JP3934252B2 - Natural circulation water tube boiler - Google Patents

Natural circulation water tube boiler Download PDF

Info

Publication number
JP3934252B2
JP3934252B2 JP15025498A JP15025498A JP3934252B2 JP 3934252 B2 JP3934252 B2 JP 3934252B2 JP 15025498 A JP15025498 A JP 15025498A JP 15025498 A JP15025498 A JP 15025498A JP 3934252 B2 JP3934252 B2 JP 3934252B2
Authority
JP
Japan
Prior art keywords
pipe
evaporation
natural circulation
tube boiler
water tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15025498A
Other languages
Japanese (ja)
Other versions
JPH11337003A (en
Inventor
章浩 高桑
晃 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15025498A priority Critical patent/JP3934252B2/en
Publication of JPH11337003A publication Critical patent/JPH11337003A/en
Application granted granted Critical
Publication of JP3934252B2 publication Critical patent/JP3934252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、起動運転時、蒸気ドラム内の飽和水の循環を良好にさせた自然循環型水管ボイラに関する。
【0002】
【従来の技術】
例えば、火力発電プラントまたはコンバインドサイクル発電プラント等に適用される自然循環型水管ボイラには、竪型タイプと横型タイプとがあり、設置面積の余裕度合によりいずれか一方のタイプのものが選定されている。
【0003】
自然循環型水管ボイラのうち、横型タイプは、図15に示すように、横長筒状のダクトDの外側に蒸気ドラム100と降水集合部108とを備え、蒸気ドラム100と降水集合部108とを互いに接続させる降水管101と蒸発管103とを熱ガスGの流れ方向に対して交差させてダクトD内に収容する構成になっている。
【0004】
また、蒸発管103は、降水集合部108との間に管寄せ102を介装させるとともに、蒸気ドラム100との間に管寄せ104と上昇管105とを介装させている。
【0005】
また、蒸気ドラム100には、その内部に気水分離器106が収容されている。
【0006】
このような構成を備えた横型タイプの自然循環型水管ボイラにおいて、給水管109から水位調整弁110を介して蒸気ドラム100に供給された飽和水(給水)は、重力差を利用して降水管101を介して降水集合部108に集められ、ここから管寄せ102を介して蒸発管103に流れる間に、例えばガスタービン等から排出される熱ガスGと熱交換し、気液二相流となって管寄せ104、上昇管105を介して蒸気ドラム100に循環する。
【0007】
蒸気ドラム100は、気液二相流を気水分離器106で飽和水と蒸気とに分離させ、分離させた蒸気を蒸気出口107を介して他の熱交換器に供給する一方、分離させた飽和水を再び降水管101を介して循環させるようになっている。
【0008】
このように、飽和水がポンプ等の外力を借りずに、降水管101、降水集合部108、管寄せ102、蒸発管103、管寄せ104、上昇管105を介して蒸気ドラム100を循環することを、自然循環型水管ボイラと称している。ここで、自然循環の原理を今少し詳しく説明すると、蒸発管103および上昇管105の飽和水の密度が、降水管101の飽和水の密度に較べて、加熱による温度上昇または単相状態から飽和水−蒸気の気液二相状態への相変化により小さくなり、蒸発管103および上昇管105内の飽和水と降水管101内の飽和水との密度の軽重が異なり、この密度差に相当する力が降水管101内の飽和水に作用することを利用したものである。この力を循環力と称する。高温化により密度が小さく軽くなった蒸発管103および上昇管105内の飽和水は、低温で密度が大きく重い降水管101内の飽和水により蒸気ドラム100に押し上げられる。また、この自然循環の飽和水の循環量は、循環力と飽和水が循環中に増加する圧力損失とのバランスから決定される。
【0009】
また、横型自然循環型水管ボイラに発生する飽和水の循環力は、大別して二つ分けることができる。一つは、飽和水が加熱される部分であり、蒸発管103に相当する。残りの一つは、非加熱部分であり、上昇管105に相当する。
【0010】
この循環力のうち、蒸発管103で発生する循環力は、蒸発管130内の飽和水の温度上昇に伴って発生する対流または沸騰による飽和水−蒸気の気液二相流に基づく。また、上昇管105で発生する循環力も、蒸発管103から上昇管105に案内される比較的高温水または飽和水−蒸気の気液二相状態の温度上昇に伴って発生する対流または気液二相流に基づく。なお、上昇管105で発生する循環力は、蒸発管103からの比較的高温水または気液二相流が上昇管105に供給される関係上、時間的遅れを伴って発生する。
【0011】
しかし、横型自然循環型水管ボイラでは、上昇管105での循環力の時間的な遅れがあっても、蒸発管103の長さが上昇管105に較べて長く、また、蒸発管103がドラムD内に熱ガスGの流れと交差させて飽和水を直ぐさま沸騰させてその循環力を上昇管105の飽和水に与えているので、上昇管105の循環力に時間的な遅れが伴っても大きな影響にはなっていない。
【0012】
他方、竪型タイプは、図16に示すように、竪筒状のダクトDの外側に蒸気ドラム100、降水管101、降水集合部108、管寄せ102,104、上昇管105を備えるとともに、蒸発管103を熱ガスGの流れ方向に横断させダクトD内に収容する構成になっている。他の構成は、横型タイプと同一なので、その説明は省略する。
【0013】
このような構成を備えた竪型タイプの自然循環型水管ボイラでは、蒸発管103を熱ガスGの流れ方向に横断して配置させているので、蒸発管103で飽和水の循環力を確保することができず、専ら上昇管105で沸騰する飽和水と降水管101の飽和水との密度差で飽和水の循環力を確保している。このため、竪型タイプでは、飽和水の温度上昇、沸騰現象(二相流現象)の発生および飽和水の循環力の確保等が横型タイプに較べてより一層の時間的遅れを伴っていた。
【0014】
【発明が解決しようとする課題】
竪型自然循環型水管ボイラでは、起動運転時、飽和水(給水)の温度が低く、上昇管105内の飽和水と降水管101内の飽和水との密度差が低く、ほとんど循環力が発生していないため、蒸発管103の飽和水が飽和温度になるまで停流している。このため、蒸発管103に停流している飽和水が飽和温度になると一斉に沸騰して上昇管105に流入する。このとき、上昇管105内の低温の飽和水(給水)と蒸発管103での高温の蒸気との温度差が大きいと、ウォータハンマを発生させる問題点があった。
【0015】
また、竪型自然循環型水管ボイラでは、起動運転時、飽和水の圧力が低いので、沸騰の際、飽和水の相変化に伴う体積変化率が大きく、過渡的に過大な循環力を必要とし、また、ボイド率が高くなり、蒸発管103や上昇管105により大きな流動抵抗を与え、脈動を発生させる要因になっていた。
【0016】
また、竪型自然循環型水管ボイラでは、起動運転時、蒸発管103内の飽和水が熱ガスGと熱交換しないまま上昇管105に流れるので、飽和水が途中で停流してしまい、飽和水の流れが断続的な不安定状態になる等の問題点があった。
【0017】
本発明は、このような問題点に照してなされたもので、飽和水の循環力を間断なく連続的に発生させるとともに、飽和水の脈動、停流を抑制して安定状態で運転させる自然循環型水管ボイラを提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項1に記載したように、ケーシングの外側に蒸気ドラムを載設し、ケーシング内にガス通路部を形成し、上記蒸気ドラム内の飽和水を、降水管、蒸発管、上昇管を介して再び上記蒸気ドラムに循環させる竪型の自然循環型水管ボイラにおいて、上記ガス通路部に配置する蒸発管のうち、熱ガスに向って最上流側、中間部分および最下流側の蒸発管のうち少なくとも一方を、熱ガスに向って上流側蒸発管と下流側蒸発管とに区分けし、区分けした上流側蒸発管と下流側蒸発管をUベントで接続させるとともに、上記上流側蒸発管の入口管寄せ管および上記下流側蒸発管の出口管寄せ管を、上記Uベントよりも高位置にしたものである。
【0025】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項2に記載したように、前記上流側蒸発管および下流側蒸発管に板状フィンを設けたものである。
【0026】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項3に記載したように、前記板状フィンを、熱ガスの流れ方向と同一方向に配置したものである。
【0027】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項4に記載したように、前記板状フィンを、蒸発管の入口管寄せ管から出口管寄せ管に向って徐々に密度を高くして配置したものである。
【0028】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項5に記載したように、前記上流側蒸発管および下流側蒸発管に螺旋状フィンを設けたものである。
【0029】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項6に記載したように、前記螺旋状フィンを、蒸発管の表側と裏側とを軸対称にして配置したものである。
【0030】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項7に記載したように、前記ガス通路部に配置する蒸発管の出口管寄せ管から出口接続管を介して接続する上記上昇管を、一つにして上記蒸気ドラムに接続させたものである。
【0031】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項8に記載したように、前記上昇管を、熱ガスの流れ方向と同一方向の鉛直部と、ガス通路部を交差させる傾斜部とに区分けして蒸気ドラムに接続させたものである。
【0032】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項9に記載したように、前記上昇管の鉛直部を、ケーシング内に形成され、ガス通路部の外側に形成したホットボックス内に収容したものである。
【0033】
また、本発明に係る自然循環型水管ボイラは、上記目的を達成するために、請求項10に記載したように、前記ガス通路部に配置する蒸発管のうち、熱ガスに向って最上流側、中間部分および最下流側の蒸発管の入口管寄せ管と、上記降水管を、上記ケーシング内に形成され、上記ガス通路部の外側に形成した上記蒸気ドラム側のホットボックス内に収容したものである。
