WO2020017176A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2020017176A1
WO2020017176A1 PCT/JP2019/022433 JP2019022433W WO2020017176A1 WO 2020017176 A1 WO2020017176 A1 WO 2020017176A1 JP 2019022433 W JP2019022433 W JP 2019022433W WO 2020017176 A1 WO2020017176 A1 WO 2020017176A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
flow
tube
heat exchanger
dimples
Prior art date
Application number
PCT/JP2019/022433
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 充
真由美 山中
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to CN201980045419.XA priority Critical patent/CN112368535B/en
Publication of WO2020017176A1 publication Critical patent/WO2020017176A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Definitions

  • the present invention relates to a heat exchanger in which heat exchange is performed between fluids.
  • JP2014-169857A discloses an exhaust heat exchanger that cools the exhaust of an internal combustion engine with cooling water.
  • a tube that forms an exhaust passage is disposed inside the water tank.
  • An inner fin as a heat transfer member for promoting heat exchange between the exhaust gas and the cooling fluid is arranged in the tube.
  • the exhaust gas introduced into the exhaust heat exchanger flows through the tube while contacting the inner fin, and is cooled by radiating heat to cooling water flowing outside the tube.
  • a plurality of dimples are formed on the tube as convex portions protruding from the outer surface.
  • the dimple is provided as means for lowering the temperature of the temperature boundary layer of the cooling water.
  • the present invention aims to further enhance the heat exchange performance of a heat exchanger.
  • the heat exchanger in which heat exchange is performed between the first fluid and the second fluid includes: a first flow path in which the first fluid flows in the flow direction; A second channel that circulates; a tube that partitions the first channel; and an inner fin that is disposed in the first channel.
  • the inner fin is disposed in a crossing direction of the flat wall that contacts the tube and the flat wall.
  • the contact area between the tube and the inner fin is reduced by the depression of the opposing dimple.
  • the heat transfer from the second fluid to the tube is promoted by the opposing dimple, and the fin portion causes the heat transfer. Heat transfer from one fluid to the tube is promoted.
  • a heat exchanger can raise heat exchange performance.
  • FIG. 1 is a perspective view showing a heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the heat exchanger.
  • FIG. 3 is an exploded perspective view of the tube.
  • FIG. 4 is a perspective view showing a cross section in which a part of the heat exchanger is cut away.
  • FIG. 5 is a perspective view showing a cross section in which a part of the inner fin is cut away.
  • FIG. 6 is a plan view of the inner fin.
  • FIG. 7 is a diagram showing the relationship between the ratio A of the non-contact area due to the dimple and the temperature difference T.
  • FIG. 8 is a perspective view showing a cross section in which a part of a heat exchanger according to a modification is cut away.
  • the heat exchanger 100 is a water-cooled EGR cooler used for an EGR (Exhaust Gas Recirculation) system (not shown) of the vehicle.
  • the heat exchanger 100 cools a part (first fluid) of the exhaust gas discharged from the engine with cooling water (second fluid). After flowing through the heat exchanger 100, the cooling water circulating through the cooling circuit flows through the radiator and radiates heat to the outside air.
  • cooling water circulates between a plurality of tubes 50 forming a first flow path 21 through which exhaust gas flows, and the tubes 50 stacked. And a casing 10 that forms the second flow path 22.
  • the configuration of the heat exchanger 100 will be described by setting three axes of X, Y, and Z orthogonal to each other in each drawing.
  • the X-axis direction in which the first flow path 21 extends is referred to as “flow path direction”
  • the Y-axis direction is referred to as “flow path width direction”.
  • the tube 50 is formed in a flat cylindrical shape in the Z-axis direction by assembling the half-cylinder upper plate 60 and the lower plate 80.
  • the inner fin 40 is disposed between the upper plate 60 and the lower plate 80 as a heat transfer member.
  • the upper plate 60 and the lower plate 80 are formed into a flat semi-cylindrical shape by pressing a metal plate.
  • the upper plate 60 has a plate-shaped heat transfer plate 61 extending in the X-axis direction and the Y-axis direction.
  • One diagonal dimple 71, one upstream diagonal dimple 72, and four vertical dimples 73 (dimples) that guide the flow of the cooling water are provided on the heat transfer plate 61 as described later.
  • Linear dimples) and many opposing dimples 77 (vortex generating dimples) are formed.
  • the lower plate 80 has a plate-shaped heat transfer plate portion 81 extending in the X-axis direction and the Y-axis direction.
  • One diagonal dimple 91, one upstream diagonal dimple 92, and four vertical dimples 93 (linear dimples) are formed in the heat transfer plate portion 81 as dimples.
  • the diagonal dimples 71 and 91, the upstream diagonal dimples 72 and 92, and the vertical dimples 73 and 93 are opposed to each other in the Z-axis direction and protrude into the second flow path 22 to guide the flow of the cooling water. .
  • the casing 10 is formed in a substantially rectangular cylindrical shape by assembling the half-cylindrical upper shell 20 and the lower shell 30. Pipes 17 and 18 are connected to the casing 10.
  • a second outlet 27 for guiding water to the pipe 18 is provided inside the casing 10.
  • EGEGR passage pipes (not shown) are connected to both open ends of the casing 10 via frame-shaped headers 15 and 16.
  • a first inlet 35 for distributing exhaust gas guided from a tube of the EGR passage to the first flow path 21 is provided inside the header 16.
  • a first outlet 36 that guides exhaust gas flowing out of the first flow path 21 to a pipe of the EGR passage is provided inside the header 16.
  • the cooling water circulating in the cooling circuit flows into the second inlet 25 from inside the pipe 17 and flows into the second flow path 22 between the tubes 50 as shown by the black arrow in FIG. Be distributed.
  • the cooling water flowing through the second flow path 22 gathers at the second outlet 27 and flows out through the pipe 18.
  • the exhaust gas flowing through the EGR passage is distributed to the first flow passage 21 in each tube 50 through the first inlet 35 in the header 15 as shown by a white arrow in FIG.
  • the exhaust gas flowing through the first flow path 21 is cooled by radiating heat to the cooling water flowing through the second flow path 22 through each tube 50. Exhaust gas flowing out of the first flow path 21 is collected through a first outlet 36 in the header 16 and supplied to a combustion chamber of the engine.
  • FIG. 3 is a perspective view showing the upper plate 60 and the inner fin 40 in a state where the tube 50 is disassembled.
  • the inner fin 40 has a corrugated shape having a substantially rectangular cross section.
  • flat walls 41 extending in the X-axis direction and the Y-axis direction, and upright walls 42 connected in the crossing direction (the X-axis direction and the Z-axis direction) of the flat walls 41 are alternately arranged.
  • the offset type inner fin 40 is offset so that the positions of the flat wall 41 and the upright wall 42 are displaced by a predetermined length in the Y-axis direction for each section divided by a predetermined length in the X-axis direction.
  • FIG. 4 is a perspective view showing a cross section of the tube 50 with a part cut away.
  • the first flow path 21 is formed as a flat space between the upper plate 60 and the lower plate 80.
  • the first flow path 21 is divided into a plurality of small flow paths 23 by each segment including the flat wall 41 and the upright wall 42 of the inner fin 40.
  • FIG. 5 is a perspective view showing a part of the inner fin 40 in an enlarged manner.
  • the inner fin 40 has an upstream fin portion 43 and a downstream fin portion 44 cut and raised from the flat wall 41 for each segment. Fins 45 and 46 are formed in the flat wall 41 at the positions where the fins 43 and 44 are cut and raised.
  • the inner fin 40 is formed by press working.
  • the fin 43 on the upstream side is cut and raised so as to face upstream in the exhaust gas flow direction.
  • the fin portion 43 has a trapezoidal shape having a bent side 43a bent from the flat wall 41, an inclined side 43b crossing the small flow path 23, and a long side 43c and a short side 43d connecting the bent side 43a and the inclined side 43b. It is formed.
  • the fin portion 44 on the downstream side is cut and raised so as to face the downstream side in the exhaust gas flow direction.
  • the fin portion 44 has a trapezoidal shape having a bent side 44a bent from the flat wall 41, an inclined side 44b crossing the small channel 23, and a long side 44c and a short side 44d connecting the bent side 44a and the inclined side 44b. It is formed.
  • bent side 43a of the fin 43 on the upstream side and the bent side 44a of the fin 44 on the downstream side are inclined at substantially the same angle with respect to the Y axis, and are disposed substantially parallel to each other.
  • the inclined side 43b of the upstream fin portion 43 and the inclined side 44b of the downstream fin portion 44 are arranged so as to incline with respect to the Y axis and cross the small flow path 23. As described later, the flow of the exhaust gas flowing through the first flow path 21 turns around the X axis by being blocked by the inclined sides 43b, 44b of the fin portions 43, 44 extending in an oblique direction with respect to the Y axis. It becomes a spiral vertical vortex.
  • a plurality of opposed dimples 77 are formed on the heat transfer plate portion 61 of the upper plate 60 so as to be arranged along the vertical dimples 73.
  • the distance L between the opposing dimples 77 arranged in the X-axis direction is arbitrarily set according to the performance required of the heat exchanger 100 as described later.
  • the V-shaped opposed dimple 77 has a pair of inclined portions 77a inclined with respect to the Y axis, and an intersection 77b where the pair of inclined portions 77a intersect with each other.
  • the opposed dimple 77 is inclined such that the pair of inclined portions 77a are opened toward the upstream side in the exhaust flow direction, and the intersection portion 77b is projected toward the downstream side in the exhaust flow direction.
  • the flow of the cooling water flowing through the second flow path 22 is interrupted by the inclined portion 77a of the opposed dimple 77 extending in an oblique crossing direction with respect to the Y axis, so that the spiral water turns around the X axis. Vertical vortex.
  • the opposing dimple 77 is formed on the upper plate 60 by pressing.
  • the opposed dimple 77 protrudes in a bank shape with respect to the channel surface 62 of the upper plate 60 facing the second channel 22, and forms a groove with respect to the channel surface 63 of the upper plate 60 facing the first channel 21. Dent.
  • the opposing dimple 77 has a groove-like depression 77c.
  • the vertical dimple 73 is similarly formed on the upper plate 60 by pressing.
  • the vertical dimple 73 has a groove-like depression 73c.
  • the lower plate 80 is formed with a vertical dimple 93 by press working.
  • the vertical dimple 93 has a groove-like depression 93c.
  • FIG. 6 is a plan view showing the inner fin 40 by a solid line and the upper plate 60 by a two-dot chain line.
  • a portion facing the flat wall 41 of the inner fin 40 via the small flow path 23 and a portion contacting and joining the flat wall 41 are alternately arranged in the Y-axis direction.
  • the V-shaped opposed dimple 77 extends over the small wall 23 in the Y-axis direction and over the flat wall 41 of a plurality of (four) segments.
  • the linear vertical dimple 73 extends over the small wall 23 in the X-axis direction over the flat walls 41 of the plurality of segments.
  • the fin openings 45, 46 that open after the fins 43, 44 of the inner fin 40 are cut and raised have a portion facing the depression 93 c of the vertical dimple 93. Further, the fin openings 45 and 46 of the inner fin 40 have portions facing the depression 77 c of the opposed dimple 77 and the depression 73 c of the vertical dimple 73.
  • the exhaust gas flowing through the EGR passage flows through the first flow path 21 while contacting the inner fin 40 and the tube 50, and the cooling water flows through the second flow path 22 through the tube 50. It is cooled by radiating heat.
  • the inner fin 40 functions as a heat transfer member that transfers the heat of the exhaust to the upper plate 60 and the lower plate 80 of the tube 50.
  • the flow of the cooling water flowing through the second flow path 22 is blocked by the opposed dimple 77 in a direction obliquely crossing the X axis, thereby generating a spiral vertical vortex swirling around the X axis. Accordingly, in the region including the boundary layer near the outer wall surface (flow path surface 62) of the tube 50 in the second flow path 22, heat transfer of exhaust gas is promoted by eddy current (turbulent flow).
