JP2005132675A - Single crystal production apparatus - Google Patents

Single crystal production apparatus Download PDF

Info

Publication number
JP2005132675A
JP2005132675A JP2003370641A JP2003370641A JP2005132675A JP 2005132675 A JP2005132675 A JP 2005132675A JP 2003370641 A JP2003370641 A JP 2003370641A JP 2003370641 A JP2003370641 A JP 2003370641A JP 2005132675 A JP2005132675 A JP 2005132675A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
heater
temperature gradient
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003370641A
Other languages
Japanese (ja)
Inventor
Shuichi Yabu
修一 藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003370641A priority Critical patent/JP2005132675A/en
Publication of JP2005132675A publication Critical patent/JP2005132675A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the temperature gradient at a cone part becomes considerably small in comparison with that at the face of a heater when the cone part of the bottom part of a crucible is arranged at a position corresponding to melting point of the surface of the heater, and when the temperature gradient becomes small, the position of the solid-liquid interface becomes unstable by heat disturbance and the crystal defects are liable to occur for a single crystal production apparatus. <P>SOLUTION: In the single crystal production apparatus, the temperature distribution of the surface of the heater is transferred to the bottom part of the crucible, a temperature gradient is formed along the bottom face of the crucible, and it becomes possible to gradually move the melting position to the peripheral direction from a seed crystal, and further, in the bottom part of the crucible, it becomes possible to fixedly maintain the temperature gradient in the vicinity of the solid-liquid interface and crystal growth speed similarly to the constant diameter part by providing a plurality of fins protruding in the obliquely downward direction in the symmetricity to the axis at the bottom part of the crucible. Resultingly, it becomes possible to produce a large diameter, high quality single crystal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は単結晶成長技術に関わるもので、特に半導体露光装置のレンズ材料として用いられる蛍石単結晶を育成するための、垂直ブリッジマン法(VB法)による単結晶製造装置に関するものである。   The present invention relates to a single crystal growth technique, and more particularly to an apparatus for manufacturing a single crystal by a vertical Bridgman method (VB method) for growing a fluorite single crystal used as a lens material of a semiconductor exposure apparatus.

近年、半導体集積回路の高集積化にともない、超微細パタ−ン形成への要求がますます高まっている。微細パタ−ンをウェハ上に転写するリソグラフィー装置としては、縮小投影露光装置が多用されている。高集積化するためには、投影レンズの解像度を上げる必要がある。そして、投影レンズの解像力を上げるには、短波長の露光光を用い、投影レンズの開口数を大きく(大口径化)する必要がある。   In recent years, with the high integration of semiconductor integrated circuits, there is an increasing demand for the formation of ultrafine patterns. As a lithography apparatus for transferring a fine pattern onto a wafer, a reduction projection exposure apparatus is frequently used. In order to achieve high integration, it is necessary to increase the resolution of the projection lens. In order to increase the resolving power of the projection lens, it is necessary to use exposure light having a short wavelength and increase the numerical aperture of the projection lens (increase the aperture).

露光光の短波長化は、g線(波長436nm)、i線(365nm)、KrFエキシマレ−ザ−光(248nm)、ArFエキシマレ−ザ−光(193nm)と進み、今後は、F2レーザー(157nm)の使用が有望視されている。i線までの波長域では、光学系に従来の光学レンズを使用することが可能であったが、KrFエキシマレーザー、ArFエキシマレーザー、F2レーザー光の波長域では、透過率が低く、従来の光学ガラスを使用することは不可能である。このため、エキシマレーザー露光装置の光学系には、短波長光の透過率が高い石英ガラスまたは蛍石を使用するのが一般的になっており、特にF2レーザー露光装置では、蛍石が必須とされている。   The shortening of the exposure light wavelength has progressed to g-line (wavelength 436 nm), i-line (365 nm), KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), and in the future, F2 laser (157 nm). ) Is considered promising. In the wavelength range up to i-line, it was possible to use a conventional optical lens in the optical system, but in the wavelength range of KrF excimer laser, ArF excimer laser, and F2 laser light, the transmittance was low, and the conventional optical lens was used. It is impossible to use glass. For this reason, it is common to use quartz glass or fluorite having high transmittance of short wavelength light for the optical system of the excimer laser exposure apparatus. In particular, in the F2 laser exposure apparatus, fluorite is essential. Has been.