【0036】
【発明の実施の形態】
以下、本発明に係る自然循環型水管ボイラの実施形態を図面および図中に付した符号を引用して説明する。
【0037】
図1は、本発明に係る自然循環型水管ボイラの第1実施形態を示す概略図である。
【0038】
本実施形態に係る自然循環型水管ボイラは、鉛直方向に配置した竪長筒状のケーシング10の、そのケーシング10の内側両側にガスバッフル9,9で区画した空間状のホットボックス11,11と、ホットボックス11,11間に形成され、例えばガスタービンから排出される熱ガスGを案内するガス通路部12を備えた構成になっている。
【0039】
ガス通路部12には、竪長筒状のケーシング10に沿って流れる熱ガスGに交差させて蒸発管5a,5hが収容されている。蒸発管5a,5hは、一端をホットボックス11に収容する入口管寄せ管4,4a、入口接続管3,3および降水管2を介装してケーシング10の外側に載設する蒸気ドラム1に接続させるとともに、その他端をホットボックス11に収容する出口管寄せ管6,6a、出口接続管7,7および上昇管8,8を介装して蒸気ドラム1に接続させている。
【0040】
また、蒸気ドラム1は、上昇管8,8から案内された蒸気−飽和水の気液二相流を蒸気と飽和水とに分離させる気水分離器13と、気水分離器13で分離された蒸気を、例えば蒸気タービン等に供給する蒸気出口14とを備えている。なお、蒸発管5a,5hのうち、熱ガスGに向う最上流側と最下流側の蒸発管5a,5aは、入口管寄せ管4a,4aから出口管寄せ管6a,6aに向って、いわゆる右上りの傾斜状直管に、また、その中間部分の蒸発管5hは、入口管寄せ管4から出口管寄せ管6に向って、いわゆる水平直管としてガス通路部12に収容している。
【0041】
次に、本実施形態に係る自然循環型水管ボイラの作用を説明する。
【0042】
ガス通路部12内を鉛直方向に流れる熱ガスGは、蒸発管5a,5h内を流れる飽和水(給水)と熱交換する。その際、蒸発管5a,5h内を流れる飽和水は、沸騰を開始し、蒸気−飽和水の気液二相流となり、出口管寄せ管6,6a、出口接続管7,7を介して上昇管8,8に流れる。そして、気液混合の二相流となった流体は上昇管8,8を通って上昇し、気水分離器13を介して蒸気ドラム1に流入する。
【0043】
蒸気ドラム1は、気水分離器13で蒸気−飽和水の気液二相流を、蒸気と飽和水に分離させる。分離された蒸気は、蒸気出口14を介して例えば蒸気タービンに供給される。また、分離された飽和水は、降水管2を降下し、入口接続管3,3、入口管寄せ管4a,4を介して再び蒸発管5a,5hに循環する。
【0044】
起動運転時、降水管2および上昇管8,8内の飽和水は、ともに温度が低く、温度差も小さく、循環力が発生していないため、停流状態になっている。このため、蒸発管5a,5h内の飽和水は、熱ガスGとの熱交換により飽和温度に到達し、一気に沸騰を開始する。気液二相流になった流体は、出口管寄せ管6a,6、出口接続管7,7および上昇管8,8を介して蒸気ドラム1に流入する。このとき上昇管8,8と蒸気ドラム1の飽和水は、高温気液二相流との混合により加熱される。加熱された飽和水は、降水管2、入口接続管3,3および入口管寄せ管4a,4を介して蒸発管5a,5hへ僅かに温度上昇して再び循環する。
【0045】
その際、熱ガスGに向って最上流側および最下流側の蒸発管5a,5aが、出口管寄せ管6a,6aに向って、いわゆる右上り傾斜状直管になっているので、飽和水は熱ガスGと熱交換するとき、対流による循環力が発生し、気液二相流になる前に循環力が発生する。高温水となった飽和水は、出口管寄せ管6a,6、出口接続管7,7を介して上昇管8,8へ流入し、対流により上昇管8,8内の飽和水の昇温を促進させる。また、蒸発管5a,5h内の飽和水は、対流により出口管寄せ管6a,6側に向う程、高温になり、出口管寄せ管6a,6側の飽和水が逸早く飽和温度に達し、沸騰を開始するので、気液二相流による循環力がより一艘早く促進される。
【0046】
このように、本実施形態では、熱ガスGに向う最上流側および最下流側に配置した蒸発管5a,5aを、いわゆる右上りの傾斜状直管に形成し、従来に較べてより一層早い飽和水の循環力を促進させたので、起動運転時、ウォータハンマ、飽和水に脈動や停流等を引き起こさせることがなく、起動運転をより一層短縮化させることができる。
【0047】
図2は、本発明に係る自然循環型水管ボイラの第2実施形態を示す概略図である。なお、第1実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0048】
本実施形態に係る自然循環型水管ボイラは、熱ガスGに向う最上流側および最下流側の蒸発管5a,5aの中間部分に熱ガスGの下流側に向って折れ曲げ部15a,15aを形成し、折れ曲げ部15a,15aから出口管寄せ管6a,6aに向って急角度の傾斜状直管を形成したものである。なお、他の構成は、第1実施形態の構成と同一なので、その説明を省略する。
【0049】
このように、本実施形態では、熱ガスGに向う最上流側および最下流側の蒸発管5a,5aの中間部分に熱ガスGの下流側に向って折れ曲げ部15a,15aを形成し、折れ曲げ部15a,15aから出口管寄せ管6a,6aに向って急角度の傾斜状直管を形成し、飽和水の循環力を促進させたので、起動運転時、飽和水に脈動や停流等を引き起こさせることがなく、起動運転をより一層短縮化させることができる。
【0050】
図3は、本発明に係る自然循環型水管ボイラの第3実施形態を示す概略図である。なお、第1実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0051】
本実施形態に係る自然循環型水管ボイラは、蒸気ドラム1側のホットボックス11に入口管寄せ管4a,4,4aおよび出口管寄せ管6a,6,6aを収容するとともに、熱ガスGに向う最上流側、中間部分および最下流側の蒸発管5a,5h,5aを上流側蒸発管5a1 ,5h1 ,5a1 と下流側蒸発管5a2 ,5h2 ,5a2 に区分けし、上流側蒸発管5a1 ,5h1 ,5a1 と下流側蒸発管5a2 ,5h2 ,5a2 をUベント16で接続させた、いわゆるU字管に形成する一方、最上流側および最下流側の蒸発管5a,5aを熱ガスGの流れ方向に対し、いわゆる右下りの傾斜状に形成したものである。
【0052】
このような構成を備えた自然循環型水管ボイラにおいて、起動運転時、蒸気ドラム1から降水管2、入口接続管3、入口管寄せ管4aを介して蒸発管4a,4,4aのうち、上流側蒸発管5a1 ,5a1 に供給された飽和水は、熱ガスGとの熱交換により高温化され、この高温化に基づく密度差により循環力が発生する。この場合、最上流側および最下流側の蒸発管5a,5aのうち、右下りの傾斜状に形成された上流側蒸発管5a1 ,5a1 は、Uベント16側の水頭がその入口側の水頭に較べて若干高くなっているので、この相対的に高くなってUベント16側の水頭により熱ガスGとの熱交換中に発生する沸騰に基づく気泡の発生を抑制し、飽和水の密度差に基づく循環力を良好に維持させることができる。
【0053】
Uベント16を反転して下流側蒸発管5a2 ,5a2 に向う飽和水は、熱ガスGと再び熱交換し、温度上昇して沸騰に基づく気泡が発生する。しかし、このときの飽和水は、密度が小さくなっており、また上流側蒸発管5a1 ,5a1 から案内される飽和水の押圧力(循環力)が流れの抵抗となる気泡に打ち勝っているので、この押圧力(循環力)により出口管寄せ管6a、上昇管8を介して蒸気ドラム1に良好に流れる。
【0054】
このように、本実施形態では、蒸気ドラム1側のホットボックス11に入口管寄せ管4a,4,4aおよび出口管寄せ管6a,6,6aを収容し、蒸発管5a,5aを熱ガスGの流れに対し、右下がりの傾斜状に形成するとともに、蒸発管5a,5aのうち、上流側蒸発管5a,5aのUベント16側の若干高くなっている水頭を利用して飽和水の沸騰に基づく気泡の発生を抑制し、飽和水の循環力を確保させたので、起動運転時、飽和水に脈動や停流等を引き起こさせることがなく、起動運転をより一層短縮化させることができる。
【0055】
図4は、本発明に係る自然循環型水管ボイラの第4実施形態を示す概略図である。なお、第1実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0056】
本実施形態に係る自然循環型水管ボイラは、熱ガスGの流れに対し交差させ、かつ熱ガスGの流れに向って区分けされた最上流側、中間部分および最下流側の蒸発管5a,5h,5aのうち、少なくとも二つ以上の蒸発管に別の蒸発管として折れ曲り蒸発管17a1 ,17a2 を設けたものである。
【0057】
折れ曲り蒸発管17a1 ,17a2 は、熱ガスGの流れに向ってV字状に形成してもよく、また、当初、熱ガスGの流れに対し、横断させた水平状にし、途中から熱ガスGの流れに対して、いわゆる右上りの傾斜状にしてもよい。
【0058】
このように、本実施形態では、熱ガスGの流れに向って区分けされた最上流側、中間部分および最下流側の蒸発管5a,5h,5aのうち、少なくとも二つ以上の蒸発管に別の蒸発管として折れ曲り蒸発管17a1 ,17a2 を設け、飽和水の循環力を確実に確保させたので、起動運転時、飽和水を良好に流すことができる。
【0059】
図5は、本発明に係る自然循環型水管ボイラの第5実施形態を示す概略図である。なお、第1実施形態および第3実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0060】
本実施形態に係る自然循環型水管ボイラは、第3実施形態と同様に、蒸気ドラム1側のホットボックス11に入口管寄せ管4a,4,4aおよび出口管寄せ管6a,6,6aを収容するとともに、熱ガスGに向う最上流側および最下流側の蒸発管5a,5h,5aを上流側蒸発管5a1 ,5h1 ,5a1 と下流側蒸発管5a2 ,5h2 ,5a2 に区分けし、上流側蒸発管5a1 ,5h1 ,5a1 と下流側蒸発管5a2 ,5h2 ,5a2 をUベント16で接続させた、いわゆるU字管に形成する一方、最上流側および最下流側の蒸発管5a,5aを熱ガスGの流れ方向に、いわゆる右下がりの傾斜状に形成し、上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 のそれぞれに板状フィン18を設けたものである。
【0061】
板状フィン18は、図6に示すように、上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 の水平管軸HLおよび鉛直管軸VLに対し、角度θにして熱ガスGの流れ方向と同一方向になるように上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 に固設されている。
【0062】
このように、本実施形態では、上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 のそれぞれに板状フィン18を設け、板状フィン18を水平管軸HLおよび鉛直管軸VLに対し、角度θにして熱ガスGの流れ方向と同一方向になる位置に配置し、熱ガスGの流れに整流効果を与えたので、熱ガスGを偏流させることなく、上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 のそれぞれの飽和水を均等に加熱させることができる。
【0063】
図7は、本発明に係る自然循環型水管ボイラの第6実施形態を示す概略図である。なお、第1実施形態および第3実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0064】
