JP2005132712A - Microreactor for producing hydrogen - Google Patents

Microreactor for producing hydrogen Download PDF

Info

Publication number
JP2005132712A
JP2005132712A JP2004209884A JP2004209884A JP2005132712A JP 2005132712 A JP2005132712 A JP 2005132712A JP 2004209884 A JP2004209884 A JP 2004209884A JP 2004209884 A JP2004209884 A JP 2004209884A JP 2005132712 A JP2005132712 A JP 2005132712A
Authority
JP
Japan
Prior art keywords
unit
flow path
microreactor
members
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004209884A
Other languages
Japanese (ja)
Other versions
JP4504751B2 (en
Inventor
Yutaka Yagi
裕 八木
Takeshi Kihara
健 木原
Tsunaichi Suzuki
綱一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004209884A priority Critical patent/JP4504751B2/en
Publication of JP2005132712A publication Critical patent/JP2005132712A/en
Application granted granted Critical
Publication of JP4504751B2 publication Critical patent/JP4504751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microreactor for producing hydrogen which has a small size and exhibits high efficiency. <P>SOLUTION: The microreactor has at least: a plurality of unit flow path members each having a flow path in its inside, an introducing port provided at one end part of the flow path and a discharge port provided at the other end part; and a connection member for holding the unit flow path members in a multistage state. The connection member has a plurality of connection parts for closely holding the unit flow path members at each position where the introducing port of each unit flow path member is located and at each position where the discharge port is located, a raw material introducing port, and a gas discharge port. At least one of the unit flow path members is a unit microreactor supporting a catalyst on the flow path. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水素製造に使用するマイクロリアクター、特に原料から水素を製造するための複数段の反応を行うことができるマイクロリアクターに関する。   The present invention relates to a microreactor used for hydrogen production, and more particularly to a microreactor capable of performing a multistage reaction for producing hydrogen from a raw material.

近年、地球環境保護の観点で二酸化炭素等の地球温暖化ガスの発生がなく、また、エネルギー効率が高いことから、水素を燃料とすることが注目されている。特に、燃料電池は水素を直接電力に変換できることや、発生する熱を利用するコジェネレーションシステムにおいて高いエネルギー変換効率が可能なことから注目されている。これまで燃料電池は宇宙開発や海洋開発等の特殊な条件において採用されてきたが、最近では自動車や家庭用分散電源用途への開発が進んでおり、また、携帯機器用の燃料電池も開発されている。
燃料電池の中で、天然ガス、ガソリン、ブタンガス、メタノール等の炭化水素系燃料を改質して得られる水素ガスと、空気中の酸素とを電気化学的に反応させて電気を取り出す燃料電池は、一般に炭化水素系燃料を水蒸気改質して水素ガスを生成する改質器と、電気を発生させる燃料電池本体等で構成される。
In recent years, attention has been focused on using hydrogen as a fuel because no global warming gas such as carbon dioxide is generated from the viewpoint of protecting the global environment and energy efficiency is high. In particular, fuel cells are attracting attention because they can directly convert hydrogen into electric power and have high energy conversion efficiency in a cogeneration system that uses generated heat. Up to now, fuel cells have been adopted under special conditions such as space development and marine development, but recently they have been developed for use in automobiles and household distributed power supplies, and fuel cells for portable devices have also been developed. ing.
Among fuel cells, a fuel cell that takes out electricity by electrochemically reacting hydrogen gas obtained by reforming hydrocarbon fuels such as natural gas, gasoline, butane gas, and methanol and oxygen in the air is Generally, it is composed of a reformer that generates hydrogen gas by steam reforming a hydrocarbon-based fuel, and a fuel cell body that generates electricity.

メタノール等を原料として水蒸気改質により水素ガスを得るための改質器では、主にCu−Zn系触媒を使用し、吸熱反応により原料の水蒸気改質が行われる。産業用の燃料電池では、起動・停止が頻繁に行われることがないため、改質器の温度変動は生じにくい。しかし、自動車用や携帯機器用の燃料電池では、起動・停止が頻繁に行われるため、停止状態から始動したときの改質器の立ち上がりが速い(メタノールの水蒸気改質温度に達するまでの時間が短い)ことが要求される。
一方、特に携帯機器用では、燃料電池の小型化が必須であり、改質器の小型化が種々検討されている。例えば、シリコン基板やセラミックス基板にマイクロチャネルを形成し、このマイクロチャネル内に触媒を担持したマイクロリアクターが開発されている(特許文献1)。
特開2002−252014号公報
In a reformer for obtaining hydrogen gas by steam reforming using methanol or the like as a raw material, a Cu—Zn-based catalyst is mainly used, and the steam reforming of the raw material is performed by an endothermic reaction. In an industrial fuel cell, start-up and stop are not frequently performed, so that the temperature fluctuation of the reformer hardly occurs. However, since fuel cells for automobiles and portable devices are frequently started and stopped, the start-up of the reformer is quick when starting from a stopped state (the time until the steam reforming temperature of methanol is reached). Short).
On the other hand, especially for portable devices, downsizing of the fuel cell is essential, and various downsizing of the reformer has been studied. For example, a microreactor in which a microchannel is formed on a silicon substrate or a ceramic substrate and a catalyst is supported in the microchannel has been developed (Patent Document 1).
JP 2002-252014 A

しかしながら、従来のマイクロリアクターによる水素製造では、水素製造の各工程(混合、改質、CO除去)用のマイクロリアクターを準備し、これら複数のマイクロリアクターを配管で接続したものであり、必要とするスペースが大きくなり、携帯機器用の燃料電池のように、マイクロリアクターに許容されるスペースの制限が厳しい場合、小型化に重大な支障を来していた。
また、使用中に1つの工程用のマイクロリアクターにおいて触媒の失活や劣化が生じ、その機能がなくなると、正常に機能しているマイクロリアクターを含めて複数のマイクロリアクター全体を交換する必要があり、ランニングコスト低減に支障を来すという問題があった。
本発明は上述のような事情に鑑みてなされたものであり、小型で効率の高い水素製造用のマイクロリアクターを提供することを目的とする。
However, in conventional hydrogen production using a microreactor, a microreactor for each step of hydrogen production (mixing, reforming, CO removal) is prepared, and a plurality of these microreactors are connected by piping. When the space becomes large and the space allowed for the microreactor is severely limited, such as a fuel cell for portable devices, it has seriously hindered miniaturization.
In addition, when a catalyst is deactivated or deteriorated in a microreactor for one process during use and its function is lost, it is necessary to replace a plurality of microreactors including a normally functioning microreactor. There was a problem that the running cost was hindered.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a small and highly efficient microreactor for hydrogen production.

このような目的を達成するために、本発明は、原料を改質して水素ガスを得るためのマイクロリアクターにおいて、流路を内部に有し、該流路の一方の端部が導入口をなし、他方の端部が排出口をなす複数個の単位流路部材と、該単位流路部材を多段状態で保持する連結部材とを少なくとも備え、前記連結部材は、単位流路部材の導入口が位置する部位、排出口が位置する部位にて単位流路部材を密着させて保持するための複数の連結部と、原料導入口と、ガス排出口とを有し、少なくとも1個の前記単位流路部材は流路内に触媒を担持した単位マイクロリアクターであり、前記連結部材の原料導入口から原料を導入し、複数個の前記単位流路部材のうち、前記単位マイクロリアクターにて所定の反応を行い、前記連結部材のガス排出口から所望の生成ガスを得るような構成とした。   In order to achieve such an object, the present invention provides a microreactor for reforming a raw material to obtain hydrogen gas, and has a flow path inside, and one end of the flow path has an inlet. None, comprising at least a plurality of unit flow path members whose other end portion forms a discharge port, and a connection member for holding the unit flow path members in a multistage state, wherein the connection member is an inlet of the unit flow path member At least one unit having a plurality of connecting portions, a raw material introduction port, and a gas discharge port for adhering and holding the unit flow path member at the site where the discharge port is located The flow path member is a unit microreactor in which a catalyst is supported in the flow path, and the raw material is introduced from the raw material introduction port of the connecting member, and among the plurality of unit flow path members, a predetermined microreactor is used. React, from the gas outlet of the connecting member It was configured so as to obtain a Nozomu of the product gas.

本発明の他の態様として、n(nは2以上の整数)個の単位流路部材を有し、前記連結部は、前記原料導入口に接続された導入連結部と、前記ガス排出口に接続された排出連結部と、相互に内部連通路で接続された(n−1)組みの段移行連結部とからなり、1段目の単位流路部材は、導入口を前記導入連結部に、排出口を前記段移行連結部に、それぞれ連結保持され、2段目から(n−1)段目の単位流路部材は、導入口を前段の段移行連結部と内部連通路で接続された段移行連結部に、排出口を別の組みの段移行連結部に、それぞれ連結保持され、n段目の単位流路部材は、導入口を前段の段移行連結部と内部連通路で接続された段移行連結部に、排出口を前記排出連結部に、それぞれ連結保持されているような構成とした。   As another aspect of the present invention, there are n (n is an integer of 2 or more) unit flow path members, and the connection portion is connected to the introduction connection portion connected to the raw material introduction port, and the gas discharge port. It is composed of a connected discharge connecting portion and (n-1) sets of stage transition connecting portions connected to each other through an internal communication path. The first-stage unit flow path member has an introduction port at the introduction connecting portion. The discharge port is connected and held to the stage transition connecting portion, and the unit flow path members from the second stage to the (n-1) th stage are connected at the introduction port to the previous stage transition connecting part by the internal communication path. The discharge port is connected to and held by another set of stage transition connection parts, and the unit flow channel member of the nth stage connects the introduction port with the previous stage transition connection part through an internal communication path. It was set as the structure which the discharge port was connected and hold | maintained to the said discharge | emission connection part to the made stage transition connection part, respectively.

本発明の他の態様として、前記単位流路部材は取り外し可能であるような構成とした。
本発明の他の態様として、前記単位マイクロリアクターは、単位流路部材の流路内壁面に金属酸化膜を介して触媒を担持しているような構成とした。
本発明の他の態様として、各単位流路部材は同一構造であって、流路内に担持する触媒種が異なる複数の単位マイクロリアクターを有するような構成とした。
本発明の他の態様として、発熱体を備えた単位マイクロリアクターを有するような構成とした。
本発明の他の態様として、所望の隣接する段の単位流路部材間に断熱用の空隙および/または断熱材を介在させるような構成とした。
本発明の他の態様として、連結部材により多段状態で保持された複数の単位流路部材の他の端部を固定部材で固定したような構成とした。
As another aspect of the present invention, the unit channel member is configured to be removable.
As another aspect of the present invention, the unit microreactor is configured such that a catalyst is supported on the inner wall surface of the unit channel member via a metal oxide film.
As another aspect of the present invention, each unit channel member has the same structure, and has a configuration in which a plurality of unit microreactors having different catalyst species supported in the channel are provided.
In another embodiment of the present invention, the unit microreactor including a heating element is provided.
As another aspect of the present invention, a configuration is adopted in which a space for heat insulation and / or a heat insulating material are interposed between unit flow path members at desired adjacent stages.
As another aspect of the present invention, the other end portions of the plurality of unit flow path members held in a multistage state by the connecting member are fixed with a fixing member.

