JP2005131740A - Cutting tool and cutting work method - Google Patents

Cutting tool and cutting work method Download PDF

Info

Publication number
JP2005131740A
JP2005131740A JP2003370459A JP2003370459A JP2005131740A JP 2005131740 A JP2005131740 A JP 2005131740A JP 2003370459 A JP2003370459 A JP 2003370459A JP 2003370459 A JP2003370459 A JP 2003370459A JP 2005131740 A JP2005131740 A JP 2005131740A
Authority
JP
Japan
Prior art keywords
tip
cutting
throw
cutting tool
tool holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003370459A
Other languages
Japanese (ja)
Inventor
Hiroshi Ohata
浩志 大畑
Kiyotada Takayanagi
清忠 高柳
Hideaki Kataoka
英明 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003370459A priority Critical patent/JP2005131740A/en
Publication of JP2005131740A publication Critical patent/JP2005131740A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long service life cutting tool causing little chipping and abrasion by realizing superior work surface roughness even in extremely small inner diameter work, and an inner diameter working method using this cutting tool. <P>SOLUTION: This cutting tool 1 is formed by installing the rear end side of a tip 2 in a tool holder 3 for performing cutting by a cutting edge 5 formed in a tip projecting part 4 of the tip 2, by projecting the tip of a throw-away tip 2 composed of a sintered alloy including iron group metal at a rate of 5 mass% or more from the tip of the tool holder 3. The cutting tool comprises an electromagnetic coil 8 for magnetizing and demagnetizing the tip 2 on the tip side from a holder restricting part 6 in the tool holder 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、焼結合金からなるスローアウェイチップを工具ホルダに装着した切削工具およびそれを用いた切削加工方法に関する。   The present invention relates to a cutting tool in which a throw-away tip made of a sintered alloy is mounted on a tool holder, and a cutting method using the cutting tool.

従来より、切削加工中に発生する加工屑の排出方法については切削加工に関する大きな要因として広く認識されている。一般的に切刃にて発生した加工屑は切刃に続くすくい面に当って方向付けられ係外へ速やかに排出されるが、場合によっては加工屑が長く延びて切削部分に噛み込む等の不具合が発生することからすくい面にチップブレーカを設けて加工屑排出性を改善することが行なわれている。   Conventionally, a method for discharging machining waste generated during cutting has been widely recognized as a major factor related to cutting. Generally, the machining waste generated by the cutting edge is directed to the rake face following the cutting edge and is quickly discharged to the outside. However, in some cases, the machining waste extends long and bites into the cutting part. Since defects occur, a chip breaker is provided on the rake face to improve machining waste discharge.

近年、切削加工の多様化に伴い、切削速度、切込み、送りによっては加工屑の形態も粉状になる場合があり加工屑の排出性が悪化する場合があった。特にワークの極小内径を超精密精度に加工するような場合には加工した後の内径内に加工屑が残ってしまうことがあり、後で取り除くことが困難である等の問題があった。   In recent years, with the diversification of cutting processing, depending on the cutting speed, cutting, and feeding, the shape of the processing waste may become powdery, and the dischargeability of the processing waste may deteriorate. In particular, when machining the extremely small inner diameter of the workpiece with ultra-precision accuracy, there is a problem that machining waste may remain in the inner diameter after machining, and it is difficult to remove it later.

一方、内径加工用の切削工具としては、工具ホルダの先端に棒状の突出部を設け、極小内径の加工が可能な切削工具が開発されている(特許文献1、2等参照)。   On the other hand, as a cutting tool for inner diameter processing, a cutting tool capable of processing a minimum inner diameter by providing a rod-like protrusion at the tip of a tool holder has been developed (see Patent Documents 1 and 2, etc.).