本実施形態に係る自然循環型水管ボイラは、第3実施形態で示した熱ガスGに向う最上流側、中間部分および最下流側の蒸発管5a,5h,5aにおける上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 のそれぞれに螺旋状フィン19を設けたものである。
【0065】
螺旋状フィン19は、図8に示すように、熱ガスGの流れ方向と同一方向を熱ガス流れ基準線HGVLと定義したとき、この熱ガス流れ基準線HGVLに対し、角度θ2 に振り分けて配置されている。なお、上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 のそれぞれの水平管軸HLと熱ガスGの流れの横断面との角度をθ1 とするとき、螺旋状フィン19は、角度(θ2 −θ1 )または角度(θ2 +θ1 )となる鉛直管軸VLを基準として上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 に配置されている。
【0066】
また、螺旋状フィン19は、表側(紙面に向って手前側)に上述の鉛直管軸VLを基準として上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 に配置されているが、裏側(紙面に向って奥側)も上述の鉛直管軸VLを基準として上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 に配置される、いわゆる軸対称になっている。
【0067】
このように、本実施形態では、上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 のそれぞれに螺旋状フィン19を設け、螺旋状フィン19を鉛直管軸VLを基準として各蒸発管5a1 ,5a2 ,5h1 ,5h2 ,…の表側および裏側のそれぞれに配置し、表側および裏側のそれぞれに設けた螺旋状フィン19に対する熱ガスGの流れを対称にさせたので、熱ガスGの偏流を防止することができ、上流側蒸発管5a1 ,5h1 ,5a1 および下流側蒸発管5a2 ,5h2 ,5a2 のそれぞれの飽和水を均等に加熱させることができる。
【0068】
図9は、本発明に係る自然循環型水管ボイラの第7実施形態を示す概略図である。なお、第1実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0069】
本実施形態に係る自然循環型水管ボイラは、熱ガスGに向う最上流側、中間部分および最下流側の蒸発管5a,5h,5aにおける出口管寄せ管6a,6,6aと上昇管8,8,8とを結ぶ出口接続管7,7,7を、熱ガスGの流れ方向の下流側に向って傾斜状に配置したものである。
【0070】
起動運転時、降水管2内と上昇管8,8,8内との飽和水(給水)の温度差が小さく、循環力が発生しないため、飽和水は停流状態になっている。このため、蒸発管5a,5h,5a内の飽和水が熱ガスGとの熱交換により沸騰を開始し、二相流による循環力が発生するまで、対流による循環力しか発生しない。
【0071】
また、出口管寄せ管6a,6,6aと出口接続管7,7,7は非加熱部分であり、出口接続管7,7,7が水平または垂直に配置されていると、対流が抑制さる上、循環力の発生も抑制される。
【0072】
本実施形態は、このような点に着目したもので、出口接続管7,7,7を、熱ガスGの流れ方向の下流側に向って、いわゆる右上りの傾斜状に配置したものである。
【0073】
したがって、本実施形態によれば、出口接続管7,7,7を、熱ガスGの流れ方向の下流側に向って右上りの傾斜状に配置し、対流を促進させたので、熱ガスGの加熱により飽和水の循環力を確保することができ、飽和水の循環力の確保により飽和水をより早く飽和温度に達成させて沸騰を早めることができ、飽和水を良好に循環させることができる。
【0074】
図10は、本発明に係る自然循環型水管ボイラの第8実施形態を示す概略図である。なお、第1実施形態および第5実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0075】
本実施形態に係る自然循環型水管ボイラは、第5実施形態で示した熱ガスGに向う最上流側、中間部分および最下流側の蒸発管5a,5h,5aに固設した板状フィン18を、入口管寄せ管4a,4,4aから出口管寄せ管6a,6,6aに向って徐々に密度を高くして配置したものである。
【0076】
このように、本実施形態では、板状フィン18を、入口管寄せ管4a,4,4aから出口管寄せ管6a,6,6aに向って徐々に密度を高くして配置したので、飽和水の対流による循環力の発生をより一層早く促進させることができる。
【0077】
図11は、本発明に係る自然循環型水管ボイラの第9実施形態を示す概略図である。なお、第1実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0078】
本実施形態に係る自然循環型水管ボイラは、熱ガスGに向う最上流側、中間部分および最下流側の蒸発管5a,5h,5aから出口管寄せ管6a,6,6aおよび出口接続管7,7,7を介して結ばれる上昇管8を一つにまとめて共有化するとともに、上昇管8を熱ガスGの流れ方向と同一方向に向う鉛直部8aとガス通路部12を横断し、熱ガスGの流れに対して交差させた傾斜部8bとに区分けしたものである。
【0079】
熱ガスGに向う最上流側および最下流側の蒸発管5a,5aは、熱ガスGの流れに対し、下流側に向って傾斜状になっているので、その飽和水(給水)が熱ガスGで加熱させると、対流が生じ、逸早く循環力を発生する。しかし、中間部分の蒸発管5hは、熱ガスGに対して横断する水平状に配置されているので、その飽和水が熱ガスGで加熱されても沸騰するまで循環力が発生しない。
【0080】
また、起動運転時、ガス通路部12は、その運転前の熱ガスGの熱が残っている。
【0081】
本実施形態は、このような点に着目したもので、上昇管8を一つにまとめて共有化し、熱ガスGに向う最上流側および最下流側の蒸発管5a,5aでより早く発生する飽和水の循環力を、中間部分の蒸発管5h内の飽和水に伝えてその循環力を促進させたものである。
【0082】
また、本実施形態は、上昇管8を鉛直部8aと傾斜部8bとに区分けし、ガス通路部12に残っている熱ガスGの残熱を利用して傾斜部8b内の飽和水の循環力を促進させたものである。
【0083】
したがって、本実施形態によれば、熱ガスGに向って最上流側および最下流側の蒸発管5a,5a内における飽和水の循環力の発生に較べて、中間部分の蒸発管5h内における飽和水の循環力の発生が遅れる点を補ったので、中間部分の蒸発管5h内における飽和水の循環力の発生をより一層早く促進させることができる。
【0084】
なお、本実施形態では、上昇管8を一つにまとめて共有化するとともに、上昇管8を鉛直部8aと傾斜部8bとに区分けし、鉛直部8aをケーシング10の外側に配置しているが、この実施形態に限らず、鉛直部8aを、例えば、図12に示すように、ホットボックス11内に設置してもよく、また、降水管2を、例えば、図13に示すように、蒸気ドラム1側のホットボックス11内に設置してもよい。各ホットボックス11内は、熱ガスの熱が残っているので、各蒸発管5a,5h,5a内の飽和水の循環力をより一層早く促進させる上で有利である。
【0085】
図14は、本発明に係る自然循環型水管ボイラの第10実施形態を示す概略図である。なお、第1実施形態および第8実施形態の構成部分または対応する部分と同一部分には同一符号を付す。
【0086】
本実施形態に係る自然循環型水管ボイラは、第8実施形態で示した熱ガスGに向う最上流側、中間部分および最下流側の板状フィン18を備えた蒸発管5a,5h,5aから出口管寄せ管6a,6,6aおよび出口接続管7,7,7を介して結ばれた上昇管8を一つにまとめて共有化し、共有化した上昇管8および降水管2を蒸気ドラム1側のホットボックス11内に配置するとともに、出口管寄せ管6a,6,6aと共有化した上昇管8とを結ぶ出口接続管7,7,7を熱ガスGの流れ方向の下流側に向って傾斜状に配置したものである。
【0087】
このように、本実施形態では、共有化した上昇管8、降水管2を蒸気ドラム1側のホットボックス11内に配置するとともに、出口接続管7,7,7を熱ガスGの流れ方向の下流側に向って傾斜状に配置してホットボックス11内の熱ガスGの残熱を有効に活用したので、各蒸発管5a,5h,5a内の飽和水の循環力の発生をより一層早く促進させることができる。
【0088】
【発明の効果】
以上の説明のとおり、本発明に係る自然循環型水管ボイラは、降水管、蒸発管、出口接続管および上昇管に種々の工夫を加えて各管内の飽和水(給水)の対流による循環力をより一層早く発生させたので、起動運転時、飽和水にウォータハンマ、脈動および停流等を引き起こさせることがなく、起動運転をより一層短縮化させることができる。
【図面の簡単な説明】
【図1】本発明に係る自然循環型水管ボイラの第1実施形態を示す概略図。
【図2】本発明に係る自然循環型水管ボイラの第2実施形態を示す概略図。
【図3】本発明に係る自然循環型水管ボイラの第3実施形態を示す概略図。
【図4】本発明に係る自然循環型水管ボイラの第4実施形態を示す概略図。
【図5】本発明に係る自然循環型水管ボイラの第5実施形態を示す概略図。
【図6】第5実施形態における板状フィンを示す拡大図。
【図7】本発明に係る自然循環型水管ボイラの第6実施形態を示す概略図。
【図8】第6実施形態における螺旋状フィンを示す拡大図。
【図9】本発明に係る自然循環型水管ボイラの第7実施形態を示す概略図。
【図10】本発明に係る自然循環型水管ボイラの第8実施形態を示す概略図。
【図11】本発明に係る自然循環型水管ボイラの第9実施形態を示す概略図。
【図12】 本発明に係る自然循環型水管ボイラの第9実施形態における第1変形例を示す概略図。
【図13】 本発明に係る自然循環型水管ボイラの第9実施形態における第2変形例を示す概略図。
【図14】本発明に係る自然循環型水管ボイラの第10実施形態を示す概略図。
【図15】従来の横型タイプの自然循環型水管ボイラを示す概略図。
【図16】従来の竪型タイプの自然循環型水管ボイラを示す概略図。
【符号の説明】
1 蒸気ドラム
2 降水管
3 入口接続管
4,4a 入口管寄せ管
5a,5h 蒸発管
5a1 ,5h1 上流側蒸発管
5a2 ,5h2 下流側蒸発管
6,6a 出口管寄せ管
7 出口接続管
8 上昇管
8a 鉛直部
8b 傾斜部
9 ガスバッフル
10 ケーシング
11 ホットボックス
12 ガス通路部
13 気水分離器
14 蒸気出口
15a 折れ曲げ部
16 Uベント
17a1 ,17a2 折れ曲り蒸発管
18 板状フィン
19 螺旋状フィン
100 蒸気ドラム
101 降水管
102 管寄せ
103 蒸発管
104 管寄せ
105 上昇管
106 気水分離器
107 蒸気出口
108 降水集合部
109 給水管
110 水位調整弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a natural circulation type water tube boiler in which the circulation of saturated water in a steam drum is improved during start-up operation.
[0002]
[Prior art]