  • the vertical vortex of the cooling water generated on the downstream side of the opposed dimple 77 has a lower flow resistance than the horizontal vortex swirling around the Y axis. Limited to Therefore, in the heat exchanger 100, the heat transfer of the cooling water is promoted and the heat exchange efficiency is increased by reducing the interval L between the opposed dimples 77 arranged in the X-axis direction to a certain extent.
  • FIG. 7 shows that the temperature difference T of the cooling water caused by flowing the heat exchanger 100 during the operation in which the cooling water and the exhaust gas flow through the heat exchanger 100 under a predetermined condition indicates the ratio A of the non-contact area due to the dimple.
  • the temperature difference T of the cooling water is the difference between the temperature of the cooling water flowing through the second inlet 25 and the temperature of the cooling water flowing through the second outlet 27.
  • the ratio A of the non-contact area due to the dimple is as follows when the dimple is provided with respect to the contact area B between the tube 50 and the inner fin 40 when the dimple (the opposed dimple 77, the vertical dimple 73, and the vertical dimple 93) is not provided. This is the ratio of the contact area C between the tube 50 and the inner fin 40 and is expressed by the following equation.
  • A (C / B) ⁇ 100
  • the temperature difference T of the cooling water gradually increases as the ratio A of the non-contact area due to the dimple becomes larger than 0%, takes a peak value, and gradually increases as the ratio A increases after the peak value is obtained. Lower. Then, when the ratio A is in the range of 2% to 14%, the temperature difference T is equal to or more than the reference value required in the market.
  • the distance L between the opposed dimples 77 arranged in the X-axis direction is set such that the ratio A of the non-contact area due to the dimples falls within the range of 2% or more and 14% or less. Is set.
  • the heat exchanger 100 includes the first flow passage 21 through which the exhaust gas (the first fluid) flows in the X-axis direction (the flow direction) and the second flow passage 21 through which the cooling water (the second fluid) flows.
  • An upstanding wall 42 which is continuous and partitions the first flow path 21 into a plurality of small flow paths 23 arranged in the Y-axis direction (flow path width direction), and a fin portion 43 cut and raised from the flat wall 41 and protruding into the small flow path 23.
  • Dimple 77 extending across a plurality of flat walls 41 across the small flow path 23 as shown in FIG. Has, opposing dimples 77 was configured to have an inclined portion 77a of the pair of inclined with respect to the X-axis direction (channel direction), the cross section 77b of the inclined portions 77a of the pair cross each other, the.
  • the inner fins 40 and the tubes 50 transfer heat between the exhaust gas and the cooling water.
  • the tubes 50 and the inner fins 40 are provided.
  • the contact area with is reduced.
  • the cooling water is guided by the opposing dimples 77, heat transfer from the cooling water to the tube 50 is promoted.
  • the fin portions 43 and 44 generate a vortex in the flow of the exhaust gas, so that heat transfer from the exhaust gas to the tube 50 is promoted.
  • the heat exchanger 100 has improved heat exchange performance, and can be reduced in size and weight.
  • the cooling water flowing in the second flow path 22 in the X-axis direction is swirled by passing through the opposing dimples 77 arranged so as to cross the second flow path 22.
  • the vortex is generated in the flow of the cooling water, so that heat transfer from the cooling water to the tube 50 is promoted.
  • the cooling water flowing through the second flow path 22 passes through the inclined portion 77a inclined with respect to the X-axis direction and the intersection portion 77b, and becomes a vertical vortex.
  • a longitudinal vortex is generated in the flow of the cooling water by the opposed dimples 77, thereby promoting the heat transfer from the cooling water to the tube 50 while reducing the flow resistance of the cooling water.
  • the heat exchanger 100 includes a first flow path 21 through which exhaust gas (first fluid) flows in the X-axis direction (flow direction), a second flow path 22 through which cooling water (second fluid) flows, And the inner fin 40 disposed in the first flow path 21.
  • the inner fin 40 is connected to the flat wall 41 in contact with the tube 50 in the cross direction of the flat wall 41, and An upright wall 42 that partitions the path 21 into a plurality of small flow paths 23 arranged in the Y-axis direction (flow path width direction), and fin portions 43 and 44 cut and raised from the flat wall 41 and protruding into the small flow paths 23.
  • the tube 50 is depressed from the flow path surface 63 facing the first flow path 21 and protrudes from the flow path surface 62 facing the second flow path 22 so as to face the flow of the second fluid.
  • An opposing dimple 77 extending over the plurality of flat walls 41 over the first flow path 2; Vertical dimples 73 and 93 protruding from the flow path surface 62 facing the second flow path 22 and extending in the X-axis direction (flow direction).
  • the opposing dimple 77 may be configured to be arranged along the vertical dimples 83 and 93.
  • the inner fins 40 and the tubes 50 transfer heat between the exhaust gas and the cooling water.
  • the tubes 50 and the inner fins 40 are provided. Area in contact with
  • the cooling water is guided by the opposing dimples 77, heat transfer from the cooling water to the tube 50 is promoted.
  • the fin portions 43 and 44 generate a vortex in the flow of the exhaust gas, so that heat transfer from the exhaust gas to the tube 50 is promoted.
  • the heat exchanger 100 has improved heat exchange performance, and can be reduced in size and weight.
  • the cooling water flowing in the second flow path 22 in the X-axis direction is swirled by passing through the opposing dimples 77 arranged so as to cross the second flow path 22.
  • the vortex is generated in the flow of the cooling water, so that heat transfer from the cooling water to the tube 50 is promoted.
  • the cooling water flowing through the second flow path 22 flows along the pair of vertical dimples 73 and 93 facing each other, the force flowing in the X-axis direction increases, and the cooling water flowing along the vertical dimples 73 and 93 is increased.
  • the dimples 77 exceed the opposing dimples 77, a strong vortex flows. Thereby, heat transfer from the cooling water to the tube 50 is promoted.
  • the opposed dimples 77 are formed on only one of the pair of tubes 50 stacked on each other, the flow resistance of the cooling water is suppressed.
  • the heat exchanger 100 includes a first flow path 21 through which exhaust gas (first fluid) flows in the X-axis direction (flow direction), a second flow path 22 through which cooling water (second fluid) flows, And the inner fin 40 disposed in the first flow path 21.
  • the inner fin 40 is connected to the flat wall 41 in contact with the tube 50 in the cross direction of the flat wall 41, and An upright wall 42 that partitions the path 21 into a plurality of small flow paths 23 arranged in the Y-axis direction (flow path width direction), and fin portions 43 and 44 cut and raised from the flat wall 41 and projecting into the small flow paths 23.
  • the tube 50 has opposed dimples 77 and vertical dimples 73 and 93 (dimples) that are depressed from the flow path surface 63 facing the first flow path 21 and protrude from the flow path surface 62 facing the second flow path 22. Then, the opposed dimple 77 and the vertical dimple 7 are ,
  • the ratio A of the non-contact area which the tube 50 does not contact with the inner fin 40 by 93 (dimples) is provided, may be configured to be set in the range of 14% or more 2%.
  • the inner fins 40 and the tubes 50 transfer heat between the exhaust gas and the cooling water, but the opposed dimples 77 and the depressions 77c, 73c, 93c of the vertical dimples 73, 93 are provided.
  • the contact area between the tube 50 and the inner fin 40 is reduced.
  • the cooling water is guided by the opposed dimples 77 and the vertical dimples 73 and 93, so that heat transfer from the cooling water to the tube 50 is promoted.
  • the fin portions 43 and 44 generate a vortex in the flow of the exhaust gas, so that heat transfer from the exhaust gas to the tube 50 is promoted.
  • the heat exchanger 100 has improved heat exchange performance, and can be reduced in size and weight.
  • the non-contact area between the tube 50 and the inner fin 40 due to the recesses 77c, 73c, 93c of the opposing dimple 77 and the vertical dimples 73, 93 is suppressed, and the cooling water guided to the opposing dimple 77, the vertical dimples 73, 93.
  • the effect of promoting heat transfer from the cooling water to the tube 50 by the flow (vortex) is sufficiently obtained. Thereby, the heat exchanger 100 can obtain heat exchange performance required in the market.
  • a tube 50 for partitioning the second flow path 22 and the inner fin 40 arranged in the first flow path 21 are provided.
  • the inner fin 40 is continuous with the flat wall 41 in contact with the tube 50 and in the crossing direction of the flat wall 41, and partitions the first flow path 21 into a plurality of small flow paths 23 arranged in the Y-axis direction (flow path width direction). It has a wall 42 and fin portions 43 and 44 cut and raised from the flat wall 41 and protruding into the small channel 23.
  • the tube 50 is configured to have the opposed dimples 77 and the vertical dimples 73 and 93 (dimples) that are depressed from the flow path surface 63 facing the first flow path 21 and protrude from the flow path surface 62 facing the second flow path 22. .
  • the inner fins 40 and the tubes 50 transfer heat between the exhaust gas and the cooling water, but the opposed dimples 77 and the depressions 77c, 73c, 93c of the vertical dimples 73, 93 are provided.
  • the contact area between the tube 50 and the inner fin 40 is reduced.
  • the cooling water is guided by the opposed dimples 77 and the vertical dimples 73 and 93, so that heat transfer from the cooling water to the tube 50 is promoted.
  • the fin portions 43 and 44 generate a vortex in the flow of the exhaust gas, so that heat transfer from the exhaust gas to the tube 50 is promoted.
  • the heat exchanger 100 has improved heat exchange performance, and can be reduced in size and weight.
  • the tube 50 is configured to include, as dimples, opposing dimples 77 extending across the plurality of flat walls 41 across the small flow path 23 so as to oppose the flow of the cooling water (second fluid).
  • the cooling water flowing in the second flow path 22 in the X-axis direction passes through the opposing dimples 77 arranged so as to cross the second flow path 22 to be swirled.
  • the vortex is generated in the flow of the cooling water, so that heat transfer from the cooling water to the tube 50 is promoted.
  • the cooling water flowing through the second flow path 22 passes through the inclined portion 77a and the intersection portion 77b that are inclined with respect to the X-axis direction, and becomes a vertical vortex.
  • a longitudinal vortex is generated in the flow of the cooling water by the opposed dimples 77, thereby promoting the heat transfer from the cooling water to the tube 50 while reducing the flow resistance of the cooling water.
  • the tube 50 has, as dimples, vertical dimples 73 and 93 extending in the X-axis direction (flow path direction).
  • the plurality of opposing dimples 77 were arranged along the opposing dimples 77.
  • the cooling water flowing through the second flow path 22 flows along the vertical dimples 73 and 93 in the X-axis direction.
  • the cooling water circulates as a vortex each time it passes over the opposing dimples 77.
  • the vortex of the cooling water is generated in the X-axis direction, so that the heat transfer from the cooling water to the tube 50 is promoted.
  • the vertical dimples 73 and 93 are configured to face each other in the Z-axis direction (stacking direction) and protrude into the second flow path 22.
  • the cooling water flowing through the second flow path 22 flows along the pair of vertical dimples 73 and 93 facing each other, so that the force flowing in the X-axis direction increases, and the cooling water flows along the vertical dimples 73 and 93.
  • the opposed dimples 77 are formed on only one of the pair of tubes 50 stacked on each other, the flow resistance of the cooling water is suppressed.
  • the fin openings 45 and 46 which open where the fins 43 and 44 of the inner fin 40 are cut and raised, face the opposing dimples 77 of the tube 50 and the depressions 77c, 73c and 93c of the vertical dimples 73 and 93 (dimples). It has the structure which has the part which does.
  • the non-contact area ratio A where the tube 50 does not contact the inner fin 40 is set to a range of 2% or more and 14% or less. Configuration.