さらに、特許文献3にはチップ先端に近接して永久磁石を配置しワークと切刃との切削面に磁場をかけながら切削加工を行うことによって切削面への加工屑の付着が防止されることが記載されている。
特開平3−32504号公報 特開平11−320217号公報 特開2001−157902号公報
Furthermore, Patent Document 3 discloses that a permanent magnet is disposed in the vicinity of the tip of the chip, and cutting is performed while applying a magnetic field to the cutting surface of the workpiece and the cutting blade, thereby preventing the attachment of machining waste to the cutting surface. Is described.
JP-A-3-32504 JP-A-11-320217 JP 2001-157902 A

しかしながら、上記特許文献1,2に記載されるような突出部を有する切削工具を用いて内径加工を行う場合、上述したように最近の電子機器の小型化、超精密化に伴って加工する被削物の内径が小径化する傾向にあり、加工中に発生する加工屑がワークの外に排出されにくく、切削加工部に噛みこんでしまい、切れ刃の損傷を引き起こしたり加工面粗度を悪化させる結果、高精度な加工ができなくなるという問題があった。特に貫通していない深穴加工においては、加工屑がワーク内に残存してチップを引き抜いた後加工屑を取り除くことが困難となる恐れがあった。また、場合によっては一旦加工された内径に次工程の工具等の冶具が挿入された際に残存した加工屑がワーク表面を傷つけて加工面が悪くなる場合があり、加工が不安定化する原因のひとつであった。   However, when performing inner diameter processing using a cutting tool having a protrusion as described in Patent Documents 1 and 2, as described above, the object to be processed along with the recent downsizing and superprecision of electronic equipment. There is a tendency for the inner diameter of the workpiece to become smaller, so that the machining waste generated during machining is hard to be discharged out of the workpiece, biting into the cutting part, causing damage to the cutting edge and worsening the roughness of the machined surface As a result, there is a problem that high-precision machining cannot be performed. In particular, in deep hole drilling that does not penetrate, there is a risk that it is difficult to remove the machining waste after the machining waste remains in the workpiece and the chip is pulled out. Also, in some cases, once the machined tool is inserted into the machined inner diameter, the remaining machining waste may damage the workpiece surface and cause the machined surface to deteriorate, causing the machining to become unstable. It was one of.

また、特許文献3のチップに近接して永久磁石を設置して磁場を印加した状態で切削加工をする方法でも、加工面への加工屑の接触・凝着は防止できるものの加工屑の系外への排出性は悪くなって加工を続けると最終的には加工屑が加工面に噛み込むという問題があった。   In addition, even in the method of cutting with a permanent magnet placed close to the chip of Patent Document 3 and applying a magnetic field, contact / adhesion of the processing waste to the processing surface can be prevented, but the processing waste is out of the system. However, when the processing is continued, there is a problem that the processing waste eventually bites into the processing surface.

したがって、本発明の目的は、加工屑が微粉化して加工屑排出性が悪くなるような場合、特に極小内径加工においても加工屑を効率よく系外へ排出でき安定した切削加工が続けられるとともにチッピングや摩耗しにくい長寿命な切削工具およびそれを用いた内径加工方法を提供することにある。   Therefore, the object of the present invention is to efficiently discharge the processing waste out of the system even when the processing waste is pulverized and the processing waste discharge performance is deteriorated, especially in the case of extremely small inner diameter processing, and stable cutting is continued and chipping is performed. Another object of the present invention is to provide a long-life cutting tool that is hard to wear and an inner diameter machining method using the same.

本発明は、上記不具合を解消するために、チップの先端を突出させて切削時または切削終了時にこの部分を工具ホルダに設けた着磁手段にて着磁させて加工屑を引きつけるとともに、前記チップ先端突出部をワークから遠ざけたときに工具ホルダに設けた脱磁手段にて脱磁して引きつけた加工屑をチップから落とすことによって微粉状の排出しにくい加工屑を効率的に係外へ排出することができ、加工屑の噛みこみ等によるチッピングや突発的な欠損を抑制し良好な加工面粗度を実現できることを知見した。   In order to solve the above-mentioned problem, the present invention makes the tip of the tip protrude and magnetize this portion by the magnetizing means provided in the tool holder at the time of cutting or at the end of cutting, and attracts the machining waste, When the tip protrusion is moved away from the workpiece, the debris that has been demagnetized by the demagnetizing means provided on the tool holder is dropped from the insert to efficiently remove finely pulverized machining debris to the outside. It has been found that chipping and sudden chipping caused by biting of processing scraps can be suppressed and good surface roughness can be realized.