For example, natural circulation water tube boilers applied to thermal power plants or combined cycle power plants include vertical type and horizontal type, and either type is selected depending on the margin of installation area. Yes.
[0003]
Of the natural circulation type water tube boilers, the horizontal type is provided with a steam drum 100 and a precipitation collecting portion 108 on the outer side of a horizontally long duct D, and the steam drum 100 and the precipitation collecting portion 108 are arranged as shown in FIG. The precipitation pipe 101 and the evaporation pipe 103 to be connected to each other are accommodated in the duct D so as to intersect with the flow direction of the hot gas G.
[0004]
Further, the evaporating pipe 103 is provided with a header 102 between the precipitation collecting section 108 and a header 104 and a rising pipe 105 between the steam drum 100.
[0005]
The steam drum 100 contains a steam separator 106 therein.
[0006]
In the horizontal type natural circulation water tube boiler having such a configuration, the saturated water (water supply) supplied from the water supply pipe 109 to the steam drum 100 through the water level adjustment valve 110 is a precipitation pipe using a gravity difference. While being collected in the precipitation collecting section 108 via 101 and flowing from here to the evaporation pipe 103 via the header 102, heat exchange is performed with the hot gas G discharged from, for example, a gas turbine, etc. It circulates to the steam drum 100 through the header 104 and the rising pipe 105.
[0007]
In the steam drum 100, the gas-liquid two-phase flow is separated into saturated water and steam by the steam separator 106, and the separated steam is supplied to the other heat exchanger via the steam outlet 107 and separated. Saturated water is circulated through the downcomer 101 again.
[0008]
  In this way, the saturated water circulates through the steam drum 100 via the downpipe 101, the precipitation collecting portion 108, the header 102, the evaporation pipe 103, the header 104, and the ascending pipe 105 without borrowing external force such as a pump. Is called a natural circulation water tube boiler. Here, the principle of natural circulation will be explained in detail. The density of saturated water in the evaporation pipe 103 and the ascending pipe 105 is saturated from the temperature rise due to heating or a single-phase state as compared with the density of saturated water in the downcomer pipe 101. It becomes smaller due to the phase change to the gas-liquid two-phase state of water-steam, and the density of the saturated water in the evaporation pipe 103 and the ascending pipe 105 is different from the density of the saturated water in the downpipe 101, which corresponds to this density difference. Force acts on saturated water in the downcomer 101ThatIt is used. This force is called circulating force. The saturated water in the evaporating pipe 103 and the ascending pipe 105 whose density has become smaller and lighter due to the higher temperature is pushed up to the steam drum 100 by the saturated water in the downpipe 101 having a higher density and a higher density at a low temperature. The amount of saturated water in the natural circulation is determined from the balance between the circulation force and the pressure loss at which saturated water increases during circulation.
[0009]
Moreover, the circulation power of the saturated water generated in the horizontal natural circulation water tube boiler can be roughly divided into two. One is a portion where saturated water is heated and corresponds to the evaporation pipe 103. The remaining one is a non-heated part and corresponds to the riser 105.
[0010]
Of this circulation force, the circulation force generated in the evaporation pipe 103 is based on a gas-liquid two-phase flow of saturated water-steam due to convection or boiling caused by a rise in temperature of saturated water in the evaporation pipe 130. Further, the circulatory force generated in the rising pipe 105 is also convection or gas-liquid two that is generated as the temperature rises in the gas-liquid two-phase state of relatively high temperature water or saturated water-steam guided from the evaporation pipe 103 to the rising pipe 105. Based on phase flow. The circulation force generated in the ascending pipe 105 is generated with a time delay because the relatively high-temperature water or gas-liquid two-phase flow from the evaporation pipe 103 is supplied to the ascending pipe 105.
[0011]
However, in the horizontal natural circulation type water tube boiler, the length of the evaporation pipe 103 is longer than that of the rising pipe 105 even if there is a time delay of the circulating force in the rising pipe 105, and the evaporation pipe 103 is connected to the drum D. Since the saturated water is boiled immediately by intersecting with the flow of the hot gas G and the circulating force is given to the saturated water of the rising pipe 105, even if there is a time delay in the circulating force of the rising pipe 105 It has not been a big influence.
