラム、発光時間等制御プログラムなど)が格納されている。RAM107には、前記各種プログラムを実行する際に各種データが一時的に記憶されるようになっている。CPU106は、ROM108から適宜読み出してきた各種プログラムを実行するようになっている。
本実施形態の第1受発光手段111及び第2受発光手段121は、いずれも光ファイバ(マルチモードファイバ)からなり、これら光ファイバの一端はレーザ光源114に接続されている。レーザ光源114は下層コア34や上層コア38の形成に適した波長及び強度のレーザ光を発生させる役割を果たすものであって、制御部103の入出力インターフェース109に接続されている。レーザ光源114はCPU106から発せられる所定の制御信号により作動するようになっている。
第1受発光手段111の先端部(第1受発光部)は、第1駆動手段112に支持されるとともに、感光性媒質層61に対向して配置されている。第1駆動手段112は、感光性媒質層61の上面に平行なX,Y方向に第1受発光部を移動させる役割を果たすものであって、制御部103の入出力インターフェース109に接続されている。第2受発光手段121の先端部(第2受発光部)は、第2駆動手段122に支持されるとともに、感光性媒質層61に対向して配置されている。第2駆動手段122は、感光性媒質層61の上面に平行なX,Y方向に第2受発光部を移動させる役割を果たすものであって、制御部103の入出力インターフェース109に接続されている。このように本実施形態では、一対の光照射手段がそれぞれ独立して移動するように構成されている。
なお、第1駆動手段112は、例えば一対の直動アクチュエータ(例えば電動シリンダなど)を直交配置することにより構成可能であり、CPU106から発せられる所定の制御信号により作動するようになっている。同様に、第2駆動手段122も、例えば一対の直動アクチュエータを直交配置することにより構成可能であり、CPU106から発せられる所定の制御信号により作動するようになっている。
第1光強度測定手段113は、第2受発光部から出射して第1受発光部に入射したレーザ光の強度を測定するために、光ファイバの途上に設けられている。第2光強度測定手段123は、第1受発光部から出射して第2受発光部に入射したレーザ光の強度を測定するために、光ファイバの途上に設けられている。第1光強度測定手段113及び第2光強度測定手段123は、制御部103の入出力インターフェース109に接続されており、光の強度を測定して得た出力信号を制御部103に対して出力するようになっている。
面照射ランプ115は、クラッド37の形成に適した光を発生させるものであって、感光性媒質層61に対向して配置されている。面照射ランプ115は、図示しないドライバ回路を介して制御部103の入出力インターフェース109に接続されている。面照射ランプ115は、CPU106から発せられる所定の制御信号により点灯・消灯するようになっている。
CCDカメラ116は、位置合わせ用パッド16などを撮影すべく、感光性媒質層61の上方にて離間配置されている。CCDカメラ116は、制御部103の入出力インターフェース109に接続されており、撮影によって得た画像データ信号を制御部103に対して出力するようになっている。かかる画像データ信号は、CPU106において画像処理される。
そして、上記のように構成された光照射装置101を用いて光電気複合配線構造体10を製造する。そのプロセスを図4〜図15に従って説明する。
まず、以下の手順に従って、支持基板であるセラミック配線基板11を作製する。
セラミック粉末、有機バインダ、溶剤、可塑剤などを均一に混合・混練してなる原料スラリーを作製し、この原料スラリーを用いてドクターブレード装置によるシート成形を行って、所定厚みのグリーンシートを複数枚形成する。グリーンシートにおける所定部分にパンチ加工を施して、ビアホール用孔を形成する。次に、ペースト印刷装置を用いてタングステンペーストを印刷する。そして、これら複数枚のグリーンシートを積層してプレスすることにより一体化し、グリーンシート積層体とする。次に、周知の手法に従って乾燥工程、脱脂工程、焼成工程を行い、グリーンシート積層体を焼結させる。その結果、上面12に位置合わせ用パッド16及び光路変換部品用パッド17を有するセラミック配線基板11を得る。