すなわち、本発明の切削工具は、鉄族金属を5質量%以上の割合で含有する焼結合金からなるスローアウェイチップの先端を工具ホルダの先端から突出させて該スローアウェイチップの先端突出部に形成した切刃にて切削を行なうとともに、前記スローアウェイチップの後端側を前記工具ホルダに装着してなる切削工具において、前記工具ホルダ内に前記スローアウェイチップを前記工具ホルダ拘束部から先端側に着磁および脱磁させる手段を具備することを特徴とするものである。   That is, in the cutting tool of the present invention, the tip of the throw-away tip made of a sintered alloy containing an iron group metal in a proportion of 5% by mass or more is projected from the tip of the tool holder to the tip projection of the throw-away tip. In the cutting tool in which cutting is performed with the formed cutting edge and the rear end side of the throw-away tip is mounted on the tool holder, the throw-away tip is inserted into the tool holder from the tool holder restraining portion on the tip side Is provided with means for magnetizing and demagnetizing.

なお、前記切削工具は、前記スローアウェイチップの前記先端突出部をワークの内径に挿入して内径加工する場合に特に加工屑を加工した内径内に残すことなく排出することができることから特に有効である。   The cutting tool is particularly effective when the tip protruding portion of the throw-away tip is inserted into the inner diameter of the workpiece to be processed without being left inside the processed inner diameter. is there.

また、前記スローアウェイチップをなす焼結合金中のコバルトの含有量が6〜13質量%であることが、切削工具としてのチップの耐欠損性および耐摩耗性を維持するとともに、チップ先端突出部の着磁・脱磁の制御が容易な点で望ましい。   Further, the content of cobalt in the sintered alloy forming the throw-away tip is 6 to 13% by mass, while maintaining chip resistance and wear resistance of the tip as a cutting tool, and tip tip protruding portion It is desirable in terms of easy control of magnetization and demagnetization.

さらに、前記工具ホルダの着磁および脱磁する手段が電磁コイルからなることが、切り替えによって着磁・脱磁が両方でき単純な構造で確実に磁化の制御が可能である点で望ましい。さらには、前記スローアウェイチップが略棒状からなる場合には、前記電磁コイル内に該スローアウェイチップの拘束部の少なくとも一部を挿入した状態で着磁および脱磁することができ、この構成によってより確実かつ容易に着磁・脱磁が可能となる。   Further, it is desirable that the means for magnetizing and demagnetizing the tool holder comprises an electromagnetic coil, since both magnetization and demagnetization can be performed by switching, and the magnetization can be reliably controlled with a simple structure. Further, when the throwaway tip is substantially rod-shaped, it can be magnetized and demagnetized with at least a part of the restraining portion of the throwaway tip inserted into the electromagnetic coil. Magnetization and demagnetization can be performed more reliably and easily.

なお、前記スローアウェイチップの先端突出部の少なくとも一部が磁束密度50×10−4T以上に着磁されれば着磁した際に加工屑を確実に引きつけることができる。 In addition, if at least a part of the tip protruding portion of the throw-away tip is magnetized to a magnetic flux density of 50 × 10 −4 T or more, the machining waste can be reliably attracted when magnetized.