また、投影レンズを構成する各レンズは、極限の面精度で研磨されるが、多結晶になっていると結晶方位によって研磨速度が異なるため、レンズの面精度を確保することが困難になる。更に多結晶の場合には、結晶界面に不純物が偏析し易く、屈折率の均一性を損ねたり、レ−ザ−照射により蛍光を発したりする。このような理由で、大口径高品質の単結晶蛍石が望まれている。   In addition, each lens constituting the projection lens is polished with the ultimate surface accuracy. However, if the lens is polycrystalline, the polishing speed varies depending on the crystal orientation, so that it is difficult to ensure the surface accuracy of the lens. Further, in the case of polycrystal, impurities are easily segregated at the crystal interface, and the uniformity of the refractive index is impaired, or fluorescence is emitted by laser irradiation. For these reasons, a large-diameter, high-quality single crystal fluorite is desired.

蛍石は通常、米国特許2214976(特許文献1)に示されたように、垂直ブリッジマン法(VB法)で製造されており、その製造装置は図4(a)に示すような構成になっている。図4(a)に於いて、1は炉本体、2は炉本体1内を高温領域1aと低温領域1bに分割する断熱部材、3aは上ヒーター、3bは下ヒーター、4は炉本体1の底を貫通する支持棒、5は支持棒4の上端に取り付けられた坩堝である。この坩堝5の下端に種子単結晶9を置き、その上に原料を入れた後、炉内を真空にして、炉温を上げ原料を熔融する。図4(b)は、炉本体1の上ヒーター3a、下ヒーター3bの鉛直方向に沿った温度分布を示したグラフである。縦軸は炉本体1の位置を、横軸は温度分布を示している。図4(b)に示すように、断熱部材2の位置が融点温度T1になるように設定されている。結晶成長開始時の坩堝5の位置は、種子単結晶9の上部が溶融する位置である。結晶成長させる時は、0.1〜5mm/時ぐらいの速度で坩堝5を高温領域1aから低温領域1bに降下させ、種子単結晶9を起点として下部の方から結晶化させていく。図4は、この坩堝降下の途中の状態を示しており、6は融液、8は固化した結晶、7は固液界面である。
米国特許2214976
Fluorite is usually manufactured by the vertical Bridgman method (VB method) as shown in US Pat. No. 2,214,976 (Patent Document 1), and the manufacturing apparatus has a configuration as shown in FIG. ing. In FIG. 4A, 1 is a furnace body, 2 is a heat insulating member that divides the inside of the furnace body 1 into a high temperature region 1a and a low temperature region 1b, 3a is an upper heater, 3b is a lower heater, and 4 is a furnace body 1. A support bar 5 penetrating the bottom is a crucible attached to the upper end of the support bar 4. A seed single crystal 9 is placed at the lower end of the crucible 5 and a raw material is placed thereon. Then, the furnace is evacuated to raise the furnace temperature and melt the raw material. FIG. 4B is a graph showing the temperature distribution along the vertical direction of the upper heater 3 a and the lower heater 3 b of the furnace body 1. The vertical axis represents the position of the furnace body 1, and the horizontal axis represents the temperature distribution. As shown in FIG. 4B, the position of the heat insulating member 2 is set to the melting point temperature T1. The position of the crucible 5 at the start of crystal growth is a position where the upper part of the seed single crystal 9 is melted. When the crystal is grown, the crucible 5 is lowered from the high temperature region 1a to the low temperature region 1b at a rate of about 0.1 to 5 mm / hour, and the seed single crystal 9 is used as a starting point for crystallization from the lower part. FIG. 4 shows a state in the middle of the crucible lowering, where 6 is a melt, 8 is a solidified crystal, and 7 is a solid-liquid interface.
U.S. Pat. No. 2,214,976

しかしながら前記した従来の垂直ブリッジマン法では、近年その要求が高まっている大口径の蛍石、例えば直径300mm以上の蛍石になると、高品質の単結晶を製造する事が非常の困難であった。特に、結晶化の起点(種子単結晶9)から坩堝5の底面のコーン部5bに沿って徐々に結晶面を広げて最大径に至る過程で結晶欠陥が生じ易いという問題があった。   However, in the above-mentioned conventional vertical Bridgman method, it has been very difficult to produce a high-quality single crystal when it becomes a large-diameter fluorite, for example, a fluorite having a diameter of 300 mm or more, which has been increasingly demanded in recent years. . In particular, there is a problem in that crystal defects are likely to occur in the process of gradually widening the crystal surface from the crystallization starting point (seed single crystal 9) along the cone portion 5b on the bottom surface of the crucible 5 to reach the maximum diameter.

