JP2000337781A - Module type condensation heat exchanger for recovering waste heat of low-temperature exhaust gas - Google Patents

Module type condensation heat exchanger for recovering waste heat of low-temperature exhaust gas

Info

Publication number
JP2000337781A
JP2000337781A JP11292992A JP29299299A JP2000337781A JP 2000337781 A JP2000337781 A JP 2000337781A JP 11292992 A JP11292992 A JP 11292992A JP 29299299 A JP29299299 A JP 29299299A JP 2000337781 A JP2000337781 A JP 2000337781A
Authority
JP
Japan
Prior art keywords
heat exchanger
mixing
fluid
exhaust gas
flat tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11292992A
Other languages
Japanese (ja)
Other versions
JP3127992B2 (en
Inventor
Byong-Gyu Park
ビョン−ギュ パク
Hyo-Bon Kim
ヒョ−ボン キム
Han-Giru Yomu
ハン−ギル ヨム
Jon-Hyon Ri
ジョン−ヒョン リ
Jun-Shiku Ri
ジュン−シク リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Original Assignee
Korea Institute of Machinery and Materials KIMM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Machinery and Materials KIMM filed Critical Korea Institute of Machinery and Materials KIMM
Publication of JP2000337781A publication Critical patent/JP2000337781A/en
Application granted granted Critical
Publication of JP3127992B2 publication Critical patent/JP3127992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0058Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having different orientations to each other or crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a module type condensation heat exchanger wherein a colliding jet having a large amount of condensed components is disposed alternately and then the heat is made to collide with flat tubes and which uses the flat tubes having heat arranged to be on the right and the left alternately so that the time of stagnation of flow is prolonged due to a high strength of a turbulent flow and large mixing of the flow caused by generation of a recirculation vortex on the downstream side from the flat tubes. SOLUTION: In the heat exchanger for recovering waste heat of low-temperature exhaust gas, a large number of flat tubes 11 for supplying a fluid which are fixed by supports 12, panels for supporting the flat tubes which support the opposite lateral sides of the flat tubes 11, panels 17 for intercepting exhaust gas which fix the panels for supporting, at the upper and lower parts thereof, leaving the remaining side to be open so as to pass main flowing gas through, and headers for mixing the fluid which are provided fop the panels for supporting the flat tubes, positioned on the opposite sides, are combined into a module, and mixing of the fluid and movement thereof are connected through connecting passages of the headers. The modules are fitted additionally in conformity with the size and the amount of heat exchange when necessary and they are arranged and connected so that the space between the flat tubes be narrowed and that the density of the flat tubes be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温排気ガス廃熱
回収用モジュール型凝縮熱交換器に関し、特に廃熱回収
用熱交換器から排気ガスの現熱だけでなく残熱も回収で
きるよう管(tube)の形状を新たに設計配置し、ジ
ェットの衝突効果により熱伝達を向上させて、管後面か
らの過流運動による乱流強度及び混合効果を向上させ非
凝縮ガスによる熱伝達効率低下を減少させた凝縮残熱廃
熱回収用熱交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modular condensing heat exchanger for recovering low-temperature exhaust gas waste heat, and more particularly to a tube capable of recovering not only the present heat of exhaust gas but also residual heat from the heat exchanger for recovering waste heat. (Tube) shape is newly designed and arranged to improve heat transfer by jet collision effect, improve turbulence intensity and mixing effect by overflow motion from the rear surface of the pipe, and reduce heat transfer efficiency by non-condensable gas. The present invention relates to a reduced heat exchanger for condensing residual heat waste heat recovery.

【0002】[0002]

【従来の技術】一般的に廃熱回収用気−液管束熱交換器
の熱伝達は外部ガス側の熱抵抗が全体の熱抵抗の80%
以上を占め管外部の熱抵抗が熱交換器の性能を左右す
る。普通、現熱回収熱交換器では回収可能なエネルギー
量が比較的少ないため、可能な限り圧力損失を減らすよ
う設計時に管の形状と配置を考慮する。
2. Description of the Related Art Generally, the heat transfer of a gas-liquid bundle heat exchanger for waste heat recovery is such that the heat resistance of the external gas side is 80% of the total heat resistance.
The heat resistance outside the pipe determines the performance of the heat exchanger. Normally, since the amount of energy that can be recovered in a current heat recovery heat exchanger is relatively small, the shape and arrangement of the tubes are taken into consideration when designing to minimize the pressure loss.

【0003】しかし、現熱のみならず凝縮残熱までも回
収する場合は、ジェット衝突面の高い熱伝達現象を利用
することが望ましい。非凝縮ガスを含む排気ガスの凝縮
には非凝縮性気体の質量分率と雰囲気温度の影響が非常
に大きい。膜凝縮の場合、蒸気と凝縮液の境界面付近で
は飽和蒸気の分圧は減少して、非凝縮性気体の分圧は増
加し蒸気の飽和温度は減少し凝縮熱伝達は減少する。
However, when recovering not only the current heat but also the residual heat of condensation, it is desirable to utilize the high heat transfer phenomenon of the jet impingement surface. The influence of the mass fraction of the non-condensable gas and the ambient temperature on the condensation of the exhaust gas containing the non-condensable gas is very large. In the case of film condensation, the partial pressure of the saturated vapor decreases near the interface between the vapor and the condensate, the partial pressure of the non-condensable gas increases, the saturation temperature of the vapor decreases, and the heat transfer of condensation decreases.

【0004】また、膜凝縮の場合、熱伝達率(凝縮液の
量)は非凝縮性気体の質量分率に大きく依存する。例え
ば、2%の非凝縮性ガスを含有すると強制対流では温度
によって10乃至20%程度減少し、停滞混合機の場合
はより顕著に70乃至90%程度まで減少する。
In the case of film condensation, the heat transfer coefficient (the amount of condensate) greatly depends on the mass fraction of non-condensable gas. For example, containing 2% of non-condensable gas reduces by about 10 to 20% depending on the temperature in forced convection, and more remarkably to about 70 to 90% in the case of a stagnant mixer.

【0005】このような非凝縮性気体の影響により、主
にシェル管−凝縮型熱交換器を多く使用しているが、バ
ッフルによる圧力損失が大きくデッドゾーンが大きい為
熱伝達効率が低い問題点があった。
[0005] Due to the influence of such non-condensable gas, a large number of shell tube-condensing heat exchangers are mainly used, but the heat transfer efficiency is low because the pressure loss due to the baffle is large and the dead zone is large. was there.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためなされたもので、その目的は非凝縮性気
体の影響と圧力損失を減らすために扁平管を衝突面にさ
せて衝突ジェットによる衝突面での熱伝達係数を高め
て、衝突後隣り合う扁平管で合わさった凝縮成分が高い
衝突ジェットを、互い違いに配置された後熱の扁平管に
衝突させて、扁平管の下流では再循環渦の生成により乱
流強度が高く流動混合が大きい為流動滞留時間が長くな
るよう左右に互い違いに熱が配列された扁平管を使用す
るモジュール型凝縮熱交換器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to reduce the influence of non-condensable gas and pressure loss by making a flat tube a collision surface. By increasing the heat transfer coefficient at the collision surface due to the jet, the impinging jet, which has a high condensed component combined in the adjacent flat tubes after the collision, collides with the flat tubes of heat after being alternately arranged, and downstream of the flat tubes An object of the present invention is to provide a modular condensing heat exchanger using flat tubes in which heat is alternately arranged on the left and right sides so that the turbulence intensity is high and flow mixing is large due to the generation of recirculation vortices, so that the flow residence time is long.