さらに、本発明の切削加工方法は、上記切削工具を用いて、加工中または加工終了後に前記スローアウェイチップの着磁を行い、前記スローアウェイチップをワークから離した時点で前記スローアウェイチップの脱磁を行うことを特徴とするものであり、この方法によれば効率的に加工屑を加工系外に排出することができるとともに連続的に切削加工を行うことが可能となる。   Furthermore, the cutting method of the present invention uses the above cutting tool to magnetize the throw-away tip during or after processing, and remove the throw-away tip when the throw-away tip is separated from the workpiece. This method is characterized in that magnetism is performed, and according to this method, it is possible to efficiently discharge the machining waste to the outside of the processing system and to perform cutting continuously.

上記本発明の内径加工用切削工具によれば、チップの先端を突出させて切削時または切削終了時にこの部分を工具ホルダに設けた着磁手段にて着磁させて加工屑を引きつけるとともに、前記チップ先端突出部をワークから遠ざけたときに工具ホルダに設けた脱磁手段にて脱磁して引きつけた加工屑をチップから落とすことによって微粉状の排出しにくい加工屑を効率的に係外へ排出することができ、加工屑の噛みこみ等によるチッピングや突発的な欠損を抑制し良好な加工面粗度を実現できる。   According to the cutting tool for inner diameter machining of the present invention, the tip of the tip is projected and magnetized by the magnetizing means provided in the tool holder at the time of cutting or at the end of cutting, and the work waste is attracted. When the chip tip protruding part is moved away from the workpiece, the debris that is demagnetized by the demagnetizing means provided on the tool holder is dropped from the chip to efficiently remove the finely scraped machining debris from the chip. It can be discharged, and chipping and sudden chipping caused by biting of processing scraps can be suppressed to achieve good surface roughness.

本発明の切削工具について、その好適例であるスローアウェイチップを工具ホルダ内に装着した一例についての概略斜視図である図1、図1の切削工具においてチップへの磁場の印加状態を説明するための図である図2をに基づいて説明する。   FIG. 1 is a schematic perspective view of an example in which a throw-away tip, which is a preferred example of the cutting tool of the present invention, is mounted in a tool holder, in order to explain the application state of a magnetic field to the tip in the cutting tool of FIG. This will be described with reference to FIG.

図1によれば、切削工具1は、鉄族金属を5質量%以上の割合で含有する焼結合金からなるスローアウェイチップ(以下単にチップと略す。)2の先端を工具ホルダ3の先端から突出させてチップ2の先端突出部4に形成した切刃5にて切削を行なうとともに、チップ2の後端側を工具ホルダ3に装着してなり、工具ホルダ3内にチップ2を工具ホルダ拘束部6から先端側に着磁および脱磁させる電磁コイル8を具備している。   According to FIG. 1, the cutting tool 1 has a tip of a throw-away tip (hereinafter simply referred to as a tip) 2 made of a sintered alloy containing an iron group metal at a ratio of 5 mass% or more from a tip of the tool holder 3. Cutting is performed with a cutting blade 5 formed on the tip protruding portion 4 of the tip 2 and the rear end side of the tip 2 is attached to the tool holder 3, and the tip 2 is restrained in the tool holder 3. An electromagnetic coil 8 that magnetizes and demagnetizes from the portion 6 to the tip side is provided.

本発明によれば、切削工具1を上記構成とし、チップ先端突出部4を切削時または切削終了時に電磁コイル8に直流電流を印加して磁場を発生させることによって着磁させて加工屑を引きつけるとともに、チップ先端突出部4をワークから遠ざけたときに電磁コイル8に着磁したときとは反対向きの電流を印加することによって脱磁して引きつけた加工屑をチップから落とすことによって微粉状の排出しにくい加工屑を効率的に係外へ排出することができ、加工屑の噛みこみ等によるチッピングや突発的な欠損を抑制し良好な加工面粗度を実現できるとともに連続的に切削加工を行うことが可能となる。   According to the present invention, the cutting tool 1 is configured as described above, and the tip end protruding portion 4 is magnetized by applying a direct current to the electromagnetic coil 8 at the time of cutting or at the end of cutting to generate a magnetic field, and attracts machining waste. At the same time, when the chip tip protrusion 4 is moved away from the workpiece, a magnetic powder 8 is applied to the magnet coil 8 to apply a current in the opposite direction to demagnetize and attract the processed waste. Efficiently discharges machining scraps that are difficult to eject, suppresses chipping and sudden chipping caused by biting of the machining scraps, etc., and realizes good surface roughness and continuous machining. Can be done.