次に、ワイヤボンディング装置のキャピラリに金ワイヤを供給しておき、その金ワイヤの先端を塊状にしておく。そして、キャピラリを光路変換部品用パッド17上に押し付けて金属塊を固着させると同時に、型押し治具を兼ねるキャピラリによってその金属塊を所定形状のバンプに成形する。これにより、約45°の傾斜角度のついた光反射面22を有する略四角錐状の光路変換部品21を形成する(図4参照)。なお、キャピラリによる金属塊の押し付け後、キャピラリとは別の型押し治具を用いて当該金属塊を所定形状に成形してもよい。
このような光路変換部品21の成形に先立ち、CPU106が制御信号をCCDカメラ116に出力し、これによりCCDカメラ116が作動して画像を撮影する。次いで、CPU106は、CCDカメラ116の画像データ信号を制御部103内に取り込ませるとともに、画像処理プログラムに従って画像処理を行い、画像における位置合わせ用パッド16の位置を特定する。そして、CPU106は、この位置合わせ用パッド16の中心点の座標を基準点として設定し、この基準点の座標に基づいて光路変換部品21を形成すべき位置の座標を決定する。すると、CPU106は、光路変換部品21を形成すべき位置の座標データを含む制御信号を生成し、その制御信号を図示しないワイヤボンディング装置に出力する。その結果、ワイヤボンディング装置がキャピラリの先端を所定の位置まで移動させ、正確な位置に光路変換部品21を形成するようになっている。
次に、感光性媒質層形成工程を実施することにより、セラミック配線基板11の上面12における搭載エリアに感光性材料を均一に塗布し、さらにこれを所定時間乾燥して半硬化させて感光性媒質層61とする(図5参照)。
本実施形態では、コア形成用樹脂であるアクリル系樹脂に少量の光硬化材を添加したもの(樹脂A)と、クラッド形成用樹脂であるエポキシ系樹脂に別の光硬化材を少量添加したもの(樹脂B)との混合液を、感光性材料として用いている。ラジカル重合系感光性樹脂である樹脂Aとカチオン重合系感光性樹脂である樹脂Bとの混合比は7:3である。硬化後の屈折率は樹脂Aのほうが若干高くなる。アクリル系樹脂に添加した光硬化材と、エポキシ系樹脂に添加した光硬化材とでは、波長による感度が異なっている。前記エポキシ系樹脂用の光硬化材(光重合開始材)としては、一般に光酸発生剤として用いられる物であればよくジアゾニウム塩、スルホニウム塩、ヨードニウム塩、セレニウム塩などが好適である。アクリル系樹脂用の光硬化材としては一般に光ラジカル開始材として用いられている物であればよく、ジフェニルトリケトンベンゾイン、ベンゾインメチルエーテル、ベンゾフェノン、アセトフェノン、ジアセチル等のカルボニル化合物や過酸化ベンゾイルなどの過酸化物、アゾビスイソブチロニトリルなどのアゾ化合物が代表的なものとして挙げられる。また、前記光硬化材の添加量は0.05重量%以上10重量%以下であればよい。なお、アクリル系樹脂としては、メタアクリレート、アクリレート、ハロアクリレート、シアノアクリレート等といったアクリレートが好適である。かかるアクリレートの分子中にはフッ素原子が含まれていてもよい。エポキシ系樹脂としては、ビスフェノールA系エポキシ、ビスフェノールS系エポキシ、フェノールノボラック系エポキシ、クレゾールノボラック系エポキシ、ビスフェノールAジビニロキシエーテル、ハイドロキノンジグリシジルエーテル、フッ素化エポキシ、カルボエポキシ、ビニルエーテル系エポキシなどが好適である。
なお、上記の組み合わせに代えて、例えば樹脂A及び樹脂Bとしてそれぞれエポキシ系樹脂を選択してもよく、具体的には樹脂A及び樹脂Bでマトリクスであるオリゴマー分子に反応基の濃度差を設けてやればよい。このような場合であっても、いずれか一方のものを選択的に光硬化させることが可能である。もしくは、露光の有無など硬化条件の違いにより、材料内に屈折率差を生じさせ、コア(第1コア34、第2コア38)と、クラッド37とを作りわけることが可能である。
次に、光照射手段位置合わせ工程では、位置合わせ用パッド16を基準として入光位置43,53を2箇所決定し、それら入光位置43,53に合わせて一対の光照射手段を配置する。具体的には下記のようにする。