【0007】[0007]

【課題を解決するための手段】本発明は扁平管が衝突面
になるようにし衝突ジェットによる衝突面での熱伝達係
数を高めて、衝突後隣り合う扁平管で合わさった凝縮成
分が高い衝突ジェットを、互い違いに配置された後熱の
扁平管に衝突させて、扁平管下流では再循環渦の生成に
より乱流強度が高くて流動混合が大きいため流動滞留時
間が長くなるよう左右に互い違いに熱が配列されて、流
動勵起振動抑制の役割をする支持台により固定される多
数の流体供給用扁平管と、流体供給用扁平管の両側面を
支持する扁平管支持用パネルと、この支持用パネルを上
部と下部で固定する排気ガス遮断用パネルと、残りの面
は開放面にし主流動気体を通過させて、両側の扁平管支
持用パネルに設けられた流体混合用ヘッダを結合しモジ
ュール化して各モジュール間の流体混合及び移動はヘッ
ダの連結流路を通じて連結構成し、必要時、大きさと熱
交換量に合うよう各モジュールを追加装着して、扁平管
間の間隔を狭め扁平管の密集度を高められるようモジュ
ールを配列し結合した構造を特徴とする。
SUMMARY OF THE INVENTION The present invention provides an impinging jet having a flat tube as an impinging surface, increasing the heat transfer coefficient at the impinging surface by the impinging jet, and having a high condensed component combined by the adjacent flat tubes after the impingement. After being alternately arranged, the flattened tube impinges on the flat tubes of heat, and the turbulence intensity is high due to the generation of recirculation vortices downstream of the flat tubes and the flow mixing is large. Are arranged and fixed by a support base that plays a role of suppressing flow-promoting vibrations, a plurality of flat tubes for supplying fluid, flat panel supporting panels for supporting both side surfaces of the flat tubes for supplying fluid, The panel for fixing the exhaust gas at the top and bottom, and the remaining surface is an open surface to allow the main flowing gas to pass, and the fluid mixing headers provided on the flat tube support panels on both sides are combined to form a module. Each model The fluid mixing and transfer between the pipes are connected through the connection flow path of the header, and if necessary, additional modules are installed to match the size and heat exchange amount, narrowing the gap between the flat pipes and reducing the density of the flat pipes. It features a structure in which modules are arranged and connected so as to be enhanced.

【0008】以下本発明を詳細に説明する。本発明の扁
平管−群モジュール型凝縮熱交換器は既存のシェル−管
熱交換器の場合に比べて流動のデッドゾーンの大きさを
顕著に減らすことができ圧力損失を大きく減らすことが
できて、ガスジェットの衝突停滞点付近での高い熱伝達
係数により熱交換効率を向上させられてコンパクト化が
可能で、熱交換容量の増減による対応が容易なモジュー
ル構造となっている。
Hereinafter, the present invention will be described in detail. The flat tube-group module type condensing heat exchanger of the present invention can significantly reduce the size of the dead zone of the flow and greatly reduce the pressure loss as compared with the existing shell-tube heat exchanger. The heat exchange efficiency is improved by the high heat transfer coefficient near the stagnation point of the gas jet, so that the heat exchange efficiency can be improved, the compactness can be achieved, and the module structure can easily cope with the increase and decrease of the heat exchange capacity.

【0009】また既存のU字型管を使用する場合よりは
曲管部での熱伝達効率を向上させられて製作が容易で、
中間のヘッダで管内部の液体の混合により熱伝達媒体間
の平均温度差を大きくさせられる。よって本発明の熱交
換器は既存のシェル−管熱交換器やU字型管−群熱交換
器より優秀な効率を有する熱交換器である。
Further, the heat transfer efficiency in the curved tube portion is improved as compared with the case of using the existing U-shaped tube, so that the manufacture is easy.
The mean temperature difference between the heat transfer media can be increased by mixing the liquid inside the tubes at the intermediate header. Therefore, the heat exchanger of the present invention is a heat exchanger having higher efficiency than the existing shell-tube heat exchanger and U-shaped tube-group heat exchanger.

【0010】また、流動方向の密集度と傾斜角を容易に
設計変更することができ設計上の柔軟性を高められる。
一方、管外部面形状を必要によって凝縮が容易なロウ−
フィン(low fin)、六面体形状の突起に加工し
たり凸又は凹、細かい波形状をはじめとした様々な形態
に成型加工することで単純な扁平管である場合よりもは
るかに高い熱伝達向上効果が得られる。
In addition, the density of the flow direction and the inclination angle can be easily changed in design, and the design flexibility can be increased.
On the other hand, if the outer surface shape of the tube is required,
The heat transfer enhancement effect is much higher than that of a simple flat tube by processing it into various forms such as fins, hexahedral projections, or convex or concave, and fine wavy shapes. Is obtained.

【0011】熱交換器製作時、本体をモジュール化して
連結流路を構成することで必要によって容量を調節でき
るだけでなく分解清掃も容易な構造にした。また、ヘッ
ダ内で各管の流動を混合させることで、ほとんど均一な
温度分布とならせて、UまたはV型の凝縮液流動溝にお
いて、管外部凝縮液の排出を容易にすることで熱伝達係
数を高めるだけでなく流れにより誘起される振動を防止
できるよう管群間に耐蝕性金属製やプラスティック(ま
たはテフロン(商標))製スペーサ、ビーム又は交差ロ
ッドである支持台を設置できるようにする。
When the heat exchanger is manufactured, the main body is modularized to form a connecting flow path, so that the capacity can be adjusted as required and the structure can be easily disassembled and cleaned. Also, by mixing the flows of the respective pipes in the header, the temperature distribution becomes almost uniform, and in the U- or V-type condensate flowing grooves, the discharge of the condensate outside the pipes is facilitated, so that heat transfer is achieved. Enables the mounting of corrosion resistant metal or plastic (or Teflon (TM)) spacers, beams or cross rod supports between tube bundles to not only increase the modulus but also prevent flow induced vibrations .

【0012】一般的に気−液熱交換器の場合、液体側の
熱抵抗が非常に小さいため、ガス側の熱抵抗を考慮し液
体側の熱伝達を相対的に減らして圧力を増加させ、ある
程度均衡をなすようアスペクト比を調節できることは扁
平管のまた別の長所である。また、圧力損失を小さくし
ながら熱伝達を促進させて、凝縮水除去を容易にするた
め螺旋状にねじれた構造の管にもできる長所がある。
In general, in the case of a gas-liquid heat exchanger, the heat resistance on the liquid side is very small, and the heat transfer on the liquid side is relatively reduced in consideration of the heat resistance on the gas side to increase the pressure. The ability to adjust the aspect ratio to achieve some balance is another advantage of flat tubes. Further, there is an advantage that a tube having a helically twisted structure can be used to promote heat transfer while reducing the pressure loss and facilitate the removal of condensed water.