結晶欠陥に影響する重要なパラメータとしては、固液界面近傍の温度勾配G、結晶成長速度Vがあり、高品質の単結晶を得るためにはこれらの値を一定に管理する必要がある。そこで従来、上下ヒーター3a,3bによりヒーター面に温度勾配をもった温度分布を創り出し、この温度分布を輻射によって坩堝5の壁面に転写することにより一定の温度勾配Gを得ていた。また坩堝の引下げ速度を一定に制御して結晶成長速度Vを一定に管理していた。   Important parameters that affect crystal defects include a temperature gradient G in the vicinity of the solid-liquid interface and a crystal growth rate V, and these values need to be managed constant in order to obtain a high-quality single crystal. Therefore, conventionally, a temperature distribution having a temperature gradient on the heater surface is created by the upper and lower heaters 3a and 3b, and this temperature distribution is transferred to the wall surface of the crucible 5 by radiation to obtain a constant temperature gradient G. Also, the crystal growth rate V was controlled to be constant by controlling the crucible pulling rate constant.

図4から解かるように、坩堝5の直胴部5aはヒーター面に直面し間隔も小さいのでヒーター面に創り出された温度分布はほぼそのまま直胴部5aの対向する位置に転写される。したがって、図4のように坩堝の直胴部5aが融点温度位置にあるときは、温度勾配Gと結晶成長速度Vを一定に保つことが出来る。   As can be seen from FIG. 4, the straight body portion 5a of the crucible 5 faces the heater surface and has a small interval, so that the temperature distribution created on the heater surface is transferred almost directly to the position facing the straight body portion 5a. Therefore, when the straight body 5a of the crucible is at the melting point temperature position as shown in FIG. 4, the temperature gradient G and the crystal growth rate V can be kept constant.

しかし坩堝5の底面コーン部5bはヒーター面に直面しておらず、また坩堝の直径が大きくなるとヒーター面との距離も大きくなるため輻射の視界が広がり、コーン部5bの外表面上の任意の微小面には広い範囲からの輻射が影響を及ぼし平均化される。したがって、図5のように坩堝のコーン部5bをヒーター面の融点温度位置に置いたとき、コーン部5bの温度勾配Gはヒーター面での温度勾配に比べてかなり小さくなる。温度勾配Gが小さくなると熱外乱によって固液界面7の位置が不安定になり、結晶欠陥が生じ易くなる。   However, the bottom cone portion 5b of the crucible 5 does not face the heater surface, and as the diameter of the crucible increases, the distance to the heater surface also increases, so that the radiation field of view increases and any arbitrary surface on the outer surface of the cone portion 5b increases. Radiation from a wide range affects the minute surface and is averaged. Therefore, when the crucible cone portion 5b is placed at the melting point temperature position of the heater surface as shown in FIG. 5, the temperature gradient G of the cone portion 5b is considerably smaller than the temperature gradient on the heater surface. When the temperature gradient G becomes small, the position of the solid-liquid interface 7 becomes unstable due to thermal disturbance, and crystal defects are likely to occur.

本発明の目的は、このような坩堝底面部に於ける温度勾配の減少を無くし、底面に沿って温度勾配を大きくとり、融点位置を種子単結晶9から周辺方向へ徐々に移動して、大口径で高品質の単結晶を製造できる単結晶製造装置を提供することにある。   The object of the present invention is to eliminate such a decrease in temperature gradient at the bottom of the crucible, increase the temperature gradient along the bottom surface, and gradually move the melting point position from the seed single crystal 9 to the peripheral direction. An object of the present invention is to provide a single crystal production apparatus capable of producing a high quality single crystal with a caliber.

前記の課題を解決するために、本発明の単結晶製造装置は、坩堝内の原料を溶融した融液を下端から徐々に固化させて柱状の単結晶を育成する垂直ブリッヂマン法による単結晶製造装置に於いて、該坩堝の底面部に軸対称で斜め下方に張り出した複数枚のフィンを配置したことを特徴とする。   In order to solve the above-mentioned problems, the single crystal production apparatus of the present invention is a single crystal production by a vertical Bridgeman method in which a melt obtained by melting raw materials in a crucible is gradually solidified from the lower end to grow a columnar single crystal. The apparatus is characterized in that a plurality of fins which are axially symmetrical and project obliquely downward are arranged on the bottom surface of the crucible.