即ち、本工程では、CPU106が、前述の工程にて特定した位置合わせ用パッド16の中心点の座標を基準点として設定し、この基準点の座標に基づいて上層コア38の入光位置43,53の座標を2箇所決定する。上層コア38の入光位置43,53の決定後、CPU106は、所定の制御信号を出力して第1駆動手段112を動作させる。その結果、第1受発光手段111の先端部(第1受発光部)を一方の入光位置43に合わせて配置する。同様にCPU106は、所定の制御信号を出力して第2駆動手段122を動作させる。その結果、第2受発光手段121の先端部(第2受発光部)を他方の入光位置53に合わせて配置する(図6参照)。上記のように本工程では、入光位置43,53の決定や、入光位置43,53への受発光部の移動を自動的に行っているので、位置合わせ精度向上及び生産性向上を達成しやすくなっている。また、個別の駆動手段112,122を用いて第1受発光部及び第2受発光部を独立して移動させているので、それらを一括して移動させる場合に比較して、それらを正確な位置に配置することができる。
続く位置確認工程では、感光性媒質層61内の光路変換部品21の光反射面22に向けて一方向から(ここでは第2受発光手段121のみから)レーザ光を照射する(図7参照)。そして、このレーザ光を第1受発光手段111の受発光部から取り込み、その強度を第1光強度測定手段113によって測定する。CPU106は、光の強度を測定して得た出力信号を取り込み、あらかじめ定められた光強度の基準値と比較する。光強度の実測値が光強度の基準値を超えていれば、CPU106は、第1受発光部及び第2受発光部が正確な位置に配置されていると判断する。逆に、光強度の実測値が光強度の基準値を超えていなければ、CPU106は、第1受発光部及び第2受発光部が正確な位置に配置されていないと判断し、駆動手段112,122を作動させて位置の微調整を行う。
なお、このような位置確認工程は不要であれば省略しても構わない。
続くコア形成工程では、第1受発光手段111の先端部(第1受発光部)及び第2受発光手段121の先端部(第2受発光部)により、感光性媒質層61内の光路変換部品21の光反射面22に向けて双方向から光を同時に照射する。本実施形態では、波長が490nmのブルーレーザ光を用い、このブルーレーザ光を5mW/cm2以上40mW/cm2以下に設定して、5秒以上60秒以下(好ましくは15秒)の時間照射している。
図8は、ブルーレーザ光の照射を開始してから約5秒経過後の状態を示している。この時点では、上層コア38における垂直部36が自己形成しながら次第に長尺化していく。図9は、ブルーレーザ光の照射を開始してから約10秒経過後の状態を示している。この時点では、上層コア38における垂直部36の形成はすでに終了し、水平部35が自己形成しながら次第に長尺化していく。そして最終的には、双方向から延びてきた水平部35の先端部同士が中間地点にて接続し、上層コア38が完成する(図10参照)。この場合、仮に双方向から延びてく水平部35の光軸が若干ずれていたとしても、両者は確実に接続しうる。もっとも、本実施形態では、第1受発光部及び第2受発光部を正確な位置に配置しているため、光軸のずれは殆どなく、水平部35同士を極めて高い効率で接続することができる。
以上のようにして上層コア38の形成が完了したら、再び光照射手段位置合わせ工程を実施し、位置合わせ用パッド16を基準として新たに入光位置43,53を2箇所決定する。ここでは、下層コア34の入光位置43,53の座標を2箇所決定する。そして、決定された入光位置43,53に合わせて一対の光照射手段を配置し、上述した位置確認工程及びコア形成工程を実施する(図11参照)。これにより下層コア34を自己形成する。なお、先に下層コア34を形成してから上層コア38を形成しても構わない。
続くクラッド形成工程では、CPU106が所定の制御信号を出力して面光源ランプ115を点灯させる(図12参照)。その結果、感光性媒質層61の全体にUV光が照射され、感光性媒質層61が全体的に光重合により硬化する。これにより上層コア34及び下層コア38を上下左右から取り囲むクラッド37が形成され、光導波路本体30が完成する。本実施形態では、UV光を、0.1mW/cm2以上30mW/cm2以下の照度(好ましくは0.3mW/cm2)に設定して、30秒照射している。