本発明の他の態様として、単位流路部材は、流路を構成するための微細溝部が形成された1組の金属基板を前記微細溝部どうしが対向するように接合した接合体、あるいは、流路を構成するための微細溝部が形成された金属基板面に金属カバー部材を接合した接合体であるような構成とした。
本発明の他の態様として、単位流路部材は、流路を構成するための微細溝部が形成された1組の金属基板を前記微細溝部どうしが対向するように接合した接合体、あるいは、流路を構成するための微細溝部が形成された金属基板面に金属カバー部材を接合した接合体を備えるような構成とした。
本発明の他の態様として、単位マイクロリアクターは、前記接合体を形成した後、流路内に触媒を担持したものであるような構成、あるいは、接合前の微細溝部内に触媒を担持したものであるような構成とした。
As another aspect of the present invention, the unit flow path member is a joined body obtained by bonding a pair of metal substrates on which fine grooves for forming the flow path are formed so that the fine groove portions face each other, It was set as the structure which was the joined body which joined the metal cover member to the metal substrate surface in which the fine groove part for comprising a path | route was formed.
As another aspect of the present invention, the unit flow path member is a joined body obtained by bonding a pair of metal substrates on which fine grooves for forming the flow path are formed so that the fine groove portions face each other, It was set as the structure provided with the conjugate | zygote which joined the metal cover member to the metal substrate surface in which the fine groove part for comprising a path | route was formed.
As another embodiment of the present invention, the unit microreactor has a structure in which the catalyst is supported in the flow channel after forming the joined body, or a catalyst in which the catalyst is supported in the fine groove before joining. It was set as such a structure.

本発明によれば、多段状態で連結保持している単位流路部材のうち、所望の単位流路部材が、流路内に触媒を担持した単位マイクロリアクターとされているので、スペースの利用効率が向上し、また、単位マイクロリアクターの段数、単位マイクロリアクターに担持する触媒種の選択により、所望の性能、特性を有する水素製造用のマイクロリアクターとすることができる。さらに、各単位流路部材を取り外し可能とすることにより、触媒の失活や劣化が生じた単位マイクロリアクターのみを交換して、マイクロリアクター全体としての機能を維持することができる。また、接合体を形成した後に触媒を担持して単位マイクロリアクターとすることにより、同一構造の単位流路部材(接合体)を使用し、要求される機能に応じた触媒を担持した単位マイクロリアクターを組み込むことが可能となり、マイクロリアクターの製造コスト、ランニングコストが低減される。また、所望の単位マイクロリアクターに発熱体を備えたり、単位流路部材間に断熱用の空隙や断熱材を介在させることにより、単位マイクロリアクター毎に最適な温度とすることができ、反応効率の向上と熱の有効利用が可能である。   According to the present invention, among the unit flow path members connected and held in a multistage state, the desired unit flow path member is a unit microreactor carrying a catalyst in the flow path. In addition, by selecting the number of unit microreactor stages and the type of catalyst supported on the unit microreactor, a microreactor for producing hydrogen having desired performance and characteristics can be obtained. Furthermore, by making each unit channel member removable, only the unit microreactor in which the catalyst is deactivated or deteriorated can be replaced, and the function of the entire microreactor can be maintained. In addition, by forming a unit microreactor by supporting a catalyst after forming a joined body, a unit microreactor carrying a catalyst corresponding to a required function using a unit flow path member (joined body) having the same structure. As a result, the manufacturing cost and running cost of the microreactor can be reduced. In addition, by providing a heating element in a desired unit microreactor, or by interposing a space for heat insulation or a heat insulating material between unit flow path members, it is possible to achieve an optimum temperature for each unit microreactor, thereby improving reaction efficiency. Improvement and effective use of heat are possible.

以下、本発明の実施形態について図面を参照して説明する。
図1は本発明のマイクロリアクターの一実施形態を示す斜視図であり、図2は図1に示されるマイクロリアクターのI−I線における拡大縦断面図であり、図3は図1に示されるマイクロリアクターの構成部材を離間させた状態を示す斜視図である。図1〜図3において、本発明のマイクロリアクター1は、3個の単位流路部材2a,2b,2cが3段の多段状態で連結部材4と固定部材6とで連結保持されたものである。また、各単位流路部材2a,2b,2c間には空隙7が設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of the microreactor of the present invention, FIG. 2 is an enlarged longitudinal sectional view taken along line II of the microreactor shown in FIG. 1, and FIG. 3 is shown in FIG. It is a perspective view which shows the state which spaced apart the structural member of the microreactor. 1 to 3, a microreactor 1 according to the present invention has three unit channel members 2a, 2b, 2c connected and held by a connecting member 4 and a fixing member 6 in a multi-stage state of three stages. . A gap 7 is provided between the unit flow path members 2a, 2b, 2c.

単位流路部材2a,2b,2cは流路を内部に有し、この流路の一方の端部が導入口をなし、他方の端部が排出口をなすものである。そして、3個の単位流路部材2a,2b,2cのうち、単位流路部材2b,2cは、流路内に触媒を担持した単位マイクロリアクターである。すなわち、図2に示されるように、各単位流路部材2a,2b,2cは、微細溝部12が形成された金属基板11と、微細溝部14が形成された金属基板13とが、微細溝部12と微細溝部14とが対向するように接合され、周囲に金属酸化膜(絶縁層)16が形成された接合体10を有している。この接合体10の内部には、対向する微細溝部12,14で構成された流路15が形成されている。そして、単位流路部材(単位マイクロリアクター)2b,2cでは、流路15の内壁面の全面に金属酸化膜16を介してそれぞれ触媒C1、C2が担持されている。尚、図示例では、流路15の内壁面に触媒を担持していない単位流路部材2aにおいても、接合体10内の流路15の内壁面に金属酸化膜16を有しているが、この金属酸化膜16を有していなものであってもよい。   The unit flow path members 2a, 2b, and 2c have a flow path inside, and one end portion of the flow path forms an introduction port and the other end portion forms a discharge port. Of the three unit channel members 2a, 2b, and 2c, the unit channel members 2b and 2c are unit microreactors that carry a catalyst in the channel. That is, as shown in FIG. 2, each of the unit flow path members 2a, 2b, and 2c includes a metal substrate 11 on which the fine groove portion 12 is formed and a metal substrate 13 on which the fine groove portion 14 is formed. And the fine groove portion 14 are joined so as to face each other, and the joined body 10 is formed with a metal oxide film (insulating layer) 16 formed around it. Inside the joined body 10, a flow path 15 composed of opposed fine groove portions 12 and 14 is formed. In the unit flow path members (unit microreactors) 2b and 2c, the catalysts C1 and C2 are supported on the entire inner wall surface of the flow path 15 via the metal oxide film 16, respectively. In the illustrated example, the unit channel member 2a that does not carry a catalyst on the inner wall surface of the flow channel 15 also has the metal oxide film 16 on the inner wall surface of the flow channel 15 in the joined body 10. The metal oxide film 16 may not be provided.

単位流路部材2a,2b,2cを構成する上記の接合体10は、図3に示されるように、同一方向に1組の突出部10a,10bを有している。図4は単位流路部材2aを例とした流路15の状態を説明するための斜視図である。図4に示されるように、流路15は、突出部10aに位置する端部から突出部10bに位置する端部まで蛇行して連続する形状である。そして、突出部10aに位置する流路15の端部が導入口3aをなし、突出部10bに位置する流路15の端部が排出口3bをなしている。具体的には、単位流路部材2a,単位流路部材(単位マイクロリアクター)2cでは、突出部10aに位置する流路15の端部が導入口3aをなし、突出部10bに位置する流路15の端部が排出口3bをなしている。また、単位流路部材(単位マイクロリアクター)2bでは、突出部10aに位置する流路15の端部が排出口3bをなし、突出部10bに位置する流路15の端部が導入口3aをなしている。したがって、1段目の単位流路部材から3段目の単位流路部材(単位マイクロリアクター)に向けて、突出部10a側では導入口3a、排出口3b、導入口3aの順に配列され、突出部10b側では排出口3b、導入口3a、排出口3bの順に配列されている。   As shown in FIG. 3, the joined body 10 constituting the unit flow path members 2a, 2b, and 2c has a pair of protrusions 10a and 10b in the same direction. FIG. 4 is a perspective view for explaining the state of the channel 15 taking the unit channel member 2a as an example. As shown in FIG. 4, the flow path 15 has a shape that meanders continuously from an end located at the projecting portion 10 a to an end located at the projecting portion 10 b. And the edge part of the flow path 15 located in the protrusion part 10a comprises the inlet 3a, and the edge part of the flow path 15 located in the protrusion part 10b comprises the discharge port 3b. Specifically, in the unit flow channel member 2a and the unit flow channel member (unit microreactor) 2c, the end of the flow channel 15 located in the protruding portion 10a forms the introduction port 3a, and the flow channel located in the protruding portion 10b. 15 end portions form the discharge port 3b. In the unit channel member (unit microreactor) 2b, the end of the channel 15 located in the protruding portion 10a forms the discharge port 3b, and the end of the channel 15 positioned in the protruding portion 10b serves as the inlet 3a. There is no. Therefore, from the first stage unit flow path member to the third stage unit flow path member (unit microreactor), the projecting portion 10a side is arranged in the order of the introduction port 3a, the discharge port 3b, and the introduction port 3a. On the part 10b side, the discharge port 3b, the introduction port 3a, and the discharge port 3b are arranged in this order.

また、各単位流路部材2a,2b,2cを構成する接合体10の一方の面には発熱体17が設けられており、発熱体17には電極18,18が形成され、この電極18,18の一部を露出させるように発熱体保護層19が、発熱体17を覆うように設けられている。図3では、単位流路部材2aの発熱体保護層19を離間させた状態を示している。尚、図示例では、単位マイクロリアクターではない単位流路部材2aにも発熱体17、電極18,18が設けられているが、単位マイクロリアクターである単位流路部材のみに発熱体17、電極18,18を設けるようにしてもよい。   Further, a heating element 17 is provided on one surface of the joined body 10 constituting each unit flow path member 2a, 2b, 2c, and electrodes 18, 18 are formed on the heating element 17, and the electrodes 18, A heating element protective layer 19 is provided so as to cover the heating element 17 so that a part of the heating element 18 is exposed. FIG. 3 shows a state where the heating element protective layer 19 of the unit flow path member 2a is separated. In the illustrated example, the heating element 17 and the electrodes 18 and 18 are also provided in the unit channel member 2a that is not a unit microreactor. However, the heating element 17 and the electrode 18 are provided only in the unit channel member that is a unit microreactor. , 18 may be provided.

連結部材4は、各単位流路部材2a,2b,2cを多段状態で保持するものであり、ブロック体21a,21bでブロック体21cを挟持するような形状の構造体21を有している。図5は、連結部材4の連結部が形成された面を示す図であり、図6は図5に示される連結部材の断面図であって、(A)はII−II線における断面図、(B)はIII−III線における断面図である。図5および図6に示されるように、ブロック体21a,21bの一方の面には、各単位流路部材2a,2b,2cを、導入口3aや排出口3bが位置する接合体10の突出部10a,10bにて密着させて保持するための複数の連結部22が設けられている。また、ブロック体21aの反対面には原料導入口23が、ブロック体21bの反対面にはガス排出口24が、それぞれ設けられている。   The connecting member 4 holds the unit flow path members 2a, 2b, 2c in a multistage state, and has a structure 21 shaped so as to sandwich the block body 21c between the block bodies 21a, 21b. 5 is a view showing a surface on which the connecting portion of the connecting member 4 is formed, FIG. 6 is a cross-sectional view of the connecting member shown in FIG. 5, and (A) is a cross-sectional view taken along the line II-II, (B) is sectional drawing in the III-III line. As shown in FIGS. 5 and 6, the unit channel members 2 a, 2 b, 2 c are provided on one surface of the block bodies 21 a, 21 b, and the projection of the joined body 10 where the introduction port 3 a and the discharge port 3 b are located. A plurality of connecting portions 22 are provided to be held in close contact with the portions 10a and 10b. Further, a raw material introduction port 23 is provided on the opposite surface of the block body 21a, and a gas discharge port 24 is provided on the opposite surface of the block body 21b.