  • the heat exchanger 100 Based on the above configuration, in the heat exchanger 100, the non-contact area between the tube 50 and the inner fin 40 due to the opposing dimple 77, the depression 77 c, 73 c, 93 c of the vertical dimple 73, 93 is suppressed, and the opposing dimple 77, the vertical dimple The effect of promoting the heat transfer from the cooling water to the tube 50 by the flow of the cooling water (vortex) guided to 73 and 93 is sufficiently obtained. Thereby, the heat exchanger 100 can obtain heat exchange performance required in the market.
  • the tube 50 of the above embodiment has a configuration in which the opposing dimples 77 are formed on the upper plate 60 and no opposing dimples are formed on the lower plate 80.
  • the tube 50 according to the present modified example has a configuration in which the opposing dimples 77 are formed on the upper plate 60 and the opposing dimples 97 are also formed on the lower plate 80.
  • the opposing dimples 77 of the upper plate 60 and the opposing dimples 97 of the lower plate 80 have the same V-shape, and are arranged at the same position in the Z-axis direction.
  • the intersection 77b of the opposing dimple 77 and the intersection (not shown) of the opposing dimple 97 are arranged at the same position in the Z-axis direction.
  • the heat exchanger 100 according to the present modification has a configuration in which a pair of opposing dimples 77 and 97 oppose each other in the Z-axis direction (stacking direction) and protrude into the second flow path 22.
  • the cooling water flowing through the second flow path 22 flows over both of the opposing dimples 77 and 97 facing each other, so that the power of the vortex is increased. Thereby, heat transfer from the cooling water to the tube 50 is promoted.
  • the opposed dimple 77 (vortex generating dimple) in the above-described embodiment protrudes in a V-shape, but is not limited thereto, and may be, for example, a W-shape.
  • the W-shaped opposed dimple 77 has two pairs of inclined portions and two intersections. In this case, the region where the vertical vortex of the cooling water is generated by the opposed dimples 77 expands in the Y-axis direction, and the effect of promoting heat transfer from the cooling water to the tube 50 is enhanced.
  • the fin portions 43 and 44 of the above embodiment are cut and raised in a trapezoidal shape having four sides, but are not limited thereto, and may be cut and raised in a polygonal shape having five or more sides.
  • the present invention is suitable as a heat exchanger mounted on a vehicle, but can also be applied to a heat exchanger used other than a vehicle.

Abstract

A heat exchanger (100) comprises: tubes (50) by which first flow paths (21) through which a first fluid flows in a flow path direction and second flow paths (22) through which a second fluid flows, are separated; and inner fins (40) arranged in the first flow paths (21). Each inner fin (40) has: flat walls (41) in contact with the corresponding tube (50); upright walls (42) which extend in a direction intersecting with the flat walls (41) so as to be contiguous with the flat walls (41), and which partition the corresponding first flow path (21) into a plurality of small flow paths (23) arrayed in the flow path width direction; and fin parts (43, 44) which are cut and raised from the flat walls (41) so as to project into the small flow paths (23). Each tube (50) has an opposing dimple (77) which is recessed from a flow path surface (63) facing the corresponding first flow path (21) but protrudes from a flow path surface (62) facing the corresponding second flow path (22), and which extends over a plurality of the flat walls (41) across the small flow paths (23) so as to oppose the flow of the second fluid. The opposing dimple (77) has: a pair of tilted sections (77a) tilted relative to the flow path direction; and an intersection section (77b) at which the pair of tilted sections (77a) intersect with each other.

Description

熱交換器Heat exchanger
 本発明は、流体どうしの間で熱交換が行われる熱交換器に関する。 The present invention relates to a heat exchanger in which heat exchange is performed between fluids.
 JP2014-169857Aには、内燃機関の排気を冷却水によって冷却する排気熱交換器が開示されている。 JP2014-169857A discloses an exhaust heat exchanger that cools the exhaust of an internal combustion engine with cooling water.
 上記排気熱交換器では、水タンクの内部に排気流路を形成するチューブが配置される。チューブには、排気と冷却流体との熱交換を促進するための伝熱部材としてのインナーフィンが配置される。排気熱交換器内に導入される排気は、インナーフィンに接触しながらチューブ内を流通し、チューブの外部を流通する冷却水に放熱することによって冷却される。 チ ュ ー ブ In the exhaust heat exchanger, a tube that forms an exhaust passage is disposed inside the water tank. An inner fin as a heat transfer member for promoting heat exchange between the exhaust gas and the cooling fluid is arranged in the tube. The exhaust gas introduced into the exhaust heat exchanger flows through the tube while contacting the inner fin, and is cooled by radiating heat to cooling water flowing outside the tube.
 上記チューブには、その外表面から突出する凸状部として複数のディンプルが形成されている。ディンプルは、冷却水の温度境界層の温度を低下させる手段として設けられる。 チ ュ ー ブ A plurality of dimples are formed on the tube as convex portions protruding from the outer surface. The dimple is provided as means for lowering the temperature of the temperature boundary layer of the cooling water.
 しかし、近年、熱交換器の高性能化に対する要求が高まる傾向にあり、JP2014-169857Aに記載されたような熱交換器においても、更なる高性能化のために改善の余地が模索されていた。 However, in recent years, the demand for higher performance of heat exchangers has been increasing, and even in the heat exchangers described in JP2014-169857A, room for improvement has been sought for further higher performance. .
 本発明は、熱交換器において、熱交換性能を、より一層高めることを目的とする。 The present invention aims to further enhance the heat exchange performance of a heat exchanger.
 本発明のある態様によれば、第1流体と第2流体との間で熱交換が行われる熱交換器は、第1流体が流路方向に流通する第1流路と、第2流体が流通する第2流路と、を仕切るチューブと、前記第1流路に配置されるインナーフィンと、を備え、前記インナーフィンは、前記チューブに接触する平壁と、前記平壁の交差方向に連なり、前記第1流路を流路幅方向に並ぶ複数の小流路に仕切る起立壁と、前記平壁から切り起こされて前記小流路に突出するフィン部と、を有し、前記チューブは、前記第1流路に面する流路面から窪み、かつ第2流路に面する流路面から隆起し、第2流体の流れに対向するように前記小流路を跨いで複数の前記平壁にわたって延在する対向ディンプルを有し、前記対向ディンプルは、前記流路方向に対して傾斜する対の傾斜部と、対の前記傾斜部が互いに交差する交差部と、を有する。 According to one embodiment of the present invention, the heat exchanger in which heat exchange is performed between the first fluid and the second fluid includes: a first flow path in which the first fluid flows in the flow direction; A second channel that circulates; a tube that partitions the first channel; and an inner fin that is disposed in the first channel. The inner fin is disposed in a crossing direction of the flat wall that contacts the tube and the flat wall. An upright wall dividing the first flow path into a plurality of small flow paths arranged in the width direction of the flow path, and a fin portion cut and raised from the flat wall and protruding into the small flow path; Are recessed from the flow path surface facing the first flow path and raised from the flow path surface facing the second flow path, and straddle the small flow path so as to face the flow of the second fluid. An opposing dimple extending across the wall, wherein the opposing dimple is inclined with respect to the flow path direction. It has an inclined portion of the pair that, a cross section of the inclined portion of the pair cross each other, the.
 上記態様によれば、熱交換器では、対向ディンプルの窪みによってチューブとインナーフィンとの接触面積が減少するが、対向ディンプルによって第2流体からチューブへの熱伝達が促されるとともに、フィン部によって第1流体からチューブへの熱伝達が促される。これにより、熱交換器は、熱交換性能を高められる。 According to the above aspect, in the heat exchanger, the contact area between the tube and the inner fin is reduced by the depression of the opposing dimple. However, the heat transfer from the second fluid to the tube is promoted by the opposing dimple, and the fin portion causes the heat transfer. Heat transfer from one fluid to the tube is promoted. Thereby, a heat exchanger can raise heat exchange performance.
図1は、本発明の実施形態に係る熱交換器を示す斜視図である。FIG. 1 is a perspective view showing a heat exchanger according to an embodiment of the present invention. 図2は、熱交換器の分解斜視図である。FIG. 2 is an exploded perspective view of the heat exchanger. 図3は、チューブの分解斜視図である。FIG. 3 is an exploded perspective view of the tube. 図4は、熱交換器の一部を切り欠いた断面を示す斜視図である。FIG. 4 is a perspective view showing a cross section in which a part of the heat exchanger is cut away. 図5は、インナーフィンの一部を切り欠いた断面を示す斜視図である。FIG. 5 is a perspective view showing a cross section in which a part of the inner fin is cut away. 図6は、インナーフィンの平面図である。FIG. 6 is a plan view of the inner fin. 図7は、ディンプルによる非接触面積の比率Aと温度差Tとの関係を示す線図である。FIG. 7 is a diagram showing the relationship between the ratio A of the non-contact area due to the dimple and the temperature difference T. 図8は、変形例に係る熱交換器の一部を切り欠いた断面を示す斜視図である。FIG. 8 is a perspective view showing a cross section in which a part of a heat exchanger according to a modification is cut away.
 以下、添付図面を参照しながら本発明の実施形態に係る熱交換器100について説明する。なお、説明の簡略化のため、添付図面は、熱交換器100の一部を省略して図示している。 Hereinafter, the heat exchanger 100 according to the embodiment of the present invention will be described with reference to the accompanying drawings. In addition, for simplification of description, the accompanying drawings omit a part of the heat exchanger 100 for illustration.
 熱交換器100は、車両のEGR(Exhaust Gas Recirculation)システム(図示せず)に用いられる、水冷式EGRクーラである。熱交換器100は、エンジンから排出される排気の一部(第1流体)を冷却水(第2流体)によって冷却する。冷却回路を循環する冷却水は、熱交換器100を流通した後に、放熱器を流通して外気に放熱するようになっている。 The heat exchanger 100 is a water-cooled EGR cooler used for an EGR (Exhaust Gas Recirculation) system (not shown) of the vehicle. The heat exchanger 100 cools a part (first fluid) of the exhaust gas discharged from the engine with cooling water (second fluid). After flowing through the heat exchanger 100, the cooling water circulating through the cooling circuit flows through the radiator and radiates heat to the outside air.
 図1及び図2に示すように、熱交換器100は、内部に排気が流通する第1流路21を形成する複数のチューブ50と、積層される各チューブ50の間に冷却水が循環する第2流路22を形成するケーシング10と、を備える。 As shown in FIGS. 1 and 2, in the heat exchanger 100, cooling water circulates between a plurality of tubes 50 forming a first flow path 21 through which exhaust gas flows, and the tubes 50 stacked. And a casing 10 that forms the second flow path 22.
 以下、各図面において互いに直交するX、Y、Zの3軸を設定して熱交換器100の構成を説明する。なお、チューブ50において、第1流路21が延びるX軸方向を「流路方向」と呼び、Y軸方向を「流路幅方向」と呼ぶ。 Hereinafter, the configuration of the heat exchanger 100 will be described by setting three axes of X, Y, and Z orthogonal to each other in each drawing. In the tube 50, the X-axis direction in which the first flow path 21 extends is referred to as “flow path direction”, and the Y-axis direction is referred to as “flow path width direction”.
 図2に示すように、チューブ50は、半筒状のアッパープレート60及びロアプレート80が組み付けられることによって、Z軸方向に扁平な筒状に形成される。アッパープレート60とロアプレート80との間には、伝熱部材としてインナーフィン40が配置される。 As shown in FIG. 2, the tube 50 is formed in a flat cylindrical shape in the Z-axis direction by assembling the half-cylinder upper plate 60 and the lower plate 80. The inner fin 40 is disposed between the upper plate 60 and the lower plate 80 as a heat transfer member.
 アッパープレート60及びロアプレート80は、金属板をプレス加工することによって扁平な半筒状に形成される。 The upper plate 60 and the lower plate 80 are formed into a flat semi-cylindrical shape by pressing a metal plate.