続く導体層形成工程では、まず、光導波路本体30を別の装置に移して、光導波路本体30の上面32における外周部にマスクを設ける。そして、さらにこの光導波路本体30をスパッタ装置に移してスパッタを行い、外周部を除く上面32全体に導電性金属薄膜を形成する。スパッタされる金属としては、例えば、クロム(Cr)やチタン(Ti)などが好適である。次に、前記マスクを除去して位置合わせ用パッド16を視認可能な状態にした後、導電性金属薄膜上にフォトレジスト層を形成する。次に、フォトレジスト層が形成された光導波路本体30を露光装置に移し、位置合わせ用パッド16を基準としてフォトレジスト層の露光を行う。この後、現像を行ってフォトレジスト層の所定位置に開口部を設け、さらにその開口部を介してエッチングを行う。その結果、光路変換部品21やコア34,38との位置ずれ量が小さい接続パッド39を形成することができる(図13参照)。なお、クロム(Cr)やチタン(Ti)などからなる導電性金属薄膜の上に、さらに銅(Cu)、ニッケル(Ni)、金(Au)などをめっきしてもよい。
ここで、前記光導波路本体30を光照射装置101に移して下記のような検査工程を実施する。この検査工程では、まず、CPU106が制御信号をCCDカメラ116に出力し、これによりCCDカメラ116が作動して光導波路本体30を撮影する。次いで、CPU106は、CCDカメラ116の画像データ信号を制御部103内に取り込ませるとともに、画像処理プログラムに従って画像処理を行い、画像における接続パッド39の位置を特定する。そして、CPU106は、接続パッド39の中心点の座標を基準点として設定し、この基準点の座標に基づいて、光学素子の受発光部が配置されるであろう位置の座標を予測する。すると、CPU106は、受発光部配置予定位置の座標データを含む制御信号を生成し、その制御信号を出力して第1駆動手段112及び第2駆動手段122を動作させる。これにより、第1受発光手段111の先端部(第1受発光部)、第2受発光手段121の先端部(第2受発光部)を、受発光部配置予定位置にそれぞれ配置する。
この状態で上層コア38の一端に向けて一方向から(ここでは第2受発光手段121のみから)レーザ光を照射する(図14参照)。そして、上層コア38の他端から出射するレーザ光を第1受発光手段111の受発光部から取り込み、その強度を第1光強度測定手段113によって測定する。CPU106は、光の強度を測定して得た出力信号を取り込んで、入射光と出射光との比率(即ちパワー損失率)を算出し、その算出された比率とあらかじめ定めた許容値と比較する。同様に、下層コア34の一端に向けて一方向からレーザ光を照射する。そして、下層コア34の他端から出射するレーザ光を第1受発光手段111の受発光部から取り込み、その強度を第1光強度測定手段113によって測定する。CPU106は、光の強度を測定して得た出力信号を取り込んで、入射光と出射光との比率(即ちパワー損失率)を算出し、その算出された比率とあらかじめ定めた許容値と比較する。
そして、上層コア38についても下層コア34についてもパワー損失率が許容値を超えていれば、CPU106は良品であると判断する。この場合、上層コア38及び下層コア34がそれぞれ高効率接続され、かつ、接続パッド39が正しい位置に形成されていると推測される。逆に、上層コア38、下層コア34のいずれかについてパワー損失率が許容値を超えていなければ、CPU106は不良品であると判断する。よって、この場合には、その不良品を取り除くか、あるいは所定の修正作業を行って良品に変えるようにする。なお、本実施形態によると、光学素子搭載工程前に修正作業を実施できるので、修正作業を比較的容易に行うことができる。
なお、このような検査工程は不要であれば省略してもよい。
続く光学素子搭載工程では、先の工程で良品と判断されたものについて、光導波路本体30の上面32にある接続パッド39上に、VCSEL41、ドライバIC、フォトダイオード51及びレシーバICをはんだ付けする(図15参照)。なお、このような光学素子搭載に先立ち、CPU106が制御信号をCCDカメラ116に出力し、これによりCCDカメラ116が作動して位置合わせ用パッド16,38の画像を撮影する。次いで、CPU106は、CCDカメラ116の画像データ信号を制御部103内に取り込んだ後、画像処理プログラムに従って画像処理を行い、画像における位置合わせ用パッド38の位置を特定する。そして、CPU106は、この位置合わせ用パッド38の中心点の座標を基準点として設定し、この基準点の座標に基づいて光学素子を搭載すべき位置の座標をそれぞれ決定する。そして、各々の光学素子を、図示しないチップマウンタを用いて前記座標まで搬送し、接続パッド39に押し付けるようにする。
以上の結果、所望の自己形成光導波路構造体31を備えた光電気複合配線構造体10が完成する。
従って、本実施形態によれば以下のような作用効果を奏する。