ブロック体21aに設けられている連結部22は、原料導入口23と内部流路26にて接続された導入連結部22aと、内部連通路25aで相互に接続された1組の段移行連結部22d,22eとからなり、これらが一列に配列されている。また、ブロック体21bに設けられている連結部22は、内部連通路25bで相互に接続された1組の段移行連結部22b,22cと、ガス排出入口24と内部流路27にて接続された排出連結部22fとからなり、これらが一列に配列されている。そして、各連結部22(22a,22b,22c,22d,22e,22f)内には、各単位流路部材2a,2b,2cを構成する接合体10の突出部10a,10bを気密、液密状態で密着保持するためのパッキン28が配設されている。尚、各連結体22の寸法は、連結保持する単位流路部材の突出部10a,10bの形状に対応させて適宜設定する。   The connecting portion 22 provided in the block body 21a includes an introduction connecting portion 22a connected to the raw material inlet 23 and the internal flow path 26, and a set of stage transition connecting portions connected to each other via the internal communication passage 25a. 22d and 22e, which are arranged in a line. The connecting portion 22 provided in the block body 21b is connected by a set of step transition connecting portions 22b and 22c connected to each other by an internal communication path 25b, a gas discharge inlet 24, and an internal flow path 27. The discharge connecting portions 22f are arranged in a line. And in each connection part 22 (22a, 22b, 22c, 22d, 22e, 22f), the protrusion parts 10a and 10b of the joined body 10 which comprises each unit flow path member 2a, 2b, 2c are airtight and liquid-tight. A packing 28 for tightly holding in the state is provided. In addition, the dimension of each connection body 22 is suitably set corresponding to the shape of the protrusions 10a and 10b of the unit flow path members to be connected and held.

上記の連結部材4は、導入連結部22aと段移行連結部22bに1段目の単位流路部材2aの突出部10aと突出部10bをそれぞれ挿入して密着保持し、段移行連結部22cと22dに2段目の単位流路部材(単位マイクロリアクター)2bの突出部10bと突出部10aをそれぞれ挿入して密着保持し、段移行連結部22eと排出連結部22fに3段目の単位流路部材(単位マイクロリアクター)2cの突出部10aと突出部10bをそれぞれ挿入して密着保持している。尚、上記のパッキン28は、連結部材4による各単位流路部材2a,2b,2cの密着保持をより確実なものとするためのものであり、例えば、Oリング、シリコンラバー等の弾力性を有する材料からなるものとすることができる。また、連結部材4による各単位流路部材2a,2b,2cの密着保持をより確実なものとするために、突出部10aと突出部10bの周囲にシリコンラバー等の弾力性を有する補助部材を設けてもよい。   The above-mentioned connecting member 4 inserts the projecting portion 10a and the projecting portion 10b of the first-stage unit flow path member 2a into the introduction connecting portion 22a and the step transition connecting portion 22b, and keeps them in close contact with each other. The protrusion 10b and the protrusion 10a of the second stage unit flow path member (unit microreactor) 2b are inserted and held in close contact with 22d, and the third stage unit flow is supplied to the stage transition connection 22e and the discharge connection 22f. The protruding portion 10a and the protruding portion 10b of the path member (unit microreactor) 2c are inserted and held in close contact with each other. The packing 28 described above is for ensuring that the unit flow path members 2a, 2b, and 2c are in close contact with each other by the connecting member 4. For example, the packing 28 has elasticity such as an O-ring and silicon rubber. It can consist of the material which has. In addition, in order to ensure that the unit flow path members 2a, 2b, and 2c are closely held by the connecting member 4, an auxiliary member having elasticity such as silicon rubber is provided around the protruding portion 10a and the protruding portion 10b. It may be provided.

固定部材6は、上記の連結部材4により多段状態で保持された各単位流路部材2a,2b,2cの他の端部を固定するものであり、枠体31と、この枠体31内を3段に仕切るための仕切り部材32a,32bとを備えている。この固定部材6は、仕切り部材32a,32bで仕切られた収納空間33a,33b,33cに、各単位流路部材2a,2b,2cの端部を挿入するように配置することによって、多段状態で固定保持することができる。
上述のようなマイクロリアクター1では、連結部材4の原料導入口23から導入された原料は、内部流路26を通過して、導入連結部22aから1段目の単位流路部材2aの導入口3aに達する。そして、単位流路部材2aの流路15内で所望の原料混合が行われた後、排出口3bから段移行連結部22b、内部連通路25bを経由して段移行連結部22cから2段目の単位流路部材(単位マイクロリアクター)2bの導入口3aに達する。そして、単位マイクロリアクター2bの触媒C1が担持された流路15内を通過した後、排出口3bから段移行連結部22d、内部連通路25aを経由して段移行連結部22eへ送られ、3段目の単位流路部材(単位マイクロリアクター)2cの導入口3aに達する。そして、単位マイクロリアクター2cの触媒C2が担持された流路15内を通過した後、排出口3bから排出連結部22f、内部流路27を通過してガス排出口24に達する。
The fixing member 6 fixes other end portions of the unit flow path members 2a, 2b, and 2c held in a multistage state by the connecting member 4, and includes a frame body 31 and the inside of the frame body 31. Partition members 32a and 32b for partitioning in three stages are provided. The fixing member 6 is arranged in a multi-stage state by disposing the end portions of the unit flow path members 2a, 2b, 2c into the storage spaces 33a, 33b, 33c partitioned by the partition members 32a, 32b. Can be held fixed.
In the microreactor 1 as described above, the raw material introduced from the raw material introduction port 23 of the connecting member 4 passes through the internal flow path 26 and is introduced from the introduction connecting portion 22a to the first stage unit flow passage member 2a. Reach 3a. And after desired raw material mixing is performed in the flow path 15 of the unit flow path member 2a, the second stage from the stage transition connection part 22c via the discharge port 3b and the stage transition connection part 22b and the internal communication path 25b. To the inlet 3a of the unit flow path member (unit microreactor) 2b. Then, after passing through the flow path 15 in which the catalyst C1 of the unit microreactor 2b is carried, it is sent from the discharge port 3b to the stage transition connection part 22e via the stage transition connection part 22d and the internal communication path 25a. It reaches the inlet 3a of the stage unit flow path member (unit microreactor) 2c. Then, after passing through the flow path 15 on which the catalyst C2 of the unit microreactor 2c is carried, the discharge port 3b passes through the discharge connection portion 22f and the internal flow path 27 and reaches the gas discharge port 24.

上述のマイクロリアクター1では、各単位流路部材2a,2b,2cにそれぞれ発熱体17が配設され、各単位流路部材間には空隙7が存在しているので、各単位流路部材間での熱の不要な伝導が防止され、単位マイクロリアクター2b、2cにおいてそれぞれ最適な温度設定が可能とされている。
また、本発明では、例えば、図7に示されるように、発熱体17を有する単位マイクロリアクターを2段目の単位流路部材(単位マイクロリアクター)2bのみとし、1段目の単位流路部材2a′と3段目の単位流路部材(単位マイクロリアクター)2c′は発熱体17を備えないものであってもよい。そして、1段目の単位流路部材2a′と2段目の単位流路部材(単位マイクロリアクター)2bとの間には断熱用の空隙7を設け、2段目の単位流路部材(単位マイクロリアクター)2bと3段目の単位流路部材(単位マイクロリアクター)2c′との間には、断熱材8を介在させたものとしてもよい。断熱材8としては、例えば、ガラスウール、セラミックス基板等を使用することができる。
In the microreactor 1 described above, the heating element 17 is disposed in each of the unit flow path members 2a, 2b, 2c, and the gap 7 exists between the unit flow path members. Thus, unnecessary conduction of heat in the unit microreactors 2b and 2c can be prevented, and optimum temperature settings can be made respectively.
Further, in the present invention, for example, as shown in FIG. 7, the unit microreactor having the heating element 17 is only the second-stage unit channel member (unit microreactor) 2b, and the first-stage unit channel member. 2a ′ and the third stage unit flow path member (unit microreactor) 2c ′ may not include the heating element 17. A space 7 for heat insulation is provided between the first-stage unit channel member 2a ′ and the second-stage unit channel member (unit microreactor) 2b, and the second-stage unit channel member (unit The heat insulating material 8 may be interposed between the microreactor 2b and the third-stage unit flow path member (unit microreactor) 2c ′. As the heat insulating material 8, for example, glass wool, a ceramic substrate, or the like can be used.

また、連結部材4の原料導入口23とガス排出口24との位置関係は、図示例のものに限定されず、例えば、内部流路27を曲げて形成することにより、原料導入口23とガス排出口24とを同じ高さに配設してもよい。
上述のマイクロリアクター1は、3個の単位流路部材のうち、2個を単位マイクロリアクターとした3段構造であるが、本発明では、単位流路部材の個数は2個、あるいは4個以上であってもよく、また、単位流路部材のうち単位マイクロリアクターとする個数に特に制限はない。そして、単位流路部材の段数に応じて連結部材4の段移行連結部の数を設定する。すなわち、本発明では、n(nは2以上の整数)個の単位流路部材を有する場合、連結部材の連結部のうち、相互に内部連通路で接続された段移行連結部を(n−1)組み設けることができる。そして、1段目の単位流路部材は、導入口を導入連結部に、排出口を段移行連結部に、それぞれ連結保持し、2段目から(n−1)段目の単位流路部材については、導入口を前段の段移行連結部と内部連通路で接続された段移行連結部に、排出口を別の組みの段移行連結部に、それぞれ連結保持し、n段目の単位流路部材は、導入口を前段の段移行連結部と内部連通路で接続された段移行連結部に、排出口を排出連結部に、それぞれ連結保持することにより、本発明のマイクロリアクターを構成することができる。
Further, the positional relationship between the raw material inlet 23 and the gas outlet 24 of the connecting member 4 is not limited to the illustrated example. For example, the inner passage 27 is bent to form the raw material inlet 23 and the gas outlet 24. The outlet 24 may be arranged at the same height.
The above-described microreactor 1 has a three-stage structure in which two of the three unit channel members are unit microreactors. In the present invention, the number of unit channel members is two, or four or more. The number of unit microreactors among the unit flow path members is not particularly limited. And the number of the stage transition connection parts of the connection member 4 is set according to the number of steps of the unit flow path member. That is, in the present invention, when there are n (n is an integer of 2 or more) unit flow path members, among the connecting portions of the connecting members, the stage transition connecting portions connected to each other through the internal communication path (n− 1) A combination can be provided. The first stage unit flow path member is connected and held with the introduction port at the introduction connection part and the discharge port at the stage transition connection part, respectively, and the unit flow path member from the second stage to the (n-1) th stage. For, the inlet is connected to the stage transition connecting section connected to the previous stage transition connecting section through the internal communication path, and the discharge port is connected to another set of stage transition connecting sections. The path member constitutes the microreactor of the present invention by holding the inlet at the stage transition connecting portion connected to the previous stage transition connecting portion by the internal communication path and the discharge port at the discharge connecting portion, respectively. be able to.