さらには、前記坩堝の底面部の鉛直軸に対する傾斜角をθ、前記フィンの水平面に対する傾斜角をαとしたときα≧θ/2であることを特徴とする。   Furthermore, when the inclination angle of the bottom surface of the crucible with respect to the vertical axis is θ and the inclination angle of the fin with respect to the horizontal plane is α, α ≧ θ / 2.

本発明によれば、坩堝の底面部に軸対称で斜め下方に張り出した複数枚のフィンを設けたことにより、ヒーター面の温度分布を該坩堝の底面部に転写し、該坩堝の底面に沿って温度勾配をつけ、融点位置を種子単結晶から周辺方向へ徐々に移動することができるようになり、坩堝底面部に於いても、直胴部と同様に、固液界面近傍の温度勾配、結晶成長速度を一定に管理するが可能となる。その結果、大口径で高品質の単結晶の製造が可能となる。   According to the present invention, the temperature distribution of the heater surface is transferred to the bottom surface of the crucible along the bottom surface of the crucible by providing the bottom surface of the crucible with a plurality of fins that are axially symmetrical and projecting obliquely downward. It is possible to gradually move the melting point position from the seed single crystal to the peripheral direction with the temperature gradient in the vicinity of the solid-liquid interface at the bottom part of the crucible as well as the straight body part, It becomes possible to manage the crystal growth rate at a constant level. As a result, a large-diameter and high-quality single crystal can be manufactured.

さらには、前記坩堝の底部内面の鉛直軸に対する傾斜角をθ、前記フィンの水平面に対する傾斜角をαとしたときα≧θ/2とすることにより、ヒーター面からコーン部5bに転写される温度勾配を大きくすることができ、より安定した結晶成長が可能となる。   Further, the temperature transferred from the heater surface to the cone portion 5b is set to α ≧ θ / 2, where θ is an inclination angle of the bottom inner surface of the crucible with respect to the vertical axis and α is an inclination angle of the fin with respect to the horizontal plane. The gradient can be increased, and more stable crystal growth is possible.

本発明によれば、坩堝の底面部に軸対称で斜め下方に張り出した複数枚のフィンを設けたことにより、ヒーター面の温度分布を該坩堝の底面コーン部5bに転写し、該坩堝の底面に沿って温度勾配をつけ、融点位置を種子単結晶9から周辺方向へ徐々に移動することができるようになり、坩堝底面のコーン部5bに於いても、直胴部5aと同様に、固液界面近傍の温度勾配G、結晶成長速度Vを一定に管理するが可能となる。その結果、大口径で高品質の単結晶の製造が可能となる。   According to the present invention, the temperature distribution of the heater surface is transferred to the bottom cone portion 5b of the crucible by providing a plurality of fins which are axially symmetrical and projecting obliquely downward on the bottom portion of the crucible, and the bottom surface of the crucible The melting point position can be gradually moved from the seed single crystal 9 to the peripheral direction along the rim, and the cone portion 5b at the bottom of the crucible is also fixed in the same manner as the straight body portion 5a. The temperature gradient G and the crystal growth rate V in the vicinity of the liquid interface can be managed constant. As a result, a large-diameter and high-quality single crystal can be manufactured.

さらには、前記坩堝の底部内面の鉛直軸に対する傾斜角をθ、前記フィンの水平面に対する傾斜角をαとしたときα≧θ/2とすることにより、ヒーター面からコーン部5bに転写される温度勾配を大きくすることができ、より安定した結晶成長が可能となる。   Further, the temperature transferred from the heater surface to the cone portion 5b is set to α ≧ θ / 2, where θ is an inclination angle of the bottom inner surface of the crucible with respect to the vertical axis and α is an inclination angle of the fin with respect to the horizontal plane. The gradient can be increased, and more stable crystal growth is possible.