【0013】アスペクト比が大きい扁平管は熱伝達を促
進させられる様々な凸凹模様を持つプレートのストリッ
プをベンディングしてシーム溶接し製作することができ
る。
A flat tube having a large aspect ratio can be manufactured by bending a strip of a plate having various uneven patterns to promote heat transfer and seam welding.

【0014】[0014]

【発明の実施の形態】本発明を図面により詳細に説明す
る。図1は本発明装置に関する全体組立平面図で、図2
は本発明装置に関する他の形態のヘッダを使用した全体
組立平面図で、多数の流体供給用扁平管11と、流体供
給用扁平管11の両側面を支持する扁平管支持用パネル
16と、この支持用パネル16を上部と下部で固定する
排気ガス遮断用パネル17と、両側の扁平管支持用パネ
ル16に設けられる流体混合用ヘッダ13を直列結合し
モジュール化して各モジュール間の流体混合及び移動は
ヘッダの連結流路を連結装置14に連結し流体を移動さ
せるよう構成されたことを示し、前記多数の流体供給用
扁平管11は流動勵起振動抑制の役割をする多数の支持
台12に固定支持される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the drawings. FIG. 1 is an overall assembly plan view of the apparatus of the present invention.
Is a plan view of the whole assembly using a header of another form according to the apparatus of the present invention, and a plurality of flat tubes 11 for fluid supply, flat tube support panels 16 for supporting both side surfaces of the flat tubes 11 for fluid supply, and An exhaust gas blocking panel 17 for fixing the supporting panel 16 at the upper and lower portions and a fluid mixing header 13 provided on the flat tube supporting panel 16 on both sides are connected in series to form a module to mix and move the fluid between the modules. Indicates that the connection flow path of the header is connected to the connection device 14 to move the fluid, and the plurality of flat tubes 11 for supplying fluid are connected to the plurality of support bases 12 which play a role of suppressing flow-induced vibration. Fixedly supported.

【0015】図1(A)の”A”部分の側面図を示す図
1(B)では前記連結装置14が外部側に迂回し各モジ
ュールの流体混合用ヘッダ13間を連結することを示
す。図2では前記図1での流体混合型ヘッダ13だけで
なく直列連結時、別途の流体連結用連結装置なしに一体
型となった流体の混合及び連結兼用ヘッダ15を使用し
各モジュール間を連結構成した。
FIG. 1B, which is a side view of the "A" portion of FIG. 1A, shows that the connecting device 14 bypasses the outside and connects the fluid mixing headers 13 of each module. In FIG. 2, not only the fluid-mixed type header 13 of FIG. 1 but also the series connection, each module is connected by using an integrated fluid mixing and connection header 15 without a separate fluid connection connection device. Configured.

【0016】図2(B)は図2(A)のB−B線の断面
拡大図で、図2(C)は図2(B)のC−C線断面拡大
図で、前記支持台12の断面が凝縮液の排水の役割をす
る”U”字流動溝12aを備える”I”字型であること
と、前記支持台12の断面が凝縮液の排水の役割をす
る”V”字流動溝12aを備える”X”字型であること
を示す。
FIG. 2B is an enlarged cross-sectional view taken along line BB of FIG. 2A, and FIG. 2C is an enlarged cross-sectional view taken along line CC of FIG. 2B. Has an "I" shape with a "U" shaped flow groove 12a serving as a drain for condensate, and a "V" shaped flow having a cross section for the support base 12 serving as a drain for condensate. It shows that it is an "X" shape having a groove 12a.

【0017】図3(A)は本発明のモジュール化された
液体供給管の流路として流体混合型ヘッダ13が連結装
置14に連結され各モジュールが直列に連結された流路
の流れを示す。図3(B)は本発明のモジュール化され
た液体供給管の流路として連結装置14なしに一体型と
なった流体の混合及び連結兼用ヘッダ15に連結され各
モジュールが直列に連結された流路の流れを示す。
FIG. 3 (A) shows the flow of a flow path in which a fluid mixing type header 13 is connected to a connecting device 14 and each module is connected in series as a flow path of a modularized liquid supply pipe of the present invention. FIG. 3 (B) shows a flow in which the modules are connected in series as a flow path of a modularized liquid supply pipe according to the present invention, which is connected to a fluid mixing and connection / combination header 15 integrated without a connection device 14. The flow of the road is shown.

【0018】図4は本発明に使用した熱伝達管群(he
at transfer tubebank)及びヘッ
ダの斜視図で、多数の流体供給用扁平管11と、流体供
給用扁平管11の両側面を支持する扁平管支持用パネル
16と、この支持用パネル16を上部と下部で固定する
排気ガス遮断用パネル17と、両側の扁平管支持用パネ
ル16に設けられる流体混合用ヘッダ13を直列結合し
モジュール化して各モジュール間の流体混合及び移動は
ヘッダの連結流路を連結装置14に連結し流体を移動さ
せるよう構成されたことを示し、開放面にして主流動気
体が通過するよう構成されたことを示す。
FIG. 4 shows a heat transfer tube bank (he) used in the present invention.
FIG. 3 is a perspective view of the transfer tube and header, showing a number of flat tubes 11 for supplying fluid, flat panel supporting panels 16 for supporting both sides of the flat tubes 11 for fluid supply, and upper and lower panels 16 for supporting the flat tubes. The exhaust gas cut-off panel 17 fixed by the above and the fluid mixing headers 13 provided on the flat tube supporting panels 16 on both sides are connected in series to form a module, and the fluid mixing and movement between each module connects the connection flow path of the header. Indicate that it is connected to the device 14 and configured to move fluid, and that it is configured to have an open surface to allow passage of the main flowing gas.

【0019】この時、前記扁平管11が衝突面となるよ
うにし衝突ジェットによる衝突面での熱伝達係数を高め
て、衝突後隣り合う扁平管で合わさった凝縮成分が高い
衝突ジェットを、互い違いに配置された後熱の扁平管に
衝突させて、扁平管下流では再循環渦の生成により乱流
強度が高くて流動混合が大きく流動滞留時間が長くなる
よう左右に互い違いに熱が配列される。
At this time, the flat tubes 11 serve as collision surfaces to increase the heat transfer coefficient at the collision surfaces due to the collision jets. After being arranged, the heat is collided with the flat tubes and the heat is arranged alternately left and right downstream of the flat tubes so that turbulence intensity is high due to the generation of recirculation vortices, flow mixing is large, and flow residence time is long.

【0020】図5は本発明に使用したモジュール型電熱
管群の並列結合時の斜視図で、並列結合されたモジュー
ルから出る流体を混合して一つの流路を通じて流体を移
動させるようにし並列流体混合用ヘッダ18を示すが、
主流動気体の流れが扁平管に対して水平に流れることを
示す。
FIG. 5 is a perspective view of the module type electric heating tube group used in the present invention at the time of parallel connection, in which the fluids flowing out of the modules connected in parallel are mixed to move the fluid through one flow path. The mixing header 18 is shown,
It shows that the flow of the main flowing gas flows horizontally with respect to the flat tube.