 アッパープレート60は、X軸方向及びY軸方向に延在する板状をした伝熱板部61を有する。伝熱板部61には、後述するように冷却水の流れを導くディンプル(隆起部)として、1本の斜めディンプル71と、1本の上流側斜めディンプル72と、4本の縦ディンプル73(直線状ディンプル)と、多数本の対向ディンプル77(渦発生ディンプル)と、が形成される。 The upper plate 60 has a plate-shaped heat transfer plate 61 extending in the X-axis direction and the Y-axis direction. One diagonal dimple 71, one upstream diagonal dimple 72, and four vertical dimples 73 (dimples) that guide the flow of the cooling water are provided on the heat transfer plate 61 as described later. Linear dimples) and many opposing dimples 77 (vortex generating dimples) are formed.
 ロアプレート80は、X軸方向及びY軸方向に延在する板状をした伝熱板部81を有する。伝熱板部81には、ディンプルとして、1本の斜めディンプル91と、1本の上流側斜めディンプル92と、4本の縦ディンプル93(直線状ディンプル)と、が形成される。 The lower plate 80 has a plate-shaped heat transfer plate portion 81 extending in the X-axis direction and the Y-axis direction. One diagonal dimple 91, one upstream diagonal dimple 92, and four vertical dimples 93 (linear dimples) are formed in the heat transfer plate portion 81 as dimples.
 斜めディンプル71、91、上流側斜めディンプル72、92、及び縦ディンプル73、93は、それぞれZ軸方向について互いに対向して第2流路22に突出し、冷却水の流れを導くようになっている。 The diagonal dimples 71 and 91, the upstream diagonal dimples 72 and 92, and the vertical dimples 73 and 93 are opposed to each other in the Z-axis direction and protrude into the second flow path 22 to guide the flow of the cooling water. .
 ケーシング10は、半筒状のアッパシェル20及びロアシェル30が組み付けられることによって断面が略矩形の筒状に形成される。ケーシング10には、パイプ17、18が接続される。 The casing 10 is formed in a substantially rectangular cylindrical shape by assembling the half-cylindrical upper shell 20 and the lower shell 30. Pipes 17 and 18 are connected to the casing 10.
 図1に示すように、ケーシング10の内部には、パイプ17から導かれる冷却水を各チューブ50間の第2流路22に分配する第2入口25と、第2流路22から流出する冷却水をパイプ18へと導く第2出口27と、が設けられる。 As shown in FIG. 1, inside the casing 10, a second inlet 25 for distributing cooling water guided from the pipe 17 to the second flow path 22 between the tubes 50, and a cooling water flowing out of the second flow path 22. A second outlet 27 for guiding water to the pipe 18 is provided.
 ケーシング10の両開口端部には、枠状をしたヘッダ15、16を介してEGR通路の管(図示せず)が接続される。ヘッダ15の内部には、EGR通路の管から導かれる排気を第1流路21に分配する第1入口35が設けられる。ヘッダ16の内部には、第1流路21から流出する排気をEGR通路の管へと導く第1出口36が設けられる。 EGEGR passage pipes (not shown) are connected to both open ends of the casing 10 via frame- shaped headers 15 and 16. Inside the header 15, a first inlet 35 for distributing exhaust gas guided from a tube of the EGR passage to the first flow path 21 is provided. Inside the header 16, a first outlet 36 that guides exhaust gas flowing out of the first flow path 21 to a pipe of the EGR passage is provided.
 熱交換器100の製造時には、上記各部材が組み立てられる組立体が形成される。金属製の組立体は、加熱炉に搬送されて熱処理されることにより各接合部がろう付けによって接合される。 製造 When the heat exchanger 100 is manufactured, an assembly in which the above members are assembled is formed. The metal assembly is conveyed to a heating furnace and subjected to heat treatment, so that each joint is joined by brazing.
 熱交換器100の作動時に、冷却回路を循環する冷却水は、図1に黒矢印で示すように、パイプ17内から第2入口25に流入し、各チューブ50間の第2流路22に分配される。第2流路22を流通した冷却水は、第2出口27にて集合し、パイプ18内を通じて流出する。一方、EGR通路を流通する排気は、図1に白抜き矢印で示すように、ヘッダ15内の第1入口35を通じて各チューブ50内の第1流路21に分配される。第1流路21を流通する排気は、各チューブ50を介して第2流路22を流通する冷却水に放熱することで冷却される。第1流路21から流出した排気は、ヘッダ16内の第1出口36を通じて集合してエンジンの燃焼室に供給される。 When the heat exchanger 100 operates, the cooling water circulating in the cooling circuit flows into the second inlet 25 from inside the pipe 17 and flows into the second flow path 22 between the tubes 50 as shown by the black arrow in FIG. Be distributed. The cooling water flowing through the second flow path 22 gathers at the second outlet 27 and flows out through the pipe 18. On the other hand, the exhaust gas flowing through the EGR passage is distributed to the first flow passage 21 in each tube 50 through the first inlet 35 in the header 15 as shown by a white arrow in FIG. The exhaust gas flowing through the first flow path 21 is cooled by radiating heat to the cooling water flowing through the second flow path 22 through each tube 50. Exhaust gas flowing out of the first flow path 21 is collected through a first outlet 36 in the header 16 and supplied to a combustion chamber of the engine.
 次に、図3~図6を参照しながらチューブ50の構成について説明する。 Next, the configuration of the tube 50 will be described with reference to FIGS.
 図3は、チューブ50を分解した状態のアッパープレート60及びインナーフィン40を示す斜視図である。インナーフィン40は、略矩形の断面を有する波板形状をしている。チューブ50は、X軸方向及びY軸方向に延在する平壁41と、平壁41の交差方向(X軸方向及びZ軸方向)に連なる起立壁42と、が交互に並んでいる。オフセット型のインナーフィン40は、X軸方向に所定長さで区切られる区画ごとに、平壁41及び起立壁42の位置が、Y軸方向に所定長さだけ変位するようにオフセットされている。 FIG. 3 is a perspective view showing the upper plate 60 and the inner fin 40 in a state where the tube 50 is disassembled. The inner fin 40 has a corrugated shape having a substantially rectangular cross section. In the tube 50, flat walls 41 extending in the X-axis direction and the Y-axis direction, and upright walls 42 connected in the crossing direction (the X-axis direction and the Z-axis direction) of the flat walls 41 are alternately arranged. The offset type inner fin 40 is offset so that the positions of the flat wall 41 and the upright wall 42 are displaced by a predetermined length in the Y-axis direction for each section divided by a predetermined length in the X-axis direction.
 図4は、チューブ50の一部を切り欠いた断面を示す斜視図である。第1流路21は、アッパープレート60とロアプレート80との間に扁平な空間として形成される。第1流路21は、インナーフィン40の平壁41及び起立壁42からなる各セグメントによって複数の小流路23に仕切られる。 FIG. 4 is a perspective view showing a cross section of the tube 50 with a part cut away. The first flow path 21 is formed as a flat space between the upper plate 60 and the lower plate 80. The first flow path 21 is divided into a plurality of small flow paths 23 by each segment including the flat wall 41 and the upright wall 42 of the inner fin 40.
 図5は、インナーフィン40の一部を拡大して示す斜視図である。インナーフィン40は、セグメントごとに平壁41から切り起こされる上流側のフィン部43及び下流側のフィン部44を有する。平壁41には、フィン部43、44が切り起こされた部位に開口するフィン開口部45、46が形成される。インナーフィン40は、プレス加工によって形成される。 FIG. 5 is a perspective view showing a part of the inner fin 40 in an enlarged manner. The inner fin 40 has an upstream fin portion 43 and a downstream fin portion 44 cut and raised from the flat wall 41 for each segment. Fins 45 and 46 are formed in the flat wall 41 at the positions where the fins 43 and 44 are cut and raised. The inner fin 40 is formed by press working.
 上流側のフィン部43は、排気流れ方向について上流に対向するように切り起こされる。フィン部43は、平壁41から曲折する曲折辺43aと、小流路23を横切る傾斜辺43bと、曲折辺43a及び傾斜辺43bを結ぶ長辺43c及び短辺43dと、を有する台形状に形成される。 フ ィ ン The fin 43 on the upstream side is cut and raised so as to face upstream in the exhaust gas flow direction. The fin portion 43 has a trapezoidal shape having a bent side 43a bent from the flat wall 41, an inclined side 43b crossing the small flow path 23, and a long side 43c and a short side 43d connecting the bent side 43a and the inclined side 43b. It is formed.
 下流側のフィン部44は、排気流れ方向について下流側に対向するように切り起こされる。フィン部44は、平壁41から曲折する曲折辺44aと、小流路23を横切る傾斜辺44bと、曲折辺44a及び傾斜辺44bを結ぶ長辺44c及び短辺44dと、を有する台形状に形成される。 The fin portion 44 on the downstream side is cut and raised so as to face the downstream side in the exhaust gas flow direction. The fin portion 44 has a trapezoidal shape having a bent side 44a bent from the flat wall 41, an inclined side 44b crossing the small channel 23, and a long side 44c and a short side 44d connecting the bent side 44a and the inclined side 44b. It is formed.
 上流側のフィン部43の曲折辺43aと、下流側のフィン部44の曲折辺44aとは、Y軸に対して略同一角度で傾斜し、互いに略平行に配置される。 The bent side 43a of the fin 43 on the upstream side and the bent side 44a of the fin 44 on the downstream side are inclined at substantially the same angle with respect to the Y axis, and are disposed substantially parallel to each other.
 上流側のフィン部43の傾斜辺43b、及び下流側のフィン部44の傾斜辺44bは、Y軸に対して傾斜して小流路23を横切るように配置される。後述するように、第1流路21を流通する排気の流れは、Y軸に対する斜め方向に延在するフィン部43、44の傾斜辺43b、44bによって遮られることで、X軸まわりに旋回する螺旋状の縦渦流になる。 The inclined side 43b of the upstream fin portion 43 and the inclined side 44b of the downstream fin portion 44 are arranged so as to incline with respect to the Y axis and cross the small flow path 23. As described later, the flow of the exhaust gas flowing through the first flow path 21 turns around the X axis by being blocked by the inclined sides 43b, 44b of the fin portions 43, 44 extending in an oblique direction with respect to the Y axis. It becomes a spiral vertical vortex.
 図3に示すように、アッパープレート60の伝熱板部61には、複数の対向ディンプル77が縦ディンプル73に沿って並ぶように形成される。X軸方向に並ぶ対向ディンプル77どうしの間隔Lは、後述するように熱交換器100に要求される性能に応じて任意に設定される。 As shown in FIG. 3, a plurality of opposed dimples 77 are formed on the heat transfer plate portion 61 of the upper plate 60 so as to be arranged along the vertical dimples 73. The distance L between the opposing dimples 77 arranged in the X-axis direction is arbitrarily set according to the performance required of the heat exchanger 100 as described later.
 V字状の対向ディンプル77は、Y軸に対して傾斜する一対の傾斜部77aと、一対の傾斜部77aが互いに交差する交差部77bと、を有する。対向ディンプル77は、一対の傾斜部77aが排気流れ方向について上流側に向かって開くように傾斜し、交差部77bが排気流れ方向について下流側に向かって突出する。後述するように、第2流路22を流通する冷却水の流れは、Y軸に対する斜め交差方向に延在する対向ディンプル77の傾斜部77aによって遮られることで、X軸まわりに旋回する螺旋状の縦渦流になる。 The V-shaped opposed dimple 77 has a pair of inclined portions 77a inclined with respect to the Y axis, and an intersection 77b where the pair of inclined portions 77a intersect with each other. The opposed dimple 77 is inclined such that the pair of inclined portions 77a are opened toward the upstream side in the exhaust flow direction, and the intersection portion 77b is projected toward the downstream side in the exhaust flow direction. As described later, the flow of the cooling water flowing through the second flow path 22 is interrupted by the inclined portion 77a of the opposed dimple 77 extending in an oblique crossing direction with respect to the Y axis, so that the spiral water turns around the X axis. Vertical vortex.