(1)本実施形態の自己形成光導波路構造体31は、同じクラッド37内における異なる深さ位置に、上層コア38及び下層コア34を備えた構成となっている。よって、基本的にクラッド形成工程や光路変換部形成工程等を1回実施すれば足りる。このため、従来のようなコア及びそれを取り囲むクラッドを複数層形成した構造物を製造する場合とは異なり、工数の増加を殆ど伴わない。よって、比較的製造しやすくて低コストであるにもかかわらず、コア数の増加に対応しやすい構造を備えた自己形成光導波路構造体31、光電気複合配線構造体10を提供することができる。また、この構成によると全体の厚肉化も防止することができる。
(2)本実施形態では、上層コア38及び下層コア34の形成にあたり、双方向からレーザ光照射を行うこととしている。従って、双方向から延びてきた水平部35の先端部がやがて互いに接続し、上層コア38及び下層コア34がそれぞれ完成する。このようにして自己形成された上層コア38及び下層コア34は各々高い効率で接続されているので、光の伝送ロスを小さくすることができる。ゆえに、光を高い効率で伝送可能な高品質の自己形成光導波路構造体31、光電気複合配線構造体10を提供することができる。
(3)また、本実施形態においては、高効率接続の実現のために各部品の位置を微調整する、という煩雑な作業が特に要求されなくなる。ゆえに、比較的製造しやすい自己形成光導波路構造体31、光電気複合配線構造体10を提供することができる。また、このように製造がしやすくなる結果、生産性の向上及び低コスト化を達成しやすくなる。
(4)本実施形態では、上層コア38内及び下層コア34内を伝搬する光は、1つの光反射面22内における異なる部位にて反射される。それゆえ、光路変換部品21の数が少なくて済み、構造もそれほど複雑にはならないため、生産性の低下やコスト高を回避することができる。また、上層コア38及び下層コア34が互いに交差しないように配置されているため、一方のコア内を伝搬する光が他方のコア内に入り込む可能性が極めて小さくなっている。よって、上層コア38の接続効率、下層コア34の接続効率がいずれも高くなり、光の伝送ロスも確実に低減される。
(5)本実施形態では、光路変換部形成工程にて位置合わせ用パッド16を基準として光路変換部品21を形成した後、さらにそれ以降の工程にて実質的に当該位置合わせ用パッド16を基準として上層コア38、下層コア34、光学素子搭載用の接続パッド39を形成している。そのため、光路変換部品21と上層コア38と光学素子との位置ずれ、光路変換部品21と下層コア34と光学素子との位置ずれを低減することができ、より容易にかつ確実に高効率接続を実現することができる。そして、このことは光の伝送ロスの低減にも確実に貢献する。
(6)本実施形態では、光学素子等の搭載用の接続パッド39が上面32に形成されている。そして、上面32においてVCSEL41の近傍にはドライバICが搭載され、上面32においてフォトダイオード51の近傍にはレシーバICが搭載されている。ゆえに、VCSEL41とドライバICとの距離、フォトダイオード51とレシーバICとの距離が短くなるため、高速応答化を達成しやすくなる。
なお、本発明の実施形態は以下のように変更してもよい。
・光電気複合配線構造体10を製造するにあたり、例えば、検査工程をコア形成工程後かつ導体層形成工程前に実施してもよい。また、光路変換部形成工程を感光性媒質層形成工程後に実施してもよい。
・上記実施形態では、支持基板であるセラミック配線基板11を、完成品の一部としてそのまま残す方法を採用していた。しかし、セラミック配線基板11ではない単なる基材を支持基板として用い、自己形成光導波路構造体31の完成前または完成後にこれを除去し、この時点でセラミック配線基板11を接合する方法を採用してもよい。
・上記実施形態では、図2に示した構造を有する光照射装置101を用いて自己形成光導波路構造体31の製造を行ったが、これとは異なる構造の光照射装置を用いて製造を行っても勿論よい。
・上記実施形態では、2つの深さ位置を設定してコア(上層コア38及び下層コア34)を形成したが、これに限定されず例えば3つ以上の深さ位置を設定してコアを形成することも可能である。
次に、前述した実施形態によって把握される技術的思想を以下に列挙する。