ここで、本発明の切削加工方法は、加工中または加工終了後にチップ2の着磁を行い、チップ2をワーク(被削材)から離した時点でチップ2の脱磁を行うものであるが、内径加工の加工屑をチップ4に吸着させ、チップ4を加工穴から引き出す際に加工屑を同時に排出することができるため、加工穴の外に加工屑を効率的に排出することができる。さらに、加工屑を排出した後にチップ4を脱磁することにより、チップ4から加工屑を脱落させることができ、加工屑がチップ4に吸着したまま加工を行ってしまい、加工面粗度の劣化、突発欠損等を防ぐことができる。   Here, the cutting method of the present invention magnetizes the chip 2 during or after the processing, and demagnetizes the chip 2 when the chip 2 is separated from the work (work material). Since the machining scraps of the inner diameter machining can be adsorbed to the chip 4 and the chip 4 can be simultaneously discharged when the chip 4 is pulled out from the machining hole, the machining scrap can be efficiently discharged out of the machining hole. Further, by demagnetizing the chip 4 after discharging the machining waste, the machining waste can be removed from the chip 4, and the machining waste is processed while adhering to the chip 4, resulting in deterioration of the machined surface roughness. Sudden loss or the like can be prevented.

なお、加工中に磁場を印加しても、切削加工面の温度が1000℃を超える温度になっており鉄族金属のキュリー点付近に達しているためこの部分ではほとんど着磁することない。そのため切刃5には加工屑が引き寄せられることなく加工屑が磁場の印加によって切削加工面に噛み込むことはない。さらに、この加工面部分は着磁することによって結合相である鉄族金属の溶出を防止できるとの効果をも有することから耐摩耗性に優れたチップ4となる。   Even if a magnetic field is applied during machining, the temperature of the machined surface exceeds 1000 ° C. and reaches the vicinity of the Curie point of the iron group metal. Therefore, the cutting scraps are not attracted to the cutting edge 5 by the application of a magnetic field without the cutting scraps being drawn. Furthermore, since this processed surface portion has an effect that the elution of the iron group metal as the binder phase can be prevented by being magnetized, the chip 4 having excellent wear resistance is obtained.

ここで、図1によれば、チップ2が略棒状からなり、電磁コイル8内にチップ2の拘束部6の少なくとも一部を挿入した状態で着磁および脱磁する構成となっており、この構成によってより確実かつ容易に着磁・脱磁が可能となる。   Here, according to FIG. 1, the chip 2 has a substantially rod shape, and is configured to be magnetized and demagnetized with at least a part of the restraining portion 6 of the chip 2 inserted into the electromagnetic coil 8. Magnetization and demagnetization can be more reliably and easily performed by the configuration.

一方、本発明によれば、チップ4の少なくとも突出部5が、鉄族金属を5質量%以上の割合で含有することで、着磁・脱磁ユニット20による着磁、脱磁が突出部5に安定して反映されるようになり、これにより、加工屑の排出が効率よく安定して行われるようになり、極小内径加工においても加工屑の影響を受けずに良好な加工面粗度を実現できるとともにチッピングや摩耗しにくい長寿命な切削工具が得られる。   On the other hand, according to the present invention, at least the protrusion 5 of the chip 4 contains an iron group metal at a ratio of 5% by mass or more, so that magnetization and demagnetization by the magnetization / demagnetization unit 20 is performed in the protrusion 5. As a result, machining waste can be discharged efficiently and stably, and even in the smallest internal diameter machining, good machining surface roughness can be achieved without being affected by machining waste. A long-lasting cutting tool that can be realized and is resistant to chipping and wear is obtained.