 図4に示すように、対向ディンプル77は、アッパープレート60にプレス加工によって形成される。対向ディンプル77は、アッパープレート60の第2流路22に面する流路面62に対して堤状に隆起し、アッパープレート60の第1流路21に面する流路面63に対して溝状に窪む。対向ディンプル77は、溝状の窪み77cを有する。縦ディンプル73は、同様にアッパープレート60にプレス加工によって形成される。縦ディンプル73は、溝状の窪み73cを有する。また、ロアプレート80には、縦ディンプル93がプレス加工によって形成される。縦ディンプル93は、溝状の窪み93cを有する。 対 向 As shown in FIG. 4, the opposing dimple 77 is formed on the upper plate 60 by pressing. The opposed dimple 77 protrudes in a bank shape with respect to the channel surface 62 of the upper plate 60 facing the second channel 22, and forms a groove with respect to the channel surface 63 of the upper plate 60 facing the first channel 21. Dent. The opposing dimple 77 has a groove-like depression 77c. The vertical dimple 73 is similarly formed on the upper plate 60 by pressing. The vertical dimple 73 has a groove-like depression 73c. The lower plate 80 is formed with a vertical dimple 93 by press working. The vertical dimple 93 has a groove-like depression 93c.
 図6は、インナーフィン40を実線で示し、アッパープレート60を2点鎖線で示す平面図である。アッパープレート60には、小流路23を介してインナーフィン40の平壁41に面する部位と、平壁41に接触して接合される部位と、がY軸方向について交互に並んでいる。 FIG. 6 is a plan view showing the inner fin 40 by a solid line and the upper plate 60 by a two-dot chain line. In the upper plate 60, a portion facing the flat wall 41 of the inner fin 40 via the small flow path 23 and a portion contacting and joining the flat wall 41 are alternately arranged in the Y-axis direction.
 V字状の対向ディンプル77は、Y軸方向について小流路23を跨いで複数(4つ)のセグメントの平壁41にわたって延在する。 The V-shaped opposed dimple 77 extends over the small wall 23 in the Y-axis direction and over the flat wall 41 of a plurality of (four) segments.
 直線状の縦ディンプル73は、X軸方向ついて小流路23を跨いで複数のセグメントの平壁41にわたって延在する。 The linear vertical dimple 73 extends over the small wall 23 in the X-axis direction over the flat walls 41 of the plurality of segments.
 図4に示すように、インナーフィン40のフィン部43、44が切り起こされた後に開口するフィン開口部45、46は、縦ディンプル93の窪み93cに面する部位を有する。また、インナーフィン40のフィン開口部45、46は、対向ディンプル77の窪み77c、縦ディンプル73の窪み73cに面する部位を有する。 As shown in FIG. 4, the fin openings 45, 46 that open after the fins 43, 44 of the inner fin 40 are cut and raised have a portion facing the depression 93 c of the vertical dimple 93. Further, the fin openings 45 and 46 of the inner fin 40 have portions facing the depression 77 c of the opposed dimple 77 and the depression 73 c of the vertical dimple 73.
 次に、熱交換器100の作用について説明する。 Next, the operation of the heat exchanger 100 will be described.
 熱交換器100の作動時に、EGR通路を流通する排気は、インナーフィン40及びチューブ50に接触しながら第1流路21を流通し、チューブ50を介して第2流路22を流通する冷却水に放熱することで冷却される。インナーフィン40は、排気の熱をチューブ50のアッパープレート60及びロアプレート80に伝える伝熱部材として機能する。 When the heat exchanger 100 is operated, the exhaust gas flowing through the EGR passage flows through the first flow path 21 while contacting the inner fin 40 and the tube 50, and the cooling water flows through the second flow path 22 through the tube 50. It is cooled by radiating heat. The inner fin 40 functions as a heat transfer member that transfers the heat of the exhaust to the upper plate 60 and the lower plate 80 of the tube 50.
 第1流路21を流通する排気の流れは、インナーフィン40のフィン部43、44によってX軸に対する斜め方向に遮られることで、X軸まわりに旋回する螺旋状の縦渦流を生じる。これにより、第1流路21においてチューブ50の内壁面(流路面63)及びインナーフィン40の表面の近傍の境界層を含む領域では、渦流(乱流)によって排気の熱伝達が促される。フィン部43、44の下流側に生じる排気の縦渦流は、Y軸まわりに旋回する横渦流に比べて、排気の流通抵抗が抑えられ、かつ乱流を生じさせる領域がX軸方向について大きくなる。 (4) The flow of exhaust gas flowing through the first flow path 21 is blocked obliquely with respect to the X axis by the fin portions 43 and 44 of the inner fin 40, thereby generating a spiral vertical vortex swirling around the X axis. Thus, in the first flow path 21, in the region including the inner wall surface (flow path surface 63) of the tube 50 and the boundary layer near the surface of the inner fin 40, heat transfer of the exhaust gas is promoted by the vortex (turbulence). The vertical vortex of the exhaust gas generated on the downstream side of the fins 43 and 44 has a reduced exhaust flow resistance and a larger turbulent flow area in the X-axis direction than the horizontal vortex circling around the Y-axis. .
 一方、第2流路22を流通する冷却水の流れは、対向ディンプル77によってX軸に対する斜め交差方向に遮られることで、X軸まわりに旋回する螺旋状の縦渦流を生じる。これにより、第2流路22においてチューブ50の外壁面(流路面62)の近傍の境界層を含む領域では、渦流(乱流)によって排気の熱伝達が促される。 On the other hand, the flow of the cooling water flowing through the second flow path 22 is blocked by the opposed dimple 77 in a direction obliquely crossing the X axis, thereby generating a spiral vertical vortex swirling around the X axis. Accordingly, in the region including the boundary layer near the outer wall surface (flow path surface 62) of the tube 50 in the second flow path 22, heat transfer of exhaust gas is promoted by eddy current (turbulent flow).
 対向ディンプル77の下流側に生じる冷却水の縦渦流は、Y軸まわりに旋回する横渦流に比べて、冷却水の流通抵抗が抑えられるが、乱流を生じさせる領域がX軸方向についてある範囲に限られる。このため、熱交換器100では、X軸方向に並ぶ対向ディンプル77どうしの間隔Lをある程度まで小さくすることで、冷却水の熱伝達が促され、熱交換効率が高まる。 The vertical vortex of the cooling water generated on the downstream side of the opposed dimple 77 has a lower flow resistance than the horizontal vortex swirling around the Y axis. Limited to Therefore, in the heat exchanger 100, the heat transfer of the cooling water is promoted and the heat exchange efficiency is increased by reducing the interval L between the opposed dimples 77 arranged in the X-axis direction to a certain extent.
 しかし、熱交換器100では、対向ディンプル77どうしの間隔Lを小さくすると、対向ディンプル77の窪み77cがインナーフィン40に対峙する面積が増えるため、チューブ50とインナーフィン40との非接触面積が増加する。このため、熱交換器100では、対向ディンプル77どうしの間隔Lをある程度より小さくすると、インナーフィン40の熱伝達量が減少し、熱交換効率が低くなる。 However, in the heat exchanger 100, when the interval L between the opposing dimples 77 is reduced, the area where the recess 77c of the opposing dimple 77 faces the inner fin 40 increases, so that the non-contact area between the tube 50 and the inner fin 40 increases. I do. For this reason, in the heat exchanger 100, when the interval L between the opposed dimples 77 is made smaller than a certain level, the heat transfer amount of the inner fins 40 decreases, and the heat exchange efficiency decreases.
 図7は、所定条件で熱交換器100に冷却水及び排気を流通させた作動時において、熱交換器100を流通することによって生じる冷却水の温度差Tが、ディンプルによる非接触面積の比率Aに応じて変化する値を、シミュレーション解析によって求めた結果を示している。なお、冷却水の温度差Tは、第2入口25を流れる冷却水の温度と、第2出口27を流れる冷却水の温度との差である。ディンプルによる非接触面積の比率Aは、ディンプル(対向ディンプル77、縦ディンプル73、及び縦ディンプル93)が設けられない場合のチューブ50とインナーフィン40との接触面積Bに対する、ディンプルが設けられる場合のチューブ50とインナーフィン40との接触面積Cの比率であり、次式で表される。
A=(C/B)×100
FIG. 7 shows that the temperature difference T of the cooling water caused by flowing the heat exchanger 100 during the operation in which the cooling water and the exhaust gas flow through the heat exchanger 100 under a predetermined condition indicates the ratio A of the non-contact area due to the dimple. 2 shows the result obtained by a simulation analysis of a value that changes according to. The temperature difference T of the cooling water is the difference between the temperature of the cooling water flowing through the second inlet 25 and the temperature of the cooling water flowing through the second outlet 27. The ratio A of the non-contact area due to the dimple is as follows when the dimple is provided with respect to the contact area B between the tube 50 and the inner fin 40 when the dimple (the opposed dimple 77, the vertical dimple 73, and the vertical dimple 93) is not provided. This is the ratio of the contact area C between the tube 50 and the inner fin 40 and is expressed by the following equation.
A = (C / B) × 100
 図7に示すように、冷却水の温度差Tは、ディンプルによる非接触面積の比率Aが0%より大きくなるほど次第に高まってピーク値をとり、ピーク値をとった後に比率Aがより大きくなるほど次第に低くなる。そして、比率Aが2%以上14%以下の範囲で、温度差Tが市場で要求される基準値以上となる。 As shown in FIG. 7, the temperature difference T of the cooling water gradually increases as the ratio A of the non-contact area due to the dimple becomes larger than 0%, takes a peak value, and gradually increases as the ratio A increases after the peak value is obtained. Lower. Then, when the ratio A is in the range of 2% to 14%, the temperature difference T is equal to or more than the reference value required in the market.
 熱交換器100では、上記シミュレーション解析による結果に基づいて、ディンプルによる非接触面積の比率Aが2%以上14%以下の範囲に収まるように、X軸方向に並ぶ対向ディンプル77どうしの間隔Lが設定される。 In the heat exchanger 100, based on the result of the simulation analysis, the distance L between the opposed dimples 77 arranged in the X-axis direction is set such that the ratio A of the non-contact area due to the dimples falls within the range of 2% or more and 14% or less. Is set.
 次に、本実施形態の効果について説明する。 Next, effects of the present embodiment will be described.
 本実施形態によれば、熱交換器100は、排気(第1流体)がX軸方向(流路方向)に流通する第1流路21と、冷却水(第2流体)が流通する第2流路22と、を仕切るチューブ50と、第1流路21に配置されるインナーフィン40と、を備え、インナーフィン40は、チューブ50に接触する平壁41と、平壁41の交差方向に連なり、第1流路21をY軸方向(流路幅方向)に並ぶ複数の小流路23に仕切る起立壁42と、平壁41から切り起こされて小流路23に突出するフィン部43、44と、を有し、チューブ50は、第1流路21に面する流路面63から窪み、かつ第2流路22に面する流路面62から隆起し、第2流体の流れに対向するように小流路23を跨いで複数の平壁41にわたって延在する対向ディンプル77を有し、対向ディンプル77は、X軸方向(流路方向)に対して傾斜する対の傾斜部77aと、対の傾斜部77aが互いに交差する交差部77bと、を有する構成とした。 According to the present embodiment, the heat exchanger 100 includes the first flow passage 21 through which the exhaust gas (the first fluid) flows in the X-axis direction (the flow direction) and the second flow passage 21 through which the cooling water (the second fluid) flows. A tube 50 for partitioning the flow path 22, and an inner fin 40 disposed in the first flow path 21, wherein the inner fin 40 extends in a direction in which the flat wall 41 contacts the tube 50 and the flat wall 41. An upstanding wall 42 which is continuous and partitions the first flow path 21 into a plurality of small flow paths 23 arranged in the Y-axis direction (flow path width direction), and a fin portion 43 cut and raised from the flat wall 41 and protruding into the small flow path 23. , 44, and the tube 50 is depressed from the flow path surface 63 facing the first flow path 21 and protrudes from the flow path surface 62 facing the second flow path 22, and faces the flow of the second fluid. Dimple 77 extending across a plurality of flat walls 41 across the small flow path 23 as shown in FIG. Has, opposing dimples 77 was configured to have an inclined portion 77a of the pair of inclined with respect to the X-axis direction (channel direction), the cross section 77b of the inclined portions 77a of the pair cross each other, the.