(1)光導波路主面と、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に近い位置に配置された第1コアと、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に遠い位置に配置された第2コアと、前記第1コア及び前記第2コアを取り囲むクラッドと、前記第1コア内及び前記第2コア内を伝搬する光を反射する光反射面を有する光路変換部と、前記光導波路主面上に配置された導体回路と、前記導体回路の一部に形成された光学素子搭載用の接続端子とを備え、前記第1コア及び前記第2コアは、前記光反射面に向けて双方向から光を照射して感光性媒質層を選択的に光硬化させることで形成され、前記光路変換部のある位置に対応して屈曲部を有することを特徴とする自己形成光導波路構造体。
(2)支持基板と自己形成光導波路構造体と光学素子とを備える光電気複合配線構造体において、前記支持基板は、基板主面を有するとともにその基板主面にて前記自己形成光導波路構造体を支持し、前記自己形成光導波路構造体は、光導波路主面と、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に近い位置に配置された第1コアと、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に遠い位置に配置された第2コアと、前記第1コア及び前記第2コアを取り囲むクラッドと、前記第1コア内及び前記第2コア内を伝搬する光を反射する光反射面を有する光路変換部と、前記光導波路主面上に配置された導体回路と、前記導体回路の一部に形成された光学素子搭載用の接続端子とを備え、前記第1コア及び前記第2コアは、前記光反射面に向けて光を照射して感光性媒質層を選択的に光硬化させることで形成され、前記光路変換部のある位置に対応して屈曲部を有し、前記光学素子は、前記接続端子上に搭載されていることを特徴とする光電気複合配線構造体。
(3)前記支持基板は、前記基板主面上に位置合わせ基準部を有することを特徴とする技術的思想2に記載の光電気複合配線構造体。
(4)前記支持基板は、前記基板主面上に位置合わせ基準部を有し、前記光路変換部は、前記位置合わせ基準部を基準として形成されたものであることを特徴とする技術的思想2に記載の光電気複合配線構造体。
(5)前記支持基板は、前記基板主面上に位置合わせ基準部を有し、前記光路変換部及び前記接続端子は、ともに前記位置合わせ基準部を基準として形成されたものであることを特徴とする技術的思想2に記載の光電気複合配線構造体。
(6)前記支持基板は、導体層を有する配線基板であることを特徴とする技術的思想2乃至5のいずれか1項に記載の光電気複合配線構造体。
本発明を具体化した実施形態の光電気複合配線構造体を示す概略断面図。 実施形態にて使用される自己形成光導波路構造体製造用の光照射装置の構成を示す概略図。 図1のA−A線における概略断面図。 実施形態の製造過程において、光路変換部品を形成した状態を示す部分概略断面図。 実施形態の製造過程において、感光性媒質層を形成した状態を示す部分概略断面図。 実施形態の製造過程において、入光位置に一対の光照射手段を配置した状態を示す部分概略断面図。 実施形態の製造過程において、位置確認工程を行っている状態を示す部分概略断面図。 実施形態の製造過程において、上層コアを形成している状態を示す部分概略断面図。 実施形態の製造過程において、上層コアを形成している状態を示す部分概略断面図。 実施形態の製造過程において、上層コアの形成が完了した状態を示す部分概略断面図。 実施形態の製造過程において、下層コアを形成している状態を示す部分概略断面図。 実施形態の製造過程において、クラッドを形成している状態を示す部分概略断面図。 実施形態の製造過程において、光導波路本体の上面に接続パッドを形成した状態を示す部分概略断面図。 実施形態の製造過程において、前記接続パッド等の検査を行っている状態を示す部分概略断面図。 実施形態の製造過程において、光学素子が搭載された状態を示す部分概略断面図。
符号の説明
10…光電気複合配線構造体
21…光路変換部としての光路変換部品
22…光反射面
31…自己形成光導波路構造体
32…光導波路主面としての上面
34…第2コアとしての下層コア
37…クラッド
38…第1コアとしての上層コア
39…光学素子搭載用の接続端子としての接続パッド
40…屈曲部
41…光学素子としてのVCSEL
51…光学素子としてのフォトダイオード
61…感光性媒質層
72…光路変換部としての金属薄膜