ここで、上述のマイクロリアクター1を構成する各部材について説明する。
まず、単位流路部材2a,2b,2cを構成する部材について説明する。接合体10を構成する金属基板11,13は、陽極酸化により金属酸化膜(絶縁膜)16を形成することができる金属を使用することができる。このような金属としては、例えば、Al、Si、Ta、Nb、V、Bi、Y、W、Mo、Zr、Hf等を挙げることできる。これらの金属の中で、特にAlが加工適性や、熱容量、熱伝導率等の特性、単価の点から好ましく使用される。また、接合体10を構成する金属基板11,13として、Cu、ステンレス、Fe、Al等のベーマイト処理により金属酸化膜16の形成が可能な材料を使用することもできる。この場合、金属基板11,13の周囲に存在する金属酸化膜16は、同様にベーマイト処理により形成してもよく、あるいは、絶縁材料を含有するペーストを用いたスクリーン印刷等の印刷法や、スパッタリング、真空蒸着等の真空成膜法によりポリイミド、セラミック(Al23、SiO2)等を形成してもよい。
Here, each member which comprises the above-mentioned microreactor 1 is demonstrated.
First, members constituting the unit flow path members 2a, 2b, and 2c will be described. For the metal substrates 11 and 13 constituting the joined body 10, a metal capable of forming a metal oxide film (insulating film) 16 by anodic oxidation can be used. Examples of such metals include Al, Si, Ta, Nb, V, Bi, Y, W, Mo, Zr, and Hf. Among these metals, Al is particularly preferably used from the viewpoint of processability, characteristics such as heat capacity and thermal conductivity, and unit price. In addition, as the metal substrates 11 and 13 constituting the bonded body 10, a material capable of forming the metal oxide film 16 by boehmite treatment such as Cu, stainless steel, Fe, and Al can be used. In this case, the metal oxide film 16 existing around the metal substrates 11 and 13 may be similarly formed by boehmite treatment, or a printing method such as screen printing using a paste containing an insulating material, or sputtering. Polyimide, ceramic (Al 2 O 3 , SiO 2 ) or the like may be formed by a vacuum film formation method such as vacuum deposition.

金属基板11,13の厚みは、単位流路部材2a,2b,2cの大きさ、使用する金属の熱容量、熱伝導率等の特性、形成する微細溝部12,14の大きさ等を考慮して適宜設定することができるが、例えば、400〜1000μm程度の範囲で設定することができる。
金属基板11,13に形成される微細溝部12,14は、図示された形状に限定されるものではなく、微細溝部12,14内に担持する触媒の量が多くなり、かつ、原料が触媒と接触する流路長が長くなるような任意の形状とすることができる。微細溝部12,14の深さは、例えば、100〜1000μm程度の範囲内、幅は100〜1000μm程度の範囲内で設定することができ、流路長は30〜300mm程度の範囲とすることができる。
The thickness of the metal substrates 11 and 13 takes into consideration the size of the unit flow path members 2a, 2b, and 2c, the characteristics of the heat capacity and thermal conductivity of the metal used, the size of the fine groove portions 12 and 14 to be formed, and the like. Although it can set suitably, it can set in the range of about 400-1000 micrometers, for example.
The fine groove portions 12 and 14 formed in the metal substrates 11 and 13 are not limited to the illustrated shape, and the amount of the catalyst carried in the fine groove portions 12 and 14 increases, and the raw material is the catalyst. It can be set as the arbitrary shapes that the flow path length to contact becomes long. The depth of the fine groove portions 12 and 14 can be set, for example, in the range of about 100 to 1000 μm, the width can be set in the range of about 100 to 1000 μm, and the flow path length can be set in the range of about 30 to 300 mm. it can.

本実施形態では、流路15の内壁面に金属酸化膜16が形成されているので、微細孔を有する金属酸化膜の表面構造により、触媒C1、C2の担持量が増大するとともに、安定した触媒担持が可能となる。
触媒C1、C2としては、従来から水素製造に使用されている公知の触媒を使用することができる。例えば、1段目の単位流路部材2aにて原料の混合、気化が行われ、2段目の単位流路部材(単位マイクロリアクター)2bが混合気体の改質、3段目の単位流路部材(単位マイクロリアクター)2cが改質気体からの不純物除去を行う場合、触媒C1としてCu−ZnO/Al23等、触媒C2としてPt/Al23等を使用することができる。
発熱体17は、各単位流路部材(単位マイクロリアクター)で必要な熱を供給するためのものであり、カーボンペースト、ニクロム(Ni−Cr合金)、W(タングステン)、Mo(モリブデン)等の材質を使用することができる。この発熱体17は、例えば、幅10〜200μm程度の細線を、微細溝部が形成されている領域に相当する接合体10上の領域全面に引き回したような形状とすることができる。
In the present embodiment, since the metal oxide film 16 is formed on the inner wall surface of the flow path 15, the supported amount of the catalysts C 1 and C 2 is increased by the surface structure of the metal oxide film having micropores, and the stable catalyst. Support is possible.
As the catalysts C1 and C2, known catalysts conventionally used for hydrogen production can be used. For example, the raw material is mixed and vaporized in the first stage unit flow path member 2a, and the second stage unit flow path member (unit microreactor) 2b reforms the mixed gas. The third stage unit flow path When the member (unit microreactor) 2c removes impurities from the reformed gas, Cu—ZnO / Al 2 O 3 or the like can be used as the catalyst C1, and Pt / Al 2 O 3 or the like can be used as the catalyst C2.
The heating element 17 is for supplying heat necessary for each unit flow path member (unit microreactor), such as carbon paste, nichrome (Ni—Cr alloy), W (tungsten), Mo (molybdenum), and the like. Material can be used. For example, the heating element 17 may have a shape in which a thin wire having a width of about 10 to 200 μm is drawn around the entire surface of the joined body 10 corresponding to the region where the fine groove is formed.

このような発熱体17には、通電用の電極18,18が形成されている。通電用の電極18,18は、Au、Ag、Pd、Pd−Ag等の導電材料を用いて形成することができる。
発熱体保護層19は、上記の電極18,18の一部を露出させ、発熱体17を覆うように配設されている。この発熱体保護層19は、例えば、感光性ポリイミド、ワニス状のポリイミド等により形成することができる。また、発熱体保護層19の厚みは、使用する材料等を考慮して適宜設定することができるが、例えば、2〜25μm程度の範囲で設定することができる。
On such a heating element 17, electrodes 18 and 18 for energization are formed. The energization electrodes 18 and 18 can be formed using a conductive material such as Au, Ag, Pd, and Pd—Ag.
The heating element protective layer 19 is disposed so as to expose a part of the electrodes 18 and 18 and cover the heating element 17. The heating element protective layer 19 can be formed of, for example, photosensitive polyimide, varnish-like polyimide, or the like. In addition, the thickness of the heating element protective layer 19 can be appropriately set in consideration of the material to be used, but can be set, for example, in the range of about 2 to 25 μm.

また、連結部材4の材質は、ステンレス、Al、Fe、Cu等とすることができ、機械加工および拡散接合やロウ付け等を用いて所望の構造体形状とすることができる。例えば、連結部材4をなす構造体21を、図6(A),(B)に示されるように、5本の一点鎖線L1〜L5で分割した6個の部材からなるものとすることができる。そして、6個の部材において、予め一方の面に連結部22、内部連通路25a,25b、内部流路26,27等を構成するための溝部や貫通孔を形成する。そして、これらの6個の部材を所定の順に拡散接合して一体化することにより、連結部材4を形成することができる。
また、パッキン28は、従来公知の種々の材質からなるOリング、シリコンラバー等を用いることができる。
また、固定部材6の材質は、連結部材4と同様のものを挙げることができる。
Moreover, the material of the connection member 4 can be stainless steel, Al, Fe, Cu, or the like, and can be formed into a desired structure shape by machining, diffusion bonding, brazing, or the like. For example, as shown in FIGS. 6A and 6B, the structure 21 forming the connecting member 4 can be composed of six members divided by five alternate long and short dash lines L1 to L5. . And in six members, the groove part and through-hole for comprising the connection part 22, internal communication path 25a, 25b, internal flow path 26, 27 grade | etc., Are previously formed in one surface. The connecting member 4 can be formed by diffusing and integrating these six members in a predetermined order.
Further, the packing 28 can be made of an O-ring, silicon rubber or the like made of various conventionally known materials.
The material of the fixing member 6 can be the same as that of the connecting member 4.

尚、上述のマイクロリアクターの実施形態は一例であり、本発明はこれらに限定されるものではない。
例えば、単位流路部材2a,2b,2cの構造は、触媒を担持することが可能な流路を内部に有し、この流路の一方の端部が導入口をなし、他方の端部が排出口をなすものであれば、特に制限はない。したがって、図8(A)に示されるように、単位流路部材(単位マイクロリアクター)2bとして、一方の面に微細溝部43が形成された金属基板42と、微細溝部43を覆うように金属基板42に接合された金属カバー部材44と、周囲に金属酸化膜46を備えた接合体41を有するものでもよい。接合体41の内部には、微細溝部43と金属カバー部材44とで構成された流路45が形成されており、この流路45の内壁面の全面に金属酸化膜46を介して触媒C1が担持されている。また、図8(B)に示されるように、単位流路部材(単位マイクロリアクター)2bとして、金属酸化膜56を介して触媒C1が担持された微細溝部53が一方の面に形成されている金属基板52と、微細溝部53を覆うように金属基板52に接合された金属カバー部材54からなる接合体51を有するものでもよい。接合体51の内部には、微細溝部53と金属カバー部材54とで構成された流路55が形成されており、また、金属基板52の周囲には金属酸化膜(絶縁膜)56が形成されている。
The above-described embodiment of the microreactor is an example, and the present invention is not limited to these.
For example, the structure of the unit flow path members 2a, 2b, 2c has a flow path capable of carrying a catalyst therein, and one end of this flow path serves as an inlet, and the other end is There is no particular limitation as long as it forms a discharge port. Therefore, as shown in FIG. 8A, as a unit flow path member (unit microreactor) 2b, a metal substrate 42 having a fine groove 43 formed on one surface, and a metal substrate so as to cover the fine groove 43 The metal cover member 44 bonded to 42 and the bonded body 41 including the metal oxide film 46 around the metal cover member 44 may be used. Inside the joined body 41, a flow path 45 composed of the fine groove portion 43 and the metal cover member 44 is formed, and the catalyst C1 is formed on the entire inner wall surface of the flow path 45 via the metal oxide film 46. It is supported. Further, as shown in FIG. 8B, as the unit flow path member (unit microreactor) 2b, a fine groove portion 53 in which the catalyst C1 is supported is formed on one surface via the metal oxide film 56. You may have the joined body 51 which consists of the metal substrate 52 and the metal cover member 54 joined to the metal substrate 52 so that the fine groove part 53 may be covered. Inside the joined body 51, a flow path 55 composed of a fine groove 53 and a metal cover member 54 is formed, and a metal oxide film (insulating film) 56 is formed around the metal substrate 52. ing.