 上記構成に基づき、熱交換器100では、インナーフィン40及びチューブ50が排気と冷却水との間で熱を伝達するが、対向ディンプル77の窪み77cが設けられることによって、チューブ50とインナーフィン40との接触面積が減少する。その反面、冷却水が対向ディンプル77によって導かれることで、冷却水からチューブ50への熱伝達が促される。そして、フィン部43、44が排気の流れに渦流を発生させることで、排気からチューブ50への熱伝達が促される。これにより、熱交換器100は、熱交換性能を高められて、小形軽量化が図れる。 Based on the above configuration, in the heat exchanger 100, the inner fins 40 and the tubes 50 transfer heat between the exhaust gas and the cooling water. However, by providing the recesses 77c of the opposed dimples 77, the tubes 50 and the inner fins 40 are provided. The contact area with is reduced. On the other hand, since the cooling water is guided by the opposing dimples 77, heat transfer from the cooling water to the tube 50 is promoted. The fin portions 43 and 44 generate a vortex in the flow of the exhaust gas, so that heat transfer from the exhaust gas to the tube 50 is promoted. Thus, the heat exchanger 100 has improved heat exchange performance, and can be reduced in size and weight.
 さらに、第2流路22をX軸方向に流通する冷却水は、第2流路22を横切るように配置された対向ディンプル77を越えることで、渦流になる。こうして、熱交換器100では、冷却水の流れに渦流が発生することで、冷却水からチューブ50への熱伝達が促される。 Furthermore, the cooling water flowing in the second flow path 22 in the X-axis direction is swirled by passing through the opposing dimples 77 arranged so as to cross the second flow path 22. Thus, in the heat exchanger 100, the vortex is generated in the flow of the cooling water, so that heat transfer from the cooling water to the tube 50 is promoted.
 さらに、第2流路22を流通する冷却水は、X軸方向に対して傾斜する傾斜部77a、及び交差部77bを越えることで、縦渦流になる。こうして、熱交換器100では、対向ディンプル77によって冷却水の流れに縦渦流が発生することで、冷却水の流通抵抗の低減を図りつつ、冷却水からチューブ50への熱伝達が促される。 Furthermore, the cooling water flowing through the second flow path 22 passes through the inclined portion 77a inclined with respect to the X-axis direction and the intersection portion 77b, and becomes a vertical vortex. In this way, in the heat exchanger 100, a longitudinal vortex is generated in the flow of the cooling water by the opposed dimples 77, thereby promoting the heat transfer from the cooling water to the tube 50 while reducing the flow resistance of the cooling water.
 また、熱交換器100は、排気(第1流体)がX軸方向(流路方向)に流通する第1流路21と、冷却水(第2流体)が流通する第2流路22と、を仕切るチューブ50と、第1流路21に配置されるインナーフィン40と、を備え、インナーフィン40は、チューブ50に接触する平壁41と、平壁41の交差方向に連なり、第1流路21をY軸方向(流路幅方向)に並ぶ複数の小流路23に仕切る起立壁42と、平壁41から切り起こされて小流路23に突出するフィン部43、44と、を有し、チューブ50は、第1流路21に面する流路面63から窪み、かつ第2流路22に面する流路面62から隆起し、第2流体の流れに対向するように小流路23を跨いで複数の平壁41にわたって延在する対向ディンプル77と、第1流路21に面する流路面63から窪み、かつ第2流路22に面する流路面62から隆起し、X軸方向(流路方向)に延在する縦ディンプル73,93と、を有し、複数の対向ディンプル77は、縦ディンプル83、93に沿って並ぶ、構成としてもよい。 The heat exchanger 100 includes a first flow path 21 through which exhaust gas (first fluid) flows in the X-axis direction (flow direction), a second flow path 22 through which cooling water (second fluid) flows, And the inner fin 40 disposed in the first flow path 21. The inner fin 40 is connected to the flat wall 41 in contact with the tube 50 in the cross direction of the flat wall 41, and An upright wall 42 that partitions the path 21 into a plurality of small flow paths 23 arranged in the Y-axis direction (flow path width direction), and fin portions 43 and 44 cut and raised from the flat wall 41 and protruding into the small flow paths 23. The tube 50 is depressed from the flow path surface 63 facing the first flow path 21 and protrudes from the flow path surface 62 facing the second flow path 22 so as to face the flow of the second fluid. An opposing dimple 77 extending over the plurality of flat walls 41 over the first flow path 2; Vertical dimples 73 and 93 protruding from the flow path surface 62 facing the second flow path 22 and extending in the X-axis direction (flow direction). The opposing dimple 77 may be configured to be arranged along the vertical dimples 83 and 93.
 上記構成に基づき、熱交換器100では、インナーフィン40及びチューブ50が排気と冷却水との間で熱を伝達するが、対向ディンプル77の窪み77cが設けられることによって、チューブ50とインナーフィン40との接触面積が減少する。その反面、冷却水が対向ディンプル77によって導かれることで、冷却水からチューブ50への熱伝達が促される。そして、フィン部43、44が排気の流れに渦流を発生させることで、排気からチューブ50への熱伝達が促される。これにより、熱交換器100は、熱交換性能を高められて、小形軽量化が図れる。 Based on the above configuration, in the heat exchanger 100, the inner fins 40 and the tubes 50 transfer heat between the exhaust gas and the cooling water. However, by providing the recesses 77c of the opposed dimples 77, the tubes 50 and the inner fins 40 are provided. Area in contact with On the other hand, since the cooling water is guided by the opposing dimples 77, heat transfer from the cooling water to the tube 50 is promoted. The fin portions 43 and 44 generate a vortex in the flow of the exhaust gas, so that heat transfer from the exhaust gas to the tube 50 is promoted. Thus, the heat exchanger 100 has improved heat exchange performance, and can be reduced in size and weight.
 さらに、第2流路22をX軸方向に流通する冷却水は、第2流路22を横切るように配置された対向ディンプル77を越えることで、渦流になる。こうして、熱交換器100では、冷却水の流れに渦流が発生することで、冷却水からチューブ50への熱伝達が促される。 Furthermore, the cooling water flowing in the second flow path 22 in the X-axis direction is swirled by passing through the opposing dimples 77 arranged so as to cross the second flow path 22. Thus, in the heat exchanger 100, the vortex is generated in the flow of the cooling water, so that heat transfer from the cooling water to the tube 50 is promoted.
 さらに、第2流路22を流通する冷却水は、互いに対向する対の縦ディンプル73、93に沿って流れることで、X軸方向に流れる勢力が高まり、縦ディンプル73、93に沿って並ぶ複数の対向ディンプル77を越える度に強い渦流になる。これにより、冷却水からチューブ50への熱伝達が促される。また、対向ディンプル77が互いに積層される対のチューブ50の一方のみに形成されることで、冷却水の流通抵抗が抑えられる。 Further, since the cooling water flowing through the second flow path 22 flows along the pair of vertical dimples 73 and 93 facing each other, the force flowing in the X-axis direction increases, and the cooling water flowing along the vertical dimples 73 and 93 is increased. Each time the dimples 77 exceed the opposing dimples 77, a strong vortex flows. Thereby, heat transfer from the cooling water to the tube 50 is promoted. Further, since the opposed dimples 77 are formed on only one of the pair of tubes 50 stacked on each other, the flow resistance of the cooling water is suppressed.
 また、熱交換器100は、排気(第1流体)がX軸方向(流路方向)に流通する第1流路21と、冷却水(第2流体)が流通する第2流路22と、を仕切るチューブ50と、第1流路21に配置されるインナーフィン40と、を備え、インナーフィン40は、チューブ50に接触する平壁41と、平壁41の交差方向に連なり、第1流路21をY軸方向(流路幅方向)に並ぶ複数の小流路23に仕切る起立壁42と、平壁41から切り起こされて小流路23に突出するフィン部43、44と、を有し、チューブ50は、第1流路21に面する流路面63から窪み、かつ第2流路22に面する流路面62から隆起する対向ディンプル77、縦ディンプル73、93(ディンプル)を有し、チューブ50に対向ディンプル77、縦ディンプル73、93(ディンプル)が設けられることによりチューブ50がインナーフィン40に対して接触しない非接触面積の比率Aは、2%以上14%以下の範囲に設定される構成としてもよい。 The heat exchanger 100 includes a first flow path 21 through which exhaust gas (first fluid) flows in the X-axis direction (flow direction), a second flow path 22 through which cooling water (second fluid) flows, And the inner fin 40 disposed in the first flow path 21. The inner fin 40 is connected to the flat wall 41 in contact with the tube 50 in the cross direction of the flat wall 41, and An upright wall 42 that partitions the path 21 into a plurality of small flow paths 23 arranged in the Y-axis direction (flow path width direction), and fin portions 43 and 44 cut and raised from the flat wall 41 and projecting into the small flow paths 23. The tube 50 has opposed dimples 77 and vertical dimples 73 and 93 (dimples) that are depressed from the flow path surface 63 facing the first flow path 21 and protrude from the flow path surface 62 facing the second flow path 22. Then, the opposed dimple 77 and the vertical dimple 7 are , The ratio A of the non-contact area which the tube 50 does not contact with the inner fin 40 by 93 (dimples) is provided, may be configured to be set in the range of 14% or more 2%.
 上記構成に基づき、熱交換器100では、インナーフィン40及びチューブ50が排気と冷却水との間で熱を伝達するが、対向ディンプル77、縦ディンプル73、93の窪み77c、73c、93cが設けられることによって、チューブ50とインナーフィン40との接触面積が減少する。その反面、冷却水が対向ディンプル77、縦ディンプル73、93によって導かれることで、冷却水からチューブ50への熱伝達が促される。そして、フィン部43、44が排気の流れに渦流を発生させることで、排気からチューブ50への熱伝達が促される。これにより、熱交換器100は、熱交換性能を高められて、小形軽量化が図れる。 Based on the above configuration, in the heat exchanger 100, the inner fins 40 and the tubes 50 transfer heat between the exhaust gas and the cooling water, but the opposed dimples 77 and the depressions 77c, 73c, 93c of the vertical dimples 73, 93 are provided. As a result, the contact area between the tube 50 and the inner fin 40 is reduced. On the other hand, the cooling water is guided by the opposed dimples 77 and the vertical dimples 73 and 93, so that heat transfer from the cooling water to the tube 50 is promoted. The fin portions 43 and 44 generate a vortex in the flow of the exhaust gas, so that heat transfer from the exhaust gas to the tube 50 is promoted. Thus, the heat exchanger 100 has improved heat exchange performance, and can be reduced in size and weight.
 さらに、対向ディンプル77、縦ディンプル73、93の窪み77c、73c、93cによるチューブ50とインナーフィン40との非接触面積が抑えられるとともに、対向ディンプル77、縦ディンプル73、93に導かれる冷却水の流れ(渦流)によって冷却水からチューブ50への熱伝達が促される効果が十分に得られる。これにより、熱交換器100は、市場で要求される熱交換性能が得られる。 Further, the non-contact area between the tube 50 and the inner fin 40 due to the recesses 77c, 73c, 93c of the opposing dimple 77 and the vertical dimples 73, 93 is suppressed, and the cooling water guided to the opposing dimple 77, the vertical dimples 73, 93. The effect of promoting heat transfer from the cooling water to the tube 50 by the flow (vortex) is sufficiently obtained. Thereby, the heat exchanger 100 can obtain heat exchange performance required in the market.