【0021】図6(A)は本発明に使用した熱伝達用扁
平管の側面図で、図6(B)は本発明に使用した熱伝達
用扁平管の外部ガス流動パターンを示すが、主流動気体
に対し垂直な扁平管の衝突傾斜各角β(0°≦β≦90
°)及び偏心量δを有することを示す。偏心量δは扁平
管外部のガス流動速度と扁平管の衝突傾斜角β、s、l
によって熱伝達率が最大になるよう調節する。
FIG. 6A is a side view of the flat tube for heat transfer used in the present invention, and FIG. 6B shows an external gas flow pattern of the flat tube for heat transfer used in the present invention. Angle of inclination β of a flat tube perpendicular to the flowing gas (0 ° ≦ β ≦ 90
°) and the amount of eccentricity δ. The amount of eccentricity δ is the gas flow velocity outside the flat tube and the collision inclination angle β, s, l of the flat tube.
To maximize the heat transfer coefficient.

【0022】ここでsは流動に垂直な方向での扁平管の
中心間の間隔で、lは流動方向での扁平管の中心間の間
隔である。図7(A)は本発明に使用した熱伝達用扁平
管の側面図で、図7(B)は本発明に使用した熱伝達用
扁平管の外部ガス流動パターンを示すが、主流動気体に
対し水平である扁平管の衝突傾斜角β(0°≦β≦90
°)及び偏心量δを有することを示す。
Where s is the distance between the centers of the flat tubes in the direction perpendicular to the flow, and l is the distance between the centers of the flat tubes in the direction of flow. FIG. 7A is a side view of the flat tube for heat transfer used in the present invention, and FIG. 7B shows an external gas flow pattern of the flat tube for heat transfer used in the present invention. On the other hand, the collision inclination angle β of the flat tube that is horizontal (0 ° ≦ β ≦ 90
°) and the amount of eccentricity δ.

【0023】偏心量δは扁平管外部ガス流動速度と扁平
管の衝突傾斜角β、s、lによって熱伝達率が最大にな
るよう調節する。ここで、sは流動に垂直な方向での扁
平管の中心間の間隔で、lは流動方向での扁平管の中心
間の間隔である。図8(A)は本発明に使用した多チャ
ンネル扁平管と混合促進体の組立図で、図8(B)は本
発明に使用した多チャンネル扁平管、図8(C)は本発
明に使用した混合促進体を示すが、扁平管11が内部に
形成された多数の混合促進体支持壁11aにより流体の
内部混合促進用混合促進体が挿入され分割されるように
した多チャンネル扁平管を示す。
The amount of eccentricity δ is adjusted so as to maximize the heat transfer coefficient by the gas flow velocity outside the flat tube and the collision inclination angles β, s, l of the flat tube. Here, s is the distance between the centers of the flat tubes in the direction perpendicular to the flow, and l is the distance between the centers of the flat tubes in the flow direction. 8A is an assembly view of the multi-channel flat tube used in the present invention and the mixing promoter, FIG. 8B is a multi-channel flat tube used in the present invention, and FIG. 8C is used in the present invention. Shows a multi-channel flat tube in which a mixing promoter for promoting internal mixing of a fluid is inserted and divided by a large number of mixing promoter support walls 11a having a flat tube 11 formed therein. .

【0024】前記流体の内部混合促進用前記混合促進体
は螺旋模様のねじれテープ11bにより液体側の混合を
促進させ熱抵抗を相対的に減らした。図9(A)は本発
明に使用した外部凝縮熱伝達促進形状を有する扁平管、
図9(B)は本発明に使用した外部凝縮熱伝達促進形状
を有する扁平管を示すが、扁平管11の表面を凝縮熱伝
達を促進させるために熱伝達促進面形態に加工した。
The mixing promoting body for promoting the internal mixing of the fluid promotes the mixing on the liquid side by the helical twisted tape 11b, thereby relatively reducing the thermal resistance. FIG. 9 (A) is a flat tube having an external condensation heat transfer promoting shape used in the present invention;
FIG. 9B shows a flat tube having an external condensation heat transfer promoting shape used in the present invention. The surface of the flat tube 11 is processed into a heat transfer promoting surface form to promote the condensation heat transfer.

【0025】前記熱伝達促進面を図9(A)にロウ−フ
ィン(low fin)形状で示し、前記熱伝達促進面
を図9(B)に六面体(hexahedron)形状で
示す。図10(A)は本発明に使用したねじれ扁平管及
び組立図を示し、図10(B)は図10(A)のD−D
線の断面図で、扁平管11を圧力損失を相当減らしなが
ら渦動(vortex motion)による熱伝達を
促進させて、管外部面での凝縮水除去を容易にするため
一側端に末端調節用扁平部19aを有する螺旋形ねじれ
扁平管19が主流動気体に対し垂直に多数個配列され装
置されたものを示す。
FIG. 9A shows the heat transfer promoting surface in a low fin shape, and FIG. 9B shows the heat transfer promoting surface in a hexahedron shape. FIG. 10 (A) shows a twisted flat tube used in the present invention and an assembly drawing, and FIG. 10 (B) shows a DD of FIG. 10 (A).
In the cross-sectional view of the line, the flat tube 11 is provided with an end adjustment flat at one end to facilitate heat transfer by vortex motion while considerably reducing pressure loss and to facilitate removal of condensed water on the outer surface of the tube. A plurality of spiral torsion flat tubes 19 having a portion 19a are arranged and arranged vertically to the main flowing gas.

【0026】図11(A)は本発明に使用した歪み(d
eistorted)扁平管及び組立図を示し、図11
(B)は図11(A)のC−C線断面図を示すが、扁平
管11を圧力損失を相当減らしながら渦動による熱伝達
を促進させて、管外部面での凝縮水除去を容易にするた
め側面部が歪まされた扁平管19が主流動気体に対して
垂直に多数個配列され装置されたことを示す。
FIG. 11A shows the distortion (d) used in the present invention.
FIG. 11 shows a flat tube and an assembly drawing.
(B) shows a cross-sectional view taken along the line CC of FIG. 11 (A). The flat tube 11 promotes heat transfer by vortex while considerably reducing the pressure loss, thereby facilitating removal of condensed water on the outer surface of the tube. This shows that a large number of flat tubes 19 whose side portions are distorted are arranged vertically to the main flowing gas.

【0027】図12(A)は本発明に使用した波型の扁
平管及び組立図を示し、図12(B)は図12(A)の
C−C線の断面図で、扁平管11を圧力損失を相当減ら
しながら渦動による熱伝達を促進させて、管外部面での
凝縮水除去を容易にするため側面部が波型の扁平管19
が主流動気体に対し垂直に多数個配列され装置されたも
のを示す。
FIG. 12 (A) shows a corrugated flat tube used in the present invention and an assembly drawing, and FIG. 12 (B) is a cross-sectional view taken along line CC of FIG. 12 (A). In order to facilitate heat transfer by vortex while considerably reducing pressure loss and to facilitate removal of condensed water on the outer surface of the tube, a flat tube 19 having a corrugated side surface is used.
Shows a large number of devices arranged and arranged perpendicular to the main flowing gas.