次に、上述の接合体10を備えた単位流路部材(単位マイクロリアクター)2bを例に、図9を参照しながら作製方法について説明する。
図9において、金属基板11の一方の面に微細溝部12を形成し、金属基板13の一方の面に微細溝部14を形成する(図9(A))。この微細溝部12,14は、金属基板11,13に所定の開口パターンを有するレジストを形成し、このレジストをマスクとしてウエットエッチングにより形成することができ、マイクロマシーンによる加工を不要とすることができる。
次に、金属基板11,13を、微細溝部12と微細溝部14とが対向するように接合して接合体10を形成する(図9(B))。これにより、微細溝部12と微細溝部14が対向して流路15が形成される。上記の金属基板11,13の接合は、例えば、拡散接合やロウ付け等により行うことができる。
Next, a manufacturing method will be described with reference to FIG. 9, taking the unit channel member (unit microreactor) 2b including the above-described joined body 10 as an example.
In FIG. 9, the fine groove portion 12 is formed on one surface of the metal substrate 11, and the fine groove portion 14 is formed on one surface of the metal substrate 13 (FIG. 9A). The fine groove portions 12 and 14 can be formed by forming a resist having a predetermined opening pattern on the metal substrates 11 and 13 by wet etching using the resist as a mask, and processing by a micromachine can be made unnecessary. .
Next, the metal substrates 11 and 13 are joined so that the fine groove portions 12 and the fine groove portions 14 face each other, thereby forming the joined body 10 (FIG. 9B). Thereby, the fine groove part 12 and the fine groove part 14 oppose, and the flow path 15 is formed. The metal substrates 11 and 13 can be bonded by, for example, diffusion bonding or brazing.

次に、接合体10を陽極酸化して、流路15内壁面を含む全面に金属酸化膜(絶縁膜)16を形成して単位流路部材2bとする(図9(C))。この金属酸化膜(絶縁膜)16の形成は、接合体10を外部電極の陽極に接続した状態で、陽極酸化溶液に浸漬して陰極と対向させ通電することにより行うことができる。尚、金属基板11,13として、陽極酸化が不可能でベーマイト処理が可能な金属材料を用いた場合には、ベーマイト処理により金属酸化膜16を形成する。
次に、単位流路部材2bの流路15の内壁面の全面に金属酸化膜(絶縁膜)16を介して触媒C1を担持させて単位マイクロリアクター2bとする(図9(D))。金属酸化膜(絶縁膜)16上への触媒C1の担持は、例えば、触媒懸濁液を接合体10の流路15内に流して充填し、あるいは、触媒懸濁液内に接合体10を浸漬し、その後、触媒懸濁液を流路15から抜いて乾燥することにより行うことができる。
Next, the joined body 10 is anodized to form a metal oxide film (insulating film) 16 on the entire surface including the inner wall surface of the flow path 15 to form the unit flow path member 2b (FIG. 9C). The metal oxide film (insulating film) 16 can be formed by immersing the joined body 10 in the state of being connected to the anode of the external electrode and immersing it in an anodic oxidation solution so as to face the cathode and energizing it. When a metal material that cannot be anodized and can be subjected to boehmite treatment is used as the metal substrates 11 and 13, the metal oxide film 16 is formed by boehmite treatment.
Next, the catalyst C1 is supported on the entire inner wall surface of the channel 15 of the unit channel member 2b via the metal oxide film (insulating film) 16 to form the unit microreactor 2b (FIG. 9D). For example, the catalyst C1 is supported on the metal oxide film (insulating film) 16 by filling the flow path 15 of the joined body 10 with the catalyst suspension or filling the joined body 10 in the catalyst suspension. It can be carried out by immersing and then removing the catalyst suspension from the channel 15 and drying.

尚、金属基板11,13に微細溝部12,14を形成した後、金属基板11、13に陽極酸化を施して金属酸化膜を形成し、次に、接合面となる面に存在する金属酸化膜を研磨除去した後、金属基板11,13を接合し、次いで、触媒C1を金属酸化膜に担持させてもよい。   In addition, after forming the fine groove parts 12 and 14 in the metal substrates 11 and 13, the metal substrates 11 and 13 are anodized to form a metal oxide film, and then the metal oxide film present on the surface to be the bonding surface Then, the metal substrates 11 and 13 may be joined, and then the catalyst C1 may be supported on the metal oxide film.

次いで、金属基板11側の金属酸化膜(絶縁膜)16上に発熱体を設け、さらに、通電用の電極を形成し、発熱体保護層を発熱体上に形成して、単位マイクロリアクター2bを得ることができる。
発熱体の形成方法としては、上述の材料を含有するペーストを用いてスクリーン印刷により形成する方法、上述の材料を含有するペーストを用いて塗布膜を形成し、その後、エッチング等によりパターニングする方法、上述の材料を用いて真空成膜法により薄膜を形成し、その後、エッチング等によりパターニングする方法等を挙げることができる。また、通電用の電極は、例えば、上述の導電材料を含有するペーストを用いてスクリーン印刷により形成することができる。また、発熱体保護層は、例えば、上述の材料を含有するペーストを用いてスクリーン印刷により所定のパターンで形成することができる。
Next, a heating element is provided on the metal oxide film (insulating film) 16 on the metal substrate 11 side, an electrode for energization is formed, a heating element protection layer is formed on the heating element, and the unit microreactor 2b is formed. Can be obtained.
As a method of forming the heating element, a method of forming by screen printing using a paste containing the above-mentioned material, a method of forming a coating film using a paste containing the above-mentioned material, and then patterning by etching or the like, Examples thereof include a method of forming a thin film by a vacuum film formation method using the above materials and then patterning by etching or the like. Moreover, the electrode for electricity supply can be formed by screen printing using the paste containing the above-mentioned electrically-conductive material, for example. Further, the heating element protective layer can be formed in a predetermined pattern by screen printing using a paste containing the above-described material, for example.

上記のように、流路15を備えた接合体10が形成された後に触媒C1を担持させて単位マイクロリアクター2bとすることにより、接合工程における熱による触媒の失活のおそれがなく、触媒の選択幅が広くなる。また、金属酸化膜(絶縁膜)16を形成工程まで完了させた複数の単位流路部材を準備しておくことにより、所望の触媒を担持させるだけで要求される機能を備えた単位マイクロリアクターとすることができる。
尚、上述の接合体41を備えた単位流路部材(単位マイクロリアクター)2bは、上記の作製例において、金属基板13に代えて、金属カバー部材44を金属基板11に接合することにより、同様に作製することができる。
As described above, after the joined body 10 including the flow path 15 is formed, the catalyst C1 is supported to form the unit microreactor 2b, so that there is no risk of catalyst deactivation due to heat in the joining process. The selection range becomes wider. Further, by preparing a plurality of unit flow path members in which the metal oxide film (insulating film) 16 is completed up to the formation process, a unit microreactor having a function required only by supporting a desired catalyst, can do.
The unit flow path member (unit microreactor) 2b including the above-described joined body 41 is the same as that in the above production example by joining the metal cover member 44 to the metal substrate 11 instead of the metal substrate 13. Can be produced.

次に、上述の接合体51を備えた単位流路部材(単位マイクロリアクター)2bを例に、図10を参照しながら作製方法について説明する。
図10において、まず、金属基板52の一方の面に微細溝部53を形成する(図10(A))。この微細溝部53の形成は、上記の微細溝部12,14の形成と同様に行うことができる。
次に、金属基板52を陽極酸化して微細溝部53内部を含む全面に金属酸化膜56を形成する(図10(B))。尚、金属基板52として、陽極酸化が不可能でベーマイト処理が可能な金属材料を用いた場合には、ベーマイト処理により金属酸化膜56を形成する。
次いで、微細溝部53内に触媒C1を担持させる(図10(C))。この触媒担持は、微細溝部53が形成されている金属基板52の面を所望の触媒懸濁液に浸漬し、乾燥することにより行うことができる。
Next, a manufacturing method will be described with reference to FIG. 10 by taking the unit channel member (unit microreactor) 2b including the above-described joined body 51 as an example.
In FIG. 10, first, a fine groove 53 is formed on one surface of a metal substrate 52 (FIG. 10A). The formation of the fine groove portion 53 can be performed in the same manner as the formation of the fine groove portions 12 and 14 described above.
Next, the metal substrate 52 is anodized to form a metal oxide film 56 on the entire surface including the inside of the fine groove 53 (FIG. 10B). When a metal material that cannot be anodized and can be treated with boehmite is used as the metal substrate 52, a metal oxide film 56 is formed by boehmite treatment.
Next, the catalyst C1 is supported in the fine groove portion 53 (FIG. 10C). This catalyst loading can be performed by immersing the surface of the metal substrate 52 on which the fine groove 53 is formed in a desired catalyst suspension and drying it.

次に、金属基板52の微細溝部53形成面側を研磨して、金属カバー部材54との接合面となる面を露出させる(図10(D))。その後、金属基板52と金属カバー部材54とを接合して接合体51を形成する(図10(E))。この接合により、接合体51内には流路55が形成される。
次いで、金属基板52の金属酸化膜(絶縁膜)56上に発熱体を設け、さらに、通電用の電極を形成し、発熱体保護層を発熱体上に形成して、単位流路部材(単位マイクロリアクター)2bを得ることができる。
Next, the surface of the metal substrate 52 on which the fine groove 53 is formed is polished to expose the surface to be a joint surface with the metal cover member 54 (FIG. 10D). Thereafter, the metal substrate 52 and the metal cover member 54 are bonded to form a bonded body 51 (FIG. 10E). By this joining, a flow path 55 is formed in the joined body 51.
Next, a heating element is provided on the metal oxide film (insulating film) 56 of the metal substrate 52, an electrode for energization is further formed, and a heating element protection layer is formed on the heating element. Microreactor) 2b can be obtained.

次に、より具体的な実施例を示して本発明を更に詳細に説明する。
実施例1
[接合体の作製]
金属基板として厚み1000μmのAl基板(250mm×250mm)を準備し、このAl基板の両面に感光性レジスト材料(東京応化工業(株)製OFPR)をディップ法により塗布(膜厚7μm(乾燥時))した。次に、Al基板の微細溝部を形成する側のレジスト塗膜上に、幅1500μmのストライプ状の遮光部がピッチ2000μmで左右から交互に延びている(長さ30mm)形状のフォトマスクを配した。次いで、このフォトマスクを介してレジスト塗布膜を露光し、炭酸水素ナトリウム溶液を使用して現像した。これにより、Al基板の一方の面には、幅500μmのストライプ状の開口部がピッチ2000μmで配列され、隣接するストライプ状の開口部が、その端部において交互に連続した蛇行したパターンで、かつ、両端部が同一方向を向き、他のストライプ状の開口部よりも5mm長いようなレジストパターンが形成された。
Next, the present invention will be described in more detail by showing more specific examples.
Example 1
[Preparation of joined body]
A 1000 μm thick Al substrate (250 mm × 250 mm) was prepared as a metal substrate, and a photosensitive resist material (OFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to both surfaces of this Al substrate by a dipping method (film thickness 7 μm (when dry)) )did. Next, a photomask having a shape in which stripe-shaped light-shielding portions having a width of 1500 μm alternately extend from the left and right at a pitch of 2000 μm (length 30 mm) was disposed on the resist coating film on the side where the fine groove portions of the Al substrate are to be formed. . Next, the resist coating film was exposed through this photomask and developed using a sodium hydrogen carbonate solution. Thereby, on one surface of the Al substrate, stripe-shaped openings having a width of 500 μm are arranged at a pitch of 2000 μm, and adjacent stripe-shaped openings have a meandering pattern alternately and continuously at the end thereof, and A resist pattern was formed in which both end portions faced in the same direction and were 5 mm longer than other striped openings.