Claims (4)

  1. 光導波路主面と、
    前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に近い位置に配置された第1コアと、
    前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に遠い位置に配置された第2コアと、
    前記第1コア及び前記第2コアを取り囲むクラッドと、
    前記第1コア内及び前記第2コア内を伝搬する光を反射する光反射面を有する光路変換部と
    を備え、前記第1コア及び前記第2コアは、前記光反射面に向けて光を照射して感光性媒質層を選択的に光硬化させることで形成され、前記光路変換部のある位置に対応して屈曲部を有することを特徴とする自己形成光導波路構造体。
  2. 前記第1コア内及び前記第2コア内を伝搬する光は、1つの光反射面内における異なる部位にて反射されることを特徴とする請求項1に記載の自己形成光導波路構造体。
  3. 前記第1コア及び前記第2コアは、互いに交差しないように配置されていることを特徴とする請求項2に記載の自己形成光導波路構造体。
  4. 自己形成光導波路構造体と光学素子とを備える光電気複合配線構造体において、
    前記自己形成光導波路構造体は、光導波路主面と、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に近い位置に配置された第1コアと、前記光導波路主面に対して略平行に延設され、前記光導波路主面から相対的に遠い位置に配置された第2コアと、前記第1コア及び前記第2コアを取り囲むクラッドと、前記第1コア内及び前記第2コア内を伝搬する光を反射する光反射面を有する光路変換部と、前記光導波路主面上に配置された導体回路と、前記導体回路の一部に形成された光学素子搭載用の接続端子とを備え、
    前記第1コア及び前記第2コアは、前記光反射面に向けて光を照射して感光性媒質層を選択的に光硬化させることで形成され、前記光路変換部のある位置に対応して屈曲部を有し、
    前記光学素子は、前記接続端子上に搭載されている
    ことを特徴とする光電気複合配線構造体。
JP2003369612A 2003-10-29 2003-10-29 自己形成光導波路構造体、光電気複合配線構造体 Pending JP2005134577A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369612A JP2005134577A (ja) 2003-10-29 2003-10-29 自己形成光導波路構造体、光電気複合配線構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369612A JP2005134577A (ja) 2003-10-29 2003-10-29 自己形成光導波路構造体、光電気複合配線構造体

Publications (1)

Publication Number Publication Date
JP2005134577A true JP2005134577A (ja) 2005-05-26

Family

ID=34646901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369612A Pending JP2005134577A (ja) 2003-10-29 2003-10-29 自己形成光導波路構造体、光電気複合配線構造体

Country Status (1)

Country Link
JP (1) JP2005134577A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158539A (ja) * 2008-01-21 2008-07-10 Fuji Xerox Co Ltd 光電複合配線モジュールおよび情報処理装置
US7751660B2 (en) 2006-12-22 2010-07-06 Fuji Xerox Co., Ltd. Optoelectric composite wiring module and information processing apparatus
DE102009034163A1 (de) * 2009-07-22 2011-02-03 Ulrich Lohmann Paralleles Lichtbussystem für optische Leiterplatten