 また、本実施形態によれば、熱交換器100は、排気(第1流体)がX軸方向(流路方向)に流通する第1流路21と、冷却水(第2流体)が流通する第2流路22と、を仕切るチューブ50と、第1流路21に配置されるインナーフィン40と、を備える。インナーフィン40は、チューブ50に接触する平壁41と、平壁41の交差方向に連なり、第1流路21をY軸方向(流路幅方向)に並ぶ複数の小流路23に仕切る起立壁42と、平壁41から切り起こされて小流路23に突出するフィン部43、44と、を有する。チューブ50は、第1流路21に面する流路面63から窪み、かつ第2流路22に面する流路面62から隆起する対向ディンプル77、縦ディンプル73、93(ディンプル)を有する構成とした。 Further, according to the present embodiment, in the heat exchanger 100, the first flow path 21 through which the exhaust gas (the first fluid) flows in the X-axis direction (the flow path direction) and the cooling water (the second fluid) flow. A tube 50 for partitioning the second flow path 22 and the inner fin 40 arranged in the first flow path 21 are provided. The inner fin 40 is continuous with the flat wall 41 in contact with the tube 50 and in the crossing direction of the flat wall 41, and partitions the first flow path 21 into a plurality of small flow paths 23 arranged in the Y-axis direction (flow path width direction). It has a wall 42 and fin portions 43 and 44 cut and raised from the flat wall 41 and protruding into the small channel 23. The tube 50 is configured to have the opposed dimples 77 and the vertical dimples 73 and 93 (dimples) that are depressed from the flow path surface 63 facing the first flow path 21 and protrude from the flow path surface 62 facing the second flow path 22. .
 上記構成に基づき、熱交換器100では、インナーフィン40及びチューブ50が排気と冷却水との間で熱を伝達するが、対向ディンプル77、縦ディンプル73、93の窪み77c、73c、93cが設けられることによって、チューブ50とインナーフィン40との接触面積が減少する。その反面、冷却水が対向ディンプル77、縦ディンプル73、93によって導かれることで、冷却水からチューブ50への熱伝達が促される。そして、フィン部43、44が排気の流れに渦流を発生させることで、排気からチューブ50への熱伝達が促される。これにより、熱交換器100は、熱交換性能を高められて、小形軽量化が図れる。 Based on the above configuration, in the heat exchanger 100, the inner fins 40 and the tubes 50 transfer heat between the exhaust gas and the cooling water, but the opposed dimples 77 and the depressions 77c, 73c, 93c of the vertical dimples 73, 93 are provided. As a result, the contact area between the tube 50 and the inner fin 40 is reduced. On the other hand, the cooling water is guided by the opposed dimples 77 and the vertical dimples 73 and 93, so that heat transfer from the cooling water to the tube 50 is promoted. The fin portions 43 and 44 generate a vortex in the flow of the exhaust gas, so that heat transfer from the exhaust gas to the tube 50 is promoted. Thus, the heat exchanger 100 has improved heat exchange performance, and can be reduced in size and weight.
 また、チューブ50は、ディンプルとして、冷却水(第2流体)の流れに対向するように小流路23を跨いで複数の平壁41にわたって延在する対向ディンプル77を備える構成とした。 チ ュ ー ブ In addition, the tube 50 is configured to include, as dimples, opposing dimples 77 extending across the plurality of flat walls 41 across the small flow path 23 so as to oppose the flow of the cooling water (second fluid).
 上記構成に基づき、第2流路22をX軸方向に流通する冷却水は、第2流路22を横切るように配置された対向ディンプル77を越えることで、渦流になる。こうして、熱交換器100では、冷却水の流れに渦流が発生することで、冷却水からチューブ50への熱伝達が促される。 基 づ き Based on the above configuration, the cooling water flowing in the second flow path 22 in the X-axis direction passes through the opposing dimples 77 arranged so as to cross the second flow path 22 to be swirled. Thus, in the heat exchanger 100, the vortex is generated in the flow of the cooling water, so that heat transfer from the cooling water to the tube 50 is promoted.
 また、対向ディンプル77は、冷却水(第2流体)の流れに対向するようにX軸方向(流路方向)に対して傾斜する対の傾斜部77aと、対の傾斜部77aが互いに交差する交差部77bと、を有する構成とした。 Further, in the opposed dimple 77, a pair of inclined portions 77a inclined with respect to the X-axis direction (flow path direction) so as to face the flow of the cooling water (second fluid), and the pair of inclined portions 77a cross each other. And an intersecting portion 77b.
 上記構成に基づき、第2流路22を流通する冷却水は、X軸方向に対して傾斜する傾斜部77a、及び交差部77bを越えることで、縦渦流になる。こうして、熱交換器100では、対向ディンプル77によって冷却水の流れに縦渦流が発生することで、冷却水の流通抵抗の低減を図りつつ、冷却水からチューブ50への熱伝達が促される。 に Based on the above configuration, the cooling water flowing through the second flow path 22 passes through the inclined portion 77a and the intersection portion 77b that are inclined with respect to the X-axis direction, and becomes a vertical vortex. In this way, in the heat exchanger 100, a longitudinal vortex is generated in the flow of the cooling water by the opposed dimples 77, thereby promoting the heat transfer from the cooling water to the tube 50 while reducing the flow resistance of the cooling water.
 チューブ50は、ディンプルとして、X軸方向(流路方向)に延在する縦ディンプル73、93を有する。複数の対向ディンプル77は、対向ディンプル77に沿って並ぶ構成とした。 The tube 50 has, as dimples, vertical dimples 73 and 93 extending in the X-axis direction (flow path direction). The plurality of opposing dimples 77 were arranged along the opposing dimples 77.
 上記構成に基づき、第2流路22を流通する冷却水は、縦ディンプル73、93に沿ってX軸方向に流れる。複数の対向ディンプル77を対向ディンプル77に沿って並ぶように配置することで、冷却水が対向ディンプル77を越える度に渦流となって流通する。こうして、熱交換器100では、冷却水の渦流がX軸方向に並んで発生することで、冷却水からチューブ50への熱伝達が促される。 に Based on the above configuration, the cooling water flowing through the second flow path 22 flows along the vertical dimples 73 and 93 in the X-axis direction. By arranging the plurality of opposing dimples 77 along the opposing dimples 77, the cooling water circulates as a vortex each time it passes over the opposing dimples 77. Thus, in the heat exchanger 100, the vortex of the cooling water is generated in the X-axis direction, so that the heat transfer from the cooling water to the tube 50 is promoted.
 縦ディンプル73、93は、Z軸方向(積層方向)について互いに対向して前記第2流路22に突出する構成とした。 The vertical dimples 73 and 93 are configured to face each other in the Z-axis direction (stacking direction) and protrude into the second flow path 22.
 上記構成に基づき、第2流路22を流通する冷却水は、互いに対向する対の縦ディンプル73、93に沿って流れることで、X軸方向に流れる勢力が高まり、縦ディンプル73、93に沿って並ぶ複数の対向ディンプル77を越える度に強い渦流になる。これにより、冷却水からチューブ50への熱伝達が促される。また、対向ディンプル77が互いに積層される対のチューブ50の一方のみに形成されることで、冷却水の流通抵抗が抑えられる。 Based on the above configuration, the cooling water flowing through the second flow path 22 flows along the pair of vertical dimples 73 and 93 facing each other, so that the force flowing in the X-axis direction increases, and the cooling water flows along the vertical dimples 73 and 93. Each time it passes over a plurality of opposing dimples 77, it becomes a strong vortex. Thereby, heat transfer from the cooling water to the tube 50 is promoted. Further, since the opposed dimples 77 are formed on only one of the pair of tubes 50 stacked on each other, the flow resistance of the cooling water is suppressed.
 インナーフィン40のフィン部43、44が切り起こされたところに開口するフィン開口部45、46は、チューブ50の対向ディンプル77、縦ディンプル73、93(ディンプル)の窪み77c、73c、93cに面する部位を有する構成とした。 The fin openings 45 and 46, which open where the fins 43 and 44 of the inner fin 40 are cut and raised, face the opposing dimples 77 of the tube 50 and the depressions 77c, 73c and 93c of the vertical dimples 73 and 93 (dimples). It has the structure which has the part which does.
 チューブ50に対向ディンプル77、縦ディンプル73、93(ディンプル)が設けられることによりチューブ50がインナーフィン40に対して接触しない非接触面積の比率Aは、2%以上14%以下の範囲に設定される構成とした。 Since the opposed dimples 77 and the vertical dimples 73 and 93 (dimples) are provided on the tube 50, the non-contact area ratio A where the tube 50 does not contact the inner fin 40 is set to a range of 2% or more and 14% or less. Configuration.
 上記構成に基づき、熱交換器100では、対向ディンプル77、縦ディンプル73、93の窪み77c、73c、93cによるチューブ50とインナーフィン40との非接触面積が抑えられるとともに、対向ディンプル77、縦ディンプル73、93に導かれる冷却水の流れ(渦流)によって冷却水からチューブ50への熱伝達が促される効果が十分に得られる。これにより、熱交換器100は、市場で要求される熱交換性能が得られる。 Based on the above configuration, in the heat exchanger 100, the non-contact area between the tube 50 and the inner fin 40 due to the opposing dimple 77, the depression 77 c, 73 c, 93 c of the vertical dimple 73, 93 is suppressed, and the opposing dimple 77, the vertical dimple The effect of promoting the heat transfer from the cooling water to the tube 50 by the flow of the cooling water (vortex) guided to 73 and 93 is sufficiently obtained. Thereby, the heat exchanger 100 can obtain heat exchange performance required in the market.
 次に、図8に示すチューブ50の変形例について説明する。 Next, a modified example of the tube 50 shown in FIG. 8 will be described.
 上記実施形態のチューブ50は、アッパープレート60に対向ディンプル77が形成され、ロアプレート80に対向ディンプルが形成されない構成とした。これに対して、本変形例に係るチューブ50は、アッパープレート60に対向ディンプル77が形成され、かつロアプレート80にも対向ディンプル97が形成される構成とした。 The tube 50 of the above embodiment has a configuration in which the opposing dimples 77 are formed on the upper plate 60 and no opposing dimples are formed on the lower plate 80. On the other hand, the tube 50 according to the present modified example has a configuration in which the opposing dimples 77 are formed on the upper plate 60 and the opposing dimples 97 are also formed on the lower plate 80.
 アッパープレート60の対向ディンプル77とロアプレート80の対向ディンプル97とは、同じV字形状を有し、かつ同一位置でZ軸方向に並ぶ。そして、対向ディンプル77の交差部77bと、対向ディンプル97の交差部(図示せず)とは、同一位置でZ軸方向に並ぶ。 The opposing dimples 77 of the upper plate 60 and the opposing dimples 97 of the lower plate 80 have the same V-shape, and are arranged at the same position in the Z-axis direction. The intersection 77b of the opposing dimple 77 and the intersection (not shown) of the opposing dimple 97 are arranged at the same position in the Z-axis direction.
 本変形例に係る熱交換器100は、対の対向ディンプル77、97がZ軸方向(積層方向)について互いに対向して第2流路22に突出する構成とした。 熱 The heat exchanger 100 according to the present modification has a configuration in which a pair of opposing dimples 77 and 97 oppose each other in the Z-axis direction (stacking direction) and protrude into the second flow path 22.
 上記構成に基づき、第2流路22を流通する冷却水は、互いに対向する対の対向ディンプル77、97の両方を越えて流れることで、渦流の勢力が高められる。これにより、冷却水からチューブ50への熱伝達が促される。 に Based on the above configuration, the cooling water flowing through the second flow path 22 flows over both of the opposing dimples 77 and 97 facing each other, so that the power of the vortex is increased. Thereby, heat transfer from the cooling water to the tube 50 is promoted.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As described above, the embodiment of the present invention has been described. However, the above embodiment is only a part of an application example of the present invention, and the technical scope of the present invention is not limited to the specific configuration of the above embodiment. Absent.