【0028】図13は本発明に使用したアスペクト比が
大きい扁平管を示し、図14(A)乃至図15(C)は
図13の扁平管の表面加工を示した溶接全平面図を示す
が、扁平管11の表面をガス側の熱抵抗を考慮し液体側
の熱伝達を相対的に減らして圧力を増加させ均衡をなす
よう任意のアスペクト比でプレートにストリップ20a
を形成して、このストリップ20aの形状を凸又は凹、
細かい波形状等様々な形態に成型加工したものを示す。
FIG. 13 shows a flat tube having a large aspect ratio used in the present invention, and FIGS. 14 (A) to 15 (C) are full plan views showing the surface treatment of the flat tube of FIG. The surface of the flat tube 11 is stripped on a plate with an arbitrary aspect ratio so as to increase the pressure and balance by relatively reducing the heat transfer on the liquid side in consideration of the thermal resistance on the gas side.
To form a convex or concave strip 20a,
This shows what was molded into various shapes such as a fine corrugated shape.

【0029】図16(A)は本発明に使用したアスペク
ト比が大きくて凝縮液除去が容易な形状を有する扁平管
で、図16(B)は図16(A)の扁平管の凸凹形状を
示した溶接全体平面図を示すが、プレートの下部に重力
による凝縮水除去が容易になるよう凝縮液の収集除去促
進用ガイド20cを形成したものを示す。説明符号20
bは溶接線である。
FIG. 16A shows a flat tube used in the present invention having a large aspect ratio and easy to remove condensate. FIG. 16B shows the flat tube of FIG. A plan view of the entire weld shown is shown, but a guide 20c for accelerating the collection and removal of condensate is formed below the plate to facilitate the removal of condensed water by gravity. Explanation code 20
b is a welding line.

【0030】[0030]

【発明の効果】本発明の凝縮残熱回収用熱交換器は熱交
換容量によりモジュールを追加することで容量と大きさ
を任意に調節できて、垂直/傾斜衝突ジェットによる熱
伝達及び混合促進、効果的な凝縮水除去による高効率化
が可能である。これは排気ガスに含まれた水分を凝縮さ
せ回収することにより現熱だけでなく残熱も回収可能で
熱効率が高く、湿分凝縮による集塵効果も備えて環境親
化的な機械要素として天然ガスや都市ガスを使用する凝
縮型ボイラー、耐蝕性材料を使用すると低温温水発生装
置に応用することができ、また空調システムの蒸発機、
廃熱回収用ヒータパイプとしても活用が可能である。
The heat exchanger for condensing residual heat recovery according to the present invention can have a capacity and a size arbitrarily adjusted by adding a module according to a heat exchange capacity, thereby promoting heat transfer and mixing by a vertical / inclined impinging jet. High efficiency can be achieved by effective condensate removal. By condensing and recovering the moisture contained in the exhaust gas, it is possible to recover not only the current heat but also the residual heat, which has a high thermal efficiency. Condensing boilers that use gas or city gas, and corrosion-resistant materials can be applied to low-temperature hot water generators, and evaporators for air conditioning systems,
It can also be used as a waste heat recovery heater pipe.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本発明の装置を示した全体組立平面
図、(B)は(A)の”A”部分側面図である。
FIG. 1A is a plan view of an entire assembly showing an apparatus of the present invention, and FIG. 1B is a partial side view of “A” in FIG. 1A.

【図2】(A)は本発明装置の他の形態のヘッダを使用
した全体組立平面図、(B)は(A)のB−B線断面拡
大図、(C)は(B)のC−C線断面拡大図である。
2A is an overall assembly plan view using a header according to another embodiment of the present invention, FIG. 2B is an enlarged cross-sectional view taken along the line BB of FIG. 2A, and FIG. FIG. 4 is an enlarged cross-sectional view taken along line C.

【図3】(A)、(B)は本発明のモジュール化された
液体供給管の流路である。
FIGS. 3A and 3B are flow paths of a modularized liquid supply pipe of the present invention.

【図4】本発明に使用したモジュール電熱管群(mod
ular heat transfer tube b
ank)及びヘッダの斜視図(一般的な直列結合時を含
む)である。
FIG. 4 is a diagram showing a module electric heating tube group (mod) used in the present invention.
ullar heat transfer tube b
(an) and a perspective view of the header (including a general series connection).

【図5】本発明に使用したモジュール型電熱管群の並列
結合時の斜視図である。
FIG. 5 is a perspective view of a modular electric heating tube group used in the present invention when connected in parallel.

【図6】(A)は本発明に使用した熱伝達用扁平管の側
面図、(B)は本発明に使用した熱伝達用扁平管の外部
ガス流動パターンである。
FIG. 6A is a side view of a flat tube for heat transfer used in the present invention, and FIG. 6B is an external gas flow pattern of the flat tube for heat transfer used in the present invention.

【図7】(A)は本発明に使用した熱伝達用扁平管の側
面図、(B)は本発明に使用した熱伝達用扁平管の外部
ガス流動パターンである。
FIG. 7A is a side view of a flat tube for heat transfer used in the present invention, and FIG. 7B is an external gas flow pattern of the flat tube for heat transfer used in the present invention.

【図8】(A)は本発明に使用した多チャンネル扁平管
と混合促進体の組立図、(B)は本発明に使用した多チ
ャンネル扁平管、(C)は本発明に使用した混合促進体
である。
8 (A) is an assembly view of a multi-channel flat tube and a mixing promoter used in the present invention, (B) is a multi-channel flat tube used in the present invention, and (C) is a mixing promoter used in the present invention. Body.

【図9】(A)及び(B)は本発明に使用した外部凝縮
熱伝達促進形状を備える扁平管である。
FIGS. 9A and 9B are flat tubes having an external condensation heat transfer promoting shape used in the present invention.

【図10】(A)は本発明に使用したねじれ扁平管及び
組立図、(B)は(A)のD−D線断面図である。
FIG. 10A is a sectional view of a twisted flat tube used in the present invention and an assembly drawing, and FIG. 10B is a sectional view taken along the line DD of FIG.

【図11】(A)は本発明に使用した歪み(disto
rted)扁平管及び組立図、(B)は(A)のC−C
線断面図である。
FIG. 11A shows the distortion (disto) used in the present invention.
rted) Flat tube and assembly drawing, (B) is C-C of (A)
It is a line sectional view.

【図12】(A)は本発明に使用した波型(wavy)
の扁平管及び組立図、(B)は(A)のC−C線断面図
である。
FIG. 12 (A) is a waveform (wavy) used in the present invention.
(B) is a cross-sectional view taken along the line CC of (A).

【図13】本発明に使用したアスペクト比(aspec
t ratio)が大きい扁平管である。
FIG. 13 shows an aspect ratio (aspect) used in the present invention.
The flat tube has a large ratio.

【図14】(A)は図13の扁平管の表面加工を示した
溶接全平面図、(B)及び(C)は図13の扁平管の他
の表面加工を示した溶接全平面図である。
14A is a full welding plan view showing the surface processing of the flat tube of FIG. 13, and FIGS. 14B and 14C are full welding plan views showing another surface processing of the flat tube of FIG. is there.

【図15】(A)乃至(C)は図13の扁平管の他の表
面加工を示した溶接全平面図である。
15 (A) to (C) are full plan views of welding showing another surface processing of the flat tube of FIG. 13;

【図16】(A)は、本発明に使用したアスペクト比が
大きくて凝縮液除去が容易な形状を備える扁平管、
(B)は図14(A)の扁平管の表面加工を備えながら
図16(A)の凝縮液除去が容易な形状を示した溶接全
平面図(図14(B)乃至図15(C)に関し同様に適
用可能である)である。
FIG. 16 (A) is a flat tube having a shape having a large aspect ratio and easy to remove condensate used in the present invention;
(B) is a full plan view of welding (FIG. 14 (B) to FIG. 15 (C)) showing the shape for easily removing the condensate shown in FIG. Is similarly applicable).

【符号の説明】[Explanation of symbols]

11 流体供給用扁平管 11a 流体供給用扁平管内部の混合促進体支持壁 11b 流体の内部混合促進用ねじれテープ 11c 主流動気体に対し衝突傾斜角β(0≦β≦90
°)、偏心量δを備える扁平管 12 凝縮水除去促進機能及び流動勵起振動防止機能
を持つI又はX字型熱交換管支持台 12a 除去された凝縮水流動溝 13 直列流体混合用ヘッダ 14 流体混合用ヘッダの連結装置 15 流体の混合及び連結兼用ヘッダ 16 扁平管支持用パネル 17 排気ガス遮断用パネル 18 並列流体混合用ヘッダ 19 流体供給用ねじれ扁平管 19a ねじれ扁平管の末端調節用扁平部 20 アスペクト比が大きい扁平管 20a 扁平管製造用熱伝達促進用凸凹形状プレートの
ストリップ 20b 溶接線 20c 重力による凝縮水蓄積除去用ガイド
11 Flat tube for fluid supply 11a Mixing promoting body support wall inside flat tube for fluid supply 11b Twisted tape for promoting internal mixing of fluid 11c Impact inclination angle β (0 ≦ β ≦ 90) against main flowing gas
°), flat tube having an eccentricity δ 12 I or X-shaped heat exchange tube support base 12a having a condensed water removal promoting function and a flow promoting vibration preventing function 12a A removed condensed water flow groove 13 A header for serial fluid mixing 14 Connection device for fluid mixing header 15 Combination header for fluid mixing and connection 16 Flat tube support panel 17 Exhaust gas cut-off panel 18 Parallel fluid mixing header 19 Fluid supply twisted flat tube 19a Flat end for twisted flat tube end adjustment 20 Flat tube with large aspect ratio 20a Strip of uneven plate for promoting heat transfer for manufacturing flat tube 20b Welding line 20c Guide for removing and collecting condensed water by gravity

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年6月30日(2000.6.3
0)
[Submission date] June 30, 2000 (2006.3.3)
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

フロントページの続き (72)発明者 キム ヒョ−ボン 大韓民国 テジョン市 ソク サムチョン ドン チョンソルアパート1−902 (番 地なし) (72)発明者 ヨム ハン−ギル 大韓民国 テジョン市 ソク ウォルピョ ン3ドン ファンシルアパート110−1503 (番地なし) (72)発明者 リ ジョン−ヒョン 大韓民国 インチョン市 ヨンスク ヨン ス2ドン 635番地 ウソン1チャアパー ト109−2201 (72)発明者 リ ジュン−シク 大韓民国 ソウル市 ヤンチョンク シン ジョン1ドン モクトンアパート1024− 1405 (番地なし) Fターム(参考) 3L103 AA32 AA37 AA39 CC27 CC30 DD08 DD32 DD42 Continuing on the front page (72) Inventor Kim Hye-Bon South Korea, Sok Samcheong-dong Jongsol Apartment 1-902 (No address) (72) Inventor Yom Han-Gill Sok Wol-pyeong 3 Dong Fan-sil Apartment 110, Daejeon, Korea -1503 (No address) (72) Inventor Li-Jung-Hyun South Korea Incheon Yong-suk Yong-su 2 635 Address 1 Cha-apart 109-2201 (72) Inventor Li Jung-Sik Seoul South Korea Yan-Chong Shin Jong 1-Dong Mok Ton apartment 1024-1405 (No address) F-term (reference) 3L103 AA32 AA37 AA39 CC27 CC30 DD08 DD32 DD42