また、本発明における焼結合金とは、鉄族金属からなる結合相にて硬質相を結合した形態からなり、具体的には、超硬合金、サーメット、ダイヤモンドまたは立方晶窒化ホウ素(cBN)の群から選ばれる1種を指す。中でも、製造の容易性、コスト、耐欠損性、超精密加工に適する点で、超硬合金からなることが望ましい。   In addition, the sintered alloy in the present invention has a form in which a hard phase is bonded with a bonded phase made of an iron group metal, and specifically, cemented carbide, cermet, diamond or cubic boron nitride (cBN). One kind selected from the group. Among these, it is desirable to be made of a cemented carbide in terms of ease of manufacture, cost, fracture resistance, and suitability for ultraprecision machining.

さらに、チップ2をなす焼結合金中のコバルトの含有量が6〜13質量%、特に8〜12質量%であることが、切削工具としてのチップの耐欠損性および耐摩耗性を維持するとともに、チップ先端突出部の着磁・脱磁の制御が容易な点で望ましい。なお、チップ2の表面には、公知の硬質被覆層を単層または複数層形成しても着磁・脱磁ができる場合は問題ない。なお、確実な着磁・脱磁をさせるためにはチップ先端突出部における硬質被覆層の膜厚を10μm以下とすることが望ましい。すなわち、切刃5における硬質被覆層の膜厚のみを厚くすることによって切刃には加工屑の付着を抑制することも可能である。   Furthermore, the content of cobalt in the sintered alloy forming the chip 2 is 6 to 13% by mass, particularly 8 to 12% by mass, while maintaining the chipping resistance and wear resistance of the chip as a cutting tool. It is desirable because it is easy to control the magnetization and demagnetization of the tip protruding portion. It should be noted that there is no problem if the surface of the chip 2 can be magnetized and demagnetized even if a known hard coating layer or a plurality of layers are formed. In order to ensure magnetization and demagnetization, it is desirable that the film thickness of the hard coating layer at the tip end protruding portion is 10 μm or less. That is, by increasing only the thickness of the hard coating layer in the cutting blade 5, it is possible to suppress the attachment of processing waste to the cutting blade.

ここで、チップ先端突出部4の少なくとも一部が磁束密度50×10−4T以上に着磁されれば着磁した際に加工屑を確実に引きつけて吸着させることができ、かつ確実に加工屑を加工穴の外に排出することができるため望ましい。 Here, if at least a part of the tip end projecting portion 4 is magnetized to a magnetic flux density of 50 × 10 −4 T or more, it is possible to surely attract and attract the processing waste when magnetized, and to reliably process the chip. This is desirable because waste can be discharged out of the processing hole.

なお、本発明によれば、図1に示すような前記スローアウェイチップの前記先端突出部をワークの内径に挿入して内径加工する場合に特に加工屑を加工穴に残すことなく排出することができることから特に有効である。   In addition, according to this invention, when the said front-end | tip protrusion part of the said throwaway tip as shown in FIG. 1 is inserted in the internal diameter of a workpiece | work, and it processes inside diameter, it can discharge | emit without leaving a processing waste in a processing hole especially. It is particularly effective because it can be done.

また、図1では工具ホルダ3の着磁および脱磁する手段が電磁コイル8からなるもので、切り替えによって着磁・脱磁が両方でき単純な構造で確実に磁化の制御が可能である点で望ましいものであったが、本発明はこれに限定されるものではなく、工具ホルダ3内に永久磁石を設置し、この永久磁石をチップ先端突出部4に近接させることでチップ先端突出部4を磁化し、チップ先端突出部4から永久磁石を遠ざけることでチップ先端突出部4の磁力を弱めることもできる。また、脱磁の方法として、ヒーターを工具ホルダ3内部に設置してチップ先端突出部4をキュリー温度以上に加熱する等の他の手段によって着磁・脱磁を行なっても良く、さらにこれらの手段を適宜組み合わせても良い。   Further, in FIG. 1, the means for magnetizing and demagnetizing the tool holder 3 is composed of an electromagnetic coil 8, and both magnetization and demagnetization can be performed by switching, and the magnetization can be controlled reliably with a simple structure. Although the present invention is desirable, the present invention is not limited to this. A permanent magnet is installed in the tool holder 3, and this permanent magnet is brought close to the tip end protruding portion 4 so that the tip end protruding portion 4 is moved. It is possible to weaken the magnetic force of the tip tip protrusion 4 by magnetizing and moving the permanent magnet away from the tip tip protrusion 4. Further, as a method of demagnetization, the heater may be installed inside the tool holder 3 and magnetized / demagnetized by other means such as heating the tip end protrusion 4 to the Curie temperature or higher. You may combine a means suitably.