 例えば、上記実施形態の対向ディンプル77(渦発生ディンプル)は、V字状に隆起するものであったが、これに限らず、例えばW字状に隆起するものであってもよい。W字状の対向ディンプル77は、二対の傾斜部及び2つの交差部を有する。この場合に、対向ディンプル77によって冷却水の縦渦流が生じる領域がY軸方向について拡がり、冷却水からチューブ50への熱伝達が促される効果が高められる。 For example, the opposed dimple 77 (vortex generating dimple) in the above-described embodiment protrudes in a V-shape, but is not limited thereto, and may be, for example, a W-shape. The W-shaped opposed dimple 77 has two pairs of inclined portions and two intersections. In this case, the region where the vertical vortex of the cooling water is generated by the opposed dimples 77 expands in the Y-axis direction, and the effect of promoting heat transfer from the cooling water to the tube 50 is enhanced.
 また、上記実施形態のフィン部43、44は、4つの辺を有する台形状に切り起こされるが、これに限らず、例えば5つ以上の辺を有する多角形状に切り起こされてもよい。 The fin portions 43 and 44 of the above embodiment are cut and raised in a trapezoidal shape having four sides, but are not limited thereto, and may be cut and raised in a polygonal shape having five or more sides.
 本発明は、車両に搭載される熱交換器として好適であるが、車両以外に使用される熱交換器にも適用できる。 The present invention is suitable as a heat exchanger mounted on a vehicle, but can also be applied to a heat exchanger used other than a vehicle.
 本願は、2018年7月20日に日本国特許庁に出願された特願2018-136947に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims the priority based on Japanese Patent Application No. 2018-136947 filed with the Japan Patent Office on July 20, 2018, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  第1流体と第2流体との間で熱交換が行われる熱交換器であって、
     第1流体が流路方向に流通する第1流路と、第2流体が流通する第2流路と、を仕切るチューブと、
     前記第1流路に配置されるインナーフィンと、を備え、
     前記インナーフィンは、
     前記チューブに接触する平壁と、
     前記平壁の交差方向に連なり、前記第1流路を流路幅方向に並ぶ複数の小流路に仕切る起立壁と、
     前記平壁から切り起こされて前記小流路に突出するフィン部と、を有し、
     前記チューブは、前記第1流路に面する流路面から窪み、かつ前記第2流路に面する流路面から隆起し、第2流体の流れに対向するように前記小流路を跨いで複数の前記平壁にわたって延在する対向ディンプルを有し、
     前記対向ディンプルは、
     前記流路方向に対して傾斜する対の傾斜部と、
     対の前記傾斜部が互いに交差する交差部と、を有する、
     熱交換器。
    A heat exchanger in which heat exchange is performed between a first fluid and a second fluid,
    A tube that partitions a first flow path in which the first fluid flows in the flow direction and a second flow path in which the second fluid flows,
    An inner fin disposed in the first flow path;
    The inner fin is
    A flat wall contacting the tube;
    An upright wall extending in the crossing direction of the flat wall and partitioning the first flow passage into a plurality of small flow passages arranged in the flow passage width direction;
    A fin portion cut out from the flat wall and protruding into the small flow path,
    The tube is depressed from a flow path surface facing the first flow path, and protrudes from a flow path surface facing the second flow path, and straddles the small flow path so as to face a flow of a second fluid. Having opposing dimples extending over the flat wall of
    The opposing dimple,
    A pair of inclined portions inclined with respect to the flow path direction,
    An intersection where the pair of inclined portions intersect each other,
    Heat exchanger.
  2.  請求項1に記載の熱交換器であって、
     対の前記対向ディンプルは、互いに対向して前記第2流路に突出する、
     熱交換器。
    The heat exchanger according to claim 1, wherein
    A pair of the opposing dimples projecting into the second flow path facing each other;
    Heat exchanger.
  3.  第1流体と第2流体との間で熱交換が行われる熱交換器であって、
     第1流体が流路方向に流通する第1流路と、第2流体が流通する第2流路と、を仕切るチューブと、
     前記第1流路に配置されるインナーフィンと、を備え、
     前記インナーフィンは、
     前記チューブに接触する平壁と、
     前記平壁の交差方向に連なり、前記第1流路を流路幅方向に並ぶ複数の小流路に仕切る起立壁と、
     前記平壁から切り起こされて前記小流路に突出するフィン部と、を有し、
     前記チューブは、
     前記第1流路に面する流路面から窪み、かつ前記第2流路に面する流路面から隆起し、第2流体の流れに対向するように前記小流路を跨いで複数の前記平壁にわたって延在する対向ディンプルと、
     前記第1流路に面する流路面から窪み、かつ前記第2流路に面する流路面から隆起し、前記流路方向に延在する縦ディンプルと、を有し、
     複数の前記対向ディンプルは、前記縦ディンプルに沿って並ぶ、
     熱交換器。
    A heat exchanger in which heat exchange is performed between a first fluid and a second fluid,
    A tube that partitions a first flow path in which the first fluid flows in the flow direction and a second flow path in which the second fluid flows,
    An inner fin disposed in the first flow path;
    The inner fin is
    A flat wall contacting the tube;
    An upright wall extending in the crossing direction of the flat wall and partitioning the first flow passage into a plurality of small flow passages arranged in the flow passage width direction;
    A fin portion cut out from the flat wall and protruding into the small flow path,
    The tube is
    The plurality of flat walls are depressed from the flow path surface facing the first flow path, and protrude from the flow path surface facing the second flow path, and straddle the small flow path so as to face the flow of the second fluid. Opposed dimples extending over
    A vertical dimple that is depressed from the flow path surface facing the first flow path, and protrudes from the flow path surface facing the second flow path, and extends in the flow direction.
    The plurality of opposing dimples are arranged along the vertical dimples,
    Heat exchanger.
  4.  請求項3に記載の熱交換器であって、
     対の前記縦ディンプルは、互いに対向して前記第2流路に突出する、
     熱交換器。
    The heat exchanger according to claim 3, wherein
    The vertical dimples of the pair are opposed to each other and protrude into the second flow path.
    Heat exchanger.
  5.  第1流体と第2流体との間で熱交換が行われる熱交換器であって、
     第1流体が流路方向に流通する第1流路と、第2流体が流通する第2流路と、を仕切るチューブと、
     前記第1流路に配置されるインナーフィンと、を備え、
     前記インナーフィンは、
     前記チューブに接触する平壁と、
     前記平壁の交差方向に連なり、前記第1流路を流路幅方向に並ぶ複数の小流路に仕切る起立壁と、
     前記平壁から切り起こされて前記小流路に突出するフィン部と、を有し、
     前記チューブは、前記第1流路に面する流路面から窪み、かつ前記第2流路に面する流路面から隆起するディンプルを有し、
     前記チューブに前記ディンプルが設けられることにより前記チューブが前記インナーフィンに対して接触しない非接触面積の比率は、2%以上14%以下の範囲に設定される、
     熱交換器。
    A heat exchanger in which heat exchange is performed between a first fluid and a second fluid,
    A tube that partitions a first flow path in which the first fluid flows in the flow direction and a second flow path in which the second fluid flows,
    An inner fin disposed in the first flow path;
    The inner fin is
    A flat wall contacting the tube;
    An upright wall extending in the crossing direction of the flat wall and partitioning the first flow passage into a plurality of small flow passages arranged in the flow passage width direction;
    Having a fin portion cut and raised from the flat wall and protruding into the small flow path,
    The tube has a dimple that is depressed from a flow path surface facing the first flow path and protrudes from a flow path surface facing the second flow path,
    The ratio of the non-contact area where the tube is not in contact with the inner fin by being provided with the dimple is set in a range of 2% to 14%.
    Heat exchanger.
PCT/JP2019/022433 2018-07-20 2019-06-05 Heat exchanger WO2020017176A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980045419.XA CN112368535B (en) 2018-07-20 2019-06-05 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018136947A JP6550177B1 (en) 2018-07-20 2018-07-20 Heat exchanger
JP2018-136947 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020017176A1 true WO2020017176A1 (en) 2020-01-23

Family

ID=67390269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022433 WO2020017176A1 (en) 2018-07-20 2019-06-05 Heat exchanger

Country Status (3)

Country Link
JP (1) JP6550177B1 (en)
CN (1) CN112368535B (en)
WO (1) WO2020017176A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230145779A1 (en) 2020-03-31 2023-05-11 Marelli Corporation Cooling Device
JP7198859B2 (en) * 2021-04-01 2023-01-04 マレリ株式会社 Heat exchanger
US20240019215A1 (en) * 2022-07-12 2024-01-18 Raytheon Technologies Corporation Triangular flow passage heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106785A (en) * 2001-07-25 2003-04-09 Denso Corp Exhaust heat exchanger
JP2012184923A (en) * 2012-07-06 2012-09-27 Denso Corp Heat exchanger
WO2017179588A1 (en) * 2016-04-11 2017-10-19 カルソニックカンセイ株式会社 Heat exchanger
US20180017024A1 (en) * 2016-07-12 2018-01-18 Borgwarner Emissions Systems Spain, S.L.U. Heat exchanger for an egr system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100510606C (en) * 2004-09-28 2009-07-08 株式会社T.Rad Heat exchanger
JP5910663B2 (en) * 2010-04-09 2016-04-27 株式会社デンソー Exhaust heat exchanger
JP5887115B2 (en) * 2011-11-30 2016-03-16 東京ラヂエーター製造株式会社 Inner fin
JP6303755B2 (en) * 2014-04-21 2018-04-04 株式会社デンソー Exhaust heat exchanger
JP2016200071A (en) * 2015-04-13 2016-12-01 日産自動車株式会社 EGR gas cooler
CN106246417A (en) * 2016-09-30 2016-12-21 无锡金轮达科技有限公司 A kind of Novel saw profile of tooth cooler for recycled exhaust gas radiating fin
CN207073436U (en) * 2017-06-23 2018-03-06 浙江邦得利环保科技股份有限公司 A kind of cooler for recycled exhaust gas of triangular window wing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106785A (en) * 2001-07-25 2003-04-09 Denso Corp Exhaust heat exchanger
JP2012184923A (en) * 2012-07-06 2012-09-27 Denso Corp Heat exchanger
WO2017179588A1 (en) * 2016-04-11 2017-10-19 カルソニックカンセイ株式会社 Heat exchanger
US20180017024A1 (en) * 2016-07-12 2018-01-18 Borgwarner Emissions Systems Spain, S.L.U. Heat exchanger for an egr system

Also Published As

Publication number Publication date
JP6550177B1 (en) 2019-07-24
JP2020012621A (en) 2020-01-23
CN112368535B (en) 2021-12-17
CN112368535A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
US8069905B2 (en) EGR gas cooling device
US6820682B2 (en) Heat exchanger
JP6291474B2 (en) Heat exchanger
JP5193310B2 (en) Recirculation exhaust gas cooler for internal combustion engines
KR101400833B1 (en) Pin-tube type heat exchanger
US7984753B2 (en) Heat exchanger
JP3912080B2 (en) Exhaust heat exchanger
US20070193732A1 (en) Heat exchanger
WO2020017176A1 (en) Heat exchanger
US7267163B2 (en) Heat exchanger
WO2018180058A1 (en) Heat exchanger
US10697406B2 (en) Heat exchanger utilizing flow path assemblies
WO2015162897A1 (en) Exhaust heat exchanger
KR20160042182A (en) Tube for a heat exchanger
KR20180113589A (en) A circulating duct for transferring the fluid of the heat exchanger, and a heat exchanger
JP2011112331A (en) Heat exchanger for exhaust gas
US20210247102A1 (en) Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same
JP2003090693A (en) Exhaust gas heat exchanger
JP2003201923A (en) Exhaust heat exchanger
CN111512109B (en) Header-plate-free heat exchanger
JP2017101904A (en) Fin for heat exchanger
JP6496067B1 (en) Heat exchanger
WO2017179588A1 (en) Heat exchanger
JPH09138084A (en) Heat exchanger
JP2004077024A (en) Exhaust heat exchanger device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837170

Country of ref document: EP

Kind code of ref document: A1