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 低温排気ガス廃熱回収用熱交換器におい
て、 衝突後互い違いに配置された後熱の扁平管に衝突させ
て、下流では再循環渦の生成により乱流強度が高く流動
混合が大きくて流動滞留時間が長くなるよう互い違いに
配列されて、流動勵起振動抑制の役割をする支持台12
により固定され、主流動気体の衝突面となる多数の流体
供給用扁平管11と、 流体供給用扁平管11の両側面を支持する扁平管支持用
パネル16と、 該支持用パネル16を上部と下部で固定する排気ガス遮
断用パネル17と、 残りの面は開放面にし主流動気体が通過するようにし、
両側の扁平管支持用パネル16に設けられる流体混合用
ヘッダを結合しモジュール化して各モジュール間の流体
混合及び移動はヘッダの連結流路を通じて連結構成し
て、 必要時、大きさと熱交換量に合うよう各モジュールを追
加装着して、扁平管間の間隔を狭め扁平管の密集度を高
められるようモジュールを配列し結合した構造としたこ
とを特徴とする低温排気ガス廃熱回収用モジュール型凝
縮熱交換器。
1. A heat exchanger for recovering waste heat of low-temperature exhaust gas, wherein after the collision, the turbulent flow impinges on the flat tubes of the heat which are alternately arranged after the collision, and the turbulence intensity is high due to the generation of a recirculating vortex, whereby flow mixing is performed. The support bases 12 are arranged alternately so as to be large and have a long flow residence time, and serve to suppress flow-promoting vibration.
A number of flat tubes 11 for supplying fluid, which are fixed by the main flow gas and serve as collision surfaces of the main flowing gas, flat panel supporting panels 16 for supporting both side surfaces of the flat tubes 11 for supplying fluid, Exhaust gas cut-off panel 17 fixed at the lower part, and the remaining surface is made an open surface so that the main flowing gas can pass through,
The fluid mixing headers provided on the flat tube supporting panels 16 on both sides are combined and modularized, and fluid mixing and movement between the modules are connected and configured through the connection flow path of the header. Module type condensate for low-temperature exhaust gas waste heat recovery, characterized by a module with additional modules installed so that they fit together, and the modules are arranged and connected to narrow the gap between the flat tubes and increase the density of the flat tubes Heat exchanger.
【請求項2】 前記モジュールを直列に配列したことを
特徴とする請求項1記載の低温排気ガス廃熱回収用モジ
ュール型凝縮熱交換器。
2. The condensing heat exchanger according to claim 1, wherein the modules are arranged in series.
【請求項3】 前記モジュールを並列に配列したことを
特徴とする請求項1記載の低温排気ガス廃熱回収用モジ
ュール型凝縮熱交換器。
3. The condensing heat exchanger according to claim 1, wherein said modules are arranged in parallel.
【請求項4】 前記流体混合型ヘッダは直列連結時、各
ヘッダ間を連結装置14で連結し流体を移動させるよう
にした直列流体混合用ヘッダ13で構成したことを特徴
とする請求項1及び2のいずれか1項記載の低温排気ガ
ス廃熱回収用モジュール型凝縮熱交換器。
4. The series-mixing header according to claim 1, wherein the series-mixing header is constituted by a series-fluid-mixing header configured to connect the headers with a coupling device to move the fluid when the series-connected headers are connected in series. 3. The modular condensing heat exchanger for low-temperature exhaust gas waste heat recovery according to any one of 2.
【請求項5】 前記流体混合型ヘッダは直列連結時、別
途の流体連結用連結装置なしに一体型にされた流体の混
合及び連結兼用ヘッダ15で構成したことを特徴とする
請求項1および2のいずれか1項記載の低温排気ガス廃
熱回収用モジュール型凝縮熱交換器。
5. The header of claim 1, wherein the fluid-mixing type header comprises a header for combined fluid mixing and connection without a separate fluid connection connection device when connected in series. The condensing heat exchanger for recovering low-temperature exhaust gas waste heat according to any one of the preceding claims.
【請求項6】 前記流体混合型ヘッダは並列連結時、複
数個のモジュールから出る流体を混合して1つの流路を
通じて流体を移動させるようにした並列流体混合用ヘッ
ダ18で構成したことを特徴とする請求項1及び3のい
ずれか1項記載の低温排気ガス廃熱回収用モジュール型
凝縮熱交換器。
6. The parallel fluid mixing header according to claim 1, wherein the fluid mixing header comprises a parallel fluid mixing header configured to mix fluids from a plurality of modules and move the fluid through one flow path when connected in parallel. The modular condensing heat exchanger for recovering low-temperature exhaust gas waste heat according to any one of claims 1 and 3.
【請求項7】 前記支持台12の断面が凝縮液の排水の
役割をする”U”字流動溝12aを有する”I”字型で
あることを特徴とする請求項1記載の低温排気ガス廃熱
回収用モジュール型凝縮熱交換器。
7. The low temperature exhaust gas waste according to claim 1, wherein the cross section of the support base is an “I” shape having a “U” flow groove serving as a drain for condensate. Modular condensing heat exchanger for heat recovery.
【請求項8】 前記支持台12の断面が凝縮液の排水の
役割をする”V”字型流動溝12aを有する”X”字型
であることを特徴とする請求項1記載の低温排気ガス廃
熱回収用モジュール型凝縮熱交換器。
8. The low-temperature exhaust gas according to claim 1, wherein a cross section of the support base is an “X” shape having a “V” shape flow groove serving as a drain for condensate. Modular condensation heat exchanger for waste heat recovery.
【請求項9】 前記扁平管11は主流動気体に対し衝突
角β(0°≦β≦90°)を有するよう構成されたこと
を特徴とする請求項1記載の低温排気ガス廃熱回収用モ
ジュール型凝縮熱交換器。
9. The low temperature exhaust gas waste heat recovery system according to claim 1, wherein the flat tube has a collision angle β (0 ° ≦ β ≦ 90 °) with the main flowing gas. Modular condensation heat exchanger.
【請求項10】 前記扁平管11が内部に形成された多
数の混合促進体支持壁11aにより流体の内部混合促進
用混合促進体が挿入され分割されるようにした多チャン
ネル扁平管であることを特徴とする請求項1記載の低温
排気ガス廃熱回収用モジュール型凝縮熱交換器。
10. The flat tube 11 is a multi-channel flat tube in which a mixing promoting body for promoting internal mixing of fluid is inserted and divided by a plurality of mixing promoting body support walls 11a formed therein. The modular condensing heat exchanger according to claim 1, wherein the low-temperature exhaust gas waste heat is recovered.
【請求項11】 前記流体の内部混合促進用混合促進体
は螺旋模様のゆがみテープ11bとし液体側の混合を促
進させ熱抵抗を相対的に減少されるようにしたことを特
徴とする請求項10記載の低温排気ガス廃熱回収用モジ
ュール型凝縮熱交換器。
11. The mixing promoting body for promoting internal mixing of the fluid is a warped tape 11b having a spiral pattern, which promotes mixing on the liquid side so that thermal resistance is relatively reduced. A modular condensing heat exchanger for low temperature exhaust gas waste heat recovery as described.
【請求項12】 前記扁平管11を圧力損失を相当減ら
しながら渦動(vortex motion)による熱
伝達を促進させて、管外部面での凝縮水除去を容易にす
るため一側端に末端調節用扁平部19aを有する螺旋型
ねじれ扁平管19としたことを特徴とする請求項1記載
の低温排気ガス廃熱回収用モジュール型凝縮熱交換器。
12. A flat end adjustment flat plate at one end to promote heat transfer by vortex motion while considerably reducing pressure loss in the flat tube 11, and to facilitate removal of condensed water on the outer surface of the tube. The modular condensing heat exchanger for low-temperature exhaust gas waste heat recovery according to claim 1, characterized in that it is a spiral torsion flat tube (19) having a portion (19a).
【請求項13】 前記扁平管11の表面を凝縮熱伝達を
促進させるため熱伝達促進面形態に加工したことを特徴
とする請求項1記載の低温排気ガス廃熱回収用モジュー
ル型凝縮熱交換器。
13. The condensing heat exchanger according to claim 1, wherein the surface of the flat tube is processed into a heat transfer promoting surface form to promote condensing heat transfer. .
【請求項14】 前記熱伝達促進面はロウ−フィン(l
ow fin)形状であることを特徴とする請求項13
記載の低温排気ガス廃熱回収用モジュール型凝縮熱交換
器。
14. The heat transfer promoting surface is formed of a low fin (l).
14. An fin (ow fin) shape.
A modular condensing heat exchanger for low temperature exhaust gas waste heat recovery as described.
【請求項15】 前記熱伝達促進面は六面体形状である
ことを特徴とする請求項13記載の低温排気ガス廃熱回
収用モジュール型凝縮熱交換器。
15. The condensing heat exchanger of claim 13, wherein the heat transfer promoting surface has a hexahedral shape.
【請求項16】 前記扁平管11の表面をガス側の熱抵
抗を考慮し液体側の熱伝達を相対的に減らして圧力を増
加させ均衡をなすよう任意のアスペクト比でプレートに
ストリップ20aを形成して、このストリップ20aの
形状を凸又は凹、細かい波形状等様々な形態に成型加工
したことを特徴とする請求項1記載の低温排気ガス廃熱
回収用モジュール型凝縮熱交換器。
16. A strip 20a is formed on the plate with an arbitrary aspect ratio so that the surface of the flat tube 11 is relatively reduced in heat transfer on the liquid side in consideration of thermal resistance on the gas side to increase pressure and balance. 2. The module type condensing heat exchanger according to claim 1, wherein the shape of the strip 20a is formed into various shapes such as a convex or concave shape and a fine corrugated shape.
【請求項17】 前記プレートの下部に重力による凝縮
水除去が容易となるよう凝縮液の収集除去促進用ガイド
20cを形成したことを特徴とする請求項16記載の低
温排気ガス廃熱回収用モジュール型凝縮熱交換器。
17. The module for recovering waste heat of low-temperature exhaust gas according to claim 16, wherein a guide 20c for accelerating collection and removal of condensed liquid is formed at a lower portion of said plate to facilitate removal of condensed water by gravity. Type condensation heat exchanger.
JP11292992A 1999-05-26 1999-10-14 Modular condensing heat exchanger for low temperature exhaust gas waste heat recovery Expired - Fee Related JP3127992B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019990018991A KR100345156B1 (en) 1999-05-26 1999-05-26 Modular condensing heat exchanger for latent heat recovery
KR18991/1999 1999-05-26