[0012]
On the other hand, as shown in FIG. 16, the vertical type includes a steam drum 100, a precipitation pipe 101, a precipitation collecting section 108, headers 102 and 104, and an ascending pipe 105 on the outside of a cylindrical duct D, and evaporates. The tube 103 is traversed in the flow direction of the hot gas G and accommodated in the duct D. Other configurations are the same as those of the horizontal type, and the description thereof is omitted.
[0013]
In the vertical-type natural circulation water tube boiler having such a configuration, the evaporation pipe 103 is disposed across the flow direction of the hot gas G, so that the evaporation pipe 103 ensures the circulating power of saturated water. However, the saturation power of the saturated water is ensured by the density difference between the saturated water boiling in the ascending pipe 105 and the saturated water in the downcomer pipe 101. For this reason, in the vertical type, the temperature rise of saturated water, the occurrence of a boiling phenomenon (two-phase flow phenomenon), the securing of the circulating power of saturated water, and the like were accompanied by a further time delay compared to the horizontal type.
[0014]
[Problems to be solved by the invention]
In the vertical natural circulation water tube boiler, the temperature of the saturated water (feed water) is low during start-up operation, the density difference between the saturated water in the riser 105 and the saturated water in the downpipe 101 is low, and almost no circulation force is generated. Therefore, the water is stopped until the saturated water in the evaporation pipe 103 reaches the saturation temperature. For this reason, when the saturated water stopped in the evaporation pipe 103 reaches the saturation temperature, it boils all at once and flows into the ascending pipe 105. At this time, if the temperature difference between the low-temperature saturated water (water supply) in the ascending pipe 105 and the high-temperature steam in the evaporation pipe 103 is large, there is a problem that water hammer is generated.
[0015]
In addition, in a vertical natural circulation water tube boiler, the pressure of saturated water is low during start-up operation, so the volume change rate accompanying the phase change of saturated water is large at the time of boiling, and transient excessive excessive circulation force is required. In addition, the void ratio is increased, and a large flow resistance is given to the evaporation pipe 103 and the ascending pipe 105 to cause pulsation.
[0016]
In addition, in the vertical natural circulation water tube boiler, the saturated water in the evaporation tube 103 flows to the ascending pipe 105 without exchanging heat with the hot gas G during start-up operation. There was a problem that the flow of water became intermittently unstable.
[0017]
The present invention has been made in view of such a problem, and continuously generates the circulating force of saturated water without interruption, and suppresses the pulsation and flow of saturated water to operate in a stable state. An object is to provide a circulating water tube boiler.
[0021]
[Means for Solving the Problems]
  The natural circulation water tube boiler according to the present invention is:To achieve the above objective,Claim 1As described above, a steam drum is mounted on the outside of the casing, a gas passage portion is formed in the casing, and the saturated water in the steam drum is again supplied to the steam through the precipitation pipe, the evaporation pipe, and the riser pipe. Circulate to drumSaddleIn the natural circulation water tube boiler, among the evaporation pipes arranged in the gas passage part, at least one of the uppermost stream side, the intermediate part and the most downstream side evaporation pipe toward the hot gas, and the upstream side toward the hot gas An evaporator pipe and a downstream evaporator pipe are divided, and the divided upstream evaporator pipe and the downstream evaporator pipe are connected by a U vent, and the inlet pipe of the upstream evaporator pipe and the outlet pipe of the downstream evaporator pipe are connected. The close pipe is positioned higher than the U vent.
[0025]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 2As described inSaidPlate-like fins are provided on the upstream side evaporation pipe and the downstream side evaporation pipe.
[0026]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 3As described inSaidThe plate-like fins are arranged in the same direction as the hot gas flow direction.
[0027]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 4As described inSaidThe plate-like fins are arranged with the density gradually increased from the inlet header of the evaporation tube toward the outlet header.
[0028]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 5As described inSaidA spiral fin is provided on the upstream side evaporation pipe and the downstream side evaporation pipe.
[0029]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 6As described inSaidThe spiral fins are arranged so that the front side and the back side of the evaporation tube are axisymmetric.
[0030]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 7As described inSaidThe riser pipe connected from the outlet pipe of the evaporation pipe arranged in the gas passage portion via the outlet connection pipe is connected to the steam drum as a single unit.
[0031]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 8As described inSaidThe ascending pipe is divided into a vertical portion in the same direction as the flow direction of the hot gas and an inclined portion that intersects the gas passage portion and is connected to the steam drum.
[0032]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 9As described inSaidThe vertical part of the rising pipe is accommodated in a hot box formed in the casing and formed outside the gas passage part.
[0033]
  Moreover, in order to achieve the said objective, the natural circulation type water tube boiler which concerns on this invention,Claim 10As described inSaidOut of the evaporation pipes arranged in the gas passage portion, the inlet pipe of the most upstream side, the middle part and the most downstream side of the evaporation pipe toward the hot gas, and the downcomer pipe are formed in the casing, and the gas It is housed in a hot box on the steam drum side formed outside the passage portion.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a natural circulation water tube boiler according to the present invention will be described with reference to the drawings and the reference numerals attached in the drawings.
[0037]
FIG. 1 is a schematic view showing a first embodiment of a natural circulation water tube boiler according to the present invention.
[0038]
The natural circulation water tube boiler according to the present embodiment includes a space-like hot box 11, 11 partitioned by gas baffles 9, 9 on both sides inside the casing 10 of a long cylindrical casing 10 arranged in a vertical direction. The gas passage section 12 is formed between the hot boxes 11 and 11 and guides the hot gas G discharged from the gas turbine, for example.
[0039]
The gas passage portion 12 accommodates the evaporation pipes 5 a and 5 h so as to intersect with the hot gas G flowing along the long cylindrical casing 10. The evaporation pipes 5a and 5h are connected to the steam drum 1 mounted on the outside of the casing 10 with the inlet pipes 4 and 4a, the inlet connection pipes 3 and 3 and the downcomer pipe 2 housed in the hot box 11 at one end. While being connected, the other end is connected to the steam drum 1 via outlet pipes 6 and 6 a, outlet connection pipes 7 and 7, and rising pipes 8 and 8 that are accommodated in the hot box 11.
[0040]
The steam drum 1 is separated by a steam / water separator 13 for separating the steam / saturated water gas-liquid two-phase flow guided from the risers 8 and 8 into steam and saturated water, and the steam / water separator 13. For example, a steam outlet 14 for supplying the steam to a steam turbine or the like. Of the evaporation pipes 5a and 5h, the most upstream and the most downstream evaporation pipes 5a and 5a facing the hot gas G are so-called from the inlet header pipes 4a and 4a to the outlet header pipes 6a and 6a. The upper right inclined straight pipe and the evaporation pipe 5h in the middle thereof are accommodated in the gas passage portion 12 as a so-called horizontal straight pipe from the inlet header 4 toward the outlet header 6.
[0041]
Next, the operation of the natural circulation water tube boiler according to the present embodiment will be described.
[0042]
The hot gas G flowing in the gas passage portion 12 in the vertical direction exchanges heat with saturated water (feed water) flowing in the evaporation pipes 5a and 5h. At that time, the saturated water flowing in the evaporation pipes 5a and 5h starts to boil, becomes a vapor-liquid two-phase flow of steam-saturated water, and rises through the outlet header pipes 6 and 6a and the outlet connection pipes 7 and 7. It flows into the tubes 8 and 8. Then, the fluid that has become a two-phase flow of gas-liquid mixing rises through the risers 8 and 8 and flows into the steam drum 1 through the steam separator 13.
[0043]
The steam drum 1 separates the gas-liquid two-phase flow of steam-saturated water into steam and saturated water by the steam-water separator 13. The separated steam is supplied to, for example, a steam turbine through the steam outlet 14. The separated saturated water descends the downcomer pipe 2 and circulates again to the evaporation pipes 5a and 5h via the inlet connecting pipes 3 and 3 and the inlet headers 4a and 4.
[0044]
During the start-up operation, the saturated water in the downcomer pipe 2 and the ascending pipes 8 and 8 are both in a stopped state because the temperature is low, the temperature difference is small, and no circulatory force is generated. For this reason, the saturated water in the evaporation pipes 5a and 5h reaches the saturation temperature by heat exchange with the hot gas G, and starts boiling at once. The fluid that has become a gas-liquid two-phase flow flows into the steam drum 1 through the outlet header pipes 6 a and 6, the outlet connection pipes 7 and 7, and the ascending pipes 8 and 8. At this time, the rising water 8 and the saturated water of the steam drum 1 are heated by mixing with the high-temperature gas-liquid two-phase flow. The heated saturated water is circulated again with a slight temperature rise to the evaporation pipes 5a and 5h through the downcomer pipe 2, the inlet connecting pipes 3 and 3, and the inlet header pipes 4a and 4.
[0045]
At that time, the uppermost stream side and the most downstream side evaporation pipes 5a, 5a toward the hot gas G are so-called upper right inclined straight pipes toward the outlet headers 6a, 6a. When heat exchanges with the hot gas G, a circulatory force is generated by convection, and the circulatory force is generated before the gas-liquid two-phase flow. The saturated water that has become high-temperature water flows into the rising pipes 8 and 8 through the outlet header pipes 6a and 6 and the outlet connecting pipes 7 and 7, and the temperature of the saturated water in the rising pipes 8 and 8 is increased by convection. Promote. Further, the saturated water in the evaporation pipes 5a and 5h becomes higher as it goes to the outlet header 6a and 6 side by convection, and the saturated water on the outlet header 6a and 6 side quickly reaches the saturation temperature and boils. Therefore, the circulation force by the gas-liquid two-phase flow is promoted more quickly.
[0046]
Thus, in the present embodiment, the evaporation pipes 5a and 5a arranged on the most upstream side and the most downstream side facing the hot gas G are formed in a so-called upper right inclined straight pipe, which is much faster than before. Since the circulation force of the saturated water is promoted, the start-up operation can be further shortened without causing pulsation or stoppage in the water hammer and the saturated water during the start-up operation.
[0047]
FIG. 2 is a schematic view showing a second embodiment of the natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment or a corresponding part.
[0048]
The natural circulation water tube boiler according to the present embodiment includes bent portions 15a and 15a that are bent toward the downstream side of the hot gas G at the intermediate portion of the most upstream and downstreammost evaporation tubes 5a and 5a that face the hot gas G. An inclined straight pipe having a steep angle is formed from the bent portions 15a and 15a toward the outlet header pipes 6a and 6a. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
[0049]
Thus, in the present embodiment, the bent portions 15a and 15a are formed toward the downstream side of the hot gas G in the middle part of the most upstream and downstreammost evaporation pipes 5a and 5a facing the hot gas G, A straight straight pipe with a steep angle from the bent portions 15a, 15a toward the outlet header pipes 6a, 6a is formed to promote the circulating power of the saturated water. The start-up operation can be further shortened without causing any other problems.
[0050]
FIG. 3 is a schematic view showing a third embodiment of the natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment or a corresponding part.
[0051]
The natural circulation water tube boiler according to the present embodiment accommodates the inlet headers 4a, 4, 4a and the outlet headers 6a, 6, 6a in the hot box 11 on the steam drum 1 side, and is suitable for the hot gas G. The most upstream side, intermediate portion, and most downstream side evaporation pipes 5a, 5h, 5a are connected to the upstream side evaporation pipe 5a.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2The upstream side evaporating pipe 5a1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Are formed in a so-called U-shaped pipe connected by a U vent 16, while the uppermost stream side and the most downstream side evaporation pipes 5 a, 5 a are formed in a so-called right-downward slope with respect to the flow direction of the hot gas G. Is.
[0052]
In the natural circulation type water tube boiler having such a configuration, during the start-up operation, the upstream of the evaporation tubes 4a, 4 and 4a from the steam drum 1 through the precipitation tube 2, the inlet connection tube 3, and the inlet header 4a. Side evaporation pipe 5a1, 5a1The saturated water supplied to is heated to a high temperature by heat exchange with the hot gas G, and a circulation force is generated due to the density difference based on the high temperature. In this case, the upstream-side evaporation pipe 5a formed in a right-downward inclined shape among the most upstream-side and most downstream-side evaporation pipes 5a, 5a.1, 5a1Since the head on the U vent 16 side is slightly higher than the head on the inlet side, the water head on the U vent 16 side becomes relatively high, and boiling occurs during heat exchange with the hot gas G. It is possible to suppress the generation of bubbles based on the above and maintain a good circulation force based on the density difference of saturated water.
[0053]
The U-vent 16 is reversed and the downstream side evaporation pipe 5a2, 5a2The saturated water toward the heat exchanges again with the hot gas G, and the temperature rises to generate bubbles based on boiling. However, the saturated water at this time has a low density, and the upstream side evaporation pipe 5a.1, 5a1Since the pressing force (circulating force) of saturated water guided from the air overcomes bubbles that become flow resistance, the pressing force (circulating force) causes the steam drum 1 to pass through the outlet header pipe 6a and the ascending pipe 8. Flows well.
[0054]
  Thus, in this embodiment, the inlet header 4a, 4, 4a and the outlet header 6a, 6, 6a are accommodated in the hot box 11 on the steam drum 1 side, and the evaporation tubes 5a, 5a are connected to the hot gas G. And the upper evaporating pipe 5a out of the evaporating pipes 5a and 5a.1, 5a1Slightly on the U vent 16 sideIs getting higherSince the generation of bubbles based on boiling of saturated water is suppressed using the water head and the circulating power of saturated water is secured, the start-up operation does not cause pulsation or stoppage of the saturated water during start-up operation. Can be further shortened.
[0055]
FIG. 4 is a schematic view showing a fourth embodiment of the natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment or a corresponding part.
[0056]
The natural circulation type water tube boiler according to the present embodiment intersects with the flow of the hot gas G and is divided toward the flow of the hot gas G, the most upstream side, the middle portion, and the most downstream side evaporation tubes 5a, 5h. , 5a, at least two or more evaporator tubes are bent as separate evaporator tubes, and the evaporator tube 17a is bent.117a2Is provided.
[0057]
Bent evaporator tube 17a117a2May be formed in a V-shape toward the flow of the hot gas G, and is initially made to be horizontal and transverse to the flow of the hot gas G. A so-called upper right slope may be used.
[0058]
As described above, in the present embodiment, at least two or more of the most upstream side, intermediate portion, and most downstream side evaporation pipes 5a, 5h, 5a divided toward the flow of the hot gas G are separated. The evaporation tube 17a is bent as the evaporation tube117a2Since the circulatory force of saturated water is reliably ensured, saturated water can be flowed satisfactorily during start-up operation.
[0059]
FIG. 5 is a schematic view showing a fifth embodiment of the natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component part of 1st Embodiment and 3rd Embodiment, or a corresponding part.
[0060]
As in the third embodiment, the natural circulation water tube boiler according to the present embodiment accommodates the inlet headers 4a, 4, 4a and the outlet headers 6a, 6, 6a in the hot box 11 on the steam drum 1 side. At the same time, the most upstream side and the most downstream side evaporation pipes 5a, 5h, 5a facing the hot gas G are connected to the upstream side evaporation pipe 5a.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2The upstream side evaporating pipe 5a1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Are formed in a so-called U-shaped pipe connected by a U vent 16, while the most upstream side and the most downstream side evaporation pipes 5 a, 5 a are formed in a so-called downward sloping shape in the flow direction of the hot gas G, Upstream evaporator tube 5a1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Each is provided with a plate-like fin 18.
[0061]
As shown in FIG. 6, the plate-like fins 18 are formed on the upstream side evaporation pipe 5a.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2The upstream-side evaporation pipe 5a is at an angle θ with respect to the horizontal pipe axis HL and the vertical pipe axis VL and is in the same direction as the flow direction of the hot gas G.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Is fixed.
[0062]
Thus, in the present embodiment, the upstream side evaporation pipe 5a1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2The plate-like fins 18 are respectively provided, and the plate-like fins 18 are arranged at positions that are at the same angle as the flow direction of the hot gas G with respect to the horizontal tube axis HL and the vertical tube axis VL. Since the rectifying effect is given to the flow of the gas, the upstream-side evaporation pipe 5a without causing the hot gas G to drift.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Each saturated water can be heated evenly.
[0063]
FIG. 7 is a schematic view showing a sixth embodiment of the natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component part of 1st Embodiment and 3rd Embodiment, or a corresponding part.
[0064]
The natural circulation type water tube boiler according to the present embodiment includes an upstream-side evaporation tube 5a in the most upstream, intermediate and downstream-side evaporation tubes 5a, 5h, 5a facing the hot gas G shown in the third embodiment.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Each is provided with a helical fin 19.
[0065]
As shown in FIG. 8, when the same direction as the flow direction of the hot gas G is defined as the hot gas flow reference line HGVL, the spiral fin 19 has an angle θ with respect to the hot gas flow reference line HGVL.2Are arranged. The upstream side evaporation pipe 5a1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2When the angle between each horizontal tube axis HL and the transverse cross section of the flow of the hot gas G is θ1, the spiral fin 19 has an angle (θ2−θ1) Or angle (θ2+ Θ1) And the vertical evaporation pipe 5a as a reference.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Is arranged.
[0066]
In addition, the spiral fin 19 has an upstream side evaporation pipe 5a on the front side (front side toward the paper surface) with the vertical pipe axis VL as a reference.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2However, the rear side (back side toward the paper surface) is also upstream of the above-mentioned vertical pipe axis VL as the upstream side evaporation pipe 5a.1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2It is so-called axially symmetric.