また、本発明の工具ホルダ2から加工機に配線を引き回すことにより、着磁・脱磁の操作は加工機外から、加工プログラムと連動、専用制御装置もしくは手動スイッチなどで制御できるため、状況に応じた加工屑の排出を自動で行うことができる。   In addition, by drawing the wiring from the tool holder 2 of the present invention to the processing machine, the operation of magnetization / demagnetization can be controlled from the outside of the processing machine by interlocking with the processing program, using a dedicated control device or a manual switch. Corresponding processing waste can be discharged automatically.

本発明の切削工具の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the cutting tool of this invention. 図1の切削工具においてチップへの磁場の印加状態を説明するための概念図である。It is a conceptual diagram for demonstrating the application state of the magnetic field to a chip | tip in the cutting tool of FIG.

符号の説明Explanation of symbols

1 切削工具(工具)
2 スローアウェイチップ(チップ)
3 工具ホルダ
4 チップ先端突出部
5 切刃
6 ホルダ拘束部
8 電磁コイル
10 配線
1 Cutting tool
2 Throw away tip (chip)
3 Tool holder 4 Tip tip protruding part 5 Cutting blade 6 Holder restraint part 8 Electromagnetic coil 10 Wiring

Claims (7)

鉄族金属を5質量%以上の割合で含有する焼結合金からなるスローアウェイチップの先端を工具ホルダの先端から突出させて該スローアウェイチップの先端突出部に形成した切刃にて切削を行なうとともに、前記スローアウェイチップの後端側を前記工具ホルダに装着してなる切削工具において、前記工具ホルダ内に前記スローアウェイチップを前記工具ホルダ拘束部から先端側に向かって着磁および脱磁させる手段を具備することを特徴とする切削工具。 The tip of the throwaway tip made of a sintered alloy containing an iron group metal in a proportion of 5% by mass or more is projected from the tip of the tool holder, and cutting is performed with a cutting blade formed on the tip projection of the throwaway tip. In addition, in the cutting tool formed by attaching the rear end side of the throw-away tip to the tool holder, the throw-away tip is magnetized and demagnetized in the tool holder from the tool holder restraining portion toward the front end side. A cutting tool comprising means. 前記スローアウェイチップの前記先端突出部をワークの内径に挿入して内径加工することを特徴とする請求項1記載の切削工具。 The cutting tool according to claim 1, wherein the tip protruding portion of the throw-away tip is inserted into an inner diameter of a workpiece to perform inner diameter processing. 前記スローアウェイチップをなす焼結合金中のコバルトの含有量が6〜13質量%であることを特徴とする請求項1または2に記載の切削工具。 The cutting tool according to claim 1 or 2, wherein a content of cobalt in the sintered alloy constituting the throw-away tip is 6 to 13% by mass. 前記工具ホルダの着磁および脱磁する手段が電磁コイルからなることを特徴とする請求項1乃至3のいずれかに記載の切削工具。 The cutting tool according to any one of claims 1 to 3, wherein the means for magnetizing and demagnetizing the tool holder comprises an electromagnetic coil. 前記スローアウェイチップが略棒状からなり、前記電磁コイル内に該スローアウェイチップの後端部を挿入した状態で着磁および脱磁することを特徴とする請求項4記載の切削工具。 The cutting tool according to claim 4, wherein the throw-away tip has a substantially rod shape, and is magnetized and demagnetized in a state where a rear end portion of the throw-away tip is inserted into the electromagnetic coil. 前記スローアウェイチップの先端突出部の少なくとも一部が磁束密度50×10−4T以上に着磁されることを特徴とする請求項1乃至5のいずれかに記載の切削工具。 The cutting tool according to any one of claims 1 to 5, wherein at least a part of the tip protruding portion of the throw-away tip is magnetized to a magnetic flux density of 50 × 10 -4 T or more. 請求項1乃至6のいずれか記載の切削工具を用いて、加工中または加工終了後に前記スローアウェイチップの着磁を行い、前記スローアウェイチップをワークから離した時点で前記スローアウェイチップの脱磁を行うことを特徴とする切削加工方法。 Using the cutting tool according to any one of claims 1 to 6, the throw-away tip is magnetized during or after processing, and the throw-away tip is demagnetized when the throw-away tip is separated from the workpiece. The cutting method characterized by performing.
JP2003370459A 2003-10-30 2003-10-30 Cutting tool and cutting work method Pending JP2005131740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370459A JP2005131740A (en) 2003-10-30 2003-10-30 Cutting tool and cutting work method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370459A JP2005131740A (en) 2003-10-30 2003-10-30 Cutting tool and cutting work method