Publications (2)

Publication Number Publication Date
JP2000337781A true JP2000337781A (en) 2000-12-08
JP3127992B2 JP3127992B2 (en) 2001-01-29

Family

ID=19587804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11292992A Expired - Fee Related JP3127992B2 (en) 1999-05-26 1999-10-14 Modular condensing heat exchanger for low temperature exhaust gas waste heat recovery

Country Status (2)

Country Link
JP (1) JP3127992B2 (en)
KR (1) KR100345156B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132712A (en) * 2003-10-07 2005-05-26 Dainippon Printing Co Ltd Microreactor for producing hydrogen
JP2005274028A (en) * 2004-03-25 2005-10-06 Noritz Corp Combustion device
JP2009270787A (en) * 2008-05-09 2009-11-19 Mitsubishi Electric Corp Heat exchanger, refrigerator and air conditioner
CN106705707A (en) * 2017-02-22 2017-05-24 浙江银轮机械股份有限公司 Heat regenerator for extended-range electric vehicle micro gas turbine
CN107228583A (en) * 2017-06-15 2017-10-03 上海蓝滨石化设备有限责任公司 A kind of modularization multipaths full-welding plate-type heat exchanger capable of washing
CN107806777A (en) * 2016-09-09 2018-03-16 丹佛斯微通道换热器(嘉兴)有限公司 Non-finned heat exchanger
CN110195977A (en) * 2019-06-12 2019-09-03 江苏联储能源科技有限公司 A kind of phase-change thermal storage melting media furnace
US10514216B2 (en) 2016-01-19 2019-12-24 Mitsubishi Electric Corporation Heat exchanger

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016799A (en) * 1998-12-30 2000-01-25 Afc Enterprises, Inc. Vortex chamber for deep fryer heat exchanger
KR100689146B1 (en) 2006-05-04 2007-03-09 주식회사 경동나비엔 Heat exchanger of boiler
KR101086917B1 (en) * 2009-04-20 2011-11-29 주식회사 경동나비엔 Heat exchanger
KR101542681B1 (en) * 2014-01-07 2015-08-06 한국교통대학교산학협력단 Module type heat exchanger and method for exchanging heat using the module type heat exchanger
KR102432292B1 (en) * 2021-09-02 2022-08-12 장철호 Device for Removal from dust and dioxin in Incinerator
US20240175572A1 (en) * 2022-11-29 2024-05-30 Doosan Enerbility Co., Ltd. Connection tube support of waste heat recovery boiler and waste heat recovery boiler including same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132712A (en) * 2003-10-07 2005-05-26 Dainippon Printing Co Ltd Microreactor for producing hydrogen
JP4504751B2 (en) * 2003-10-07 2010-07-14 大日本印刷株式会社 Microreactor for hydrogen production
JP2005274028A (en) * 2004-03-25 2005-10-06 Noritz Corp Combustion device
JP2009270787A (en) * 2008-05-09 2009-11-19 Mitsubishi Electric Corp Heat exchanger, refrigerator and air conditioner
US10514216B2 (en) 2016-01-19 2019-12-24 Mitsubishi Electric Corporation Heat exchanger
CN107806777A (en) * 2016-09-09 2018-03-16 丹佛斯微通道换热器(嘉兴)有限公司 Non-finned heat exchanger
CN107806777B (en) * 2016-09-09 2020-12-04 丹佛斯微通道换热器(嘉兴)有限公司 Fin-free heat exchanger
US10914524B2 (en) 2016-09-09 2021-02-09 Danfoss Micro Channel Heat Exchanger (Jianxing) Co., Ltd. Un-finned heat exchanger
CN106705707A (en) * 2017-02-22 2017-05-24 浙江银轮机械股份有限公司 Heat regenerator for extended-range electric vehicle micro gas turbine
CN107228583A (en) * 2017-06-15 2017-10-03 上海蓝滨石化设备有限责任公司 A kind of modularization multipaths full-welding plate-type heat exchanger capable of washing
CN110195977A (en) * 2019-06-12 2019-09-03 江苏联储能源科技有限公司 A kind of phase-change thermal storage melting media furnace
CN110195977B (en) * 2019-06-12 2024-01-16 江苏联储能源科技有限公司 Phase-change heat storage medium melting furnace

Also Published As

Publication number Publication date
JP3127992B2 (en) 2001-01-29
KR20000074798A (en) 2000-12-15
KR100345156B1 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP3127992B2 (en) Modular condensing heat exchanger for low temperature exhaust gas waste heat recovery
JP5771519B2 (en) Latent heat exchanger and hot water supply device
CN103250009A (en) Latent heat exchanger and hot water supply device
CN106895608A (en) Micro-channel heat exchanger and its flat tube
JP4773374B2 (en) Heat exchanger
JP2011112331A (en) Heat exchanger for exhaust gas
WO2020017176A1 (en) Heat exchanger
JP6480850B2 (en) Heat exchanger, secondary heat exchanger and heat source machine
JP2007232356A (en) Heat exchanger for vehicle
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
US6296049B1 (en) Condenser
CN106288909B (en) A kind of plane inflection type elasticity-intensified heat exchange tube bundle and heat exchanger
CN101839549B (en) Condensed heat exchanger
CN205690946U (en) A kind of gas-liquid pulsating heat pipe heat exchanger
JPH04136690A (en) Heat exchanger
JP4207196B2 (en) Heat exchanger
CN108344210B (en) Parallel flow heat exchange system for improving heat exchange efficiency
JP3017039B2 (en) Heat exchanger
CN218626919U (en) Flue gas heat exchange device for gas boiler
JP4565316B2 (en) Heat source equipment
CN105466084B (en) Evaporator and with its air conditioner
WO2019224767A1 (en) Thermal exchanging device
JPS60240987A (en) Heat exchanger with plate fin
KR102048518B1 (en) Heat exchanger having a heat exchange promoting member formed therein
JP3934252B2 (en) Natural circulation water tube boiler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees