JP2010228069A - Coated cbn sintered body tool for accurate cutting work - Google Patents

Coated cbn sintered body tool for accurate cutting work Download PDF

Info

Publication number
JP2010228069A
JP2010228069A JP2009080975A JP2009080975A JP2010228069A JP 2010228069 A JP2010228069 A JP 2010228069A JP 2009080975 A JP2009080975 A JP 2009080975A JP 2009080975 A JP2009080975 A JP 2009080975A JP 2010228069 A JP2010228069 A JP 2010228069A
Authority
JP
Japan
Prior art keywords
cutting
cbn
sintered body
cutting edge
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009080975A
Other languages
Japanese (ja)
Other versions
JP5239059B2 (en
Inventor
Tomohiro Fukaya
朋弘 深谷
Akira Kukino
暁 久木野
Katsumi Okamura
克己 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2009080975A priority Critical patent/JP5239059B2/en
Publication of JP2010228069A publication Critical patent/JP2010228069A/en
Application granted granted Critical
Publication of JP5239059B2 publication Critical patent/JP5239059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-costed coated cBN sintered body tool excellent in abrasion resistance and capable of restricting deterioration in surface relative roughness of a cut material and outbreaks of line. <P>SOLUTION: This coated cBN sintered body tool for accurate cutting work uses a sintered body including cBN particles for a cutting blade part, and cBN content of the sintered body is 20-80 volume%. In a part of the cutting blade to be brought into contact with a cut material, x% of the cutting quantity of the cutting blade in the feeding direction from a point, at which the cutting quantity is the maximum, and y% of the cutting quantity of the cutting blade in a direction opposite to the feeding direction from the same point are formed from a cBN single crystal, x is 10-50 and y is 10 or more. Other parts of the cutting blade to be brought into contact with the cut material is formed from a cBN polycrystal, and the surface of at least the cBN single crystal and the cBN polycrystal are coated with a hard film, and film thickness of the hard film is 0.01-10 μm. The described problem is solved by the cBN sintered body tool for accurate cutting work. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、立方晶窒化硼素(cBN)を主成分とした焼結体を基材とする高精度切削加工用被覆cBN焼結体工具に関する。   The present invention relates to a coated cBN sintered body tool for high-precision cutting using a sintered body mainly composed of cubic boron nitride (cBN) as a base material.

cBN焼結体工具による焼入鋼の高精度加工では、特許文献1のようにcBN焼結体のcBN粒子の粒径を微粒とし、被削材の面粗度を改善した工具が開示されている。しかし、このような多結晶体では焼結体を構成する粒子をどれだけ微粒にしても、Rzで1μm以下の高精度加工では工具寿命が短く、かつ、切れ刃を構成する粒子の脱落や粒界の損傷により被削材の面に筋が発生するという問題があった。   In high-accuracy machining of hardened steel with a cBN sintered body tool, as disclosed in Patent Document 1, a tool is disclosed in which the particle size of cBN particles of the cBN sintered body is made fine and the surface roughness of the work material is improved. Yes. However, in such a polycrystalline body, no matter how fine the particles constituting the sintered body are, the tool life is short in the high-precision machining with Rz of 1 μm or less, and the particles constituting the cutting edge are dropped or removed. There was a problem that streaks occurred on the surface of the work material due to the damage of the boundary.

また、特許文献2にはcBN焼結体に中心線平均粗さRaが0.2μm以下の硬質被膜が形成された焼入鋼高精度加工用の被覆cBN焼結体工具が開示されている。この工具では、被膜により被削材の面を形成する前切れ刃境界部の刃先のcBN粒子の脱落等が抑制され、切れ刃が滑らかに摩耗するためRz1.6μmや3.2μmの高精度加工が可能である。しかし、被膜によりcBN粒子の脱落が抑制されてはいるが、脱落が起こらないわけではないので、やはり、Rzで1μm以下の高精度加工では工具寿命が短く、被削材の面に筋が発生するという問題があった。   Patent Document 2 discloses a coated cBN sintered body tool for high-precision machining of hardened steel in which a hard coating having a center line average roughness Ra of 0.2 μm or less is formed on a cBN sintered body. With this tool, the cBN particles at the edge of the front cutting edge that forms the surface of the work material by the coating are prevented from falling off, and the cutting edge wears smoothly, so high-precision machining of Rz 1.6 μm and 3.2 μm Is possible. However, the cBN particles are prevented from falling off by the coating, but it does not mean that they will not drop out. Therefore, high-precision machining with Rz of 1 μm or less has a short tool life, and streaks occur on the surface of the work material. There was a problem to do.

また、非特許文献1には「cBN単結晶の評価」として、cBN単結晶工具による焼入鋼の超精密加工について記述がある。ここでは、被削材および切削条件を選択することで一応、鏡面加工ができたが、予想以上に摩耗が激しいとの記載がある。さらに、このようなcBN単結晶工具は工具を生産するに十分な大きさのcBN単結晶の合成が極めて困難なことと、単結晶と台金の接合が困難で高コストであること等から、実用化には至っていない。   Non-Patent Document 1 describes, as “evaluation of cBN single crystal”, ultra-precision machining of hardened steel with a cBN single crystal tool. Here, although the mirror surface processing was able to be performed once by selecting a work material and cutting conditions, there is a description that the wear is more severe than expected. Furthermore, such a cBN single crystal tool is extremely difficult to synthesize a cBN single crystal large enough to produce a tool, and it is difficult to join the single crystal and the base metal, resulting in high costs. It has not been put into practical use.

また、特許文献3には精密加工用工具として、切削時の切り込み量または送り量より大きい粒径のcBN単結晶粒子を切れ刃先端部に配置した精密加工用工具が開示され、切り込み量は0.05mm以下、送り量は0.01mm/rev以下であると記載されている。   Patent Document 3 discloses a precision machining tool in which cBN single crystal particles having a particle size larger than the cutting amount or feeding amount at the time of cutting are arranged at the tip of the cutting edge as a precision machining tool, and the cutting amount is 0. .05 mm or less, and the feeding amount is 0.01 mm / rev or less.

特公平6−94580号公報Japanese Examined Patent Publication No. 6-94580 特許第3591457号公報Japanese Patent No. 3591457 実公昭58−164603号公報Japanese Utility Model Publication No. 58-164603

NEW DIAMOND、Vol.5、No.4、p20NEW DIAMOND, Vol.5, No.4, p20

本発明は、耐摩耗性に優れ、被削材の面粗度の悪化や筋の発生を抑制する被覆cBN焼結体工具を低コストで提供することを課題とする。   An object of the present invention is to provide a coated cBN sintered body tool that is excellent in wear resistance and suppresses deterioration of surface roughness and generation of streaks at a low cost.

工具により被削材の切削を行う場合、図2に示すように、横切れ刃境界部で被削材が大きく切り取られ、前切れ刃境界部により仕上げ面の形成が行われる。このため、被削材表面には前切れ刃境界部の形状が転写されることとなる。したがって、前切れ刃境界部の摩耗が進行して前切れ刃の表面粗さが悪くなると、被削材表面も粗くなり仕上がり状態が悪くなる。また、被削材表面に筋が発生し始めると境界摩耗が更に発達して前切れ刃境界部に溝が形成され、上記問題が一層顕著となり、短時間で加工表面粗さが悪化してしまう(図3参照)。   When cutting a work material with a tool, as shown in FIG. 2, the work material is largely cut off at the lateral cutting edge boundary portion, and a finished surface is formed at the front cutting edge boundary portion. For this reason, the shape of the front cutting edge boundary portion is transferred to the surface of the work material. Therefore, if the wear of the front cutting edge boundary progresses and the surface roughness of the front cutting edge deteriorates, the surface of the work material also becomes rough and the finished state deteriorates. In addition, when the streak begins to occur on the surface of the work material, boundary wear further develops and grooves are formed at the front cutting edge boundary, and the above problem becomes more prominent, and the machining surface roughness deteriorates in a short time. (See FIG. 3).

本発明者等は、工具刃先の前切れ刃境界部の摩耗が、なるべく平滑に進行するようにすることができれば、被削材の面粗さが悪化しにくく、長寿命で高精度加工が行えることを見出した。すなわち、切れ刃の切削時における前境界部を、cBN単結晶体に、横境界部を多結晶体にすることが有効であることを見出し、本発明を完成させた。なお、「平滑に摩耗する」とは、前切れ刃境界部の摩耗が抑制され、段差や溝(筋)の形成が押さえられて滑らかになる状態のことをいう。   If the wear of the front cutting edge boundary part of the tool edge can proceed as smoothly as possible, the present inventors can prevent the surface roughness of the work material from being deteriorated, and can perform high-precision machining with a long life. I found out. That is, it has been found that it is effective to use a cBN single crystal as the front boundary and a polycrystal as the lateral boundary when cutting the cutting edge, and the present invention has been completed. “Smoothly wear” refers to a state in which wear at the front cutting edge boundary portion is suppressed and formation of a step or a groove (streak) is suppressed to make it smooth.

本発明は以下の特徴を有する。
(1)本発明に係る高精度切削加工用被覆cBN焼結体工具は、cBN粒子を含有する焼結体を切れ刃部分とする高精度切削加工用被覆cBN焼結体工具であって、該焼結体のcBN含有率が20−80体積%であり、被削材と接触する切れ刃部分において、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%が、送りと反対方向の切れ刃は切り込み量のy%が、cBN単結晶体で形成され、xが10以上50以下であり、yが10以上であり、被削材と接触する他の切れ刃部分がcBN多結晶体で形成され、少なくとも前記cBN単結晶体および前記cBN多結晶体の表面が硬質皮膜によって被覆され、該硬質被膜の膜厚が0.01μm以上10μm以下であることを特徴とする。
(2)上記(1)に記載の被覆cBN焼結体工具であって、前記硬質被膜が、周期律表4a、5a、6a族元素、及びAl、Si、Bの中から選択される一種以上の元素とC、N及びOの中から選択される一種以上の元素とからなる層を有することを特徴とする。
The present invention has the following features.
(1) The coated cBN sintered body tool for high-precision cutting according to the present invention is a coated cBN sintered body tool for high-precision cutting using a sintered body containing cBN particles as a cutting edge portion, Since the cBN content of the sintered body is 20 to 80% by volume and the cutting edge is in contact with the work material, the cutting edge in the feed direction has a cutting amount of x%. The cutting edge in the opposite direction is formed by a cBN single crystal having a cutting amount of y%, x is 10 or more and 50 or less, y is 10 or more, and the other cutting edge part that contacts the work material is cBN. It is formed of a polycrystal, and at least surfaces of the cBN single crystal and the cBN polycrystal are coated with a hard film, and the film thickness of the hard film is 0.01 μm or more and 10 μm or less.
(2) The coated cBN sintered body tool according to (1), wherein the hard coating is one or more selected from the group consisting of elements 4a, 5a, and 6a in the periodic table, and Al, Si, and B. And a layer composed of one or more elements selected from C, N, and O.

(3)上記(1)又は(2)に記載の被覆cBN焼結体工具であって、cBN含有率が20−80体積%であり、結合相が、周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種と、アルミニウムの窒化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種とを含むことを特徴とする。
(4)上記(1)〜(3)のいずれか一に記載の被覆cBN焼結体工具であって、被削材と接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%(10≦x≦50)が、送りと反対方向の切れ刃は切り込み量のy%(10≦y)の切れ刃部分が、粒子径が50μm以上のcBN粒子からなることを特徴とする。
(5)上記(1)〜(3)のいずれか一に記載の被覆cBN焼結体工具であって、被削材と接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%(10≦x≦50)が、送りと反対方向の切れ刃は切り込み量のy%(10≦y)の切れ刃部分が、粒子径が100μm以上のcBN粒子からなることを特徴とする。
(3) The coated cBN sintered body tool according to the above (1) or (2), wherein the cBN content is 20-80% by volume, and the binder phase is a periodic table 4a, 5a, 6a group element At least one selected from the group consisting of nitrides, carbides, borides, oxides, and solid solutions thereof, and selected from the group consisting of aluminum nitrides, borides, oxides, and solid solutions thereof And at least one kind.
(4) The coated cBN sintered body tool according to any one of the above (1) to (3), wherein the cutting direction in the feed direction is the largest among the cutting edges that come into contact with the work material. The cutting edge is x% (10 ≦ x ≦ 50) of the cutting amount, and the cutting edge in the direction opposite to the feed is y% (10 ≦ y) of the cutting amount is from cBN particles having a particle diameter of 50 μm or more. It is characterized by becoming.
(5) The coated cBN sintered body tool according to any one of the above (1) to (3), wherein the cutting direction in the feed direction is the largest among the cutting edges that come into contact with the work material. The cutting edge is x% (10 ≦ x ≦ 50) of the cutting amount, and the cutting edge in the opposite direction to the feed is y% (10 ≦ y) of the cutting amount from cBN particles having a particle diameter of 100 μm or more. It is characterized by becoming.

本発明に係る高精度切削加工用被覆cBN焼結体工具は、前境界部を形成する切れ刃がcBN単結晶からなる硬質膜被覆cBN焼結体工具である。このため、前切れ刃が多結晶体である場合に生じる面粗度の悪化や、被削材表面の筋の発生を抑制し、cBN単結晶工具の耐摩耗性の悪化、コスト高等の問題を解決し、被削材の高精度加工を可能とする。   The coated cBN sintered body tool for high-precision cutting according to the present invention is a hard film-coated cBN sintered body tool whose cutting edge forming the front boundary portion is made of a cBN single crystal. For this reason, the deterioration of the surface roughness which occurs when the front cutting edge is a polycrystalline body and the generation of streaks on the surface of the work material are suppressed, and the problems such as the deterioration of wear resistance and the high cost of the cBN single crystal tool are caused. This solves the problem and enables high-precision machining of the work material.

本発明に係る被覆cBN焼結体工具による切削の概略の一例を表す図である。It is a figure showing an example of the outline of the cutting by the covering cBN sintered compact tool concerning the present invention. 従来の切削工具による、良好な切削状態の概略を表す図である。It is a figure showing the outline of the favorable cutting state by the conventional cutting tool. 従来の切削工具による、刃先が摩耗した切削状態の概略を表す図である。It is a figure showing the outline of the cutting state where the blade edge | tip was worn by the conventional cutting tool.

図1に示すように、本発明に係る高精度切削加工用被覆cBN焼結体工具は、cBN粒子を含有する焼結体を切れ刃部分とする高精度切削加工用被覆cBN焼結体工具であって、該焼結体のcBN含有率が20−80体積%であり、被削材と接触する切れ刃部分において、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%が、送りと反対方向の切れ刃は切り込み量のy%がcBN単結晶体で形成され、xが10以上50以下であり、yが10以上であり、被削材と接触する他の切れ刃部分がcBN多結晶体で形成され、少なくとも前記cBN単結晶体および前記cBN多結晶体の表面が硬質皮膜によって被覆され、該硬質被膜の膜厚が0.01μm以上10μm以下であることを特徴とする。これにより前切れ刃境界部がcBN単結晶体により形成されるため、粒子の脱落がなく、前切れ刃境界部分が平滑に摩耗するようになり、このため、cBN多結晶体で切削した場合のような被削材表面の面粗度の悪化、筋の発生が抑制され、高精度加工で長寿命の工具となる。   As shown in FIG. 1, the coated cBN sintered body tool for high-precision cutting according to the present invention is a coated cBN sintered body tool for high-precision cutting using a sintered body containing cBN particles as a cutting edge portion. The cBN content of the sintered body is 20 to 80% by volume, and the cutting edge in the feed direction is x% of the cutting amount from the point of maximum cutting at the cutting edge portion in contact with the work material. However, the cutting edge in the direction opposite to the feed is formed by a cBN single crystal with y% of the cutting amount, x is 10 or more and 50 or less, y is 10 or more, and other cutting edges that come into contact with the work material The portion is formed of a cBN polycrystal, and at least the surfaces of the cBN single crystal and the cBN polycrystal are coated with a hard film, and the film thickness of the hard film is 0.01 μm or more and 10 μm or less. To do. As a result, the front cutting edge boundary portion is formed of the cBN single crystal, so that there is no dropout of the particles, and the front cutting edge boundary portion wears smoothly. For this reason, when cutting with cBN polycrystal Such deterioration of the surface roughness of the work material surface and generation of streaks are suppressed, and the tool has a long tool life with high precision machining.

一方、横切れ刃境界部分は、前述のように被削材を大きく切り取る部分であるから、cBN単結晶体で構成されていると劈開性により刃先が欠けるチッピングが生じ、工具寿命が不安定になる可能性がある。このため被削材と接触する切れ刃部分において、切込みが最大となる点から、切り込み量のx%(10≦x≦50)超の部分がcBN多結晶体により形成されていることが好ましい。更に、cBN単結晶体のみからチップを作製する場合に比べて低コストで提供することが可能となる。特にyの値が100以下のときに、低コストで提供することができる。   On the other hand, the side cutting edge boundary portion is a portion where the work material is largely cut as described above, so that if it is made of a cBN single crystal, chipping occurs due to cleaving property and the tool life becomes unstable. there is a possibility. For this reason, it is preferable that a portion exceeding x% (10 ≦ x ≦ 50) of the cutting amount is formed of the cBN polycrystal from the point where the cutting becomes maximum in the cutting edge portion that comes into contact with the work material. Furthermore, it can be provided at a lower cost compared to the case where a chip is manufactured only from a cBN single crystal. In particular, when the value of y is 100 or less, it can be provided at low cost.

前述のように、cBN焼結体は、cBN含有率が20−80体積%であることを特徴とする。cBNの含有率がこれらの範囲にあることにより、焼結体の強度と耐摩耗性を両立させることが可能となる。
更に、焼結体の結合相が、周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種と、アルミニウムの窒化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種とを含むことを特徴とする。これらの結合材成分により、cBN焼結体の耐摩耗性及び強度を向上させることができる。当然、これらの成分以外にも不可避的に不純物が含まれていても構わない。
As described above, the cBN sintered body has a cBN content of 20 to 80% by volume. When the content of cBN is in these ranges, it is possible to achieve both the strength and wear resistance of the sintered body.
Furthermore, the binder phase of the sintered body is at least one selected from the group consisting of nitrides, carbides, borides, oxides, and solids of the periodic table 4a, 5a, and 6a elements, and aluminum. And at least one selected from the group consisting of nitrides, borides, oxides, and solid solutions thereof. With these binder components, the wear resistance and strength of the cBN sintered body can be improved. Of course, impurities other than these components may inevitably be contained.

刃先の耐摩耗性を更に向上させるために、上記工具表面が硬質皮膜により被覆されていることが好ましい。これにより、特に前切れ刃境界部を形成するcBN単結晶からなる切れ刃部分の耐摩耗性が向上し、工具が長寿命となる。特に被削材が肌焼き鋼や焼入れした軸受け鋼等である場合に有効である。これは、鉄系材料を切削する場合、cBN粒子はcBNのhBNへの逆変換や化学反応といった熱的な摩耗要因により耐摩耗性が良くないが、これら熱的な摩耗をより安定な被膜により抑制することができるからであると考えられる。   In order to further improve the wear resistance of the cutting edge, the tool surface is preferably coated with a hard coating. As a result, the wear resistance of the cutting edge portion made of cBN single crystal that forms the front cutting edge boundary portion in particular is improved, and the tool has a long life. This is particularly effective when the work material is case-hardened steel or quenched bearing steel. This is because when cutting iron-based materials, cBN particles have poor wear resistance due to thermal wear factors such as reverse conversion of cBN to hBN and chemical reactions, but these thermal wear is caused by a more stable coating. This is considered to be because it can be suppressed.

被膜の成分は、十分な硬度を有して高い耐摩耗性が得られるように、周期律表4a、5a、6a族元素、及びAl、Si、Bの中から選択される一種以上の元素とC、N及びOの中から選択される一種以上の元素とからなる化合物を選択した。   The component of the coating is a periodic table 4a, 5a, 6a group element and one or more elements selected from Al, Si, B so as to obtain sufficient wear resistance and high wear resistance. A compound consisting of one or more elements selected from C, N and O was selected.

硬質被膜の好適な成分の具体例としては、TiAlN、TiCN、TiN、Al23、ZrN、ZrC、CrN、VN、HfN、HfCまたはHfCNが挙げられる。耐摩耗性を改善する効果はこれらのいずれの成分を含む硬質皮膜においても見られるが、特にTiAlN、TiCN、TiNを含む被膜で顕著である。
硬質被膜の構成は、単層でも多層でもいずれでも良い。多層構造とした場合、いずれかの層に上記成分の被膜が含まれていれば良い。
Specific examples of suitable components of the hard coating include TiAlN, TiCN, TiN, Al 2 O 3 , ZrN, ZrC, CrN, VN, HfN, HfC or HfCN. The effect of improving the wear resistance can be seen in a hard film containing any of these components, but is particularly remarkable in a film containing TiAlN, TiCN, or TiN.
The configuration of the hard coating may be either a single layer or a multilayer. In the case of a multi-layer structure, any layer may contain a coating of the above components.

硬質被膜の厚さは0.01μm以上10μm以下であることが好ましい。この下限値未満では耐摩耗性を改善する効果が小さくなる。逆に、10μmを超えると硬質皮膜中の残留応力の影響で基材との密着性が低下する。なお、この膜厚は、多層構造の場合、全被膜の厚さについての限定である。   The thickness of the hard coating is preferably 0.01 μm or more and 10 μm or less. Below this lower limit, the effect of improving the wear resistance becomes small. On the other hand, if it exceeds 10 μm, the adhesiveness with the base material is lowered due to the influence of the residual stress in the hard coating. This film thickness is a limitation on the thickness of the entire coating in the case of a multilayer structure.

硬質被膜の形成個所は基材表面の少なくとも一部で良い。切削工具として少なくとも切削に関与する面に被膜を形成する。切削に関与する面とは、すくい面、逃げ面、チャンファー面の少なくとも一つである。より具体的には、すくい面から逃げ面にかけての個所またはすくい面からチャンファー面を経て逃げ面にかけての個所である。特に工具が被削材と接する個所及びその近傍に被膜を形成すると有効である。   The location where the hard coating is formed may be at least part of the substrate surface. As a cutting tool, a film is formed on at least a surface related to cutting. The surface involved in cutting is at least one of a rake surface, a flank surface, and a chamfer surface. More specifically, it is a part from the rake face to the flank face or a part from the rake face to the flank face through the chamfer face. In particular, it is effective to form a coating at a location where the tool contacts the work material and in the vicinity thereof.

硬質被膜の形成手段は公知の成膜技術が利用できる。例えば、スパッタリング、イオンプレーティングなどのPVD法や、プラズマCVD法などのCVD法が利用できる。特にアークイオンプレーティング法は平滑な硬質被膜を形成できる点で好ましい。平滑な硬質被膜が形成できるアークイオンプレーティング法については、特開平10−68071号公報に記載されている。   A known film forming technique can be used as the means for forming the hard film. For example, a PVD method such as sputtering or ion plating, or a CVD method such as a plasma CVD method can be used. In particular, the arc ion plating method is preferable in that a smooth hard film can be formed. An arc ion plating method capable of forming a smooth hard coating is described in JP-A-10-68071.

本発明に係る高精度切削加工用被覆cBN焼結体工具は、切削時に被削材に接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%(10≦x≦50)が、送りと反対方向の切れ刃は切り込み量のy%(10≦y)の切れ刃がcBN単結晶からなることを特徴とする。該cBN単結晶の粒径が50μm以上であると好ましい。該cBN単結晶の粒径が100μm以上であると更に好ましい。   The coated cBN sintered body tool for high-precision cutting according to the present invention has a cutting edge in the feed direction that is x% of the cutting amount from the point of maximum cutting among cutting edges that come into contact with the workpiece during cutting. 10 ≦ x ≦ 50), but the cutting edge in the direction opposite to the feed is characterized in that the cutting edge of y% (10 ≦ y) of the cutting amount is made of cBN single crystal. The particle size of the cBN single crystal is preferably 50 μm or more. More preferably, the particle size of the cBN single crystal is 100 μm or more.

被削材が肌焼き鋼や焼き入れ軸受け鋼等である場合に、高精度切削加工を行うには、一般的に、切り込み量は0.05〜0.2mm、送り量は0.01〜0.05mm/revの条件で行われる。このような場合、摩耗の進展により刃先が後退するため、前記cBN焼結体工具のノーズ先端部分から送り方向の切れ刃は切り込み量のx%が、送りと反対方向の切れ刃は切り込み量のy%がcBN単結晶で形成され、xが10以上50以下であり、yが10以上であり、被削材と接触する他の切れ刃部分がcBN多結晶体で形成されていることが好ましい。これにより、前切れ刃境界部分が、cBN単結晶体で構成され、横切れ刃境界部分はcBN多結晶体で構成されることとなる。   In order to perform high-precision cutting when the work material is case-hardened steel, quenched bearing steel, or the like, generally, the cut amount is 0.05 to 0.2 mm, and the feed amount is 0.01 to 0. .05 mm / rev. In such a case, since the cutting edge is retracted due to the progress of wear, the cutting edge in the feed direction from the nose tip of the cBN sintered body tool has x% of the cutting amount, and the cutting edge in the direction opposite to the feeding has the cutting amount. It is preferable that y% is formed of a cBN single crystal, x is 10 or more and 50 or less, y is 10 or more, and the other cutting edge portion that contacts the work material is formed of a cBN polycrystal. . Thereby, a front cutting edge boundary part will be comprised with a cBN single crystal body, and a side cutting edge boundary part will be comprised with a cBN polycrystal.

超硬合金製のポット及びボールを用いて、TiNとAlN、Ti3Alを混合してから熱処理を施し、その後粉砕して結合材粉末を得た。次に結合材粉末と平均粒径が2μmと平均粒径が150μmのcBN粉末を混合し、熱処理を施し、Mo製容器に充填し、圧力5.5GPa、温度1,350℃で20分焼結し、cBN体積含有率が60%のcBN焼結体を得た。 Using cemented carbide pots and balls, TiN, AlN, and Ti 3 Al were mixed, heat-treated, and then pulverized to obtain a binder powder. Next, the binder powder and cBN powder having an average particle diameter of 2 μm and an average particle diameter of 150 μm are mixed, heat-treated, filled in a Mo container, and sintered at a pressure of 5.5 GPa and a temperature of 1,350 ° C. for 20 minutes. As a result, a cBN sintered body having a cBN volume content of 60% was obtained.

この焼結体を切断し、基材として超硬合金製の台金にロー材を用いて接合した後、研磨加工を実施し、その後、この表面にアークイオン式プレーティング法を用いてTiAlNの硬質皮膜を2μmの厚みで形成し、被覆cBN焼結体切削工具(CNGN120404)を作製した。このとき、工具の前切れ刃境界部に粗粒のcBN単結晶が配置され、被削材と接触する切れ刃部分において、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%が、送りと反対方向の切れ刃は切り込み量のy%がcBN単結晶体で形成され、x、yが表1に記載された値となり、被削材と接触する他の切れ刃部分がcBN多結晶体で形成されるように焼結体中の粗粒cBN単結晶粒子の位置を確認した後、切断、接合、研磨を実施した。   After cutting this sintered body and joining it to a base metal made of cemented carbide using a brazing material as a base material, polishing is carried out, and then TiAlN plating is applied to this surface using an arc ion plating method. A hard coating was formed with a thickness of 2 μm to prepare a coated cBN sintered body cutting tool (CNGN120404). At this time, the coarse cBN single crystal is arranged at the front cutting edge boundary portion of the tool, and the cutting edge in the feed direction has a cutting amount x in the cutting edge portion where the cutting edge is in contact with the work material. %, The cutting edge in the direction opposite to the feed is formed by the cBN single crystal with y% of the cutting amount, and x and y are the values described in Table 1, and other cutting edge portions that come into contact with the work material are After confirming the position of the coarse cBN single crystal particles in the sintered body so as to be formed of a cBN polycrystal, cutting, joining, and polishing were performed.

硬質被膜の形成は以下のように実施した。アーク式イオンプレーティング法装置の真空容器の真空度を7×10-3Paの雰囲気とし、次にアルゴンガスを導入し、1×10-1Paの雰囲気に保持しながら、加熱ヒーターを用いて500℃まで加熱し、工具保持具に−1000Vの電圧をかけて洗浄をおこなった。引き続き、真空アーク放電によりTiAlターゲットを蒸発、イオン化させることにより、工具温度が500℃に上昇するまで、金属イオンによる工具表面クリーニングをおこなった。次に真空容器内に窒素ガスを導入し、真空容器内の圧力を2Paに保持し、真空アーク放電により金属ターゲットを蒸発、イオン化させることにより切削工具上にTiAlNの硬質被膜を形成した。このとき、工具保持具に−20から−600Vの電圧をかけておいた。 The hard coating was formed as follows. The degree of vacuum of the vacuum vessel of the arc type ion plating apparatus is set to an atmosphere of 7 × 10 −3 Pa, then argon gas is introduced and a heater is used while maintaining the atmosphere of 1 × 10 −1 Pa. Cleaning was performed by heating to 500 ° C. and applying a voltage of −1000 V to the tool holder. Subsequently, the TiAl target was evaporated and ionized by vacuum arc discharge, and the tool surface was cleaned with metal ions until the tool temperature rose to 500 ° C. Next, nitrogen gas was introduced into the vacuum vessel, the pressure in the vacuum vessel was maintained at 2 Pa, and the metal target was evaporated and ionized by vacuum arc discharge to form a hard coating of TiAlN on the cutting tool. At this time, a voltage of −20 to −600 V was applied to the tool holder.

この被覆cBN焼結体切削工具を用いて、被削材としてSUJ2(HRC60)を用い、切削速度200m/min、切り込み0.1mm、送り量0.028mm/rev、wetの条件で、切削試験を行った。工具前切れ刃を形成する部分には粗粒cBN単結晶体が配置され、切削時に被削材に接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%が、送りと反対方向の切れ刃は切り込み量のy%がcBN単結晶体となるようにした。このときに、表1に記載の条件となるように設定し、切削試験を実施したところ、寿命判定基準をRzで0.8μmとして、表1に記載の工具寿命が得られた。   Using this coated cBN sintered body cutting tool, using SUJ2 (HRC60) as a work material, a cutting test was performed under conditions of a cutting speed of 200 m / min, a cutting depth of 0.1 mm, a feed amount of 0.028 mm / rev, and wet. went. Coarse-grained cBN single crystal is placed in the part that forms the cutting edge before the tool, and the cutting edge in the feed direction has a cutting amount of the cutting edge that makes the maximum cutting among the cutting edges that come into contact with the work material during cutting. The cutting edge in the direction opposite to the feed with x% was set so that y% of the cutting amount was a cBN single crystal. At this time, the conditions described in Table 1 were set and the cutting test was performed. As a result, the tool life shown in Table 1 was obtained with the life criterion set at 0.8 μm in Rz.

Figure 2010228069
Figure 2010228069

超硬合金製のポット及びボールを用いて、4a、5a、6a族遷移金属元素やAlの化合物等の結合材材料を混合してから熱処理を施し、その後粉砕して結合材粉末を得た。次に結合材粉末とcBN粉末を混合し、熱処理を施し、Mo製容器に充填し、圧力5GPa、温度1,400℃で20分焼結し、cBN焼結体を得た。   Using cemented carbide pots and balls, binder materials such as 4a, 5a, and 6a transition metal elements and Al compounds were mixed and then heat-treated, and then pulverized to obtain a binder powder. Next, the binder powder and the cBN powder were mixed, heat-treated, filled in a Mo container, and sintered at a pressure of 5 GPa and a temperature of 1,400 ° C. for 20 minutes to obtain a cBN sintered body.

この焼結体を切断し、基材として超硬合金製の台金にロー材を用いて接合した後、この表面にアークイオン式プレーティング法を用いてTiAlNやTiCN,TiN等の硬質皮膜を形成し、表2に記載の被覆cBN焼結体切削工具(CNGA120404)を作製した。このとき、工具の前切れ刃境界部に粗粒のcBN単結晶が配置されるように焼結体中の粗粒cBN単結晶粒子の位置を確認した後、切断、接合、研磨を実施した。   After cutting this sintered body and bonding it to a base metal made of cemented carbide using a brazing material, a hard film such as TiAlN, TiCN, TiN or the like is applied to this surface using an arc ion plating method. The coated cBN sintered body cutting tool (CNGA120404) shown in Table 2 was produced. At this time, after confirming the position of the coarse cBN single crystal particles in the sintered body so that the coarse cBN single crystal was disposed at the front cutting edge boundary portion of the tool, cutting, joining, and polishing were performed.

硬質被膜の形成は以下のように実施した。アーク式イオンプレーティング法装置の真空容器の真空度を7×10-3Paの雰囲気とし、次にアルゴンガスを導入し、1×10-1Paの雰囲気に保持しながら、加熱ヒーターを用いて500℃まで加熱し、工具保持具に−1000Vの電圧をかけて洗浄をおこなった。引き続き、真空アーク放電により金属ターゲットを蒸発、イオン化させることにより、工具温度が500℃に上昇するまで、金属イオンによる工具表面クリーニングをおこなった。次に真空容器内に窒素ガス、水素ガス、アルゴンガス、メタン、アセチレンのいずれか1種類あるいは数種類を導入し、真空容器内の圧力を2Paに保持し、真空アーク放電により金属ターゲットを蒸発、イオン化させることにより切削工具上に硬質被膜を形成した。このとき、工具保持具に−20から−600Vの電圧をかけておいた。 The hard coating was formed as follows. The degree of vacuum of the vacuum vessel of the arc type ion plating apparatus is set to an atmosphere of 7 × 10 −3 Pa, and then argon gas is introduced and a heater is used while maintaining the atmosphere of 1 × 10 −1 Pa. Cleaning was performed by heating to 500 ° C. and applying a voltage of −1000 V to the tool holder. Subsequently, the tool surface was cleaned with metal ions until the tool temperature rose to 500 ° C. by evaporating and ionizing the metal target by vacuum arc discharge. Next, one or several of nitrogen gas, hydrogen gas, argon gas, methane, and acetylene are introduced into the vacuum vessel, the pressure inside the vacuum vessel is maintained at 2 Pa, and the metal target is evaporated and ionized by vacuum arc discharge. By doing so, a hard film was formed on the cutting tool. At this time, a voltage of −20 to −600 V was applied to the tool holder.

この被覆cBN焼結体切削工具を用いて、被削材としてSCM415(HRC60)を用い、工具前切れ刃を形成する部分が粗粒cBN単結晶体となるようにした。この前切れ刃が切削時に被削材に接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%(10≦x≦50)が、送りと反対方向の切れ刃は切り込み量のy%(10≦y)がcBN単結晶体となる条件とした。そして、表3に記載の条件で切削試験を実施したところ、寿命判定基準をRzで0.8μmとして、表3に記載の工具寿命が得られた。   Using this coated cBN sintered body cutting tool, SCM415 (HRC60) was used as a work material so that the portion where the tool cutting edge was formed was a coarse cBN single crystal. Of the cutting edges that come into contact with the workpiece during cutting, the cutting edge in the feed direction has a cutting direction x% (10 ≦ x ≦ 50) that is opposite to the feed direction. The cutting edge was made into the condition that y% (10 ≦ y) of the cutting amount was a cBN single crystal. And when the cutting test was implemented on the conditions as described in Table 3, the tool life as shown in Table 3 was obtained by making life criteria into 0.8 micrometer by Rz.

Figure 2010228069
Figure 2010228069
Figure 2010228069
Figure 2010228069

Claims (5)

cBN粒子を含有する焼結体を切れ刃部分とする高精度切削加工用被覆cBN焼結体工具であって、
該焼結体のcBN含有率が20−80体積%であり、
被削材と接触する切れ刃部分において、切込みが最大となる点から、
送り方向の切れ刃は切り込み量のx%が、
送りと反対方向の切れ刃は切り込み量のy%が
cBN単結晶体で形成され、
xが10以上50以下であり、
yが10以上であり、
被削材と接触する他の切れ刃部分がcBN多結晶体で形成され、
少なくとも前記cBN単結晶体および前記cBN多結晶体の表面が硬質皮膜によって被覆され、
該硬質被膜の膜厚が0.01μm以上10μm以下である
ことを特徴とする高精度切削加工用被覆cBN焼結体工具。
A coated cBN sintered body tool for high-precision cutting with a sintered body containing cBN particles as a cutting edge part,
The cBN content of the sintered body is 20-80% by volume,
In the cutting edge part that comes into contact with the work material, from the point where the cutting becomes maximum,
The cutting edge in the feed direction is x% of the cutting depth.
The cutting edge in the direction opposite to the feed is
formed of cBN single crystal,
x is 10 or more and 50 or less,
y is 10 or more,
The other cutting edge part in contact with the work material is formed of cBN polycrystal,
At least the surfaces of the cBN single crystal and the cBN polycrystal are coated with a hard film,
A coated cBN sintered body tool for high-precision cutting, wherein the hard coating has a thickness of 0.01 μm or more and 10 μm or less.
前記硬質被膜が、周期律表4a、5a、6a族元素、及びAl、Si、Bの中から選択される一種以上の元素とC、N及びOの中から選択される一種以上の元素とからなる層を有することを特徴とする請求項1に記載の高精度切削加工用被覆cBN焼結体工具。   The hard coating is composed of a periodic table 4a, 5a, 6a group element, one or more elements selected from Al, Si, B and one or more elements selected from C, N, and O. The coated cBN sintered body tool for high-precision cutting according to claim 1, further comprising: 前記焼結体の結合相が、周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種と、
アルミニウムの窒化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種と
を含むことを特徴とする請求項1又は2に記載の高精度切削加工用被覆cBN焼結体工具。
The bonded phase of the sintered body is at least one selected from the group consisting of nitrides, carbides, borides, oxides, and solids of the periodic table 4a, 5a, and 6a group elements;
The coated cBN sintered body for high-precision cutting according to claim 1 or 2, comprising at least one selected from the group consisting of aluminum nitrides, borides, oxides, and solids thereof. Body tool.
被削材と接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%(10≦x≦50)が、送りと反対方向の切れ刃は切り込み量のy%(10≦y)の切れ刃部分が、
粒子径が50μm以上のcBN粒子からなる請求項1〜3のいずれか一に記載の高精度切削加工用被覆cBN焼結体工具。
Of the cutting edges in contact with the work material, the cutting edge in the feed direction has x% (10 ≦ x ≦ 50) of the cutting amount, and the cutting edge in the direction opposite to the feeding has the cutting amount from the point of maximum cutting. The cutting edge part of y% (10 ≦ y)
The coated cBN sintered body tool for high-precision cutting according to any one of claims 1 to 3, comprising a cBN particle having a particle diameter of 50 µm or more.
被削材と接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃は切り込み量のx%(10≦x≦50)が、送りと反対方向の切れ刃は切り込み量のy%(10≦y)の切れ刃部分が、
粒子径が100μm以上のcBN粒子からなる請求項1〜3のいずれか一に記載の高精度切削加工用被覆cBN焼結体工具。
Of the cutting edges in contact with the work material, the cutting edge in the feed direction has x% (10 ≦ x ≦ 50) of the cutting amount, and the cutting edge in the direction opposite to the feeding has the cutting amount from the point of maximum cutting. The cutting edge part of y% (10 ≦ y)
The coated cBN sintered body tool for high-precision cutting according to any one of claims 1 to 3, comprising a cBN particle having a particle diameter of 100 µm or more.
JP2009080975A 2009-03-30 2009-03-30 Coated cBN sintered tool for high precision cutting Active JP5239059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080975A JP5239059B2 (en) 2009-03-30 2009-03-30 Coated cBN sintered tool for high precision cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080975A JP5239059B2 (en) 2009-03-30 2009-03-30 Coated cBN sintered tool for high precision cutting

Publications (2)

Publication Number Publication Date
JP2010228069A true JP2010228069A (en) 2010-10-14
JP5239059B2 JP5239059B2 (en) 2013-07-17

Family

ID=43044426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080975A Active JP5239059B2 (en) 2009-03-30 2009-03-30 Coated cBN sintered tool for high precision cutting

Country Status (1)

Country Link
JP (1) JP5239059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229001A (en) * 2009-03-30 2010-10-14 Sumitomo Electric Hardmetal Corp cBN SINTERED COMPACT FOR CUTTING TOOLS CONTAINING COARSE GRAIN cBN PARTICLES
JP2019162702A (en) * 2018-03-20 2019-09-26 京セラ株式会社 Tool and cutting tool comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107709A (en) * 1980-12-19 1982-07-05 Toshiba Tungaloy Co Ltd Cutting tool
JPS58164603U (en) * 1982-04-28 1983-11-02 住友電気工業株式会社 Tips for precision machining tools
WO2007057995A1 (en) * 2005-11-18 2007-05-24 Sumitomo Electric Hardmetal Corp. cBN SINTERED BODY FOR HIGH-QUALITY SURFACE PROPERTY MACHINING, cBN SINTERED BODY CUTTING TOOL, AND METHOD OF CUTTING WORK THEREWITH

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107709A (en) * 1980-12-19 1982-07-05 Toshiba Tungaloy Co Ltd Cutting tool
JPS58164603U (en) * 1982-04-28 1983-11-02 住友電気工業株式会社 Tips for precision machining tools
WO2007057995A1 (en) * 2005-11-18 2007-05-24 Sumitomo Electric Hardmetal Corp. cBN SINTERED BODY FOR HIGH-QUALITY SURFACE PROPERTY MACHINING, cBN SINTERED BODY CUTTING TOOL, AND METHOD OF CUTTING WORK THEREWITH

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229001A (en) * 2009-03-30 2010-10-14 Sumitomo Electric Hardmetal Corp cBN SINTERED COMPACT FOR CUTTING TOOLS CONTAINING COARSE GRAIN cBN PARTICLES
JP2019162702A (en) * 2018-03-20 2019-09-26 京セラ株式会社 Tool and cutting tool comprising the same

Also Published As

Publication number Publication date
JP5239059B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP2002144110A (en) Surface coat boron nitride sintered body tool
JP5879664B2 (en) Cutting tools
EP3440232A1 (en) Coated cutting tool
JP4028368B2 (en) Surface coated cemented carbide cutting tool
JP2002144111A (en) Surface coat boron nitride sintered body tool
JP6213269B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP4967396B2 (en) Si-containing composite nitride film and coated cutting tool
JP5239059B2 (en) Coated cBN sintered tool for high precision cutting
JP5266587B2 (en) CBN sintered body for cutting tools containing coarse cBN particles
JP2011093003A (en) Surface-coated member
JP2004066361A (en) Coated cutting tool
JP2007268656A (en) Cutting tool and manufacturing method thereof
JP2012066341A (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP5402155B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2011051060A (en) Surface coating cutting tool
JP5187572B2 (en) Diamond coated cemented carbide cutting tool
JP5239061B2 (en) Coated cBN sintered body tool that suppresses damage at the lateral boundary of the cutting edge
JP2007160465A (en) Surface coated cemented carbide cutting tool having hard lubricating layer exhibiting excellent wear resistance in high speed cutting
JP2010284759A (en) Surface coated cutting tool
JP2009090398A (en) Diamond-coated cutting tool having excellent lubricity and machining accuracy
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2011051033A (en) Surface-coated cutting tool
JP5321356B2 (en) Surface coated cutting tool
JP5472678B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250