Publications (1)

Publication Number Publication Date
JP2005131740A true JP2005131740A (en) 2005-05-26

Family

ID=34647467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370459A Pending JP2005131740A (en) 2003-10-30 2003-10-30 Cutting tool and cutting work method

Country Status (1)

Country Link
JP (1) JP2005131740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108994352A (en) * 2018-09-03 2018-12-14 贵阳博亚机械制造有限公司 A kind of aluminium alloy inner hole microstoning cutter and processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108994352A (en) * 2018-09-03 2018-12-14 贵阳博亚机械制造有限公司 A kind of aluminium alloy inner hole microstoning cutter and processing method
CN108994352B (en) * 2018-09-03 2024-05-17 贵阳博亚机械制造有限公司 Superfinishing cutter for inner hole of aluminum alloy and processing method

Similar Documents

Publication Publication Date Title
JP4139906B2 (en) Polishing method and magnetic polishing apparatus for thin plate with opening pattern
US20090185875A1 (en) Machining Tool and Method For The Production Thereof
JP2007268689A (en) Magnetic abrasive finishing device, method therefor, and machining tool used therefor
CN114401827B (en) Magnetizer with fixing function
JP2005131740A (en) Cutting tool and cutting work method
JP4852806B2 (en) Chamfering method and apparatus for rare earth magnet
US6036580A (en) Method and device for magnetic-abrasive machining of parts
JP4185986B2 (en) Magnetic deburring method
JP2009006438A (en) Supporting member for centerless grinder
JP2008030144A (en) Permanent electromagnet type magnet chuck
JP2007045878A (en) Magnetic abrasive grain
JP6213343B2 (en) Chamfering method of rare earth sintered magnet
JP2005305565A (en) Permanent electromagnetic magnet chuck
JP2007210073A (en) Magnetic grinding device and magnetic grinding tool
US5365030A (en) Corepiece handling device and method
JP2003251512A (en) Diamond tool and hole drilling method by use of the same
JP2004142051A (en) Chip removing device
JP2732215B2 (en) Magnetic polishing of non-magnetic materials
JP3628255B2 (en) Work chamfering apparatus and work chamfering method
JPH0788011B2 (en) Bit for drilling
JP2001157902A (en) Cutting tool
JP2005138200A (en) Tool for working inner diameter
JP2010228074A (en) Diamond sintered body tool for super-precision cutting work
CN107953224B (en) Cutting tool
JP2010228069A (en) Coated cbn sintered body tool for accurate cutting work