(実施例)
図1(a)は、本発明の実施の形態に関わる単結晶製造装置の断面図である。図1(a)に於いて、1は炉本体、2は炉本体1内を高温領域1aと低温領域1bに分割する断熱部材、3aは上ヒーター、3bは下ヒーター、4は炉本体1の底を貫通する支持棒、51は支持棒4の上端に取り付けた坩堝、51aは坩堝51の直胴部、51bは坩堝51の底面コーン部、52は底面コーン部51bに取り付けられたフィンである。
(Example)
Fig.1 (a) is sectional drawing of the single-crystal manufacturing apparatus in connection with embodiment of this invention. In FIG. 1A, 1 is a furnace body, 2 is a heat insulating member that divides the inside of the furnace body 1 into a high temperature region 1a and a low temperature region 1b, 3a is an upper heater, 3b is a lower heater, and 4 is a furnace body 1. A support rod penetrating the bottom, 51 is a crucible attached to the upper end of the support rod 4, 51a is a straight body portion of the crucible 51, 51b is a bottom cone portion of the crucible 51, and 52 is a fin attached to the bottom cone portion 51b. .

図1(a)の構成に於いて、結晶は次のようにして育成される。先ず、この坩堝51の下端に種子単結晶9を置き、その上に原料を入れた後、炉本体1内を真空にして、炉温を上げ原料を熔融する。図1(b)は、炉本体1のヒーター面部の鉛直方向に沿った温度分布を示している。図1(b)は、炉本体1の上ヒーター3a、下ヒーター3bの鉛直方向に沿った温度分布を示したグラフである。縦軸は炉本体1の位置を、横軸は温度分布を示している。図1(b)に示すように、断熱部材2の位置が融点温度T1になるように設定されている。結晶成長開始時の坩堝51の位置は、種子単結晶9の上部が溶融する位置である。結晶成長させる時は、0.1〜5mm/時ぐらいの速度で坩堝51を高温領域1aから低温領域1bに降下させ、種子単結晶9を起点として下部の方から結晶化させていく。図1は、この坩堝降下の途中で、坩堝底面のコーン部5bに沿って徐々に結晶面が広がり最大径に至る過程の状態を示しており、6は融液、8は固化した結晶、7は固液界面である。   In the configuration of FIG. 1A, the crystal is grown as follows. First, the seed single crystal 9 is placed at the lower end of the crucible 51, and the raw material is put thereon. Then, the furnace body 1 is evacuated to raise the furnace temperature and melt the raw material. FIG. 1B shows the temperature distribution along the vertical direction of the heater surface portion of the furnace body 1. FIG. 1B is a graph showing the temperature distribution along the vertical direction of the upper heater 3 a and the lower heater 3 b of the furnace body 1. The vertical axis represents the position of the furnace body 1, and the horizontal axis represents the temperature distribution. As shown in FIG.1 (b), the position of the heat insulation member 2 is set so that it may become melting | fusing point temperature T1. The position of the crucible 51 at the start of crystal growth is a position where the upper part of the seed single crystal 9 is melted. When the crystal is grown, the crucible 51 is lowered from the high temperature region 1a to the low temperature region 1b at a speed of about 0.1 to 5 mm / hour, and the seed single crystal 9 is used as a starting point for crystallization from the lower part. FIG. 1 shows a state where the crystal surface gradually expands along the cone part 5b on the bottom of the crucible and reaches the maximum diameter in the middle of the crucible descent, 6 is a melt, 8 is a solidified crystal, 7 Is a solid-liquid interface.

図2は、図1(a)の坩堝51の部分の拡大断面図で、符号は図1(a)と同じある。以下図2を用いて、ヒーター面部の温度分布がフィン52の作用でどのようにして坩堝51の底面コーン部51bに転写されるのか説明する。図2に於いて、B1はコーン部51b上のフィン52の付け根部分、B2はコーン部51b上のフィンとフィンの間の部分を示している。F1はフィン52の先端部分を示している。またハッチングした面HSは、坩堝51と対向するヒーター面を表し、H1はヒーター面HS上の点部分でF1に対向する部分、H2はヒーター面HS上の点でB2から視界に入る点である。ヒーター面HSと坩堝51との熱エネルギーの授受は輻射によって行われる。フィン52の先端部分F1は、主にF1に対向するH1の近傍の面との間で輻射エネルギーの授受が行われる。フィンとフィンの間の部分B2の近傍の面は、フィンによって視界が遮られるため、主に視界に入る点H2の近傍の面との間で輻射エネルギーの授受が行われる。温度の高い炉内では、輻射エネルギーの授受が行われる2面間の温度差は小さくなる。それは、輻射エネルギーは絶対温度の4乗に比例するため、輻射エネルギーの授受が行われる2面間の等価熱抵抗が該2面の平均絶対温度の3乗に反比例することになり、高温になると該2面間の熱抵抗が微小になるためである。よって、点F1の温度は点H1の温度に近い温度になり、点B2の温度は点H2の温度に近い温度になる。また、フィンの熱伝導作用により点B1の温度は点F1の温度に近い温度になる。   FIG. 2 is an enlarged cross-sectional view of a portion of the crucible 51 shown in FIG. Hereinafter, how the temperature distribution of the heater surface portion is transferred to the bottom cone portion 51b of the crucible 51 by the action of the fins 52 will be described with reference to FIG. In FIG. 2, B1 indicates a base portion of the fin 52 on the cone portion 51b, and B2 indicates a portion between the fins on the cone portion 51b. F <b> 1 indicates a tip portion of the fin 52. A hatched surface HS represents a heater surface facing the crucible 51, H1 is a portion facing the F1 at a point portion on the heater surface HS, and H2 is a point entering the field of view from B2 at a point on the heater surface HS. . Transfer of heat energy between the heater surface HS and the crucible 51 is performed by radiation. The tip end portion F1 of the fin 52 mainly receives and transfers radiant energy with the surface near H1 facing F1. Since the field of view near the portion B2 between the fins is blocked by the fins, radiation energy is exchanged with the surface near the point H2 that mainly enters the field of view. In a furnace having a high temperature, the temperature difference between the two surfaces to which radiant energy is transferred is reduced. The reason is that the radiant energy is proportional to the fourth power of the absolute temperature, so the equivalent thermal resistance between the two surfaces where the radiant energy is transferred is inversely proportional to the third power of the average absolute temperature of the two surfaces. This is because the thermal resistance between the two surfaces becomes minute. Therefore, the temperature at the point F1 is close to the temperature at the point H1, and the temperature at the point B2 is close to the temperature at the point H2. Further, the temperature of the point B1 becomes close to the temperature of the point F1 due to the heat conduction action of the fins.

以上説明したようなフィン52の視界制限作用と熱伝導により、ヒーター面の温度分布がコーン部51bに転写される。実際には、坩堝壁面の熱伝導や、支持棒4からの放熱、フィン52の最下面からの輻射放熱などの影響を受け、ヒーター面の温度分布がそのままには転写されないが、フィン52の作用により温度転写の傾向が強まる。   The temperature distribution on the heater surface is transferred to the cone portion 51b by the visual field limiting action and heat conduction of the fins 52 as described above. Actually, the temperature distribution on the heater surface is not transferred as it is due to the effects of heat conduction on the crucible wall surface, heat radiation from the support rod 4, radiation radiation from the bottom surface of the fin 52, etc. This increases the tendency of temperature transfer.

次に、フィン52の作用によりヒーター面の温度分布がそのままコーン部51bに転写されている理想状態で、コーン部の温度勾配がヒーター面の温度勾配よりも大きくなるための条件を求める。図3は、ヒーター面の温度勾配と、坩堝底部の温度勾配との関係を示すための断面図で、符号は図1、図2と同じある。図3に於いて、θは坩堝の底面コーン部51bの鉛直軸に対する傾斜角、αはフィン52の水平面に対する傾斜角、βはフィン52の鉛直軸に対する傾斜角(α+β=π/2)、Aはフィンの根元の点、Bはフィンの先端の点、Cは直胴部51aとコーン部51bが交わる点である。理想状態では線分BCに対向するヒーター面の温度が線分AC上に転写される。このような理想状態で、
(コーン部の温度勾配)≧(ヒーター面の温度勾配)
となるのはAC≦BCのときである。
Next, in the ideal state where the temperature distribution on the heater surface is directly transferred to the cone portion 51b by the action of the fins 52, a condition for the temperature gradient of the cone portion to be larger than the temperature gradient of the heater surface is obtained. FIG. 3 is a cross-sectional view for showing the relationship between the temperature gradient of the heater surface and the temperature gradient of the crucible bottom, and the reference numerals are the same as those in FIGS. In FIG. 3, θ is an inclination angle of the bottom cone portion 51b of the crucible with respect to the vertical axis, α is an inclination angle of the fin 52 with respect to the horizontal plane, β is an inclination angle of the fin 52 with respect to the vertical axis (α + β = π / 2), A Is the point at the base of the fin, B is the point at the tip of the fin, and C is the point where the straight body part 51a and the cone part 51b intersect. In the ideal state, the temperature of the heater surface facing the line segment BC is transferred onto the line segment AC. In this ideal state,
(Cone temperature gradient) ≥ (heater surface temperature gradient)
Is when AC ≦ BC.

三角形ABCを考えると、AC≦BCとなるための条件は∠A≧∠Bである。
∠A=π−θ−β ∠B=β α+β=π/2
であるから、∠A≧∠Bとなるための条件はα≧θ/2である。
Considering the triangle ABC, the condition for AC ≦ BC is ∠A ≧ ∠B.
∠A = π−θ−β ∠B = β α + β = π / 2
Therefore, the condition for satisfying ∠A ≧ ∠B is α ≧ θ / 2.

よって、理想状態ではα≧θ/2のとき
(コーン部の温度勾配)≧(ヒーター面の温度勾配)
となる。
Therefore, in the ideal state, when α ≧ θ / 2 (cone temperature gradient) ≧ (heater surface temperature gradient)
It becomes.

以上のようにして、フィン52の作用によりヒーター面の温度分布が坩堝51の底面コーン部51bに転写される。そして、坩堝51の底面に沿って温度勾配をつけ、坩堝51を引き下げることにより融点位置を種子単結晶9から周辺方向へ徐々に移動することができるようになり、坩堝底面のコーン部5bに於いても、直胴部5aと同様に、固液界面近傍の温度勾配G、結晶成長速度Vを一定に管理するが可能となる。その結果、大口径で高品質の単結晶の製造が可能となる。   As described above, the temperature distribution on the heater surface is transferred to the bottom cone portion 51 b of the crucible 51 by the action of the fins 52. Then, by creating a temperature gradient along the bottom surface of the crucible 51 and lowering the crucible 51, the melting point position can be gradually moved from the seed single crystal 9 to the peripheral direction, and at the cone portion 5b on the bottom surface of the crucible. However, similarly to the straight body portion 5a, the temperature gradient G and the crystal growth rate V in the vicinity of the solid-liquid interface can be managed to be constant. As a result, a large-diameter and high-quality single crystal can be manufactured.

さらには、坩堝51の底部内面の鉛直軸に対する傾斜角をθ、前記フィン52の水平面に対する傾斜角をαとしたときα≧θ/2とすることにより、ヒーター面からコーン部51bに転写される温度勾配を大きくすることができ、より安定した結晶成長が可能となる。   Further, when the inclination angle of the bottom inner surface of the crucible 51 with respect to the vertical axis is θ, and the inclination angle of the fin 52 with respect to the horizontal plane is α, α ≧ θ / 2 is set, so that the surface is transferred from the heater surface to the cone portion 51b. The temperature gradient can be increased, and more stable crystal growth is possible.

尚、フィン52の水平面に対する傾斜角αは一定である必要は無く、上段と下段で傾斜角を違えても良い。傾斜角を変えることにより温度勾配を変化させることが出来る。   Note that the inclination angle α of the fin 52 with respect to the horizontal plane need not be constant, and the inclination angle may be different between the upper stage and the lower stage. The temperature gradient can be changed by changing the inclination angle.

また、フィン52の熱伝導率は坩堝51の熱伝導率よりも大きくすることが望ましい。フィン52の熱伝導を大きくし、坩堝51の熱伝導を小さくすることにより、坩堝底面部の温度勾配の減少を軽減できる。   Further, it is desirable that the thermal conductivity of the fins 52 be larger than the thermal conductivity of the crucible 51. By increasing the heat conduction of the fins 52 and reducing the heat conduction of the crucible 51, it is possible to reduce the decrease in the temperature gradient at the bottom of the crucible.

本発明の実施の形態に関わる単結晶製造装置の断面図である。It is sectional drawing of the single-crystal manufacturing apparatus in connection with embodiment of this invention. 図1の坩堝51の部分の拡大断面図である。It is an expanded sectional view of the part of the crucible 51 of FIG. ヒーター面の温度勾配と、坩堝底部の温度勾配との関係を示す断面図。Sectional drawing which shows the relationship between the temperature gradient of a heater surface, and the temperature gradient of a crucible bottom part. 従来の単結晶製造装置の断面図である。It is sectional drawing of the conventional single crystal manufacturing apparatus.