[0067]
Thus, in the present embodiment, the upstream side evaporation pipe 5a1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Are provided with spiral fins 19, and the spiral fins 19 are connected to the respective evaporation tubes 5 a with respect to the vertical tube axis VL.1, 5a2, 5h1, 5h2,... Are arranged on the front side and the back side, and the flow of the hot gas G with respect to the spiral fins 19 provided on the front side and the back side is made symmetrical. Side evaporation pipe 5a1, 5h1, 5a1And the downstream evaporation pipe 5a2, 5h2, 5a2Each saturated water can be heated evenly.
[0068]
FIG. 9 is a schematic view showing a seventh embodiment of the natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment or a corresponding part.
[0069]
The natural circulation type water pipe boiler according to the present embodiment includes outlet headers 6a, 6, 6a and ascending pipes 8 in the uppermost stream side, the middle part and the most downstream side evaporation pipes 5a, 5h, 5a facing the hot gas G, The outlet connecting pipes 7, 7, 7 that connect 8, 8 are arranged in an inclined shape toward the downstream side in the flow direction of the hot gas G.
[0070]
During the start-up operation, the saturated water is in a stopped state because the temperature difference between the saturated water (feed water) in the downcomer pipe 2 and the ascending pipes 8, 8, and 8 is small and no circulation force is generated. For this reason, until the saturated water in the evaporation pipes 5a, 5h, 5a starts to boil by heat exchange with the hot gas G, only the circulation force by convection is generated until the circulation force by the two-phase flow is generated.
[0071]
In addition, the outlet connection pipes 6a, 6, 6a and the outlet connection pipes 7, 7, 7 are non-heated portions. When the outlet connection pipes 7, 7, 7 are arranged horizontally or vertically, convection is suppressed. Moreover, the generation of circulating force is also suppressed.
[0072]
This embodiment pays attention to such a point, and the outlet connection pipes 7, 7, and 7 are arranged in a so-called upper right slope toward the downstream side in the flow direction of the hot gas G. .
[0073]
Therefore, according to the present embodiment, the outlet connecting pipes 7, 7, and 7 are arranged in an inclined shape on the upper right side toward the downstream side in the flow direction of the hot gas G to promote convection. The heating power of the saturated water can secure the circulating power of the saturated water, the securing of the circulating power of the saturated water allows the saturated water to reach the saturation temperature earlier and the boiling can be accelerated, and the saturated water can be circulated well. it can.
[0074]
FIG. 10 is a schematic view showing an eighth embodiment of a natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment and 5th Embodiment, or a corresponding part.
[0075]
The natural circulation water tube boiler according to the present embodiment is a plate-like fin 18 fixed to the uppermost stream side, the middle part, and the most downstream side evaporation pipes 5a, 5h, 5a facing the hot gas G shown in the fifth embodiment. Are arranged with gradually increasing density from the inlet header pipes 4a, 4, 4a toward the outlet header pipes 6a, 6, 6a.
[0076]
Thus, in this embodiment, since the plate-like fins 18 are arranged with the density gradually increased from the inlet header pipes 4a, 4, 4a toward the outlet header pipes 6a, 6, 6a, The generation of circulating force due to convection can be accelerated even more quickly.
[0077]
FIG. 11 is a schematic view showing a ninth embodiment of the natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment or a corresponding part.
[0078]
The natural circulation type water tube boiler according to the present embodiment includes the outlet pipes 6a, 6, 6a and the outlet connecting pipe 7 from the most upstream side, intermediate part, and most downstream side evaporation pipes 5a, 5h, 5a facing the hot gas G. , 7, 7 and the riser pipe 8 connected together as one, and the riser pipe 8 crosses the vertical part 8 a and the gas passage part 12 facing the same direction as the flow direction of the hot gas G, It is divided into inclined portions 8b intersecting with the flow of the hot gas G.
[0079]
Since the upstreammost and downstreammost evaporating pipes 5a and 5a facing the hot gas G are inclined toward the downstream side with respect to the flow of the hot gas G, the saturated water (feed water) is hot gas. When heated with G, convection occurs and the circulation force is generated quickly. However, since the middle portion of the evaporation pipe 5h is disposed horizontally across the hot gas G, even if the saturated water is heated by the hot gas G, no circulating force is generated until it boils.
[0080]
Further, during the start-up operation, the heat of the hot gas G before the operation remains in the gas passage portion 12.
[0081]
The present embodiment pays attention to such points, and the rising pipes 8 are collectively shared and are generated earlier in the uppermost stream side and the most downstream side evaporation pipes 5a and 5a facing the hot gas G. The circulatory force of saturated water is transmitted to the saturated water in the middle portion of the evaporation pipe 5h to promote the circulatory force.
[0082]
In the present embodiment, the rising pipe 8 is divided into a vertical portion 8a and an inclined portion 8b, and the residual heat of the hot gas G remaining in the gas passage portion 12 is used to circulate saturated water in the inclined portion 8b. It promotes power.
[0083]
Therefore, according to the present embodiment, the saturation in the evaporation pipe 5h in the middle portion is compared with the generation of the circulating force of saturated water in the evaporation pipes 5a and 5a on the most upstream side and the most downstream side toward the hot gas G. Since the point where the generation of the water circulation force is delayed is compensated, the generation of the circulation force of the saturated water in the middle portion of the evaporation pipe 5h can be further accelerated.
[0084]
In the present embodiment, the rising pipe 8 is shared and shared, and the rising pipe 8 is divided into a vertical portion 8a and an inclined portion 8b, and the vertical portion 8a is disposed outside the casing 10. However, not limited to this embodiment, the vertical portion 8a may be installed in the hot box 11, for example, as shown in FIG. 12, and the downcomer 2, for example, as shown in FIG. You may install in the hot box 11 by the side of the steam drum 1. Since the heat of the hot gas remains in each hot box 11, it is advantageous to accelerate the circulation force of the saturated water in each of the evaporation pipes 5a, 5h, 5a even more quickly.
[0085]
FIG. 14 is a schematic view showing a tenth embodiment of a natural circulation water tube boiler according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component part of 1st Embodiment and 8th Embodiment, or a corresponding part.
[0086]
  The natural circulation water tube boiler according to the present embodiment includes evaporation pipes 5a, 5h, and 5a including plate fins 18 on the most upstream side, the middle part, and the most downstream side toward the hot gas G shown in the eighth embodiment. The riser pipes 8a, 6, 6a and the riser pipes 8 connected via the outlet connection pipes 7, 7, 7 are collectively shared, and the shared riser pipe 8 and the downcomer pipe 2 are shared with the steam drum 1. In the hot box 11 on the sideWith placementThe outlet connecting pipes 7, 7, 7 that connect the outlet pipes 6 a, 6, 6 a and the shared ascending pipe 8 are arranged in an inclined manner toward the downstream side in the flow direction of the hot gas G.
[0087]
Thus, in the present embodiment, the shared riser pipe 8 and the downcomer pipe 2 are disposed in the hot box 11 on the steam drum 1 side, and the outlet connection pipes 7, 7, 7 are arranged in the flow direction of the hot gas G. Since the residual heat of the hot gas G in the hot box 11 is effectively utilized by being arranged in an inclined shape toward the downstream side, the generation of the circulating force of saturated water in each of the evaporation pipes 5a, 5h, 5a is made even faster. Can be promoted.
[0088]
【The invention's effect】
As described above, the natural circulation type water tube boiler according to the present invention adds various devices to the precipitation pipe, the evaporation pipe, the outlet connection pipe, and the riser pipe, thereby increasing the circulation force by the convection of saturated water (feed water) in each pipe. Since it was generated even earlier, the start-up operation can be further shortened without causing water hammer, pulsation, and flow stoppage in the saturated water during the start-up operation.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a first embodiment of a natural circulation water tube boiler according to the present invention.
FIG. 2 is a schematic view showing a second embodiment of a natural circulation water tube boiler according to the present invention.
FIG. 3 is a schematic view showing a third embodiment of a natural circulation water tube boiler according to the present invention.
FIG. 4 is a schematic view showing a fourth embodiment of a natural circulation water tube boiler according to the present invention.
FIG. 5 is a schematic view showing a fifth embodiment of a natural circulation water tube boiler according to the present invention.
FIG. 6 is an enlarged view showing a plate-like fin in the fifth embodiment.
FIG. 7 is a schematic view showing a sixth embodiment of the natural circulation water tube boiler according to the present invention.
FIG. 8 is an enlarged view showing a spiral fin in the sixth embodiment.
FIG. 9 is a schematic view showing a seventh embodiment of the natural circulation water tube boiler according to the present invention.
FIG. 10 is a schematic view showing an eighth embodiment of a natural circulation water tube boiler according to the present invention.
FIG. 11 is a schematic view showing a ninth embodiment of the natural circulation water tube boiler according to the present invention.
FIG. 12 shows a ninth embodiment of a natural circulation water tube boiler according to the present invention.1st modification is shownSchematic.
FIG. 13 shows a ninth embodiment of a natural circulation water tube boiler according to the present invention.2nd modification is shownSchematic.