次に、上記のレジストパターンをマスクとして、下記の条件でAl基板をエッチング(3分間)した。
(エッチング条件)
・温度 : 20℃
・エッチング液(HCl)濃度: 200g/L
(35%HClを純水中に200g溶解して1Lとする)
上記のエッチング処理が終了した後、水酸化ナトリウム溶液を用いてレジストパターンを除去し、水洗した。これにより、Al基板の一方の面に、幅1000μm、深さ650μm、長さ30mmのストライプ形状の微細溝が2000μmのピッチで形成され、隣接する微細溝の端部において交互に連続するような形状(図4に示されるような180度折り返しながら蛇行して連続する形状)の微細溝部(流路長300mm)が形成された。
Next, using the resist pattern as a mask, the Al substrate was etched (for 3 minutes) under the following conditions.
(Etching conditions)
・ Temperature: 20 ℃
Etching solution (HCl) concentration: 200 g / L
(Dissolve 200 g of 35% HCl in pure water to make 1 L)
After the etching treatment was completed, the resist pattern was removed using a sodium hydroxide solution and washed with water. As a result, stripe-shaped microgrooves having a width of 1000 μm, a depth of 650 μm, and a length of 30 mm are formed on one surface of the Al substrate at a pitch of 2000 μm, and the shape is such that the end portions of adjacent microgrooves are alternately continuous. A fine groove (flow path length of 300 mm) having a shape meandering continuously while being folded by 180 degrees as shown in FIG. 4 was formed.

次いで、金属カバー部材として厚み100μmのAl板を準備し、このAl板を、上記のように微細溝部を形成したAl基板に、微細溝部を覆うように下記の条件で拡散接合した。
(拡散接合条件)
・雰囲気 :真空中
・接合温度 :300℃
・接合時間 :8時間
これにより、図3に示されるような外形形状をもつ接合体を形成した。この接合体の寸法は、25mm×35mm、厚み1.4mmであり、同一方向に2つの突出部(長さ5mm、幅5mm)を15mmの距離を隔てて有し、この突出部の先端には流路の導入口と排出口とが位置するものであった。
Next, an Al plate having a thickness of 100 μm was prepared as a metal cover member, and this Al plate was diffusion bonded to the Al substrate on which the fine groove portion was formed as described above under the following conditions so as to cover the fine groove portion.
(Diffusion bonding conditions)
-Atmosphere: in vacuum-Joining temperature: 300 ° C
Joining time: 8 hours Thereby, a joined body having an outer shape as shown in FIG. 3 was formed. The dimensions of this joined body are 25 mm × 35 mm and a thickness of 1.4 mm, and two protruding portions (length 5 mm, width 5 mm) are separated by a distance of 15 mm in the same direction. The inlet and outlet of the channel were located.

このような接合体を3個作製し、各接合体を外部電極の陽極に接続し、陽極酸化溶液(4%シュウ酸溶液)に浸漬して陰極と対向させ、下記の条件で通電することにより、流路内部を含む接合体表面に酸化アルミニウム薄膜(絶縁膜)を形成した単位流路部材とした。尚、形成した酸化アルミニウム薄膜の厚みをエリプソメーターで測定した結果、約30μmであった。
(陽極酸化の条件)
・浴温 : 25℃
・電圧 : 25V(DC)
・電流密度 : 100A/m2
Three such joined bodies are prepared, and each joined body is connected to the anode of the external electrode, immersed in an anodic oxidation solution (4% oxalic acid solution) to face the cathode, and energized under the following conditions. A unit channel member in which an aluminum oxide thin film (insulating film) was formed on the surface of the joined body including the inside of the channel was used. In addition, as a result of measuring the thickness of the formed aluminum oxide thin film with an ellipsometer, it was about 30 μm.
(Conditions for anodization)
・ Bath temperature: 25 ℃
・ Voltage: 25V (DC)
・ Current density: 100 A / m 2

[1段目用の単位流路部材]
1個の単位流路部材の酸化アルミニウム薄膜上に下記組成の発熱体用ペーストをスクリーン印刷により印刷し、200℃で硬化させて発熱体を形成した。形成した発熱体は、幅100μmの細線を、微細溝部が形成されている領域に相当する領域(35mm×25mm)全面を覆うようにAl基板上に線間隔100μmで引き回したような形状とした。
(発熱体用ペーストの組成)
・カーボン粉末 … 20重量部
・微粉末シリカ … 25重量部
・キシレンフェノール樹脂 … 36重量部
・ブチルカルビトール … 19重量部
[Unit flow path member for the first stage]
A heating element paste having the following composition was printed on an aluminum oxide thin film of one unit channel member by screen printing and cured at 200 ° C. to form a heating element. The formed heating element was shaped such that a fine line having a width of 100 μm was drawn on an Al substrate at a line interval of 100 μm so as to cover the entire area (35 mm × 25 mm) corresponding to the area where the fine groove was formed.
(Composition of paste for heating element)
Carbon powder: 20 parts by weight Fine powder silica: 25 parts by weight Xylene phenol resin: 36 parts by weight Butyl carbitol: 19 parts by weight

また、下記組成の電極用ペーストを用いて、スクリーン印刷により発熱体の所定の2ヶ所に、接合体の側面に達するように電極を形成した。
(電極用ペーストの組成)
・銀めっき銅粉末 … 90重量部
・フェノール樹脂 … 6.5重量部
・ブチルカルビトール … 3.5重量部
Further, an electrode paste having the following composition was formed by screen printing so as to reach the side surface of the joined body at two predetermined locations of the heating element.
(Composition of electrode paste)
・ Silver plated copper powder: 90 parts by weight ・ Phenolic resin: 6.5 parts by weight ・ Butyl carbitol: 3.5 parts by weight

次に、発熱体上に形成された2個の電極の端部を露出するように、下記組成の保護層用ペーストを用いて、スクリーン印刷により発熱体保護層(厚み20μm)を発熱体上に形成した。
(保護層用ペーストの組成)
・樹脂分濃度 … 30重量部
・シリカフィラー … 10重量部
・ラクトン系溶剤(ペンタ1−4−ラクトン) … 60重量部
これにより、1段目の単位流路部材とした。
Next, a heating element protective layer (thickness 20 μm) is formed on the heating element by screen printing using a protective layer paste having the following composition so as to expose the ends of the two electrodes formed on the heating element. Formed.
(Composition of protective layer paste)
Resin content concentration: 30 parts by weight Silica filler: 10 parts by weight Lactone solvent (penta-4-lactone): 60 parts by weight Thus, a first-stage unit channel member was obtained.

[2段目用の単位流路部材(単位マイクロリアクター)]
別の単位流路部材の流路内に下記組成の触媒懸濁液を充填して放置(15分間)し、その後、触媒懸濁液を抜き、120℃、3時間の乾燥還元処理を施して、流路内全面に触媒C1を担持させた。
(触媒懸濁液の組成)
・Al … 41.2重量%
・Cu … 2.6重量%
・Zn … 2.8重量%
次いで、Al基板の酸化アルミニウム薄膜上に、上記の1段目の単位流路部材と同様に、発熱体、電極、発熱体保護層を形成して、2段目の単位流路部材(単位マイクロリアクター)を作製した。
[Second-stage unit channel member (unit microreactor)]
Fill the flow path of another unit flow path member with a catalyst suspension having the following composition and leave it for 15 minutes. Then, remove the catalyst suspension and perform a dry reduction treatment at 120 ° C. for 3 hours. The catalyst C1 was supported on the entire surface in the flow path.
(Composition of catalyst suspension)
・ Al: 41.2% by weight
Cu: 2.6% by weight
Zn: 2.8% by weight
Next, a heating element, an electrode, and a heating element protective layer are formed on the aluminum oxide thin film of the Al substrate in the same manner as the first-stage unit flow path member, and the second-stage unit flow path member (unit micro-channel member) is formed. Reactor) was prepared.

[3段目用の単位流路部材(単位マイクロリアクター)]
別の単位流路部材の流路内に下記組成の触媒懸濁液を充填して放置(15分間)し、その後、触媒懸濁液を抜き、120℃、3時間の乾燥還元処理を施して、流路内全面に触媒C2を担持させた。
(触媒懸濁液の組成)
・Pt … 0.4重量%
・Fe … 0.2重量%
・モルデナイト(Na8(Al8Si40O96)・24H2O) … 9.4重量%
次いで、Al基板の酸化アルミニウム薄膜上に、上記の1段目の単位流路部材と同様に、発熱体、電極、発熱体保護層を形成して、3段目の単位流路部材(単位マイクロリアクター)を作製した。
[Unit flow member for the third stage (unit microreactor)]
Fill the flow path of another unit flow path member with a catalyst suspension having the following composition and leave it for 15 minutes. Then, remove the catalyst suspension and perform a dry reduction treatment at 120 ° C. for 3 hours. The catalyst C2 was supported on the entire surface of the flow path.
(Composition of catalyst suspension)
・ Pt: 0.4% by weight
・ Fe: 0.2% by weight
・ Mordenite (Na 8 (Al 8 Si 40 O 96 ) / 24H 2 O): 9.4 wt%
Next, a heating element, an electrode, and a heating element protective layer are formed on the aluminum oxide thin film of the Al substrate in the same manner as the first-stage unit flow path member, and the third-stage unit flow path member (unit micro-channel member) is formed. Reactor) was prepared.

[連結部材の作製]
平坦面(30mm×20mm)を有するステンレス板材を6個準備し、各ステンレス基板の一方の平坦面に連結部、内部連通路、内部流路等を構成するための所定の溝部や貫通孔を機械加工により形成した。これら6個のステンレス基板を所定の積層順序で拡散接合して一体化することにより、30mm×20mm×12mmの連結部材を作製した。この連結部材は、30mm×12mmの面に6個の連結部(幅5.1mm、高さ1.41mm、深さ5mm)を有し、その反対面に原料導入口とガス排出口とを有し、内部に内部連通路と内部流路を備えた、図5、図6に示されるような構造(構造体の外形は長方体であり図5、図6とは異なる)であった。この連結部材では、1列に配列された各3個の連結部のピッチ(単位流路部材の多段ピッチに相当)は2mmであり、各配列の距離(単位流路部材の導入口と排出口の距離に相当)は20mmであった。尚、各連結部にはシリコンラバー製のパッキンを装着した。
[Production of connecting member]
Prepare 6 stainless steel plate materials with flat surfaces (30mm x 20mm), and machine predetermined grooves and through holes on one flat surface of each stainless steel substrate to form connecting parts, internal communication paths, internal flow paths, etc. Formed by processing. These six stainless steel substrates were joined by diffusion bonding in a predetermined stacking order to produce a connecting member of 30 mm × 20 mm × 12 mm. This connecting member has six connecting portions (width 5.1 mm, height 1.41 mm, depth 5 mm) on a 30 mm × 12 mm surface, and has a raw material inlet and a gas outlet on the opposite surface. And it was the structure as shown in FIG. 5 and FIG. 6 with the internal communication path and the internal flow passage inside (the outer shape of the structure is a rectangular parallelepiped and different from FIG. 5 and FIG. 6). In this connecting member, the pitch of each of the three connecting portions arranged in a row (corresponding to the multi-step pitch of the unit channel member) is 2 mm, and the distance between each array (the inlet and outlet of the unit channel member) Was equivalent to a distance of 20 mm. Each connecting portion was provided with a silicone rubber packing.

[固定部材の作製]
ステンレス材を用いて、間口が25mm×1.41mmである収納空間を、2mmピッチで3段備えた固定部材を作製した。
[マイクロリアクターの作製]
上述のように作製した連結部材に、1段目用から3段目用の順となるように各単位流路部材(2段目、3段目は単位マイクロリアクター)の突出部を挿入して連結し、また、固定部材により各単位流路部材の連結端部と反対側の端部を固定した。
これにより、本発明のマイクロリアクターを得ることができた。
[Fabrication of fixing member]
A stainless steel material was used to produce a fixing member having three storage spaces with a frontage of 25 mm × 1.41 mm at a pitch of 2 mm.
[Production of microreactor]
Insert the protruding part of each unit flow channel member (the second and third stages are unit microreactors) into the connecting member produced as described above in order from the first stage to the third stage. In addition, the end of the unit channel member opposite to the connection end was fixed by a fixing member.
Thereby, the microreactor of the present invention could be obtained.

実施例2
[接合体の作製]
まず、実施例1の[接合体の作製]と同様にして、幅1000μm、深さ650μm、長さ30mmのストライプ形状の微細溝が2000μmのピッチで形成されたAl基板を作製した。
次に、このAl基板を外部電極の陽極に接続し、実施例1と同じ条件で陽極酸化を施して、微細溝部を含むAl基板表面に酸化アルミニウム薄膜(絶縁膜)を形成した。次いで、微細溝部が形成されている面をアルミナ粉で研磨して酸化アルミニウム薄膜を除去し、Al基板面(接合面)を露出させた。
Example 2
[Preparation of joined body]
First, in the same manner as in [Production of bonded body] in Example 1, an Al substrate in which stripe-shaped fine grooves having a width of 1000 μm, a depth of 650 μm, and a length of 30 mm were formed at a pitch of 2000 μm was produced.
Next, this Al substrate was connected to the anode of the external electrode and anodized under the same conditions as in Example 1 to form an aluminum oxide thin film (insulating film) on the Al substrate surface including the fine groove. Next, the surface on which the fine groove portion was formed was polished with alumina powder to remove the aluminum oxide thin film, and the Al substrate surface (joint surface) was exposed.

次いで、金属カバー部材として厚み100μmのAl板を準備し、このAl板を、上記のように微細溝部を形成したAl基板に、微細溝部を覆うように、実施例1と同じ条件でロウ付けにより接合した。これにより、図3に示されるような外形形状をもつ接合体を3個作製し、単位流路部材とした。この接合体の寸法は、25mm×35mm、厚み1.4mmであり、同一方向に2つの突出部(長さ5mm、幅5mm)を15mmの距離を隔てて有し、この突出部の先端には流路の導入口と排出口とが位置するものであった。
上記の3個の単位流路部材を用いて、実施例1と同様に、1段面用の単位流路部材、2段面用の単位流路部材、3段面用の単位流路部材を作製し、本発明のマイクロリアクターを作製した。
Next, an Al plate having a thickness of 100 μm was prepared as a metal cover member, and this Al plate was brazed under the same conditions as in Example 1 so as to cover the fine groove portion on the Al substrate on which the fine groove portion was formed as described above. Joined. As a result, three joined bodies having an outer shape as shown in FIG. 3 were produced and used as unit channel members. The dimensions of this joined body are 25 mm × 35 mm and a thickness of 1.4 mm, and two protruding portions (length 5 mm, width 5 mm) are separated by a distance of 15 mm in the same direction. The inlet and outlet of the channel were located.
Using the above three unit flow path members, similarly to Example 1, a unit flow path member for the first step surface, a unit flow path member for the second step surface, and a unit flow path member for the third step surface The microreactor of the present invention was manufactured.

本発明は、メタノールの改質、一酸化炭素の酸化等の反応からなる水素製造の用途に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for hydrogen production including reactions such as methanol reforming and carbon monoxide oxidation.

本発明のマイクロリアクターの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the microreactor of this invention. 図1に示されるマイクロリアクターのI−I線における拡大縦断面図である。It is an expanded longitudinal cross-sectional view in the II line of the microreactor shown by FIG. 図1に示されるマイクロリアクターの構成部材を離間させた状態を示す斜視図である。It is a perspective view which shows the state which spaced apart the structural member of the microreactor shown by FIG. 本発明のマイクロリアクターを構成する単位流路部材内の流路の例を説明するための斜視図である。It is a perspective view for demonstrating the example of the flow path in the unit flow path member which comprises the microreactor of this invention. 連結部材の連結部が形成された面を示す図である。It is a figure which shows the surface in which the connection part of the connection member was formed. 図5に示される連結部材の断面図であって、(A)はII−II線における断面図、(B)はIII−III線における断面図である。It is sectional drawing of the connection member shown by FIG. 5, Comprising: (A) is sectional drawing in the II-II line, (B) is sectional drawing in the III-III line. 本発明のマイクロリアクターの他の例を説明するための図2相当の縦断面図である。It is a longitudinal cross-sectional view equivalent to FIG. 2 for demonstrating the other example of the microreactor of this invention. 本発明のマイクロリアクターを構成する単位流路部材(単位マイクロリアクター)の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the unit flow-path member (unit microreactor) which comprises the microreactor of this invention. 単位マイクロリアクターの作製方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of a unit microreactor. 単位マイクロリアクターの作製方法の他の例を示す工程図である。It is process drawing which shows the other example of the manufacturing method of a unit microreactor.

符号の説明Explanation of symbols

1…マイクロリアクター
2a,2b,2c,2a′,2c′…単位流路部材
2b,2c,2c′…単位マイクロリアクター
3a…導入口
3b…排出口
4…連結部材
6…固定部材
7…空隙
8…断熱材
10,41,51…接合体
10a,10b…突出部
11,13,42,52…金属基板
12,14,43,53…微細溝部
15,45,55…流路
16,46,56…金属酸化膜(絶縁膜)
17…発熱体
18…電極
19…発熱体保護層
21…構造体
21a,21b,21c…ブロック体
22(22a、22b、22c、22d、22e、22f)…連結部
22a…導入連結部
22b、22c、22d、22e…段移行連結部
22f…排出連結部
23…原料導入口
24…ガス排出口
25a,25b…内部連通路
26,27…内部流路
31…枠体
41,51…接合体
42,52…金属基板
43,53…微細溝部
44,54…金属カバー部材
45,55…流路
46,56…金属酸化膜(絶縁膜)
C1、C2…触媒
DESCRIPTION OF SYMBOLS 1 ... Microreactor 2a, 2b, 2c, 2a ', 2c' ... Unit flow path member 2b, 2c, 2c '... Unit microreactor 3a ... Introduction port 3b ... Discharge port 4 ... Connecting member 6 ... Fixing member 7 ... Air gap 8 ... Heat insulation 10,41,51 ... Joint body 10a, 10b ... Protrusion 11,13,42,52 ... Metal substrate 12,14,43,53 ... Fine groove 15,45,55 ... Flow path 16,46,56 ... Metal oxide film (insulating film)
DESCRIPTION OF SYMBOLS 17 ... Heating body 18 ... Electrode 19 ... Heating body protective layer 21 ... Structure 21a, 21b, 21c ... Block body 22 (22a, 22b, 22c, 22d, 22e, 22f) ... Connection part 22a ... Introduction connection part 22b, 22c 22d, 22e ... stage transition connecting portion 22f ... discharge connecting portion 23 ... raw material introduction port 24 ... gas discharge port 25a, 25b ... internal communication passage 26,27 ... internal flow channel 31 ... frame body 41, 51 ... joint body 42, 52 ... Metal substrate 43, 53 ... Fine groove 44, 54 ... Metal cover member 45, 55 ... Flow path 46, 56 ... Metal oxide film (insulating film)
C1, C2 ... Catalyst

Claims (11)

原料を改質して水素ガスを得るためのマイクロリアクターにおいて、
流路を内部に有し、該流路の一方の端部が導入口をなし、他方の端部が排出口をなす複数個の単位流路部材と、該単位流路部材を多段状態で保持する連結部材とを少なくとも備え、
前記連結部材は、単位流路部材の導入口が位置する部位、排出口が位置する部位にて単位流路部材を密着させて保持するための複数の連結部と、原料導入口と、ガス排出口とを有し、
少なくとも1個の前記単位流路部材は流路内に触媒を担持した単位マイクロリアクターであり、
前記連結部材の原料導入口から原料を導入し、複数個の前記単位流路部材のうち、前記単位マイクロリアクターにて所定の反応を行い、前記連結部材のガス排出口から所望の生成ガスを得ることを特徴とするマイクロリアクター。
In a microreactor for reforming raw materials to obtain hydrogen gas,
A plurality of unit flow path members having a flow path inside, one end of the flow path serving as an introduction port and the other end serving as a discharge port, and the unit flow path members are held in a multistage state And at least a connecting member
The connecting member includes a plurality of connecting portions for closely holding the unit channel member at a site where the inlet of the unit channel member is located and a site where the outlet is located, a raw material inlet, a gas exhaust And an exit
At least one of the unit channel members is a unit microreactor supporting a catalyst in the channel,
A raw material is introduced from the raw material inlet of the connecting member, a predetermined reaction is performed in the unit microreactor among the plurality of unit flow path members, and a desired product gas is obtained from the gas outlet of the connecting member. A microreactor characterized by that.
n(nは2以上の整数)個の単位流路部材を有し、
前記連結部は、前記原料導入口に接続された導入連結部と、前記ガス排出口に接続された排出連結部と、相互に内部連通路で接続された(n−1)組みの段移行連結部とからなり、
1段目の単位流路部材は、導入口を前記導入連結部に、排出口を前記段移行連結部に、それぞれ連結保持され、
2段目から(n−1)段目の単位流路部材は、導入口を前段の段移行連結部と内部連通路で接続された段移行連結部に、排出口を別の組みの段移行連結部に、それぞれ連結保持され、
n段目の単位流路部材は、導入口を前段の段移行連結部と内部連通路で接続された段移行連結部に、排出口を前記排出連結部に、それぞれ連結保持されていることを特徴とする請求項1に記載のマイクロリアクター。
n (n is an integer of 2 or more) unit channel members,
The connecting part includes (n-1) sets of stage transition connections that are connected to the raw material inlet, the discharge connecting part that is connected to the gas outlet, and the internal communication path. And consists of
The first stage unit flow path member is connected and held with the introduction port at the introduction connection part and the discharge port at the stage transition connection part,
From the second stage to the (n-1) th stage unit flow path member, the introduction port is connected to the stage transition connection part connected to the previous stage transition connection part by an internal communication path, and the discharge port is moved to another stage. Each of the connecting parts is connected and held,
The n-th unit flow path member is connected and held with the introduction port connected to the previous stage transition connection portion and the internal passage, and the discharge port connected to the discharge connection portion. The microreactor according to claim 1, wherein
前記単位流路部材は取り外し可能であることを特徴とする請求項1または請求項2に記載のマイクロリアクター。 The microreactor according to claim 1 or 2, wherein the unit channel member is removable. 前記単位マイクロリアクターは、単位流路部材の流路内壁面に金属酸化膜を介して触媒を担持していることを特徴とする請求項1乃至請求項3のいずれかに記載のマイクロリアクター。 The microreactor according to any one of claims 1 to 3, wherein the unit microreactor has a catalyst supported on the inner wall surface of the unit channel member via a metal oxide film. 各単位流路部材は同一構造であって、流路内に担持する触媒種が異なる複数の単位マイクロリアクターを有することを特徴とする請求項1乃至請求項4のいずれかに記載のマイクロリアクター。 The microreactor according to any one of claims 1 to 4, wherein each unit flow path member has a plurality of unit microreactors having the same structure and different catalyst species carried in the flow path. 発熱体を備えた単位マイクロリアクターを有することを特徴とする請求項1乃至請求項5のいずれかに記載のマイクロリアクター。 6. The microreactor according to claim 1, further comprising a unit microreactor provided with a heating element. 所望の隣接する段の単位流路部材間に断熱用の空隙および/または断熱材を介在させることを特徴とする請求項1乃至請求項6のいずれかに記載のマイクロリアクター。 The microreactor according to any one of claims 1 to 6, wherein a gap and / or a heat insulating material for heat insulation are interposed between the unit flow path members of desired adjacent stages. 連結部材により多段状態で保持された複数の単位流路部材の他の端部を固定部材で固定したことを特徴とする請求項1乃至請求項7のいずれかに記載のマイクロリアクター。 The microreactor according to any one of claims 1 to 7, wherein the other ends of the plurality of unit flow path members held in a multistage state by the connecting member are fixed by a fixing member. 単位流路部材は、流路を構成するための微細溝部が形成された1組の金属基板を前記微細溝部どうしが対向するように接合した接合体、あるいは、流路を構成するための微細溝部が形成された金属基板面に金属カバー部材を接合した接合体を有することを特徴とする請求項1乃至請求項8のいずれかに記載のマイクロリアクター。 The unit flow path member is a joined body in which a set of metal substrates on which fine grooves for forming a flow path are formed are joined so that the fine groove portions face each other, or a fine groove for forming a flow path The microreactor according to any one of claims 1 to 8, further comprising a joined body in which a metal cover member is joined to a metal substrate surface on which is formed. 単位マイクロリアクターは、前記接合体を形成した後、流路内に触媒を担持したものであることを特徴とする請求項9に記載のマイクロリアクター。 The microreactor according to claim 9, wherein the unit microreactor is one in which a catalyst is supported in a flow path after forming the joined body. 単位マイクロリアクターは、接合前の微細溝部内に触媒を担持したものであることを特徴とする請求項9に記載のマイクロリアクター。 The microreactor according to claim 9, wherein the unit microreactor has a catalyst supported in a fine groove before joining.
JP2004209884A 2003-10-07 2004-07-16 Microreactor for hydrogen production Expired - Fee Related JP4504751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209884A JP4504751B2 (en) 2003-10-07 2004-07-16 Microreactor for hydrogen production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003347963 2003-10-07
JP2004209884A JP4504751B2 (en) 2003-10-07 2004-07-16 Microreactor for hydrogen production

Publications (2)

Publication Number Publication Date
JP2005132712A true JP2005132712A (en) 2005-05-26
JP4504751B2 JP4504751B2 (en) 2010-07-14

Family

ID=34655948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209884A Expired - Fee Related JP4504751B2 (en) 2003-10-07 2004-07-16 Microreactor for hydrogen production

Country Status (1)

Country Link
JP (1) JP4504751B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084356A (en) * 2005-09-20 2007-04-05 Casio Comput Co Ltd Reactor and power generating system
JP2007191333A (en) * 2006-01-18 2007-08-02 Dainippon Printing Co Ltd Microreactor for producing hydrogen
JP2008063190A (en) * 2006-09-07 2008-03-21 Casio Comput Co Ltd Reactor and electronic apparatus
JP2008239451A (en) * 2007-03-29 2008-10-09 Hitachi Ltd Hydrogen-feeding unit and its manufacture method, and dispersed power source and automobile using it
JP2008308382A (en) * 2007-06-18 2008-12-25 Casio Comput Co Ltd Reactor, generator and electronic apparatus
JP2009527350A (en) * 2006-02-23 2009-07-30 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for producing a microreactor and its use as a reformer
JP2009531170A (en) * 2006-03-31 2009-09-03 ロンザ ア−ゲ− Microreactor system
JP2009233564A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Method of manufacturing microreactor
US7662349B2 (en) 2005-09-08 2010-02-16 Casio Computer Co., Ltd. Reactor
JP2010215502A (en) * 2010-05-14 2010-09-30 Casio Computer Co Ltd Reactor
US7981373B2 (en) 2006-09-27 2011-07-19 Casio Computer Co., Ltd. Reaction device and electronic device
US8038959B2 (en) 2005-09-08 2011-10-18 Casio Computer Co., Ltd. Reacting device
US9302243B2 (en) 2009-05-12 2016-04-05 Lonza Ag Continuous reaction micro-reactor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111838A (en) * 1992-09-30 1994-04-22 Toshiba Corp Reformer, reforming system, and fuel cell system
JPH10503708A (en) * 1994-07-25 1998-04-07 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Apparatus for causing a reaction by chemically mixing and method for producing the same
JP2000337781A (en) * 1999-05-26 2000-12-08 Korea Inst Of Mach & Materials Module type condensation heat exchanger for recovering waste heat of low-temperature exhaust gas
JP2000344503A (en) * 1999-04-01 2000-12-12 Mitsubishi Electric Corp Fuel reforming device
JP2001146401A (en) * 1999-11-16 2001-05-29 Mitsubishi Electric Corp Lamination type reformer
JP2001295707A (en) * 1999-06-03 2001-10-26 Toyota Motor Corp Fuel reforming device carried on vehicle
JP2002174610A (en) * 2000-12-08 2002-06-21 Nec Corp Biosensor and liquid sample measurement method using biosensor
JP2002301381A (en) * 2001-04-05 2002-10-15 Ebara Corp Supported catalyst and reforming apparatus
JP2003168685A (en) * 2001-11-30 2003-06-13 Casio Comput Co Ltd Wiring electrode structure and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111838A (en) * 1992-09-30 1994-04-22 Toshiba Corp Reformer, reforming system, and fuel cell system
JPH10503708A (en) * 1994-07-25 1998-04-07 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Apparatus for causing a reaction by chemically mixing and method for producing the same
JP2000344503A (en) * 1999-04-01 2000-12-12 Mitsubishi Electric Corp Fuel reforming device
JP2000337781A (en) * 1999-05-26 2000-12-08 Korea Inst Of Mach & Materials Module type condensation heat exchanger for recovering waste heat of low-temperature exhaust gas
JP2001295707A (en) * 1999-06-03 2001-10-26 Toyota Motor Corp Fuel reforming device carried on vehicle
JP2001146401A (en) * 1999-11-16 2001-05-29 Mitsubishi Electric Corp Lamination type reformer
JP2002174610A (en) * 2000-12-08 2002-06-21 Nec Corp Biosensor and liquid sample measurement method using biosensor
JP2002301381A (en) * 2001-04-05 2002-10-15 Ebara Corp Supported catalyst and reforming apparatus
JP2003168685A (en) * 2001-11-30 2003-06-13 Casio Comput Co Ltd Wiring electrode structure and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038959B2 (en) 2005-09-08 2011-10-18 Casio Computer Co., Ltd. Reacting device
US7662349B2 (en) 2005-09-08 2010-02-16 Casio Computer Co., Ltd. Reactor
JP2007084356A (en) * 2005-09-20 2007-04-05 Casio Comput Co Ltd Reactor and power generating system
JP2007191333A (en) * 2006-01-18 2007-08-02 Dainippon Printing Co Ltd Microreactor for producing hydrogen
JP2009527350A (en) * 2006-02-23 2009-07-30 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for producing a microreactor and its use as a reformer
US8287824B2 (en) 2006-03-31 2012-10-16 Lonza Ag Micro-reactor system assembly
JP2009531170A (en) * 2006-03-31 2009-09-03 ロンザ ア−ゲ− Microreactor system
US9962678B2 (en) 2006-03-31 2018-05-08 Lonza Ag Micro-reactor system assembly
US9375698B2 (en) 2006-03-31 2016-06-28 Lonza Ag Micro-reactor system assembly
JP2015211964A (en) * 2006-03-31 2015-11-26 ロンザ アーゲー Micro-reactor system
US8512653B2 (en) 2006-03-31 2013-08-20 Lonza Ag Micro-reactor system assembly
JP2013099746A (en) * 2006-03-31 2013-05-23 Lonza Ag Micro-reactor system
JP2008063190A (en) * 2006-09-07 2008-03-21 Casio Comput Co Ltd Reactor and electronic apparatus
US7981373B2 (en) 2006-09-27 2011-07-19 Casio Computer Co., Ltd. Reaction device and electronic device
JP2008239451A (en) * 2007-03-29 2008-10-09 Hitachi Ltd Hydrogen-feeding unit and its manufacture method, and dispersed power source and automobile using it
JP2008308382A (en) * 2007-06-18 2008-12-25 Casio Comput Co Ltd Reactor, generator and electronic apparatus
JP2009233564A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Method of manufacturing microreactor
US9302243B2 (en) 2009-05-12 2016-04-05 Lonza Ag Continuous reaction micro-reactor
JP2010215502A (en) * 2010-05-14 2010-09-30 Casio Computer Co Ltd Reactor

Also Published As

Publication number Publication date
JP4504751B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US8123825B2 (en) Microreactor and production method thereof
US7857874B2 (en) Micro-reactor and method of manufacturing the same
JP4504751B2 (en) Microreactor for hydrogen production
CA2445599A1 (en) Metal-supported solid electrolyte electrochemical cell and multi cell reactors incorporating same
JP3899985B2 (en) Microreactor structure and manufacturing method thereof
JP4848677B2 (en) Hydrogen production apparatus and production method thereof
JP4414780B2 (en) Microreactor for hydrogen production and method for producing the same
JP4867357B2 (en) Microreactor for hydrogen production
JP4486429B2 (en) Microreactor for hydrogen production and method for producing the same
JP4559790B2 (en) Microreactor for hydrogen production and method for producing the same
US7879298B2 (en) Microreactor
JP4537685B2 (en) Membrane reactor for hydrogen production
JP4438569B2 (en) Reactor
JP2004331434A (en) Microreacter for hydrogen production and its manufacturing method
JP4877211B2 (en) Microreactor and manufacturing method thereof
JP5038619B2 (en) Microreactor and manufacturing method thereof
JP2007008731A (en) Hydrogen producing apparatus and method for producing the same
KR100828489B1 (en) Micro?reactor and method of manufacturing the same
JP2008114162A (en) Micro-reactor and its manufacturing method
JP2009082803A (en) Microreactor and its manufacturing method
JP2008269878A (en) Fuel cell
JP2006127922A (en) Metal member for fuel cell, and its manufacturing method
JP2006181489A (en) Method for manufacturing small-sized reactor
JP2008100163A (en) Micro-reactor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees