JP2005231978A - Single crystal manufacturing method and apparatus - Google Patents

Single crystal manufacturing method and apparatus Download PDF

Info

Publication number
JP2005231978A
JP2005231978A JP2004046278A JP2004046278A JP2005231978A JP 2005231978 A JP2005231978 A JP 2005231978A JP 2004046278 A JP2004046278 A JP 2004046278A JP 2004046278 A JP2004046278 A JP 2004046278A JP 2005231978 A JP2005231978 A JP 2005231978A
Authority
JP
Japan
Prior art keywords
crucible
solid
liquid interface
single crystal
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004046278A
Other languages
Japanese (ja)
Other versions
JP2005231978A5 (en
Inventor
Shuichi Tamura
修一 田村
Katsuhiko Tanaka
克彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004046278A priority Critical patent/JP2005231978A/en
Publication of JP2005231978A publication Critical patent/JP2005231978A/en
Publication of JP2005231978A5 publication Critical patent/JP2005231978A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a single crystal by vertical Bridgeman method that eliminates the turbulence of temperature at the proximity of solid-liquid interface, the deterioration of the product quality of crystal and the generation of boundaries due to convection of a melt within a crucible since the wall face temperature of the crucible is lower than the melt temperature at the lower part of the crucible, and the wall face temperature of the crucible and the temperature of the crucible itself are higher than the melt temperature at the upper part of the crucible. <P>SOLUTION: The apparatus for manufacturing the single crystal has the crucible to support the single crystal material, which is arranged within a furnace and comprises a conical part and a straight trunk part located at the upper part of the conical part, a flat sheet member arranged within the crucible so that it is movable up and down to the crucible and a supporting member to move the crucible up and down to the furnace. Upon the fall of the crucible, the flat sheet member is arranged at the position of boundary between the straight trunk part and the conical part while the solid-liquid interface is sweeping the conical part, and the flat sheet member is arranged at the upper position apart a predetermined space than the solid-liquid interface notwithstanding the fall of the crucible while the solid-liquid interface is sweeping the straight trunk part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は単結晶成長製造方法及び装置に関わるもので、特に半導体露光装置のレンズ材料として用いられる蛍石単結晶を育成するための、垂直ブリッジマン法(VB法)による単結晶製造方法、及び単結晶製造装置に関するものである。   The present invention relates to a single crystal growth manufacturing method and apparatus, and more particularly to a single crystal manufacturing method by a vertical Bridgman method (VB method) for growing a fluorite single crystal used as a lens material of a semiconductor exposure apparatus, and The present invention relates to a single crystal manufacturing apparatus.

近年、半導体集積回路の高集積化にともない、超微細パタ−ン形成への要求がますます高まっている。微細パタ−ンをウェハ上に転写するリソグラフィー装置としては、縮小投影露光装置が多用されている。高集積化するためには、投影レンズの解像度を上げる必要がある。そして、投影レンズの解像力を上げるには、短波長の露光光を用い、投影レンズの開口数を大きく(大口径化)する必要がある。   In recent years, with the high integration of semiconductor integrated circuits, there is an increasing demand for the formation of ultrafine patterns. As a lithography apparatus for transferring a fine pattern onto a wafer, a reduction projection exposure apparatus is frequently used. In order to achieve high integration, it is necessary to increase the resolution of the projection lens. In order to increase the resolving power of the projection lens, it is necessary to use exposure light having a short wavelength and increase the numerical aperture of the projection lens (increase the aperture).

露光光の短波長化は、g線(波長436nm)、i線(365nm)、KrFエキシマレ−ザ−光(248nm)、ArFエキシマレ−ザ−光(193nm)と進み、今後は、F2レーザー(157nm)の使用が有望視されている。i線までの波長域では、光学系に従来の光学レンズを使用することが可能であったが、KrF、ArF各エキシマレ−ザ−、F2レーザー光の波長域では、透過率が低く、従来の光学ガラスを使用することは不可能である。このため、エキシマレ−ザ−露光装置の光学系には、短波長光の透過率が高い石英ガラスまたは蛍石を使用するのが一般的になっており、F2レーザー露光装置では、蛍石が必須とされている。   The shortening of the exposure light wavelength has progressed to g-line (wavelength 436 nm), i-line (365 nm), KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), and in the future, F2 laser (157 nm). ) Is considered promising. In the wavelength range up to i-line, it was possible to use a conventional optical lens in the optical system, but in the wavelength range of KrF, ArF excimer laser, F2 laser light, the transmittance is low, It is impossible to use optical glass. For this reason, it is common to use quartz glass or fluorite with high transmittance of short wavelength light for the optical system of the excimer laser exposure apparatus, and fluorite is essential for the F2 laser exposure apparatus. It is said that.

また、投影レンズを構成する各レンズは、非常に高い面精度で研磨されるが、多結晶になっていると結晶方位によって研磨速度が異なるため、レンズの面精度を確保することが困難になる。更に多結晶の場合には、結晶界面に不純物が偏析し易く、屈折率の均一性を損ねたり、レ−ザ−照射により蛍光を発したりする。このような理由で、大口径高品質の単結晶蛍石が望まれている。   In addition, each lens constituting the projection lens is polished with very high surface accuracy, but if it is polycrystalline, the polishing speed varies depending on the crystal orientation, so it is difficult to ensure the surface accuracy of the lens. . Further, in the case of polycrystal, impurities are easily segregated at the crystal interface, and the uniformity of the refractive index is impaired, or fluorescence is emitted by laser irradiation. For these reasons, a large-diameter, high-quality single crystal fluorite is desired.

蛍石は通常、垂直ブリッジマン法(VB法)で製造されており、その製造装置は米国特許2214976(特許文献1)に記載されている。その概略断面図を図5に示す。図5(a)に於いて、1は炉本体、2は炉内を高温領域1aと低温領域1bに分割する断熱部材、3aは上ヒータ、3bは下ヒータ、4は炉本体1の底を貫通する支持棒、5は支持棒4の上端に取り付けた坩堝である。この坩堝5に原料を入れ、炉内を真空にし、炉温を蛍石の融点以上、通常摂氏1390〜1450度まで上げ熔融する。図5(b)は、炉の中心部の鉛直方向に沿った温度を示すグラフである。図5(b)に示すように、断熱部材2の位置が融点温度T1になるように設定されている。結晶成長させる時は、0.1〜5mm/hの速度で坩堝5を高温領域1aから低温領域1bに降下させ、坩堝5の下部の方から原料を結晶化させていく。図5は、この坩堝降下の途中の状態を示しており、6は融液、8は固化した結晶、7は固液界面である。   Fluorite is usually produced by the vertical Bridgman method (VB method), and its production apparatus is described in US Pat. No. 2,214,976 (Patent Document 1). A schematic sectional view thereof is shown in FIG. In FIG. 5A, 1 is a furnace body, 2 is a heat insulating member that divides the inside of the furnace into a high temperature region 1a and a low temperature region 1b, 3a is an upper heater, 3b is a lower heater, and 4 is a bottom of the furnace body 1. A support rod 5 penetrating is a crucible attached to the upper end of the support rod 4. The raw material is put into this crucible 5, the inside of the furnace is evacuated, and the furnace temperature is raised to the melting point of fluorite or higher, usually 1390 to 1450 degrees Celsius and melted. FIG.5 (b) is a graph which shows the temperature along the perpendicular direction of the center part of a furnace. As shown in FIG.5 (b), the position of the heat insulation member 2 is set so that it may become melting | fusing point temperature T1. When crystal growth is performed, the crucible 5 is lowered from the high temperature region 1 a to the low temperature region 1 b at a speed of 0.1 to 5 mm / h, and the raw material is crystallized from the lower part of the crucible 5. FIG. 5 shows a state during the lowering of the crucible, where 6 is a melt, 8 is a solidified crystal, and 7 is a solid-liquid interface.

しかしながら前述の米国特許2214976に記載の垂直ブリッジマン法では、近年要求されるような大口径、例えば直径300mm以上になると、高品質の単結晶が出来難くなる。その原因として融液内に生じる対流を挙げることができる。この対流に関しては特開平5−124887(特許文献2)に指摘されている。特開平5−124887には固液界面直上で温度勾配0℃/cmとなる領域を設けることで対流を遮断し、固液界面が対流の影響を受けないようにする方法が記載されている。
米国特許2214976 特開平5−124887
However, with the vertical Bridgman method described in the above-mentioned US Pat. No. 2,214,976, it becomes difficult to produce a high-quality single crystal when the diameter becomes large as recently required, for example, 300 mm or more. The convection which arises in a melt can be mentioned as the cause. This convection is pointed out in Japanese Patent Application Laid-Open No. 5-124877 (Patent Document 2). Japanese Patent Application Laid-Open No. 5-124487 describes a method in which a convection is interrupted by providing a region having a temperature gradient of 0 ° C./cm directly above the solid-liquid interface so that the solid-liquid interface is not affected by the convection.
U.S. Pat. No. 2,214,976 JP-A-5-12487

しかしながら特開平5−124887には固液界面付近で温度勾配0℃/cmとしているために固液界面以外の場所も融点温度になり、固液界面位置が炉に対して不安定になると考えられる。したがって温度勾配を保持しつつ対流を抑制する方法が必要である。   However, in Japanese Patent Laid-Open No. 5-124887, since the temperature gradient is 0 ° C./cm in the vicinity of the solid-liquid interface, it is considered that the location other than the solid-liquid interface becomes the melting point temperature and the position of the solid-liquid interface becomes unstable with respect to the furnace. . Therefore, there is a need for a method for suppressing convection while maintaining a temperature gradient.

坩堝5は外側から加熱されるため、融液6の半径方向、あるいは坩堝壁面と融液6の間に温度差が生じ半径方向の対流は生じてしまう。図4に於いて、矢印9は代表的な対流のパターンを示す。このような対流が起こるメカニズムは次のように説明される。先ず、融液6の半径方向に温度差があると半径方向の密度差をもたらし対流が誘起される。その結果、融液6が均熱化する。一方、坩堝1の壁面の温度は固液界面部7から上方に徐々に高温になっているので、坩堝5の壁面温度と融液温度を比較すると次のような状況になる。即ち、下部(固液界面7の近傍)では坩堝1の壁面温度が融液温度より低く、上部では坩堝5及び壁面温度が融液温度より高くなる。この結果、融液は、下部では壁面に沿った下降流、上部では壁面に沿った上昇流となる。このようにして発生する対流は、坩堝5が大型になり半径方向の温度差や坩堝壁面の温度勾配が大きくなるにつれて大きくなる。そして、この対流が、固液界面近傍の温度を擾乱し、結晶の品質を悪化させたり、バウンダリーを発生させたりする要因になっている。   Since the crucible 5 is heated from the outside, a temperature difference occurs between the radial direction of the melt 6 or between the crucible wall surface and the melt 6 and radial convection occurs. In FIG. 4, arrow 9 shows a typical convection pattern. The mechanism by which such convection occurs is explained as follows. First, if there is a temperature difference in the radial direction of the melt 6, a radial density difference is caused and convection is induced. As a result, the melt 6 is soaked. On the other hand, since the temperature of the wall surface of the crucible 1 is gradually increased upward from the solid-liquid interface portion 7, the following situation is obtained when the wall surface temperature of the crucible 5 and the melt temperature are compared. That is, the wall surface temperature of the crucible 1 is lower than the melt temperature in the lower part (near the solid-liquid interface 7), and the crucible 5 and the wall surface temperature are higher than the melt temperature in the upper part. As a result, the melt becomes a downward flow along the wall surface at the lower portion and an upward flow along the wall surface at the upper portion. The convection generated in this way increases as the crucible 5 becomes larger and the temperature difference in the radial direction and the temperature gradient of the crucible wall surface increase. This convection disturbs the temperature in the vicinity of the solid-liquid interface, causing deterioration in crystal quality and generating a boundary.

本発明の目的は、このような融液の対流の影響を無くし、大口径で高品質の単結晶を製造できる単結晶製造方法及びその装置を提供することにある。   An object of the present invention is to provide a single crystal manufacturing method and apparatus capable of manufacturing a large-diameter and high-quality single crystal without the influence of the convection of the melt.

前記の課題を解決するために、本発明の単結晶製造方法は、炉の内部に配置され、コニカル部分とコニカル部の上部に位置する直胴部からなり単結晶材料を保持する坩堝と、坩堝の内部に坩堝に対して上下動可能に配置されている平板部材と、坩堝を該炉に対して上下動させる支持部材とを有し、坩堝の降下に伴い平板部材は、固液界面がコニカル部を掃引している間は直胴部とコニカル部との境界位置に配置され、固液界面が直胴部を掃引している間は坩堝の降下にかかわらず固液界面よりも所定の距離上方に配置されることを特徴としている。   In order to solve the above-mentioned problems, a method for producing a single crystal according to the present invention comprises a crucible disposed inside a furnace, comprising a conical portion and a straight body portion located above the conical portion, and holding a single crystal material, and a crucible And a support member that moves the crucible up and down relative to the furnace, and the flat plate member has a conical solid-liquid interface as the crucible descends. Is placed at the boundary position between the straight body part and the conical part while sweeping the part, and while the solid-liquid interface is sweeping the straight body part, a predetermined distance from the solid-liquid interface regardless of the descending of the crucible It is characterized by being arranged above.

また、本発明の垂直ブリッジマン法による単結晶製造装置は、炉の内部に配置され、コニカル部とコニカル部の上部に位置する直胴部からなり単結晶材料を保持する坩堝と、坩堝の内部に坩堝と上下動可能に配置されている平板部材と、坩堝を炉に対して上下動させる支持部材と、坩堝の炉に対する降下に伴い該平板部材を、固液界面がコニカル部を掃引している間は直胴部とコニカル部との境界位置に配置し、固液界面が直胴部を掃引している間は坩堝の降下にかかわらず固液界面よりも所定の距離上方に配置する制御手段とを有することを特徴としている。   The apparatus for producing a single crystal according to the vertical Bridgman method of the present invention includes a crucible disposed inside a furnace, comprising a conical portion and a straight body portion located above the conical portion, and holding a single crystal material, and the interior of the crucible A flat plate member arranged to move up and down with the crucible, a support member for moving the crucible up and down with respect to the furnace, the flat plate member as the crucible descends from the furnace, the solid-liquid interface sweeps the conical part Control is placed at the boundary between the straight body and the conical part while the solid-liquid interface is swept across the straight body part, and placed above the solid-liquid interface by a predetermined distance regardless of the crucible descending. Means.

このような構成とすることにより、平板部材よりも下部における単結晶材料の対流を防ぐ事ができる。尚、坩堝と炉、及び坩堝と平板部材は相対的に上下動可能な構成であれば良い。   By adopting such a configuration, it is possible to prevent convection of the single crystal material below the flat plate member. The crucible and the furnace, and the crucible and the flat plate member may be configured so as to be relatively movable up and down.

本発明によれば、坩堝内の融液中に水平に平板部材を配置し、該平板部材を固液界面に対して微小距離を隔てて保持することにより、該平板部材と固液界面との間では対流が無くなり、その結果、固液界面近傍の温度が安定して、大口径で高品質の単結晶の製造が可能となる。   According to the present invention, the flat plate member is disposed horizontally in the melt in the crucible, and the flat plate member is held at a small distance from the solid-liquid interface, whereby the flat plate member and the solid-liquid interface are separated. As a result, there is no convection between them, and as a result, the temperature in the vicinity of the solid-liquid interface is stabilized, and a large-diameter and high-quality single crystal can be produced.

本発明は、坩堝内の融液中に水平に平板部材を配置し、且つ該平板部材を固液界面に対して微小距離を隔てて上方に保持することにより、該平板部材と固液界面との間では対流が無くし、固液界面近傍の温度が安定して、大口径で高品質の単結晶の製造を可能とするものである。以下にその詳細を図面を参照して説明する。   According to the present invention, a flat plate member is horizontally disposed in the melt in the crucible, and the flat plate member is held upward with a small distance from the solid-liquid interface. In this case, convection is eliminated, the temperature near the solid-liquid interface is stabilized, and a large-diameter and high-quality single crystal can be produced. The details will be described below with reference to the drawings.

図1は、本発明の実施例1に関わる単結晶製造装置の断面図である。図1(a)に於いて、1は炉本体、2は炉内を高温領域1aと低温領域1bに分割する断熱部材、3aは上ヒータ、3bは下ヒータ、4は炉本体1の底を貫通する支持棒である。5は支持棒4の上端に取り付けた坩堝であり、5aは直胴部、5bはコニカル部である。支持棒4を不図示の手段により上下動させることにより、坩堝5は上下動する。6は単結晶材料である融液、7は固液界面、8は固化した結晶である。矢印9は融液6の対流のパターンを示す。10は坩堝5の内部に配置された平板部材であり、11は平板部材10の保持手段となる支柱である。平板部材10は濡れ性が小さく、非常に高温な環境下で使用できることが求められるため高純度カーボンであることが望ましい。支柱11は坩堝5の上面を貫通し、更に上端は炉本体1を貫通しその先端に錘12が取り付けられている。支柱11を不図示の手段により上下動させることにより平板部材10は上下動する。平板部材10を降下させる際、錘12が炉本体1の上面と接触することにより、平板部材10を降下は停止する。   1 is a cross-sectional view of a single crystal manufacturing apparatus according to Embodiment 1 of the present invention. In FIG. 1A, 1 is a furnace body, 2 is a heat insulating member that divides the inside of the furnace into a high temperature region 1a and a low temperature region 1b, 3a is an upper heater, 3b is a lower heater, and 4 is a bottom of the furnace body 1. It is a support rod that penetrates. 5 is a crucible attached to the upper end of the support rod 4, 5a is a straight body part, 5b is a conical part. The crucible 5 moves up and down by moving the support bar 4 up and down by means (not shown). 6 is a melt which is a single crystal material, 7 is a solid-liquid interface, and 8 is a solidified crystal. An arrow 9 indicates the convection pattern of the melt 6. Reference numeral 10 denotes a flat plate member disposed inside the crucible 5, and 11 denotes a column that serves as a holding means for the flat plate member 10. Since the flat plate member 10 has low wettability and is required to be usable in a very high temperature environment, it is desirable to use high purity carbon. The support 11 penetrates the upper surface of the crucible 5, the upper end penetrates the furnace body 1, and a weight 12 is attached to the tip. The flat plate member 10 moves up and down by moving the column 11 up and down by means (not shown). When the flat plate member 10 is lowered, the lowering of the flat plate member 10 is stopped by the weight 12 coming into contact with the upper surface of the furnace body 1.

図1(b)は、炉の中心部の鉛直方向に沿った温度を示すグラフである。横軸は温度、縦軸は単結晶製造装置の縦方向の位置を示す。図1(b)に示すように、断熱部材2の位置が融点温度T1になるように、ヒータ3a、3bを制御する。次に坩堝5を支持棒4を降下させることにより高温領域1aから低温領域1bに降下させ、坩堝5の最下部から順に結晶化させていく。   FIG.1 (b) is a graph which shows the temperature along the perpendicular direction of the center part of a furnace. The horizontal axis indicates temperature, and the vertical axis indicates the position in the vertical direction of the single crystal manufacturing apparatus. As shown in FIG. 1B, the heaters 3a and 3b are controlled so that the position of the heat insulating member 2 becomes the melting point temperature T1. Next, the crucible 5 is lowered from the high temperature region 1 a to the low temperature region 1 b by lowering the support rod 4, and is crystallized sequentially from the bottom of the crucible 5.

次に本実施例の単結晶製造装置による単結晶の製造方法を図2を使って説明する。先ず坩堝5に単結晶原料を入れ、図2(a)に示すように高温領域1aで溶融する。このとき固液界面7となる炉の位置は、坩堝5の最下端部に位置している。この時炉本体1の上面と錘12の下面との間隔はhであり、この値は坩堝6のコニカル部5bの高さに所定の微小距離dを加えた値となっている。ただし坩堝5の最下端部を、炉本体の固液界面7に相当する位置よりも上部に配置する場合は、その距離分だけ距離hを長く取る必要がある。   Next, a single crystal manufacturing method using the single crystal manufacturing apparatus of this embodiment will be described with reference to FIG. First, the single crystal raw material is put into the crucible 5 and melted in the high temperature region 1a as shown in FIG. At this time, the position of the furnace serving as the solid-liquid interface 7 is located at the lowermost end of the crucible 5. At this time, the distance between the upper surface of the furnace body 1 and the lower surface of the weight 12 is h, and this value is a value obtained by adding a predetermined minute distance d to the height of the conical portion 5b of the crucible 6. However, when the lowermost end of the crucible 5 is disposed above the position corresponding to the solid-liquid interface 7 of the furnace body, it is necessary to increase the distance h by that distance.

次に単結晶原料が完全に溶融し融液6となった後、坩堝6をゆっくり下降させる。この時の速度は0.5mm/Hr〜5.0mm/Hrが一般的である。図2(b)は固液界面がコニカル部5bを結晶が成長している途中を示している。固液界面7がコニカル部5bを掃引している間、平板部材10は坩堝5とともに下方に移動することで、コニカル部5bと直胴部5aの境界位置に配置される。   Next, after the single crystal raw material is completely melted to become the melt 6, the crucible 6 is slowly lowered. The speed at this time is generally 0.5 mm / Hr to 5.0 mm / Hr. FIG. 2B shows a state where the solid-liquid interface is growing the crystal on the conical portion 5b. While the solid-liquid interface 7 sweeps the conical part 5b, the flat plate member 10 moves downward together with the crucible 5, so that it is disposed at the boundary position between the conical part 5b and the straight body part 5a.

次に坩堝6を更に下降させる。図2(c)は固液界面が直胴部5aを結晶が成長している途中を示している。平板部材10は炉本体1に対して距離hだけ移動した時点で錘12の底面が炉本体1の上面に接して停止する。炉本体1に対して停止した時点で平板部材10と固液界面7との距離が微小距離dになるように支柱11の長さをあらかじめ調整されている。固液界面7の位置は、前記の温度分布によってほぼ一定位置に固定されており、支柱11の長さ調整によって直胴部分5aの成長時には固液界面7と平板部材10との距離を微小距離dに保持することができる。   Next, the crucible 6 is further lowered. FIG. 2C shows a state in which the solid-liquid interface is growing the crystal on the straight body portion 5a. When the flat plate member 10 is moved by the distance h relative to the furnace body 1, the bottom surface of the weight 12 comes into contact with the upper surface of the furnace body 1 and stops. The length of the column 11 is adjusted in advance so that the distance between the flat plate member 10 and the solid-liquid interface 7 becomes a minute distance d when the furnace body 1 is stopped. The position of the solid-liquid interface 7 is fixed at a substantially constant position by the above temperature distribution, and the distance between the solid-liquid interface 7 and the flat plate member 10 is set to a minute distance when the straight body portion 5a is grown by adjusting the length of the support 11. d can be held.

平板部材10と固液界面7の距離が微小距離dとなる直胴部分5aでは平板部材10によって融液6は上下に分断される。平板部材10の上方の融液6では対流9が発生するが、この対流は固液界面7に影響しない。むしろ、対流によって平板部材10が均熱化し、平板部材10の下方の融液6の対流を抑制することができる。   In the straight body portion 5 a where the distance between the flat plate member 10 and the solid-liquid interface 7 is a minute distance d, the melt 6 is divided up and down by the flat plate member 10. Convection 9 is generated in the melt 6 above the flat plate member 10, but this convection does not affect the solid-liquid interface 7. Rather, the flat plate member 10 is soaked by convection, and the convection of the melt 6 below the flat plate member 10 can be suppressed.

平板部材10の下側の微小距離dは、その値をできるだけ小さくすることにより固液界面7との間の融液温度の融点温度に対する増分を低減できる。それは対流の駆動エネルギーの低減を意味し、対流を抑制する。固液界面7に対する対流の影響が無くなると、固液界面7の近傍の温度が安定する。また固液界面7における温度勾配は平板部材10の有無に関わらず維持されるので温度擾乱に対する固液界面位置の安定性も維持されている。   The minute distance d on the lower side of the flat plate member 10 can reduce the increment of the melt temperature with the solid-liquid interface 7 with respect to the melting point temperature by making the value as small as possible. It means a reduction in convection drive energy and suppresses convection. When the influence of convection on the solid-liquid interface 7 is eliminated, the temperature in the vicinity of the solid-liquid interface 7 is stabilized. Further, since the temperature gradient at the solid-liquid interface 7 is maintained regardless of the presence or absence of the flat plate member 10, the stability of the solid-liquid interface position against temperature disturbance is also maintained.

次に坩堝6を更に下降させる。図2(d)は坩堝5内の融液6すべて固化した結晶8となった状態を示している。この時平板部材10は坩堝上部と結晶との隙間に位置しており、結晶には触れていない。この様にして製造された単結晶は。ゆっくりと冷やされて坩堝5から取り出される。   Next, the crucible 6 is further lowered. FIG. 2D shows a state in which the melt 6 in the crucible 5 is all solidified crystal 8. At this time, the flat plate member 10 is located in the gap between the upper portion of the crucible and the crystal and does not touch the crystal. The single crystal manufactured in this way. It is slowly cooled and removed from the crucible 5.

図1(a)の坩堝降下開始位置では固液界面7と平板部材10との距離はコニカル部5bの高さと同じであり、平板部材10が坩堝5と共に降下することで図1(c)のように平板部材10と固液界面7の距離が対流を抑制することができる微小距離dとなる。またその距離を保持することができるためコニカル角度が小さい坩堝であっても直胴部5aに於いて大口径で高品質の単結晶の製造が可能となる。またコニカル部においても、平板部材10により坩堝5ないの対流する容積を小さくできるため有利である。   The distance between the solid-liquid interface 7 and the flat plate member 10 is the same as the height of the conical portion 5b at the crucible lowering start position in FIG. 1 (a), and when the flat plate member 10 is lowered together with the crucible 5, FIG. Thus, the distance between the flat plate member 10 and the solid-liquid interface 7 becomes a minute distance d that can suppress convection. In addition, since the distance can be maintained, even a crucible with a small conical angle can produce a high-quality single crystal with a large diameter in the straight body portion 5a. The conical portion is also advantageous because the convection volume of the crucible 5 can be reduced by the flat plate member 10.

尚、距離dは可能な限り小さくするのが良いが、坩堝5の降下の過程における固液界面7の位置変動を見越して、固液界面7と平板部材10が接触することがないように支柱11の長さを設定する必要がある。この値は、実験やシミュレーションによって決定可能である。発明者らの検討結果によると、内径250〜350mmの坩堝に対して、d=10〜150mmとするのが良い。10mm以下だと結晶成長に巻き込まれル可能性が高くなり、150mm以上だと対流抑制効果が小さくなってしまう。   The distance d is preferably as small as possible. However, in view of the position variation of the solid-liquid interface 7 in the process of lowering the crucible 5, the support column is provided so that the solid-liquid interface 7 and the flat plate member 10 do not contact each other. It is necessary to set a length of 11. This value can be determined by experiment or simulation. According to the examination results of the inventors, it is preferable that d = 10 to 150 mm for a crucible having an inner diameter of 250 to 350 mm. If it is 10 mm or less, the possibility of being involved in crystal growth increases, and if it is 150 mm or more, the effect of suppressing convection is reduced.

また、平板部材10の上下の融液6は流通可能になっていなければならない。そのため、平板部材10の外径と坩堝5の直胴部5aの内径の間に隙間が設けられている。この隙間の値は、できるだけ狭いほうが良い。内径250〜350mmの坩堝に対して、片側50mm以下とするのが良い。50mm以上だと対流の影響を受けてしまう。また、流通経路を確保する他の方法として、平板部材10に1つ以上の小穴を設けても良い。   Further, the melt 6 above and below the flat plate member 10 must be able to flow. Therefore, a gap is provided between the outer diameter of the flat plate member 10 and the inner diameter of the straight body portion 5 a of the crucible 5. The gap value should be as narrow as possible. For a crucible having an inner diameter of 250 to 350 mm, it is preferable to be 50 mm or less on one side. If it is 50 mm or more, it will be affected by convection. Moreover, you may provide one or more small holes in the flat plate member 10 as another method of ensuring a distribution channel.

また、平板部材10は静止しているのが望ましいが、融液6の温度を擾乱させない限りに於いて、支柱11の先端を錘ではなく駆動手段を設置することで回転あるいは微小上下動させても構わない。平板部材10を回転あるいは微小上下させることにより平板部材の均熱化を促進し、対流の駆動エネルギーを低減できる。   Further, it is desirable that the flat plate member 10 is stationary, but as long as the temperature of the melt 6 is not disturbed, the tip of the column 11 is rotated or slightly moved up and down by installing a driving means instead of a weight. It doesn't matter. By rotating or slightly raising and lowering the flat plate member 10, it is possible to promote soaking of the flat plate member and reduce convection drive energy.

図3は、本発明の実施例2に関わる単結晶製造装置の断面図である。図3に於いて、20は平板部材、21は平板部材20を保持する支柱、22は平板部材20に固定された温度センサ、23は支柱22を上下に駆動する支柱駆動手段、24は温度センサ22の信号を受けて支柱駆動手段23に駆動量を出力する演算手段である。その他の部分は実施例1の図1と同じである。図3の構成に於いて、温度センサ22、演算手段24、支柱駆動手段23はフィードバック制御系を成し、次のように制御される。   FIG. 3 is a cross-sectional view of a single crystal manufacturing apparatus according to Embodiment 2 of the present invention. In FIG. 3, 20 is a flat plate member, 21 is a column for holding the flat plate member 20, 22 is a temperature sensor fixed to the plate member 20, 23 is a column driving means for driving the column 22 up and down, and 24 is a temperature sensor. The calculation means outputs the drive amount to the column drive means 23 in response to the signal 22. The other parts are the same as those in FIG. In the configuration of FIG. 3, the temperature sensor 22, the calculation means 24, and the column drive means 23 form a feedback control system and are controlled as follows.

温度センサ22は平板部材20の直下の融液6の温度を検出し、支柱駆動手段23は温度センサ22の検出温度が融点温度+α(αは微小温度)となるまで平板部材20を坩堝5と共に降下させる。温度センサ22の検出温度が融点温度+α(αは微小温度)となった時点で演算手段24は温度センサ22の検出温度が融点温度+α(αは微小温度)を保持するように駆動量を演算してその値を支柱駆動手段23に出力する。固液界面7の近傍では上方に正の温度勾配があるので、平板部材20は固液界面7の僅か上方に維持される。その結果、平板部材20と固液界面7との間の融液の対流が抑制され、固液界面近傍の温度が安定して、大口径で高品質の単結晶の製造が可能となる。実施例2では、坩堝5の降下の過程における固液界面7の位置変動に対して、平板部材20の位置が自動補正されるので、固液界面7と平板部材20が接触する危険性が少ない。また、坩堝5の降下に伴う平板部材20の移動を温度制御するため、支柱22の長さ調整のための実験を行う必要がなく、装置の操作性が向上する。   The temperature sensor 22 detects the temperature of the melt 6 immediately below the flat plate member 20, and the column driving means 23 holds the flat plate member 20 together with the crucible 5 until the temperature detected by the temperature sensor 22 reaches the melting point temperature + α (α is a minute temperature). Lower. When the temperature detected by the temperature sensor 22 reaches the melting point temperature + α (α is a minute temperature), the calculation means 24 calculates the drive amount so that the temperature sensor 22 detects the melting point temperature + α (α is a minute temperature). Then, the value is output to the column driving means 23. Since there is a positive temperature gradient in the vicinity of the solid-liquid interface 7, the flat plate member 20 is maintained slightly above the solid-liquid interface 7. As a result, the convection of the melt between the flat plate member 20 and the solid-liquid interface 7 is suppressed, the temperature in the vicinity of the solid-liquid interface is stabilized, and a large-diameter and high-quality single crystal can be manufactured. In the second embodiment, the position of the flat plate member 20 is automatically corrected with respect to the position variation of the solid-liquid interface 7 in the process of lowering the crucible 5, so there is little risk of contact between the solid-liquid interface 7 and the flat plate member 20. . Further, since the temperature of the movement of the flat plate member 20 accompanying the lowering of the crucible 5 is controlled, it is not necessary to perform an experiment for adjusting the length of the support column 22, and the operability of the apparatus is improved.

図4は、本発明の実施例3に関わる単結晶製造装置の断面図である。図4に於いて、30は平板部材、31は平板部材30保持する支柱、32は平板部材30に固定された距離センサ、33は支柱32を上下に駆動する支柱駆動手段、34は距離センサ32の信号を受けて支柱駆動手段33に駆動量を出力する演算手段である。その他の部分は実施例1の図1と同じである。図4の構成に於いて、距離センサ32、演算手段34、支柱駆動手段33はフィードバック制御系を成し、次のように制御される。   FIG. 4 is a cross-sectional view of a single crystal manufacturing apparatus according to Example 3 of the present invention. In FIG. 4, 30 is a flat plate member, 31 is a column holding the flat plate member 30, 32 is a distance sensor fixed to the plate member 30, 33 is column driving means for driving the column 32 up and down, and 34 is a distance sensor 32. Is an arithmetic means for receiving the signal and outputting a driving amount to the column driving means 33. The other parts are the same as those in FIG. In the configuration of FIG. 4, the distance sensor 32, the calculation means 34, and the column driving means 33 form a feedback control system and are controlled as follows.

距離センサ32は平板部材30と固液界面7の距離を検出し、支柱駆動手段33は距離センサ32の検出値が微小距離dとなるまで平板部材30を坩堝と共に降下させる。距離センサ32の検出値が微小距離dとなった時点で演算手段34は距離センサ32の検出値が微小距離dを保持するように駆動量を演算してその値を支柱駆動手段33に出力する。実施例3では、坩堝5の降下の過程における固液界面7の位置変動に対して、平板部材30の位置が自動補正されるので、固液界面7と平板部材30が接触する危険性が少ない。また、間隔dを直接検出しているため、その値を微小に設定できる。その結果、平板部材30と固液界面7との間の融液の対流が抑制され、固液界面近傍の温度が安定して、大口径で高品質の単結晶の製造が可能となる。また、坩堝の降下に伴う平板部材30の移動を距離センサ32によって制御するため、支柱の長さ調整のための実験をする必要がなく、装置の操作性が向上する。   The distance sensor 32 detects the distance between the flat plate member 30 and the solid-liquid interface 7, and the column driving means 33 lowers the flat plate member 30 together with the crucible until the detection value of the distance sensor 32 becomes a minute distance d. When the detection value of the distance sensor 32 reaches the minute distance d, the calculation means 34 calculates the driving amount so that the detection value of the distance sensor 32 maintains the minute distance d, and outputs the value to the column driving means 33. . In the third embodiment, the position of the flat plate member 30 is automatically corrected with respect to the position fluctuation of the solid-liquid interface 7 in the process of lowering the crucible 5, so that there is little risk of contact between the solid-liquid interface 7 and the flat plate member 30. . Further, since the interval d is directly detected, the value can be set minutely. As a result, convection of the melt between the flat plate member 30 and the solid-liquid interface 7 is suppressed, the temperature in the vicinity of the solid-liquid interface is stabilized, and a large-diameter and high-quality single crystal can be manufactured. Further, since the movement of the flat plate member 30 accompanying the lowering of the crucible is controlled by the distance sensor 32, it is not necessary to perform an experiment for adjusting the length of the support column, and the operability of the apparatus is improved.

実施例1に関わる単結晶製造装置の断面図である。1 is a cross-sectional view of a single crystal manufacturing apparatus according to Example 1. FIG. 実施例1に関わる単結晶製造装置の製造プロセスを示す断面図である。3 is a cross-sectional view showing a manufacturing process of a single crystal manufacturing apparatus according to Example 1. FIG. 実施例2に関わる単結晶製造装置の断面図である。6 is a cross-sectional view of a single crystal manufacturing apparatus according to Example 2. FIG. 実施例3に関わる単結晶製造装置の断面図である。6 is a cross-sectional view of a single crystal manufacturing apparatus according to Example 3. FIG. 従来の単結晶製造装置の断面図である。It is sectional drawing of the conventional single crystal manufacturing apparatus.

符号の説明Explanation of symbols

1 炉本体
1a 高温領域
1b 低温領域
2 断熱部材
2a 上ヒータ
3b 下ヒータ
4 支持棒
5a 直胴部
5b コニカル部
6 融液
7 固液界面
8 結晶
9 対流
10、20、30 平板部材
11、21、31 支柱
12 錘
22 温度センサ
32 距離センサ
23、33 駆動部
24、34 演算装置
DESCRIPTION OF SYMBOLS 1 Furnace body 1a High temperature area | region 1b Low temperature area | region 2 Heat insulation member 2a Upper heater 3b Lower heater 4 Support rod 5a Straight trunk | drum 5b Conical part 6 Melt 7 Solid-liquid interface 8 Crystal 9 Convection 10, 20, 30 Flat plate member 11, 21, 31 Strut 12 Weight 22 Temperature sensor 32 Distance sensor 23, 33 Drive unit 24, 34 Arithmetic unit

Claims (6)

垂直ブリッジマン法による単結晶製造方法において、炉の内部に配置され、コニカル部と該コニカル部の上部に位置する直胴部からなり単結晶材料を保持する坩堝と、該坩堝の内部に該坩堝と相対的に上下動可能に配置されている平板部材と、該坩堝を該炉に対して相対的に上下動させる支持部材とを有し、該坩堝の該炉に対する相対的な降下に伴い該平板部材は、固液界面がコニカル部を掃引している間は直胴部とコニカル部との境界位置に配置され、固液界面が直胴部を掃引している間は該坩堝の降下にかかわらず固液界面よりも所定の距離上方に配置されることを特徴とする単結晶製造方法。   In a method for producing a single crystal by the vertical Bridgman method, a crucible arranged inside a furnace and comprising a conical portion and a straight body portion located above the conical portion and holding a single crystal material, and the crucible inside the crucible And a support member for moving the crucible up and down relatively with respect to the furnace, and as the crucible is lowered relative to the furnace, The flat plate member is disposed at the boundary position between the straight body portion and the conical portion while the solid-liquid interface sweeps the conical portion, and the crucible is lowered while the solid-liquid interface sweeps the straight body portion. Regardless of the solid-liquid interface, the single crystal manufacturing method is characterized by being disposed above a predetermined distance. 前記所定の距離は、10〜150mmであることを特徴とする請求項1に記載の単結晶製造方法。   The single crystal manufacturing method according to claim 1, wherein the predetermined distance is 10 to 150 mm. 垂直ブリッジマン法による単結晶製造装置において、炉の内部に配置され、コニカル部と該コニカル部の上部に位置する直胴部からなり単結晶材料を保持する坩堝と、該坩堝の内部に該坩堝と相対的に上下動可能に配置されている平板部材と、該坩堝を該炉に対して相対的に上下動させる支持部材と、該坩堝の該炉に対する相対的な降下に伴い該平板部材を、固液界面がコニカル部を掃引している間は直胴部とコニカル部との境界位置に配置し、固液界面が直胴部を掃引している間は該坩堝の降下にかかわらず固液界面よりも所定の距離上方に配置する制御手段とを有することを特徴とする単結晶製造装置。   In an apparatus for producing a single crystal by the vertical Bridgman method, a crucible is disposed inside a furnace and includes a conical portion and a straight body portion located above the conical portion and holds a single crystal material, and the crucible is disposed inside the crucible. A flat plate member arranged so as to be relatively movable up and down, a support member that moves the crucible up and down relatively with respect to the furnace, and the flat plate member as the crucible is lowered relative to the furnace. When the solid-liquid interface sweeps the conical part, it is placed at the boundary between the straight body part and the conical part, and while the solid-liquid interface sweeps the straight body part, the solid-liquid interface is solid regardless of the descending of the crucible. And a control unit arranged above the liquid interface by a predetermined distance. 前記所定の距離は、10〜150mmであることを特徴とする請求項3に記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 3, wherein the predetermined distance is 10 to 150 mm. 前記平板部材には温度センサが取り付けられており、該温度センサの値により該平板部材が前記固液界面から前記所定の距離に位置するように前記制御手段により制御することを特徴とする請求項3に記載の単結晶製造装置。   The temperature sensor is attached to the flat plate member, and the flat plate member is controlled by the control means so as to be located at the predetermined distance from the solid-liquid interface according to a value of the temperature sensor. 3. The single crystal manufacturing apparatus according to 3. 前記平板部材には距離センサが取り付けられており、該距離センサの値により該平板部材と前記固液界面との距離を測定することで、該平板部材が前記固液界面から前記所定の距離になるように前記制御手段により制御することを特徴とする請求項3に記載の単結晶製造装置。   A distance sensor is attached to the flat plate member, and by measuring the distance between the flat plate member and the solid-liquid interface based on the value of the distance sensor, the flat plate member moves from the solid-liquid interface to the predetermined distance. The single crystal manufacturing apparatus according to claim 3, wherein the control is performed by the control means.
JP2004046278A 2004-02-23 2004-02-23 Single crystal manufacturing method and apparatus Pending JP2005231978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046278A JP2005231978A (en) 2004-02-23 2004-02-23 Single crystal manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046278A JP2005231978A (en) 2004-02-23 2004-02-23 Single crystal manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JP2005231978A true JP2005231978A (en) 2005-09-02
JP2005231978A5 JP2005231978A5 (en) 2007-03-15

Family

ID=35015321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046278A Pending JP2005231978A (en) 2004-02-23 2004-02-23 Single crystal manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP2005231978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216831A (en) * 2022-07-15 2022-10-21 中国电子科技集团公司第十三研究所 Crystal growth device and method capable of controlling temperature gradient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216831A (en) * 2022-07-15 2022-10-21 中国电子科技集团公司第十三研究所 Crystal growth device and method capable of controlling temperature gradient

Similar Documents

Publication Publication Date Title
TW201634764A (en) Method of manufacturing single crystal
JP2010100451A (en) Method for measuring distance between melt level and lower edge part of structure in furnace, method for controlling melt level position using the same, method for producing single crystal and single crystal production device
JP2006219352A (en) Apparatus and method for manufacturing single crystal
CN102531350B (en) Method of manufacturing vitreous silica crucible
JP5781303B2 (en) Silica glass crucible manufacturing method and silica glass crucible manufacturing apparatus
JP4147595B2 (en) Method for producing fluorite single crystal
JP2005231978A (en) Single crystal manufacturing method and apparatus
JPH1179880A (en) Production apparatus for fluorite of large diameter and its production
JP6365674B2 (en) Method for producing single crystal
TWI650449B (en) Method for determining and regulating a diameter of a single crystal during the pulling of the single crystal
JP2005132676A (en) Method and apparatus for manufacturing single crystal
JP5749147B2 (en) Method for producing silica glass crucible
CN116334744A (en) Crystal preparation method
JP2006256898A (en) Silicon single crystal pulling apparatus
RU2320791C1 (en) Crystal growing method and apparatus for performing the same
JP2004182580A (en) Device and method for pulling silicon single crystal
JPH07330484A (en) Pulling up device and production of silicon single crystal
JP2009269802A (en) Method and apparatus for manufacturing single crystal
JP2006282477A (en) Method and apparatus for manufacturing single crystal
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
JP2005132675A (en) Single crystal production apparatus
JP2019156703A (en) Positioning method of arc electrode, and manufacturing method and manufacturing device of quartz glass crucible using the same
JP2005089204A (en) Apparatus and method for producing crystal
JP2005035824A (en) Fluoride crystal growth equipment
JP2006265029A (en) Method for production of synthetic quartz glass, optical member, photolithography machine, and apparatus for production of synthetic quartz glass

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A02