FIG. 14 is a schematic view showing a tenth embodiment of a natural circulation water tube boiler according to the present invention.
FIG. 15 is a schematic view showing a conventional horizontal type natural circulation water tube boiler.
FIG. 16 is a schematic view showing a conventional vertical-type natural circulation water tube boiler.
[Explanation of symbols]
1 Steam drum
2 downpipe
3 Inlet connection pipe
4,4a Entrance pipe
5a, 5h Evaporating tube
5a1, 5h1  Upstream evaporator tube
5a2, 5h2  Downstream evaporation pipe
6,6a outlet outlet
7 Outlet connection pipe
8 Ascending pipe
8a Vertical section
8b Inclined part
9 Gas baffle
10 Casing
11 Hot box
12 Gas passage
13 Air-water separator
14 Steam outlet
15a bent part
16 U vent
17a117a2  Bent evaporator tube
18 plate fins
19 Spiral fin
100 steam drum
101 downpipe
102
103 Evaporation tube
104 header
105 riser
106 Air-water separator
107 Steam outlet
108 Precipitation set
109 Water supply pipe
110 Water level adjustment valve

Claims (10)

ケーシングの外側に蒸気ドラムを載設し、ケーシング内にガス通路部を形成し、上記蒸気ドラム内の飽和水を、降水管、蒸発管、上昇管を介して再び上記蒸気ドラムに循環させる竪型の自然循環型水管ボイラにおいて、上記ガス通路部に配置する蒸発管のうち、熱ガスに向って最上流側、中間部分および最下流側の蒸発管のうち少なくとも一方を、熱ガスに向って上流側蒸発管と下流側蒸発管とに区分けし、区分けした上流側蒸発管と下流側蒸発管をUベントで接続させるとともに、上記上流側蒸発管の入口管寄せ管および上記下流側蒸発管の出口管寄せ管を、上記Uベントよりも高位置にしたことを特徴とする自然循環型水管ボイラ。A vertical type in which a steam drum is mounted on the outside of the casing, a gas passage is formed in the casing, and the saturated water in the steam drum is circulated again to the steam drum through the precipitation pipe, the evaporation pipe, and the riser pipe In the natural circulation water tube boiler, among the evaporation pipes arranged in the gas passage part, at least one of the most upstream side, the middle part and the most downstream side evaporation pipes toward the hot gas, and upstream toward the hot gas. A side evaporation pipe and a downstream evaporation pipe are divided, and the divided upstream evaporation pipe and the downstream evaporation pipe are connected by a U vent, and the inlet egress pipe of the upstream evaporation pipe and the outlet of the downstream evaporation pipe are connected. A natural circulation type water pipe boiler characterized in that a header pipe is positioned higher than the U vent. 前記上流側蒸発管および下流側蒸発管に板状フィンを設けたことを特徴とする請求項1記載の自然循環型水管ボイラ。Natural circulation water tube boiler according to claim 1, characterized in that a plate-shaped fins on the upstream evaporator tube and downstream evaporator tube. 前記板状フィンを、熱ガスの流れ方向と同一方向に配置したことを特徴とする請求項2記載の自然循環型水管ボイラ。 The natural circulation water tube boiler according to claim 2 , wherein the plate fins are arranged in the same direction as a flow direction of the hot gas. 前記板状フィンを、蒸発管の入口管寄せ管から出口管寄せ管に向って徐々に密度を高くして配置したことを特徴とする請求項2記載の自然循環型水管ボイラ。 3. The natural circulation water tube boiler according to claim 2 , wherein the plate-like fins are arranged with a density gradually increased from an inlet header of the evaporation tube toward an outlet header. 前記上流側蒸発管および下流側蒸発管に螺旋状フィンを設けたことを特徴とする請求項1記載の自然循環型水管ボイラ。Natural circulation water tube boiler according to claim 1, characterized in that a spiral fin to the upstream evaporator tube and downstream evaporator tube. 前記螺旋状フィンを、蒸発管の表側と裏側とを軸対称にして配置したことを特徴とする請求項5記載の自然循環型水管ボイラ。 6. The natural circulation water tube boiler according to claim 5 , wherein the spiral fins are arranged so that the front side and the back side of the evaporation tube are axisymmetric. 前記ガス通路部に配置する蒸発管の出口管寄せ管から出口接続管を介して接続する上記上昇管を、一つにして上記蒸気ドラムに接続させたことを特徴とする請求項1乃至6のいずれか1項記載の自然循環型水管ボイラ。The riser which connects via an outlet connection pipe from the outlet pipe pulling tube evaporator tube disposed in the gas passage, and to one of claims 1 to 6, characterized in that is connected to the steam drum The natural circulation water tube boiler according to any one of the preceding claims. 前記上昇管を、熱ガスの流れ方向と同一方向の鉛直部と、ガス通路部を交差させる傾斜部とに区分けして蒸気ドラムに接続させたことを特徴とする請求項7記載の自然循環型水管ボイラ。 8. The natural circulation type according to claim 7 , wherein the rising pipe is connected to a steam drum by being divided into a vertical portion in the same direction as the flow direction of the hot gas and an inclined portion intersecting the gas passage portion. Water tube boiler. 前記上昇管の鉛直部を、ケーシング内に形成され、ガス通路部の外側に形成したホットボックス内に収容したことを特徴とする請求項8記載の自然循環型水管ボイラ。 9. The natural circulation water tube boiler according to claim 8, wherein the vertical portion of the rising pipe is housed in a hot box formed in the casing and formed outside the gas passage portion. 前記ガス通路部に配置する蒸発管のうち、熱ガスに向って最上流側、中間部分および最下流側の蒸発管の入口管寄せ管と、上記降水管を、上記ケーシング内に形成され、上記ガス通路部の外側に形成した上記蒸気ドラム側のホットボックス内に収容したことを特徴とする請求項1乃至9のいずれか1項記載の自然循環型水管ボイラ。 Wherein among the evaporation pipe be placed in the gas passage, the most upstream side toward the hot gas, an inlet pipe pulling tube evaporator tubes of the intermediate portion and the most downstream side, the downcomer, formed in the casing, the The natural circulation type water tube boiler according to any one of claims 1 to 9, wherein the natural circulation water tube boiler is housed in a hot box on the steam drum side formed outside the gas passage portion.
JP15025498A 1998-05-29 1998-05-29 Natural circulation water tube boiler Expired - Fee Related JP3934252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15025498A JP3934252B2 (en) 1998-05-29 1998-05-29 Natural circulation water tube boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15025498A JP3934252B2 (en) 1998-05-29 1998-05-29 Natural circulation water tube boiler

Publications (2)

Publication Number Publication Date
JPH11337003A JPH11337003A (en) 1999-12-10
JP3934252B2 true JP3934252B2 (en) 2007-06-20

Family

ID=15492933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15025498A Expired - Fee Related JP3934252B2 (en) 1998-05-29 1998-05-29 Natural circulation water tube boiler

Country Status (1)

Country Link
JP (1) JP3934252B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2834561B1 (en) 2012-01-17 2021-11-24 General Electric Technology GmbH Tube arrangement in a once-through horizontal evaporator
US9739476B2 (en) * 2013-11-21 2017-08-22 General Electric Technology Gmbh Evaporator apparatus and method of operating the same

Also Published As

Publication number Publication date
JPH11337003A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
CN108895424B (en) Design method of inclined multi-tube steam boiler
JP4942480B2 (en) Once-through boiler and its starting method
US7628124B2 (en) Steam generator in horizontal constructional form
AU755040B2 (en) Heat recovery steam generator
US6092490A (en) Heat recovery steam generator
JP3046890U (en) Once-through boiler
JP3127992B2 (en) Modular condensing heat exchanger for low temperature exhaust gas waste heat recovery
JP3934252B2 (en) Natural circulation water tube boiler
JP4489775B2 (en) Horizontal once-through boiler and its operation method
JP2875001B2 (en) Upflow / Downflow heating tube circulation system
JP2636399B2 (en) Heat exchanger
JPS61143602A (en) Natural circulating steam generator
JP2005538336A (en) Horizontal boiler operation method and boiler for carrying out this operation method
JP3916784B2 (en) Boiler structure
JP2573806Y2 (en) Shell and tube absorption condenser
JP3865342B2 (en) Natural circulation evaporator, exhaust heat recovery boiler, and startup method thereof
JP3723097B2 (en) Once-through exhaust heat boiler
CN108709437A (en) Waste nitrogen heater channel structure and application method
JP5230396B2 (en) Piping structure of boiler device and the boiler device
JPH09145007A (en) Natural circulation boiler
JPS6314293Y2 (en)
JPH08145305A (en) Feed water heater and power generating plant
JP3759029B2 (en) Steam drum and boiler
JP2000081289A (en) Plate fin type heat exchanger
JP2001507436A (en) Method and system for operating a once-through steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

LAPS Cancellation because of no payment of annual fees