WO2013002013A1 (ja) * 2011-06-27 2013-01-03 学校法人 慶應義塾 光導波路及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751660B2 (en) 2006-12-22 2010-07-06 Fuji Xerox Co., Ltd. Optoelectric composite wiring module and information processing apparatus
JP2008158539A (ja) * 2008-01-21 2008-07-10 Fuji Xerox Co Ltd 光電複合配線モジュールおよび情報処理装置
JP4613964B2 (ja) * 2008-01-21 2011-01-19 富士ゼロックス株式会社 光電複合配線モジュールおよび情報処理装置
DE102009034163A1 (de) * 2009-07-22 2011-02-03 Ulrich Lohmann Paralleles Lichtbussystem für optische Leiterplatten
WO2013002013A1 (ja) * 2011-06-27 2013-01-03 学校法人 慶應義塾 光導波路及びその製造方法

Similar Documents

Publication Publication Date Title
JP5055193B2 (ja) 光電気混載基板の製造方法
KR101560407B1 (ko) 광전기 혼재 모듈과 그 제조 방법
JP4624162B2 (ja) 光電気配線基板
JP2004240220A (ja) 光モジュール及びその製造方法、混成集積回路、混成回路基板、電子機器、光電気混載デバイス及びその製造方法
JP5989412B2 (ja) 光モジュール及び光モジュールの製造方法
KR20020038594A (ko) 광·전기배선기판, 실장기판 및 광전기배선기판의 제조방법
TW200944853A (en) Manufacturing method of optical wiring printed board and optical wiring printed circuit board
JP6085526B2 (ja) 光電気混載基板、及び光モジュール
JP5608125B2 (ja) 光電気混載基板およびその製法
US7106921B2 (en) Optical waveguide interconnection board, method of manufacturing the same, precursor for use in manufacturing optical waveguide interconnection board, and photoelectric multifunction board
JP2007293308A (ja) 光電気集積配線基板およびその製造方法並びに光電気集積配線システム
JP5328095B2 (ja) 光伝送基板、光電子混載基板、光モジュールおよび光電気回路システム
JP2012189950A (ja) 光電気混載基板およびその製法
JP2008158388A (ja) 光電気回路基板、光モジュールおよび光電気回路システム
JP4131222B2 (ja) 光回路板の製造方法
JP5349192B2 (ja) 光配線構造およびそれを具備する光モジュール
JP2005134577A (ja) 自己形成光導波路構造体、光電気複合配線構造体
JP2005070158A (ja) 光導波路基板及びその製造方法
JP2005134576A (ja) 自己形成光導波路構造体、光電気複合配線構造体
JP2005128302A (ja) 自己形成光導波路構造体の製造方法、光電気複合配線構造体の製造方法、自己形成光導波路構造体製造用の光照射装置
JP4234061B2 (ja) 光導波路デバイスの製造方法
JP2005115190A (ja) 光電気複合配線基板、積層光導波路構造体
JP2012088634A (ja) 光導波路デバイス及びその製造方法
JP4280677B2 (ja) 光導波路構造付きデバイスの製造方法
JP5367635B2 (ja) 光導波路付き配線基板の製造方法