符号の説明Explanation of symbols

1 炉本体
1a 高温領域
1b 低温領域
2 断熱部材
3a 上ヒーター
3b 下ヒーター
4 支持棒
5 坩堝
5a 直胴部
5b コーン部
6 融液
7 固液界面
8 結晶
9 種子単結晶
51 坩堝
51a 直胴部
51b コーン部
52 フィン
DESCRIPTION OF SYMBOLS 1 Furnace body 1a High temperature area | region 1b Low temperature area | region 2 Heat insulation member 3a Upper heater 3b Lower heater 4 Support rod 5 Crucible 5a Straight body part 5b Cone part 6 Melt 7 Solid-liquid interface 8 Crystal 9 Seed single crystal 51 Crucible 51a Straight body part 51b Cone part 52 Fin

Claims (2)

坩堝内の原料を溶融した融液を下端から徐々に固化させて柱状の単結晶を育成する垂直ブリッヂマン法による単結晶製造装置に於いて、該坩堝の底面部に軸対称で斜め下方に張り出した複数枚のフィンを配置したことを特徴とする単結晶製造装置。   In a single-crystal manufacturing apparatus based on the vertical Bridgeman method in which a melt obtained by melting the raw material in the crucible is gradually solidified from the lower end to grow a columnar single crystal, the bottom part of the crucible is axially symmetrically projected downward. A single crystal manufacturing apparatus characterized by arranging a plurality of fins. 前記坩堝の底面部の鉛直軸に対する傾斜角をθ、前記フィンの水平面に対する傾斜角をαとしたときα≧θ/2であることを特徴とする請求項1記載の単結晶製造装置。   2. The single crystal manufacturing apparatus according to claim 1, wherein θ ≧ θ / 2, where θ is an inclination angle with respect to a vertical axis of the bottom surface of the crucible and α is an inclination angle with respect to a horizontal plane of the fin.
JP2003370641A 2003-10-30 2003-10-30 Single crystal production apparatus Withdrawn JP2005132675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370641A JP2005132675A (en) 2003-10-30 2003-10-30 Single crystal production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370641A JP2005132675A (en) 2003-10-30 2003-10-30 Single crystal production apparatus

Publications (1)

Publication Number Publication Date
JP2005132675A true JP2005132675A (en) 2005-05-26

Family

ID=34647596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370641A Withdrawn JP2005132675A (en) 2003-10-30 2003-10-30 Single crystal production apparatus

Country Status (1)

Country Link
JP (1) JP2005132675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624723B (en) * 2008-07-10 2012-06-06 昆山中辰矽晶有限公司 Mode and device for forming crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624723B (en) * 2008-07-10 2012-06-06 昆山中辰矽晶有限公司 Mode and device for forming crystal

Similar Documents

Publication Publication Date Title
KR101767268B1 (en) Apparatus for producing sapphire single crystal
JP2007077013A (en) Method and apparatus for making highly uniform low-stress single crystal by pulling from melt and use of the single crystal
JP2004262742A (en) Method for growing oriented calcium fluoride single crystal
TW518374B (en) Apparatus and method for producing single crystal ingot by Czochralski method
JP2006219352A (en) Apparatus and method for manufacturing single crystal
JP2009057270A (en) Method of raising silicon single crystal
JP3988217B2 (en) Large-diameter fluorite manufacturing apparatus and manufacturing method
JP4147595B2 (en) Method for producing fluorite single crystal
JP3006147B2 (en) Large diameter fluorite single crystal manufacturing equipment
JP2005132675A (en) Single crystal production apparatus
JP2007308335A (en) Method for pulling single crystal
JP2009091237A (en) Method and apparatus for manufacturing ultra low defect semiconductor single crystalline ingot
JP2019094251A (en) Method for manufacturing single crystal
JP2005132676A (en) Method and apparatus for manufacturing single crystal
JPH10101484A (en) Crystal production apparatus and method thereof
JP2006282477A (en) Method and apparatus for manufacturing single crystal
JP2005035824A (en) Fluoride crystal growth equipment
JP3542444B2 (en) Crystal manufacturing apparatus and method
JP2005089204A (en) Apparatus and method for producing crystal
JP2004010461A (en) Apparatus for manufacturing crystal and method for manufacturing crystal
JP2020037499A (en) Heat shield member, apparatus for pulling single crystal and method for manufacturing single crystal
JP2006265029A (en) Method for production of synthetic quartz glass, optical member, photolithography machine, and apparatus for production of synthetic quartz glass
JP2005231978A (en) Single crystal manufacturing method and apparatus
JP2001335398A (en) Large diameter fluorite single crystal for photolithography and its production method
KR100831809B1 (en) Heater used for growing ingot based on czochralski technology and apparatus using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109