JP2005129344A - Secondary battery, battery pack, compound battery pack, vehicle, and manufacturing method of secondary battery - Google Patents

Secondary battery, battery pack, compound battery pack, vehicle, and manufacturing method of secondary battery Download PDF

Info

Publication number
JP2005129344A
JP2005129344A JP2003363224A JP2003363224A JP2005129344A JP 2005129344 A JP2005129344 A JP 2005129344A JP 2003363224 A JP2003363224 A JP 2003363224A JP 2003363224 A JP2003363224 A JP 2003363224A JP 2005129344 A JP2005129344 A JP 2005129344A
Authority
JP
Japan
Prior art keywords
secondary battery
exterior member
heat
positive electrode
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003363224A
Other languages
Japanese (ja)
Other versions
JP4182856B2 (en
Inventor
Akira Yamamura
暁 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003363224A priority Critical patent/JP4182856B2/en
Publication of JP2005129344A publication Critical patent/JP2005129344A/en
Application granted granted Critical
Publication of JP4182856B2 publication Critical patent/JP4182856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery which is superior in electric insulation from the outside. <P>SOLUTION: The battery has outer package members 107, 108 in which first resin layers 107a, 108a, metal layers 107b, 108b, and second resin layers 107c, 108c are laminated, and a positive electrode plate and a negative electrode plate which are alternately laminated through a separator, and comprises an electrode laminate which is housed in the outer package member and sealed and a positive electrode terminal and a negative electrode terminal which are connected to the electrode laminate and of which a part is led from the outer periphery of the outer package member. When the outer package member is heat fused at the heat fusing part 109, the heat fusing part is clipped and heat-fused between two seal bars 50 in which the interval P2 corresponding to the outer periphery side of the heat-fusing part is narrower than the interval P1 corresponding to the inner periphery side of the heat-fusing part, thereby the outer periphery side of the heat fusing part is impressed with a stronger pressure than that of the inner peripheral side and the first resin layer is forced out from the outer periphery of the outer package member and is swollen at the end face of the metal layer of the outer package member, and a covering part 110 to cover the end face of the metal layer is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、セパレータを介して電極板を積層して外装部材に収容して封止すると共に、電極端子が外装部材の外周縁から導出した二次電池に関する。   The present invention relates to a secondary battery in which electrode plates are stacked via a separator, accommodated in an exterior member and sealed, and electrode terminals are led out from an outer peripheral edge of the exterior member.

従来から、セパレータを介して積層した電極板を、合成樹脂層及び金属層を有する外装部材に収容して封止すると共に、当該電極板に接続された電極端子が外装部材の外周縁から導出した二次電池が知られている(例えば、特許文献1参照。)。   Conventionally, an electrode plate laminated via a separator is housed and sealed in an exterior member having a synthetic resin layer and a metal layer, and electrode terminals connected to the electrode plate are led out from the outer peripheral edge of the exterior member. Secondary batteries are known (for example, see Patent Document 1).

このような二次電池では、その製造過程において、金属製の電極板や電極端子自体の端部にバリが生じている場合がある。また、このような二次電池では、外装部材の外周縁が単に切断されているため、当該金属層の端面が外部に露出した状態となっている。   In such a secondary battery, burrs may occur at the ends of the metal electrode plate or the electrode terminal itself during the manufacturing process. Moreover, in such a secondary battery, since the outer periphery of the exterior member is simply cut, the end surface of the metal layer is exposed to the outside.

そのため、二次電池が筐体等に収容されている場合には、このバリが、外装部材の合成樹脂層を貫通して金属層に到達して電極板や電極端子が金属層に接触し、さらに、外装部材の当該金属層の端面と筐体とが接触することにより、電位を持つ二次電池と筐体とが導通し、この筐体に電位が発生してしまうので、二次電池と筐体との電気絶縁性を確保できないおそれがある。
特開2003−187857号公報
Therefore, when the secondary battery is accommodated in a housing or the like, this burr penetrates the synthetic resin layer of the exterior member and reaches the metal layer, and the electrode plate and the electrode terminal are in contact with the metal layer, Furthermore, when the end surface of the metal layer of the exterior member and the housing come into contact with each other, the secondary battery having a potential is electrically connected to the housing, and a potential is generated in the housing. There is a possibility that electrical insulation with the housing cannot be secured.
JP 2003-187857 A

課題が解決しようとする課題The problem that the problem is trying to solve

本発明は、外部との電気絶縁性に優れた二次電池を提供することを目的とする。   An object of this invention is to provide the secondary battery excellent in the electrical insulation with the exterior.

上記目的を達成するために、本発明によれば、少なくとも内側に合成樹脂層が積層された1つの金属層を有する外装部材と、セパレータを介して交互に積層された正極板及び負極板を有し、前記外装部材に収容され封止された電極積層体と、前記電極積層体に接続されると共に、前記外装部材の外周縁から一部が導出した正極端子及び負極端子と、を備えた二次電池であって、前記外装部材の金属層の端面を被覆する非導電性材料から成る被覆部をさらに備えた二次電池が提供される。   In order to achieve the above object, according to the present invention, an exterior member having at least one metal layer on which a synthetic resin layer is laminated, and a positive electrode plate and a negative electrode plate alternately laminated via separators are provided. And an electrode laminate accommodated and sealed in the exterior member, and a positive electrode terminal and a negative electrode terminal that are connected to the electrode laminate and partially led out from the outer periphery of the exterior member. There is provided a secondary battery, further comprising a covering portion made of a non-conductive material that covers an end face of the metal layer of the exterior member.

本発明では、二次電池において、外装部材が有する金属層の端面を、非導電性材料から成る被覆部により被覆する。これにより、二次電池の電極板や電極端子自体の端部に生じているバリが、外装部材の合成樹脂層を貫通して金属層に到達し、電極板や電極端子が当該金属層に接触しても、当該二次電池と外部とが電気的に絶縁されるので、外部との電気絶縁性に優れた二次電池を提供することが可能となる。   In the present invention, in the secondary battery, the end surface of the metal layer of the exterior member is covered with the covering portion made of a non-conductive material. As a result, the burr generated at the end of the electrode plate of the secondary battery or the electrode terminal itself reaches the metal layer through the synthetic resin layer of the exterior member, and the electrode plate or electrode terminal contacts the metal layer. Even so, since the secondary battery and the outside are electrically insulated, it is possible to provide a secondary battery having excellent electrical insulation from the outside.

また、上記目的を達成するために、本発明によれば、セパレータを介して正極板及び負極板を交互に積層して電極積層体を形成するステップと、前記電極積層体に正極端子及び負極端子を接合するステップと、少なくとも内側に合成樹脂層が積層された金属層を有する上部外装部材及び下部外装部材に、前記電極積層体を収容するステップと、前記正極端子及び負極端子の一部を前記上部外装部材及び下部外装部材の外周縁から導出させると共に、前記上部外装部材と前記下部外装部材とを熱融着部で熱融着して封止するステップと、を少なくとも備えた二次電池の製造方法であって、前記上部外装部材と前記下部外装部材とを熱融着部で熱融着するステップにおいて、前記熱融着部の外周側に、前記熱融着部の内周側に印可する押圧力より強い押圧力を印可する二次電池の製造方法が提供される。   In order to achieve the above object, according to the present invention, a step of alternately stacking positive and negative electrode plates via a separator to form an electrode laminate, and a positive electrode terminal and a negative electrode terminal on the electrode laminate. A step of housing the electrode laminate in at least an upper exterior member and a lower exterior member having a metal layer on which a synthetic resin layer is laminated, and a part of the positive electrode terminal and the negative electrode terminal. A step of deriving from outer peripheral edges of the upper exterior member and the lower exterior member, and thermally sealing and sealing the upper exterior member and the lower exterior member at a thermal fusion part. In the manufacturing method, in the step of heat-sealing the upper exterior member and the lower exterior member at the heat-sealed portion, the heat-welded portion is applied to the outer peripheral side and to the inner peripheral side of the heat-fused portion. Than the pressing force Method of manufacturing a secondary battery applying a pressing force have is provided.

本発明では、二次電池の製造方法において、当該二次電池の上部外装部材と下部外装部材とを熱融着部で熱融着する際に、当該熱融着部の内周側より強い押圧力をその外周側に印可する。この押圧力により、外装部材の外周縁から合成樹脂材料がはみ出て、外装部材の金属層の端面に盛り上がり、当該金属層の端面を被覆するので、外部との電気絶縁性に優れた二次電池を容易に製造することが可能となる。   According to the present invention, in the method of manufacturing a secondary battery, when the upper exterior member and the lower exterior member of the secondary battery are heat-sealed at the heat-sealed portion, the pressing force stronger than the inner peripheral side of the heat-sealed portion. Apply pressure to the outer circumference. By this pressing force, the synthetic resin material protrudes from the outer peripheral edge of the exterior member, rises to the end surface of the metal layer of the exterior member, and covers the end surface of the metal layer, so that the secondary battery having excellent electrical insulation from the outside Can be easily manufactured.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る二次電池の全体の平面図、図2は図1のII-II線に沿った二次電池の断面図、図3は図2のIII部の拡大断面図、図4(A)及び(B)は図1に示す二次電池の製造方法の一例を説明するための熱融着部の要部断面図、図5(A)及び(B)は図1に示す二次電池の製造方法の他の例を説明するための熱融着部の要部断面図である。図1及び図2は一つの二次電池10(単位電池)を示し、この二次電池10を複数積層して接続することにより所望の電圧、容量の組電池が構成される。   FIG. 1 is a plan view of an entire secondary battery according to an embodiment of the present invention, FIG. 2 is a sectional view of the secondary battery taken along line II-II in FIG. 1, and FIG. 4A and 4B are cross-sectional views of the main part of the heat-sealing portion for explaining an example of the manufacturing method of the secondary battery shown in FIG. 1, and FIGS. 5A and 5B are diagrams. FIG. 4 is a cross-sectional view of a main part of a heat fusion part for explaining another example of the method for manufacturing the secondary battery shown in FIG. 1 and 2 show one secondary battery 10 (unit battery), and a plurality of the secondary batteries 10 are stacked and connected to form an assembled battery having a desired voltage and capacity.

先ず、本発明の実施形態に係る二次電池10について説明すると、この二次電池10は、リチウム系の薄型の二次電池であり、図1及び図2に示すように、4枚の正極板102、102’、6枚のセパレータ103、及び、3枚の負極板104を有する電極積層体101と、当該電極積層体101にそれぞれ接続された正極端子105及び負極端子106と、これら電極積層体101及び電極端子105、106を収容して封止している上部外装部材107及び下部外装部材108と、特に図示しない電解質とから構成されている。   First, a secondary battery 10 according to an embodiment of the present invention will be described. The secondary battery 10 is a lithium-based thin secondary battery, and as shown in FIGS. 1 and 2, four positive plates. 102, 102 ′, six separators 103, an electrode laminate 101 having three negative plates 104, a positive electrode terminal 105 and a negative electrode terminal 106 respectively connected to the electrode laminate 101, and these electrode laminates An upper exterior member 107 and a lower exterior member 108 that house and seal 101 and the electrode terminals 105 and 106, and an electrolyte (not shown) in particular.

この二次電池10の電極積層体101は、図2に示すように、最上層及び最下層に正極板102’がそれぞれ積層されるように、セパレータ103を介して、正極板102、102’と負極板104とが交互に積層されて構成されている。   As shown in FIG. 2, the electrode stack 101 of the secondary battery 10 includes positive plates 102, 102 ′ via separators 103 so that the positive plates 102 ′ are stacked on the uppermost layer and the lowermost layer, respectively. The negative electrode plates 104 are alternately stacked.

この電極積層体101を構成する4枚の正極板102、102’は、図3に示すように、正極端子105まで伸びている正極側集電体102aと、この正極側集電体102aの一部の主面にそれぞれ形成された正極層102bとを有している。なお、正極板102、102’の正極層102bは、正極側集電体102aの全体の主面に亘って形成されているのではなく、電極積層体101を構成した際に、正極板102においてセパレータ103が実質的に重なる部分のみに形成されている。   As shown in FIG. 3, the four positive plates 102 and 102 ′ constituting the electrode laminate 101 include a positive current collector 102a extending to the positive terminal 105 and one of the positive current collectors 102a. And a positive electrode layer 102b formed on each main surface. Note that the positive electrode layer 102b of the positive electrode plates 102 and 102 ′ is not formed over the entire main surface of the positive electrode side current collector 102a, but in the positive electrode plate 102 when the electrode laminate 101 is configured. The separator 103 is formed only in a portion where it substantially overlaps.

また、この4枚の正極板102、102’の中で、電極積層体101の中間層に積層されている2枚の正極板102には、当該正極板102の正極側集電体102aの一部の両主面に正極層102bが形成されている。これに対し、この4枚の正極板102、102’の中で、電極積層体101の最上層、最下層に積層されている2枚の正極板102’には、当該正極板102’の正極側集電体102aの一部の片側の主面のみに正極層102bが形成されている。   Of the four positive plates 102, 102 ′, the two positive plates 102 stacked on the intermediate layer of the electrode stack 101 have one of the positive current collectors 102 a of the positive plate 102. The positive electrode layer 102b is formed on both main surfaces of the part. On the other hand, among the four positive plates 102 and 102 ′, the two positive plates 102 ′ stacked on the uppermost layer and the lowermost layer of the electrode laminate 101 are included in the positive electrode of the positive plate 102 ′. The positive electrode layer 102b is formed only on one main surface of a part of the side current collector 102a.

さらに、電極積層体101において最上層に積層された正極板102’は、当該正極層102bが形成された主面が、二次電池10の内側に向かうように、即ち、同図において下向きになるように積層されており、当該正極板102’の正極側集電体102aが上部外装部材107と隣接している。   Furthermore, the positive electrode plate 102 ′ laminated on the uppermost layer in the electrode laminate 101 has the main surface on which the positive electrode layer 102 b is formed facing the inside of the secondary battery 10, that is, downward in FIG. The positive electrode side current collector 102 a of the positive electrode plate 102 ′ is adjacent to the upper exterior member 107.

これに対し、電極積層体101において最下層に積層された正極板102’は、特に図示しないが、正極層102bが形成された主面が、二次電池の内側に向かうように、即ち、最上層に積層された正極板102’の正極層102bと対向するように積層されており、当該正極板102’の正極集電体102aが下部電池外装部材108と隣接している。   On the other hand, the positive electrode plate 102 ′ laminated in the lowermost layer in the electrode laminate 101 is not particularly shown, but the main surface on which the positive electrode layer 102b is formed is directed to the inside of the secondary battery, that is, the uppermost layer. The positive electrode plate 102 ′ is stacked so as to face the positive electrode layer 102 b, and the positive electrode current collector 102 a of the positive electrode plate 102 ′ is adjacent to the lower battery exterior member 108.

この正極板102、102’の正極側集電体102aは、例えば、厚さ20μm程度のアルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔である。   The positive electrode side current collector 102a of the positive electrode plates 102 and 102 'is an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil having a thickness of about 20 μm.

また、この正極板102、102’の正極層102bは、金属酸化物等の正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤とを混合したものを、正極側集電体102aの一部の主面に塗布し、乾燥及び圧延することにより形成されている。正極活物質としては、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、又は、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等を挙げることが出来る。これらの材質は、二次電池内部の発熱を比較的放散し易く、二次電池において発熱による膨張に伴う応力を抑制することが出来るので、特に本実施形態のような薄型の二次電池には特に有効である。 Further, the positive electrode layer 102b of the positive electrode plates 102 and 102 'is a mixture of a positive electrode active material such as a metal oxide, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene. It is formed by applying a material to a part of the main surface of the positive electrode side current collector 102a, drying and rolling. Examples of the positive electrode active material include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ), and chalcogen (S, Se, Te) compounds. Etc. can be mentioned. These materials are relatively easy to dissipate the heat generated in the secondary battery, and can suppress the stress accompanying expansion due to the heat generated in the secondary battery. It is particularly effective.

電極積層体101を構成する負極板104は、負極端子106まで伸びている負極側集電体104aと、当該負極側集電体104aの一部の両主面にそれぞれ形成された負極層104bとを有している。なお、負極板104の負極層104bは、負極側集電体104aの全体の両主面に亘って形成されているのではなく、電極積層体101を構成した際に、負極板104においてセパレータ103が実質的に重なる部分のみに形成されている。   The negative electrode plate 104 constituting the electrode laminate 101 includes a negative electrode side current collector 104a extending to the negative electrode terminal 106, and a negative electrode layer 104b formed on both main surfaces of a part of the negative electrode side current collector 104a, respectively. have. Note that the negative electrode layer 104b of the negative electrode plate 104 is not formed over both main surfaces of the entire negative electrode side current collector 104a, but when the electrode laminate 101 is formed, the separator 103 in the negative electrode plate 104 is formed. Are formed only in the overlapping part.

この負極板104の負極側集電体104aは、例えば、厚さ10μm程度のニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔である。   The negative electrode side current collector 104a of the negative electrode plate 104 is an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil having a thickness of about 10 μm.

また、この負極板104の負極層104bは、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極側集電体104aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。   The negative electrode layer 104b of the negative electrode plate 104 is a negative electrode that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. An active material is mixed with an aqueous dispersion of styrene butadiene rubber resin powder as a precursor material of an organic fired body, dried and then pulverized to carry carbonized styrene butadiene rubber on the carbon particle surface. The main material is formed by further mixing a binder such as an acrylic resin emulsion with this, applying this mixture to both main surfaces of a part of the negative electrode side current collector 104a, and drying and rolling.

特に、負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく、放電量に伴って出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車の電源として用いると急激な出力低下がないので有利である。   In particular, if amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor, and the output voltage decreases with the amount of discharge. Is not suitable, but it is advantageous when used as a power source for an electric vehicle because there is no sudden drop in output.

電極積層体101のセパレータ103は、上述した正極板102、102’と負極板104との短絡を防止するもので、電解質を保持する機能を備えても良い。このセパレータ103は、例えば、厚さ25μm程度のポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって、層の空孔が閉塞され、電流を遮断する機能をも有する。   The separator 103 of the electrode laminate 101 prevents the short-circuit between the positive plates 102 and 102 ′ and the negative plate 104 described above, and may have a function of holding an electrolyte. The separator 103 is a microporous film made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP) having a thickness of about 25 μm. When an overcurrent flows, the separator 103 generates pores due to heat generation. Has a function of blocking the current.

なお、本発明のセパレータは、ポリオレフィン等の単層膜のみに限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布等を積層したものも用いることが出来る。セパレータを複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能などの諸機能を付与することが出来る。   The separator of the present invention is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can also be used. By making the separator into multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (rigidity improvement) function can be provided.

以上の電極積層体101は、上述の順序で、セパレータ103を介して、正極板102、102’と負極板104とが交互に積層されている。そして、4枚の正極板102、102’は、各正極側集電体102aを介して、金属箔製の正極端子105にそれぞれ接続される一方で、3枚の負極板104は、各負極側集電体104aを介して、同じく金属箔製の負極端子106にそれぞれ接続されている。   In the electrode stack 101 described above, the positive plates 102 and 102 ′ and the negative plate 104 are alternately stacked via the separator 103 in the order described above. The four positive plates 102, 102 ′ are connected to the positive terminal 105 made of metal foil via the respective positive current collectors 102 a, while the three negative plates 104 are connected to the respective negative side Each is connected to the negative electrode terminal 106 also made of metal foil through the current collector 104a.

ここで、負極板104が、後述する外装部材107、108の金属層107b、108bに電気的に接触し、さらに、これらに電解液が接触した場合には、負極板104の電位により金属層107b、108bのアルミニウムと、電解液中のリチウムとが合金化し、この合金化により金属層107b、108bのアルミニウムにクラック等が生じて当該金属層107b、108bにピンホールが発生し、外装部材107、108の水分やガスに対するバリア性が低下する可能性がある。これに対し、本実施形態では、上述のように、正極層102bが内側の主面のみに形成された正極板102’をこの電極積層体101の最上層及び最下層に積層し、当該正極板102’の正極側集電体102aを外装部材107、108に隣接させることにより、負極板と外装部材の金属層とが接触するのを防止し、外装部材のバリア性の欠陥を防止することが可能となっている。   Here, when the negative electrode plate 104 is in electrical contact with metal layers 107b and 108b of exterior members 107 and 108, which will be described later, and when an electrolytic solution is in contact with these, the metal layer 107b is applied by the potential of the negative electrode plate 104. , 108b and lithium in the electrolyte are alloyed, and this alloying causes cracks and the like in the aluminum of the metal layers 107b and 108b, thereby generating pinholes in the metal layers 107b and 108b. There is a possibility that the barrier property against moisture and gas of 108 is lowered. On the other hand, in the present embodiment, as described above, the positive electrode plate 102 ′ in which the positive electrode layer 102 b is formed only on the inner main surface is laminated on the uppermost layer and the lowermost layer of the electrode laminate 101, and the positive electrode plate By making the positive electrode side current collector 102a of 102 ′ adjacent to the exterior members 107 and 108, the negative electrode plate and the metal layer of the exterior member can be prevented from contacting each other, and the barrier property defect of the exterior member can be prevented. It is possible.

また、上記のような外装部材のバリア性の欠陥を防止するために、電極積層体の最外層にセパレータ、保護シート或いはテープ等を設置することが考えられるが、これらの場合と比較して、本実施形態では二次電池の総厚を薄く抑えることが出来ると共に、二次電池の構成部品の数を少なく抑えることが可能となる。   Further, in order to prevent barrier defects of the exterior member as described above, it is conceivable to install a separator, a protective sheet, a tape, or the like on the outermost layer of the electrode laminate, but compared with these cases, In the present embodiment, the total thickness of the secondary battery can be reduced, and the number of components of the secondary battery can be reduced.

なお、電極積層体101の正極板102、102’、セパレータ103、及び、負極板104は、本発明では上記の枚数に何ら限定されず、例えば、2枚の正極板102’、2枚のセパレータ103、及び、1枚の負極板104でも電極積層体101を構成することが出来、正極板102’が電極積層体101の最外層に位置し、且つ、セパレータ103を介して、正極板102、102’と負極板104とを交互に積層する限り、必要に応じて正極板、セパレータ及び負極板の枚数を選択して構成することが出来る。   The positive electrode plates 102 and 102 ', the separator 103, and the negative electrode plate 104 of the electrode laminate 101 are not limited to the above number in the present invention. For example, two positive electrode plates 102' and two separators are used. 103 and one negative electrode plate 104 can also constitute the electrode laminate 101, the positive electrode plate 102 ′ is located on the outermost layer of the electrode laminate 101, and the positive electrode plate 102, As long as 102 ′ and the negative electrode plate 104 are alternately laminated, the number of positive electrode plates, separators, and negative electrode plates can be selected as necessary.

正極端子105も負極端子106も電気化学的に安定した金属箔であれば特に限定されないが、正極端子105としては、例えば、厚さ0.2mm程度のアルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等を挙げることが出来る。また、負極端子106としては、例えば、厚さ0.2mm程度のニッケル箔、銅箔、ステンレス箔、又は、鉄箔等を挙げることが出来る。これらの金属は、金属の抵抗値、線膨張係数、抵抗率において、二次電池の構成要素として適当であり、二次電池において発熱による膨張に伴う応力を適切に抑制することが出来るので、特に本実施形態のような薄型の二次電池には特に有効である。   The positive electrode terminal 105 and the negative electrode terminal 106 are not particularly limited as long as they are electrochemically stable metal foils. Examples of the positive electrode terminal 105 include an aluminum foil having a thickness of about 0.2 mm, an aluminum alloy foil, a copper foil, or And nickel foil. Examples of the negative electrode terminal 106 include a nickel foil, a copper foil, a stainless steel foil, or an iron foil having a thickness of about 0.2 mm. These metals are suitable as a constituent element of a secondary battery in terms of the resistance value, linear expansion coefficient, and resistivity of the metal, and particularly can suppress the stress accompanying expansion due to heat generation in the secondary battery. This is particularly effective for a thin secondary battery as in this embodiment.

なお、本実施形態では、電極板102、104の集電体102a、104aを構成する金属箔自体を電極端子105、106まで延長することにより、電極板102、104を電極端子105、106に直接接続しているが、電極板102、104の集電体102a、104aと、電極端子105、106とを、集電体102a、104aを構成する金属箔とは別の材料や部品により接続しても良い。   In the present embodiment, the metal foil itself constituting the current collectors 102a and 104a of the electrode plates 102 and 104 is extended to the electrode terminals 105 and 106, whereby the electrode plates 102 and 104 are directly connected to the electrode terminals 105 and 106. Although the current collectors 102a and 104a of the electrode plates 102 and 104 and the electrode terminals 105 and 106 are connected by a material or component different from the metal foil constituting the current collectors 102a and 104a. Also good.

以上のように構成されている電極積層体101は、上部外装部材107及び下部外装部材108に収容されて封止されている。本実施形態における上部外装部材107は、図1に示すように、その外形が電極積層体101を収容する凸部を設けたカップ形状となっており、図3、図4(A)及び(B)、並びに、図5(A)及び(B)に示すように、二次電池10の内側から外側に向かって、第1の樹脂層107a、金属層107b、及び、第3の樹脂層107cの順で3つの層107a〜107cが積層されている。この3つの層107a〜107cは何れも、上部外装部材107の全面に亘って積層されている。   The electrode laminate 101 configured as described above is accommodated and sealed in the upper exterior member 107 and the lower exterior member 108. As shown in FIG. 1, the upper exterior member 107 in the present embodiment has a cup shape in which the outer shape is provided with a convex portion that accommodates the electrode laminate 101, and FIGS. 3, 4 </ b> A, and (B). As shown in FIGS. 5A and 5B, the first resin layer 107a, the metal layer 107b, and the third resin layer 107c are formed from the inside to the outside of the secondary battery 10. Three layers 107a to 107c are stacked in this order. All of these three layers 107 a to 107 c are laminated over the entire surface of the upper exterior member 107.

この上部外装部材107の第1の樹脂層107aは、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムである。上部外装部材107の金属層107bは、例えば、アルミニウム箔等の金属箔である。また、上部外装部材107の第2の樹脂層107cは、例えば、ポリアミド系樹脂、ポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムである。従って、この上部外装部材107は、金属箔の一方の面(二次電池の内側面)を耐電解液性及び熱融着性に優れた材料でラミネートし、他方の面(二次電池の外側面)を電気絶縁性に優れた材料でラミネートした、例えば、厚さ125μm程度の樹脂−金属薄膜ラミネート材で構成されている。   The first resin layer 107a of the upper exterior member 107 is a resin film excellent in electrolytic solution resistance and heat fusion property such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer. The metal layer 107b of the upper exterior member 107 is, for example, a metal foil such as an aluminum foil. The second resin layer 107c of the upper exterior member 107 is a resin film excellent in electrical insulation, such as a polyamide-based resin or a polyester-based resin. Therefore, the upper exterior member 107 is formed by laminating one surface of the metal foil (inner side surface of the secondary battery) with a material excellent in electrolytic solution resistance and heat fusion, and the other surface (outside of the secondary battery). For example, a resin-metal thin film laminate material having a thickness of about 125 μm is laminated with a material excellent in electrical insulation.

下部外装部材108は、図1に示すように、その外形が平板形状となっており、上部外装部材107と同様の層構造のものが用いられ、図4(A)及び(B)、並びに、図5(A)及び(B)に示すように、二次電池10の内側から外側に向かって、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムから構成されている第1の樹脂層108aと、アルミニウム箔等の金属箔から構成されている金属層108bと、例えば、ポリアミド系樹脂又はポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムで構成されている第2の樹脂層108cと、の三層構造となっている。従って、この下部外装部材108は、金属箔の一方の面(二次電池の内側面)を耐電解液性及び熱融着性に優れた材料でラミネートし、他方の面(二次電池の外側面)を電気絶縁性に優れた材料でラミネートした、例えば、厚さ125μm程度の樹脂−金属薄膜ラミネート材で構成されている。   As shown in FIG. 1, the lower exterior member 108 has a flat outer shape, and has the same layer structure as the upper exterior member 107, and FIGS. 4A and 4B, and As shown in FIGS. 5A and 5B, from the inner side to the outer side of the secondary battery 10, for example, the resistance to electrolytic solution and heat fusion of polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer, etc. 1st resin layer 108a comprised from the resin film excellent in adhesiveness, Metal layer 108b comprised from metal foils, such as aluminum foil, For example, electrical insulation, such as a polyamide-type resin or a polyester-type resin It has a three-layer structure with the second resin layer 108c made of an excellent resin film. Accordingly, the lower exterior member 108 is formed by laminating one surface of the metal foil (inner side surface of the secondary battery) with a material excellent in electrolytic solution resistance and heat fusion, and the other surface (outside of the secondary battery). For example, a resin-metal thin film laminate material having a thickness of about 125 μm is laminated with a material excellent in electrical insulation.

このように、外装部材が樹脂層に加えて金属層を具備することにより、外装部材自体の強度向上を図ることが可能となる。また、外装部材の内側層を、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の合成樹脂材料で構成することにより、金属製の電極端子との良好な融着性を確保することが可能となる。   As described above, when the exterior member includes the metal layer in addition to the resin layer, it is possible to improve the strength of the exterior member itself. Further, the inner layer of the exterior member is made of, for example, a synthetic resin material such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer, thereby ensuring good fusion property with a metal electrode terminal. It becomes possible.

なお、図1及び図2に示すように、封止された外装部材107、108の一方の端部から正極端子105が導出し、当該他方の端部から負極端子106が導出するが、電極端子105、106の厚さ分だけ上部外装部材107と下部外装部材108との熱融着部109に隙間が生じるので、二次電池10の内部の封止性を維持するために、電極端子105、106と外装部材107、108とが接触する部分に、例えば、ポリエチレンやポリプロピレン等から構成されたシールフィルムを介在させてもよい。このシールフィルムは、正極端子105及び負極端子106の何れの側においても、外装部材107、108の第1の樹脂層107a、108aを構成する合成樹脂材料と同系統の合成樹脂材料で構成することが熱融着性の観点から好ましい。また、本実施形態では、図1に示すように、二次電池10の外装部材107、108の短辺から正極端子105及び負極端子106がそれぞれ導出しているが、本発明では特にこれに限定されず、例えば、当該外装部材107、108の同一の短辺から正極端子及び負極端子が同方向に向かって導出するように構成しても良い。   As shown in FIGS. 1 and 2, the positive terminal 105 is led out from one end of the sealed exterior members 107 and 108, and the negative terminal 106 is led out from the other end. Since the gap is formed in the heat-sealed portion 109 between the upper exterior member 107 and the lower exterior member 108 by the thickness of 105, 106, in order to maintain the sealing performance inside the secondary battery 10, the electrode terminals 105, For example, a seal film made of polyethylene, polypropylene, or the like may be interposed between the portions 106 and the exterior members 107 and 108 in contact with each other. This seal film is made of the same type of synthetic resin material as the synthetic resin material constituting the first resin layers 107a and 108a of the exterior members 107 and 108 on either side of the positive electrode terminal 105 and the negative electrode terminal 106. Is preferable from the viewpoint of heat-fusibility. Further, in this embodiment, as shown in FIG. 1, the positive electrode terminal 105 and the negative electrode terminal 106 are led out from the short sides of the exterior members 107 and 108 of the secondary battery 10, respectively. For example, the positive electrode terminal and the negative electrode terminal may be led out in the same direction from the same short side of the exterior members 107 and 108.

これらの外装部材107、108によって、上述した電極積層体101と、電極端子105、106の一部とを包み込み、当該外装部材107、108により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウム等のリチウム塩を溶質とした液体電解質を注入しながら、前記空間内を吸引して真空状態とした後に、図1に示すように、外装部材107、108を熱融着部109で熱融着して封止する。   These exterior members 107 and 108 enclose the electrode laminate 101 described above and part of the electrode terminals 105 and 106, and in the space formed by the exterior members 107 and 108, lithium perchlorate is added to the organic liquid solvent. Then, while injecting a liquid electrolyte containing a lithium salt such as lithium borofluoride as a solute and sucking the space into a vacuum state, as shown in FIG. And heat-sealing.

有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)等のエステル系溶媒を挙げることが出来るが、本発明の有機液体溶媒は特にこれに限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒を用いることも出来る。   Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC), but the organic liquid solvent of the present invention is not particularly limited thereto, An organic liquid solvent prepared by mixing and preparing an ether solvent such as γ-butylactone (γ-BL) and dietoshikitane (DEE) in the ester solvent can also be used.

さらに、以上のように封止された本実施形態に係る二次電池10では、図4(B)及図5(B)に示すように、外装部材107、108の熱融着部109の外周縁に、当該外装部材107、108の金属層107b、108cの端面を被覆している、例えば合成樹脂材料等の非導電性材料から成る被覆部110が形成されている。なお、図4(B)及び図5(B)は、外装部材107、108の熱融着部109の断面図を示しているが、この被覆部110は、図1に示す二次電池10の外装部材107、108の外周縁の全周に亘って形成されている。   Furthermore, in the secondary battery 10 according to this embodiment sealed as described above, as shown in FIGS. 4 (B) and 5 (B), the outer side of the heat fusion part 109 of the exterior members 107 and 108 is removed. A covering portion 110 made of a nonconductive material such as a synthetic resin material, which covers the end surfaces of the metal layers 107b and 108c of the exterior members 107 and 108, is formed on the periphery. 4B and 5B show cross-sectional views of the heat-sealing portion 109 of the exterior members 107 and 108, the covering portion 110 is formed of the secondary battery 10 shown in FIG. The exterior members 107 and 108 are formed over the entire outer peripheral edge.

このような非導電性材料から成る被覆部により、外部に露出している外装部材の金属層の端面を被覆することにより、二次電池の電極板や電極端子自体の端部に生じているバリが、外装部材の合成樹脂層を貫通して金属層に到達し、電極板や電極端子が当該金属層に接触しても、当該二次電池と外部とが電気的に絶縁されるので、外部との電気絶縁性に優れた二次電池を提供することが可能となる。   By covering the end surface of the metal layer of the exterior member exposed to the outside with the covering portion made of such a non-conductive material, the variability generated on the end portion of the electrode plate of the secondary battery or the electrode terminal itself is covered. However, even when the electrode plate or electrode terminal contacts the metal layer through the synthetic resin layer of the exterior member, the secondary battery and the outside are electrically insulated from each other. It is possible to provide a secondary battery excellent in electrical insulation.

以上に説明した二次電池の製造方法について説明すると、先ず、セパレータ103を介して、正極板102、102’と負極板104とを交互に積層して電極積層体101を形成する。この際、正極側集電体102aの一方の面のみに正極層102bが形成された正極板102’が、この電極積層体101の最上層及び最下層にそれぞれ位置し、且つ、当該各正極板102’の正極層102bが二次電池10の内側に向くように積層する。   The method for manufacturing the secondary battery described above will be described. First, the electrode laminate 101 is formed by alternately laminating the positive plates 102 and 102 ′ and the negative plate 104 with the separator 103 interposed therebetween. At this time, the positive electrode plate 102 ′ in which the positive electrode layer 102 b is formed only on one surface of the positive electrode side current collector 102 a is located in the uppermost layer and the lowermost layer of the electrode laminate 101, respectively, and each positive electrode plate The positive electrode layer 102 b of 102 ′ is laminated so as to face the inside of the secondary battery 10.

次に、上記のように形成された電極積層体101から一方の方向に導出している各正極側集電体102aを、例えば溶接により、正極端子105に接合すると共に、この電極積層体101から他方の方向に導出している各負極端子104aを、例えば溶接等により、負極端子106に接合する。   Next, each positive electrode side current collector 102a led out in one direction from the electrode laminate 101 formed as described above is joined to the positive electrode terminal 105 by, for example, welding, and from the electrode laminate 101. Each negative electrode terminal 104a led out in the other direction is joined to the negative electrode terminal 106 by welding, for example.

次に、外装部材107、108の外周縁から電極端子105、106の一部を導出させながら、予め成形された上部外装部材107の凸部に電極積層体101を収容して、さらにその上を下部外装部材108で覆い、上部外装部材107及び下部外装部材108の一辺を残して他の3辺を、図4(A)に示すように、2つのシールバー50の間に挟み込んで、押圧力を印可しながら、上部外装部材107と下部外装部材108とを熱融着部109で熱融着する。   Next, while letting part of the electrode terminals 105 and 106 be led out from the outer peripheral edges of the exterior members 107 and 108, the electrode laminate 101 is accommodated in the convex portion of the upper exterior member 107 that has been molded in advance. Covering with the lower exterior member 108, leaving one side of the upper exterior member 107 and the lower exterior member 108, the other 3 sides are sandwiched between two seal bars 50 as shown in FIG. The upper exterior member 107 and the lower exterior member 108 are heat-sealed by the heat-sealing portion 109 while applying the above.

この際、同図に示すように、各シールバー50のシール面は段差状になっており、この2つのシールバーの間隔は、熱融着部109の内周側に対応する2つのシールバー50の間隔Pより、当該熱融着部109の外周側に対応する2つのシールバー50の間隔Pの方が狭くなっている(P>P)。そのため、このようなシールバー50に熱融着部109が挟み込まれると、熱融着部109の外周側の方が、その内周側より強い押圧力が印可され、この押圧力により、図4(B)に示すように、第1の樹脂層107a、108aが当該外装部材107、108の外周縁からはみ出て、外装部材107、108の金属層107b、108bの端面に盛り上がり、当該金属層107b、108bの端面を被覆する被覆部110が形成される。 At this time, as shown in the figure, the seal surface of each seal bar 50 has a stepped shape, and the interval between the two seal bars is two seal bars corresponding to the inner peripheral side of the heat fusion part 109. than the interval P 1 of 50, towards the interval P 2 of the two sealing bars 50 corresponding to the outer peripheral side of the heat fused portion 109 is narrowed (P 1> P 2). Therefore, when the heat fusion part 109 is sandwiched between such seal bars 50, a stronger pressing force is applied on the outer peripheral side of the heat fusion part 109 than on the inner peripheral side, and this pressing force causes the FIG. As shown in (B), the first resin layers 107a and 108a protrude from the outer peripheral edges of the exterior members 107 and 108, and rise to the end surfaces of the metal layers 107b and 108b of the exterior members 107 and 108, and the metal layer 107b. , 108b is formed to cover the end face.

次に、未だ熱融着されていない外装部材107、108の一辺から液体電解質を注入しながら、この外装部材107、108により形成される空間内を吸引して真空状態とした後に、当該一辺を熱融着部109で熱融着して封止する。   Next, while injecting a liquid electrolyte from one side of the exterior members 107 and 108 not yet heat-sealed, the space formed by the exterior members 107 and 108 is sucked into a vacuum state. The heat-sealed portion 109 is heat-sealed and sealed.

この際、上記と同様に、熱融着部109の内周側に対応する間隔Pよりその外周側に対応する間隔Pの方が狭くなっている(P>P)、図4(A)に示すような2つのシールバー50を用いて熱融着するので、図4(B)に示すように、熱融着の際に、熱融着部109の内周側より強い押圧力がその外周側に印可され、第1の樹脂層107a、108aが当該外装部材107、108の外周縁からはみ出て、外装部材107、108の金属層107b、108bの端面に盛り上がり、当該金属層107b、108bの端面を被覆する被覆部110が形成される。 At this time, similarly to the above, the interval P 2 corresponding to the outer peripheral side is narrower than the interval P 1 corresponding to the inner peripheral side of the heat-sealed portion 109 (P 1 > P 2 ). Since the two seal bars 50 as shown in FIG. 4A are used for heat fusion, as shown in FIG. 4B, when the heat fusion is performed, a stronger pressing force than the inner peripheral side of the heat fusion part 109 is used. The pressure is applied to the outer peripheral side, the first resin layers 107a and 108a protrude from the outer peripheral edges of the exterior members 107 and 108, and rise to the end surfaces of the metal layers 107b and 108b of the exterior members 107 and 108, and the metal layers A covering portion 110 that covers the end faces of 107b and 108b is formed.

また、二次電池10の被覆部110は、図5(A)に示すように、上部外装部材107と下部外装部材108との間における熱融着部109の外周側に、例えば、ポリプロピレン等の熱融着性に優れた合成樹脂材料から成る樹脂シート111を介在させた状態で、2つのシールバー50の間に挟まれて熱融着されることにより形成されても良い。この際、図5(A)に示すように、上部外装部材107と下部外装部材108との間に介在した樹脂シート111の厚み分だけ、熱融着部109の内周側より強い押圧力がその外周側に印可されるので、外装部材107、108の第1の樹脂層107a、108aが当該外装部材107、108の外周縁からはみ出て、外装部材107、108の金属層107b、108bの端面に盛り上がり、当該金属層107b、108bの端面を被覆する被覆部110が形成される。なお、この場合に用いられる2つのシールバー50の間隔は、図5(A)及び(B)に示すように、熱融着部109の外周側及び内周側の何れに対応する位置においても、実質的に同一の間隔となっている。   Further, as shown in FIG. 5A, the covering portion 110 of the secondary battery 10 is, for example, made of polypropylene or the like on the outer peripheral side of the heat fusion portion 109 between the upper exterior member 107 and the lower exterior member 108. It may be formed by being sandwiched between two seal bars 50 and heat-sealed with a resin sheet 111 made of a synthetic resin material excellent in heat-fusibility interposed. At this time, as shown in FIG. 5A, the pressing force stronger than the inner peripheral side of the heat-sealing portion 109 is equal to the thickness of the resin sheet 111 interposed between the upper exterior member 107 and the lower exterior member 108. Since it is applied to the outer peripheral side, the first resin layers 107a and 108a of the exterior members 107 and 108 protrude from the outer peripheral edge of the exterior members 107 and 108, and end surfaces of the metal layers 107b and 108b of the exterior members 107 and 108 The covering portion 110 is formed to cover the end faces of the metal layers 107b and 108b. In addition, as shown in FIGS. 5A and 5B, the interval between the two seal bars 50 used in this case is at a position corresponding to either the outer peripheral side or the inner peripheral side of the heat fusion portion 109. The intervals are substantially the same.

以上のように形成される被覆部110の大きさは任意に設定可能であるが、当該被覆部110を可能な限り小さくし、二次電池10の体積を極力小さく抑えることが好ましい。   Although the size of the covering part 110 formed as described above can be arbitrarily set, it is preferable to make the covering part 110 as small as possible and to keep the volume of the secondary battery 10 as small as possible.

このように、二次電池の上部外装部材と下部外装部材とを熱融着部で熱融着する際に、当該熱融着部の内周側より強い押圧力をその外周側に印可することにより、当該押圧力により、外装部材の第1の樹脂層や樹脂シートがはみ出て、外装部材の金属層の端面に盛り上がり、当該金属層の端面を被覆するので、外部との電気絶縁性に優れた二次電池を容易に製造することが可能となる。   In this way, when the upper exterior member and the lower exterior member of the secondary battery are heat-sealed at the heat-sealed portion, a stronger pressing force is applied to the outer peripheral side than the inner peripheral side of the heat-sealed portion. Due to the pressing force, the first resin layer or resin sheet of the exterior member protrudes and rises to the end surface of the metal layer of the exterior member, and covers the end surface of the metal layer, so that it has excellent electrical insulation from the outside. The secondary battery can be easily manufactured.

以下に、上述の実施形態に係る二次電池を複数組み合わせることにより構成される組電池、及び、当該組電池を複数組み合わせることにより構成される複合組電池について説明する。   Below, the assembled battery comprised by combining multiple secondary batteries which concern on the above-mentioned embodiment, and the composite assembled battery comprised by combining multiple said assembled batteries are demonstrated.

図6(A)及び(B)は本発明の実施形態に係る複数の二次電池の接続構造を示す平面図であり、図6(A)は並列接続を示し、図6(B)は比較のための直列接続を示す図、図7(A)及び(B)は本発明の実施形態に係る複数の二次電池の他の接続構造を示す図であり、図7(A)は並列接続を示し、図7(B)は比較のための直列接続を示す図、図8(A)〜(C)は本発明の実施形態に係る複数の二次電池により構成される組電池を示す図であり、図8(A)はその平面図、図8(B)はその正面図、図8(C)はその側面図、図9は本発明の実施形態に係る複数の組電池により構成される複合組電池の斜視図、図10(A)は図9に示す複合組電池の平面図、図10(B)はその正面図、図10(C)はその側面図、図11は、図9に示す複合組電池を搭載した車輌の模式図である。   6A and 6B are plan views showing a connection structure of a plurality of secondary batteries according to an embodiment of the present invention, FIG. 6A shows parallel connection, and FIG. 6B is a comparison. 7A and 7B are diagrams showing other connection structures of a plurality of secondary batteries according to the embodiment of the present invention, and FIG. 7A is a parallel connection. FIG. 7B is a diagram showing a series connection for comparison, and FIGS. 8A to 8C are diagrams showing an assembled battery including a plurality of secondary batteries according to the embodiment of the present invention. 8 (A) is a plan view thereof, FIG. 8 (B) is a front view thereof, FIG. 8 (C) is a side view thereof, and FIG. 9 is constituted by a plurality of assembled batteries according to an embodiment of the present invention. 10A is a plan view of the composite battery shown in FIG. 9, FIG. 10B is a front view thereof, FIG. 10C is a side view thereof, and FIG. It is a schematic diagram of a vehicle equipped with a composite assembled battery shown in.

先ず、2つの二次電池10を電気的に接続した際に、外部からの振動等により印可される外力に対して強い構造を付与する2通りの接続構造について説明する。   First, two types of connection structures that give a strong structure against an external force applied by external vibration or the like when two secondary batteries 10 are electrically connected will be described.

外力に対して強い構造を付与する一つ目の接続構造は、図6(A)に示すように、第1の二次電池10aの正極端子105と、第2の二次電池10bの正極端子105とが同一方向に導出するような方向で、第1の二次電池10aと第2の二次電池10bとを実質的に同一平面上に並置させる。そして、第1の二次電池10aの正極端子105と、第2の二次電池10bの正極端子105とを、第1のバスバー21aにより電気的に接続する。また、第1の二次電池10aの負極端子106と、第2の二次電池10bの負極端子106とを、第2のバスバー21bにより電気的に接続する。このように、2つの二次電池の同極端子同士をバスバーにより接続してリンク構造とすることにより、外部からの振動等による外力が各二次電池に同位相で印可されるため、各二次電池に生じる捻れに対して強い構造となっている。   As shown in FIG. 6A, the first connection structure that provides a structure strong against external force is the positive terminal 105 of the first secondary battery 10a and the positive terminal of the second secondary battery 10b. The first secondary battery 10a and the second secondary battery 10b are juxtaposed on substantially the same plane in such a direction that 105 is led out in the same direction. Then, the positive terminal 105 of the first secondary battery 10a and the positive terminal 105 of the second secondary battery 10b are electrically connected by the first bus bar 21a. Further, the negative terminal 106 of the first secondary battery 10a and the negative terminal 106 of the second secondary battery 10b are electrically connected by the second bus bar 21b. In this way, by connecting the same polarity terminals of the two secondary batteries with the bus bar to form a link structure, an external force due to external vibration or the like is applied to each secondary battery in the same phase. The structure is strong against twisting generated in the secondary battery.

これに対し、図6(B)に示すように、第1の二次電池10aの正極端子105と第2の二次電池10bの負極端子106とが同一方向に導出するような方向で、第1の二次電池10aと第2の二次電池10bを実質的に同一平面上に並置し、当該第1の二次電池10aの正極端子105と、第2の二次電池10bの負極端子106とを電気的に接続せずに、第1の二次電池10aの負極端子106と第2の二次電池10bの正極端子105とを第2のバスバー21bにより電気的に接続して、第1及び第2の二次電池10a、10bを直列接続とした場合には、非リンク構造であるため、外部からの振動等による外力が各二次電池に独立して印可され、上記の並列接続の場合と比較して捻れに弱い構造となっている。   On the other hand, as shown in FIG. 6B, in the direction in which the positive terminal 105 of the first secondary battery 10a and the negative terminal 106 of the second secondary battery 10b are led out in the same direction. The first secondary battery 10a and the second secondary battery 10b are juxtaposed on the same plane, and the positive terminal 105 of the first secondary battery 10a and the negative terminal 106 of the second secondary battery 10b. Without first electrically connecting the negative terminal 106 of the first secondary battery 10a and the positive terminal 105 of the second secondary battery 10b by the second bus bar 21b. In the case where the second secondary batteries 10a and 10b are connected in series, an external force due to external vibration or the like is independently applied to each secondary battery because of the non-link structure. Compared to the case, the structure is weak against twisting.

二つ目の接続構造は、図7(A)に示すように、第1の二次電池10aの正極端子105と、第2の二次電池10bの正極端子とが同一方向に導出するような方向で、第1の二次電池10aの上に第2の二次電池10bを積層する。そして、第1の二次電池10aの正極端子105と第2の二次電池10bの正極端子105とを溶着して電気的に接続し、同様に、第1の二次電池10aの負極端子106と第2の二次電池10bの負極端子106とを溶着して電気的に接続する。このように、2つの二次電池の同極端子同士を接続してリンク構造とすることにより、外部からの振動等による外力が各二次電池に同位相で印可されるため、各二次電池に生じる捻れに対して強い構造となっている。   As shown in FIG. 7A, the second connection structure is such that the positive terminal 105 of the first secondary battery 10a and the positive terminal of the second secondary battery 10b are led out in the same direction. In the direction, the second secondary battery 10b is stacked on the first secondary battery 10a. Then, the positive terminal 105 of the first secondary battery 10a and the positive terminal 105 of the second secondary battery 10b are welded and electrically connected. Similarly, the negative terminal 106 of the first secondary battery 10a. And the negative electrode terminal 106 of the second secondary battery 10b are welded and electrically connected. In this way, by connecting the same polarity terminals of two secondary batteries to form a link structure, an external force due to external vibration or the like is applied to each secondary battery in the same phase. The structure is strong against twisting.

これに対し、図7(B)に示すように、第1の二次電池10aの正極端子105と第2の二次電池10bの負極端子106とが同一方向に導出するような方向で、第1の二次電池10aの上に第2の二次電池10bを積層し、当該第1の二次電池10aの正極端子105と第2の二次電池10bの負極端子106とを電気的に接続せずに、第1の二次電池10aの負極端子106と第2の二次電池10bの正極端子105とを溶着して電気的に接続した場合には、非リンク構造であるため、外部からの振動等による外力が各二次電池に独立して印可され、上記の並列接続の場合と比較して捻れに弱い構造となっている。   In contrast, as shown in FIG. 7B, in the direction in which the positive terminal 105 of the first secondary battery 10a and the negative terminal 106 of the second secondary battery 10b are led out in the same direction. The second secondary battery 10b is stacked on the first secondary battery 10a, and the positive terminal 105 of the first secondary battery 10a and the negative terminal 106 of the second secondary battery 10b are electrically connected. Without connecting, the negative electrode terminal 106 of the first secondary battery 10a and the positive electrode terminal 105 of the second secondary battery 10b are welded and electrically connected. The external force due to the vibrations is applied to each secondary battery independently, and the structure is weak against twisting compared to the case of the parallel connection described above.

図8(A)〜(C)は、例えば、上述の2通りの接続構造を用いて並列接続された24個の二次電池10から構成される組電池20を示す。この組電池20は、24個の二次電池10と、組電池用端子22、23と、組電池用カバー25とから構成されている。特に図示しないが、各二次電池10の各電極端子105、106の間は、上述の接続構造に従って、バスバー21a、21bにより並列接続されており、さらに、各正極端子105を接続する第1のバスバー21aは、組電池用カバー25から導出している組電池用端子22に接続されている。同様に、各負極端子106を接続する第2のバスバー21bは、組電池用カバー25から導出している組電池用端子23に接続されている。このように接続された24個の二次電池10が組電池用カバー25の内部に収容されており、組電池20のカバー25と当該組電池20の他の構成要素との間に形成されている空間には充填剤24が充填されて封止されている。さらに、後述する複合組電池として組電池20が積層された際に、当該組電池20同士の振動の伝達を極力低減させるために、組電池用カバー25の下面四隅に外部弾性体26が取り付けられている。   8A to 8C show an assembled battery 20 including, for example, 24 secondary batteries 10 connected in parallel using the two connection structures described above. The assembled battery 20 includes 24 secondary batteries 10, assembled battery terminals 22 and 23, and an assembled battery cover 25. Although not particularly illustrated, the electrode terminals 105 and 106 of each secondary battery 10 are connected in parallel by the bus bars 21a and 21b according to the connection structure described above, and further, the first terminals for connecting the positive terminals 105 are connected. The bus bar 21a is connected to an assembled battery terminal 22 led out from the assembled battery cover 25. Similarly, the second bus bar 21 b connecting each negative electrode terminal 106 is connected to the assembled battery terminal 23 led out from the assembled battery cover 25. Twenty-four secondary batteries 10 connected in this manner are accommodated in the assembled battery cover 25 and formed between the cover 25 of the assembled battery 20 and other components of the assembled battery 20. The space is filled with a filler 24 and sealed. Further, when the assembled battery 20 is stacked as a composite assembled battery, which will be described later, in order to reduce the transmission of vibration between the assembled batteries 20 as much as possible, the external elastic bodies 26 are attached to the lower four corners of the assembled battery cover 25. ing.

図9及び図10(A)〜(C)は、図8(A)〜(C)に示す組電池20を電気的に接続した6個の組電池20から構成される複合組電池30を示す。図9及び図10(A)〜(C)に示すように、この複合組電池30は、組電池の端子22、23がそれぞれ同一方向に向くように積層されている。即ち、m段目に位置する組電池20の端子22、23と、m+1段目に位置する組電池20の端子22、23とが同一方向に向くように、m段目の組電池20の上に、m+1段目の組電池20が積層されている(m:自然数)。そして、同一方向に向いた全ての組電池20の組電池用正極端子22が、当該複合組電池30と外部とを接続する外部接続用正極端子31に電気的に接続されている。同様に、同一方向を向いた全ての組電池20の組電池用負極端子23が外部接続用負極端子32に電気的に接続されている。同図に示すように、外部接続用正極端子31は、略矩形の平板形状を有しており、組電池用正極端子22を挿入或いは圧入可能な直径を有する複数の端子接続用孔が加工されている。当該端子接続用孔は、積層された組電池20の組電池用正極端子22同士のピッチに実質的に等しいピッチで加工されており、外部接続用負極端子32にも同様の端子接続用孔が加工されている。そして、上述のように積層された6個の組電池20は、その両側側面部に平板状の連結部材34で連結され、さらに固定ネジ35により締結されている。   FIGS. 9 and 10 (A) to (C) show a composite battery pack 30 composed of six battery packs 20 electrically connected to the battery pack 20 shown in FIGS. 8 (A) to (C). . As shown in FIGS. 9 and 10A to 10C, the composite battery pack 30 is laminated so that the terminals 22 and 23 of the battery pack face each other in the same direction. That is, the terminals 22 and 23 of the assembled battery 20 located at the m-th stage and the terminals 22 and 23 of the assembled battery 20 located at the (m + 1) -th stage are oriented in the same direction. In addition, the assembled battery 20 at the (m + 1) th stage is stacked (m: natural number). The assembled battery positive terminals 22 of all the assembled batteries 20 facing in the same direction are electrically connected to the external connection positive terminal 31 that connects the composite assembled battery 30 to the outside. Similarly, the assembled battery negative terminals 23 of all assembled batteries 20 facing in the same direction are electrically connected to the external connection negative terminal 32. As shown in the figure, the external connection positive electrode terminal 31 has a substantially rectangular flat plate shape, and a plurality of terminal connection holes having a diameter into which the assembled battery positive electrode terminal 22 can be inserted or press-fitted are processed. ing. The terminal connection holes are processed at a pitch substantially equal to the pitch between the assembled battery positive terminals 22 of the stacked assembled battery 20, and the same terminal connection holes are formed in the external connection negative terminal 32. Has been processed. The six assembled batteries 20 stacked as described above are connected to the side surfaces of the both sides by flat connecting members 34 and further fastened by fixing screws 35.

以上のように、所定の数の二次電池を単位として組電池を構成し、さらに当該組電池を単位として並列及び/又は直列接続して複合組電池を構成することにより、要求される容量、電圧等に適当な複合組電池を容易に得ることが可能となる。   As described above, the battery pack is configured with a predetermined number of secondary batteries as a unit, and further, the combined battery is configured in parallel and / or in series with the battery pack as a unit. It becomes possible to easily obtain a composite battery suitable for voltage and the like.

また、複雑な接続を伴うことなく複合組電池を構成することが出来るので、接続不良等による複合組電池の故障率を低減させることが可能となる。   In addition, since the composite assembled battery can be configured without complicated connection, the failure rate of the composite assembled battery due to poor connection or the like can be reduced.

さらに、複合組電池を構成する一部の二次電池が故障或いは劣化し、当該二次電池の交換を必要とする場合、当該故障等した二次電池が組み込まれた組電池のみを交換することにより、複合組電池を容易に修復することが可能となる。   Furthermore, if some of the secondary batteries that make up the composite battery pack fail or deteriorate, and the secondary battery needs to be replaced, replace only the battery pack that incorporates the secondary battery that has failed. This makes it possible to easily repair the composite battery pack.

図11は、例えば、電気自動車等の車輌1のフロア下に上述の複合組電池30を搭載した例を示す模式図である。振動等が外部から比較的多く印可される電気自動車等の車輌に、上述のように故障率が低く、交換容易性に優れた組電池や複合組電池を用いることは特に有効である。   FIG. 11 is a schematic diagram illustrating an example in which the above-described composite assembled battery 30 is mounted under the floor of a vehicle 1 such as an electric vehicle. As described above, it is particularly effective to use an assembled battery or a composite assembled battery having a low failure rate and excellent ease of replacement as described above for a vehicle such as an electric vehicle to which a relatively large amount of vibration is applied from the outside.

以上のように、本実施形態では、二次電池において、外装部材が有する金属層の端面を、非導電性材料から成る被覆部により被覆することにより、二次電池の電極板や電極端子自体の端部に生じているバリが、外装部材の第1の樹脂層を貫通して金属層に到達し、電極板や電極端子が当該金属層に接触しても、外装部材の金属層の端面を被覆した被覆部により、当該二次電池と外部とが電気的に絶縁されるので、外部との電気絶縁性に優れた二次電池を提供することが可能となる。   As described above, in the present embodiment, in the secondary battery, the end surface of the metal layer of the exterior member is covered with the covering portion made of the non-conductive material, so that the electrode plate of the secondary battery and the electrode terminal itself are covered. Even if the burr generated at the end reaches the metal layer through the first resin layer of the exterior member, and the electrode plate or electrode terminal contacts the metal layer, the end surface of the metal layer of the exterior member Since the secondary battery is electrically insulated from the outside by the coated covering portion, it is possible to provide a secondary battery having excellent electrical insulation from the outside.

また、正極層が内側の主面のみに形成された正極板を電極積層体の最上層及び最下層に積層し、当該正極板の正極側集電体を外装部材に隣接させることにより、負極板のアルミニウムと電解液中のリチウムとの合金化による外装部材の水分やガスに対するバリア性の欠陥を防止することが可能となる。   In addition, the positive electrode plate having the positive electrode layer formed only on the inner main surface is laminated on the uppermost layer and the lowermost layer of the electrode laminate, and the positive electrode side current collector of the positive electrode plate is adjacent to the exterior member, whereby the negative electrode plate It is possible to prevent defects in barrier properties against moisture and gas of the exterior member due to alloying of aluminum with lithium in the electrolyte.

さらに、本実施形態では、二次電池の製造方法において、当該二次電池の上部外装部材と下部外装部材とを熱融着部で熱融着する際に、当該熱融着部の内周側より強い押圧力をその外周側に印可することにより、第1の樹脂層や樹脂シートが外装部材の外周縁からはみ出て、外装部材の金属層の端面に盛り上がり、当該金属層の端面を被覆するので、外部との電気絶縁性に優れた二次電池を容易に製造することが可能となる。   Furthermore, in this embodiment, in the method for manufacturing a secondary battery, when the upper exterior member and the lower exterior member of the secondary battery are heat-sealed at the heat-sealed portion, the inner peripheral side of the heat-sealed portion. By applying a stronger pressing force to the outer peripheral side, the first resin layer or the resin sheet protrudes from the outer peripheral edge of the exterior member, rises to the end surface of the metal layer of the exterior member, and covers the end surface of the metal layer Therefore, it becomes possible to easily manufacture a secondary battery having excellent electrical insulation from the outside.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであ
って、本発明を限定するために記載されたものではない。したがって、上記の実施形態に
開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨
である。
The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

図1は、本発明の実施形態に係る二次電池の全体の平面図である。FIG. 1 is a plan view of an entire secondary battery according to an embodiment of the present invention. 図2は、図1のII-II線に沿った二次電池の断面図である。FIG. 2 is a cross-sectional view of the secondary battery taken along line II-II in FIG. 図3は、図2のIII部の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a portion III in FIG. 図4(A)及び(B)は、図1に示す二次電池の製造方法の一例を説明するための熱融着部の要部断面図であり、図4(A)は、熱融着前の状態を示す図であり、図4(B)は、熱融着後の状態を示す図である。4 (A) and 4 (B) are cross-sectional views of the main part of the heat fusion part for explaining an example of the manufacturing method of the secondary battery shown in FIG. 1, and FIG. 4 (A) is the heat fusion. It is a figure which shows the previous state, and FIG.4 (B) is a figure which shows the state after heat sealing | fusion. 図5(A)及び(B)は、図1に示す二次電池の製造方法の他の例を説明するための熱融着部の要部断面図であり、図5(A)は、熱融着前の状態を示す図であり、図5(B)は、熱融着後の状態を示す図である。5 (A) and 5 (B) are cross-sectional views of the main part of the heat-sealing part for explaining another example of the method for manufacturing the secondary battery shown in FIG. 1, and FIG. It is a figure which shows the state before melt | fusion, FIG.5 (B) is a figure which shows the state after heat fusion. 図6(A)及び(B)は、本発明の実施形態に係る複数の二次電池の接続構造を示す平面図であり、図6(A)は並列接続を示し、図6(B)は比較のための直列接続を示す図である。6 (A) and 6 (B) are plan views showing a connection structure of a plurality of secondary batteries according to an embodiment of the present invention, FIG. 6 (A) shows parallel connection, and FIG. It is a figure which shows the serial connection for a comparison. 図7(A)及び(B)は、本発明の実施形態に係る複数の二次電池の他の接続構造を示す図であり、図7(A)は並列接続を示し、図7(B)は比較のための直列接続を示す図である。7A and 7B are diagrams showing another connection structure of a plurality of secondary batteries according to the embodiment of the present invention. FIG. 7A shows parallel connection, and FIG. FIG. 3 is a diagram showing a series connection for comparison. 図8(A)〜(C)は、本発明の実施形態に係る複数の二次電池により構成される組電池を示す図であり、図8(A)はその平面図、図8(B)はその正面図、図8(C)はその側面図である。8 (A) to 8 (C) are views showing an assembled battery including a plurality of secondary batteries according to the embodiment of the present invention. FIG. 8 (A) is a plan view thereof, and FIG. 8 (B). Is a front view thereof, and FIG. 8C is a side view thereof. 図9は、本発明の実施形態に係る複数の組電池により構成される複合組電池の斜視図である。FIG. 9 is a perspective view of a composite assembled battery including a plurality of assembled batteries according to an embodiment of the present invention. 図10(A)は、図9に示す複合組電池の平面図であり、図10(B)はその正面図、図10(C)はその側面図である。10A is a plan view of the composite assembled battery shown in FIG. 9, FIG. 10B is a front view thereof, and FIG. 10C is a side view thereof. 図11は、図9に示す複合組電池を搭載した車輌の模式図である。FIG. 11 is a schematic diagram of a vehicle equipped with the composite battery pack shown in FIG.

符号の説明Explanation of symbols

1…車輌
10…二次電池
101…電極積層体
102、102’…正極板
102a…正極側集電体
102b…正極層
103…セパレータ
104…負極板
104a…負極側集電体
104b…負極層
105…正極端子
106…負極端子
107…上部外装部材
107a…第1の樹脂層
107b…金属層
107c…第2の樹脂層
108…下部外装部材
108a…第1の樹脂層
108b…金属層
108c…第2の樹脂層
109…熱融着部
110…被覆部
111…樹脂シート
20…組電池
30…複合組電池
50…シールバー
、P…シールバーの間隔
DESCRIPTION OF SYMBOLS 1 ... Vehicle 10 ... Secondary battery 101 ... Electrode laminated body 102, 102 '... Positive electrode plate 102a ... Positive electrode side collector 102b ... Positive electrode layer 103 ... Separator 104 ... Negative electrode plate 104a ... Negative electrode side collector 104b ... Negative electrode layer 105 ... Positive electrode terminal 106 ... Negative electrode terminal 107 ... Upper exterior member 107a ... First resin layer 107b ... Metal layer 107c ... Second resin layer 108 ... Lower exterior member 108a ... First resin layer 108b ... Metal layer 108c ... Second Resin layer 109 ... heat fusion part 110 ... covering part 111 ... resin sheet 20 ... assembled battery 30 ... composite assembled battery 50 ... seal bar P 1 , P 2 ... spacing between seal bars

Claims (15)

少なくとも内側に合成樹脂層が積層された1つの金属層を有する外装部材と、
セパレータを介して交互に積層された正極板及び負極板を有し、前記外装部材に収容され封止された電極積層体と、
前記電極積層体に接続されると共に、前記外装部材の外周縁から一部が導出した正極端子及び負極端子と、を備えた二次電池であって、
前記外装部材の金属層の端面を被覆する非導電性材料から成る被覆部をさらに備えた二次電池。
An exterior member having at least one metal layer on which a synthetic resin layer is laminated;
An electrode laminate having positive and negative electrode plates alternately laminated via separators and housed and sealed in the exterior member;
A secondary battery that is connected to the electrode laminate and includes a positive electrode terminal and a negative electrode terminal that are partly derived from the outer periphery of the exterior member,
The secondary battery further provided with the coating | coated part which consists of a nonelectroconductive material which coat | covers the end surface of the metal layer of the said exterior member.
前記電極積層体の正極板は、正極として機能する正極活物質を持つ正極層を有し、
前記電極積層体の最外層は、前記正極板が積層されており、
前記電極積層体の最外層に位置する正極板は、当該正極板の内側の主面のみに前記正極層が形成されている請求項1記載の二次電池。
The positive electrode plate of the electrode laminate has a positive electrode layer having a positive electrode active material that functions as a positive electrode,
The outermost layer of the electrode laminate is laminated with the positive electrode plate,
The secondary battery according to claim 1, wherein the positive electrode plate located on the outermost layer of the electrode laminate is formed with the positive electrode layer only on the main surface inside the positive electrode plate.
前記被覆部を構成する非導電性材料は、合成樹脂材料である請求項1又は2記載の二次電池。   The secondary battery according to claim 1, wherein the non-conductive material constituting the covering portion is a synthetic resin material. 前記被覆部は、前記外装部材の合成樹脂層により形成されている請求項1〜3の何れかに記載の二次電池。   The secondary battery according to claim 1, wherein the covering portion is formed by a synthetic resin layer of the exterior member. 前記被覆部及び/又は前記外装部材の合成樹脂層は、ポリプロピレン、変性ポリプロピレン、ポリエチレン、変性ポリエチレン、及び、アイオノマーから成る群より選ばれる1又はそれ以上の成分を含む請求項1〜4の何れかに記載の二次電池。   The synthetic resin layer of the covering portion and / or the exterior member includes one or more components selected from the group consisting of polypropylene, modified polypropylene, polyethylene, modified polyethylene, and ionomer. Secondary battery described in 1. 前記正極端子及び負極端子は、アルミニウム、鉄、銅、及び、ニッケルから成る群より選ばれる1又はそれ以上の成分を含む請求項1〜5の何れかに記載の二次電池。   The secondary battery according to claim 1, wherein the positive terminal and the negative terminal include one or more components selected from the group consisting of aluminum, iron, copper, and nickel. 前記正極層の正極活物質は、リチウム−マンガン系複合酸化物、リチウム−ニッケル系複合系酸化物、及び、リチウム−コバルト系複合酸化物から成る群より選ばれる1又はそれ以上の成分を含む請求項2〜6の何れかに記載の二次電池。   The positive electrode active material of the positive electrode layer includes one or more components selected from the group consisting of a lithium-manganese composite oxide, a lithium-nickel composite oxide, and a lithium-cobalt composite oxide. Item 7. The secondary battery according to any one of Items 2 to 6. 前記電極積層体の負極板は、負極として機能する負極活物質を有し、
前記負極活物質は、結晶性炭素材又は非結晶性炭素材である請求項1〜7の何れかに記載の二次電池。
The negative electrode plate of the electrode laminate has a negative electrode active material that functions as a negative electrode,
The secondary battery according to claim 1, wherein the negative electrode active material is a crystalline carbon material or an amorphous carbon material.
請求項1〜8の何れかに記載の二次電池を複数有する組電池であって、
一の前記二次電池の正極端子と、他の前記二次電池の同極端子とが、実質的に同一方向となるように、前記一の二次電池の上に前記他の二次電池を積層し、
前記一の二次電池と前記他の二次電池の同極端子同士を電気的に接続した少なくとも2以上の前記二次電池を含む組電池。
An assembled battery having a plurality of the secondary batteries according to claim 1,
The other secondary battery is placed on the one secondary battery so that the positive electrode terminal of the one secondary battery and the same polarity terminal of the other secondary battery are in substantially the same direction. Laminated,
An assembled battery including at least two or more secondary batteries in which the same polarity terminals of the one secondary battery and the other secondary battery are electrically connected.
請求項1〜8の何れかに記載の二次電池を複数有する組電池であって、
一の前記二次電池の正極端子と、他の前記二次電池の同極端子とが、実質的に同一方向となるように、前記一の二次電池の側方に前記他の二次電池を並置し、
接続手段を介して、前記一の二次電池と前記他の二次電池の同極端子同士を電気的に接続した少なくとも2以上の前記二次電池を含む組電池。
An assembled battery having a plurality of the secondary batteries according to claim 1,
The other secondary battery is located on the side of the one secondary battery so that the positive terminal of the one secondary battery and the same polarity terminal of the other secondary battery are in substantially the same direction. Juxtaposed,
An assembled battery including at least two or more secondary batteries in which the same polarity terminals of the one secondary battery and the other secondary battery are electrically connected to each other through a connecting means.
請求項9又は10記載の組電池を複数有する複合組電池であって、
一の前記組電池と、他の前記組電池とを電気的に並列及び/又は直列に接続した少なくとも2以上の前記組電池を含む複合組電池。
A composite assembled battery comprising a plurality of assembled batteries according to claim 9 or 10,
A composite assembled battery including at least two or more assembled batteries in which one assembled battery and the other assembled battery are electrically connected in parallel and / or in series.
請求項9又は10記載の組電池、或いは、請求項11記載の複合組電池を搭載した車輌。   A vehicle equipped with the assembled battery according to claim 9 or 10, or the composite assembled battery according to claim 11. セパレータを介して正極板及び負極板を交互に積層して電極積層体を形成するステップと、
前記電極積層体に正極端子及び負極端子を接合するステップと、
少なくとも内側に合成樹脂層が積層された金属層を有する上部外装部材及び下部外装部材に、前記電極積層体を収容するステップと、
前記正極端子及び負極端子の一部を前記上部外装部材及び下部外装部材の外周縁から導出させると共に、前記上部外装部材と前記下部外装部材とを熱融着部で熱融着して封止するステップと、を少なくとも備えた二次電池の製造方法であって、
前記上部外装部材と前記下部外装部材とを熱融着部で熱融着するステップにおいて、前記熱融着部の外周側に、前記熱融着部の内周側に印可する押圧力より強い押圧力を印可する二次電池の製造方法。
A step of alternately laminating positive and negative electrode plates through a separator to form an electrode laminate;
Bonding a positive electrode terminal and a negative electrode terminal to the electrode laminate;
Accommodating the electrode laminate in an upper exterior member and a lower exterior member having a metal layer in which a synthetic resin layer is laminated at least inside; and
A part of the positive electrode terminal and the negative electrode terminal is led out from outer peripheral edges of the upper exterior member and the lower exterior member, and the upper exterior member and the lower exterior member are heat-sealed at a heat-sealing portion and sealed. A method of manufacturing a secondary battery comprising at least a step,
In the step of heat-sealing the upper exterior member and the lower exterior member at the heat-sealed portion, a pressing force stronger than the pressing force applied to the outer peripheral side of the heat-welded portion is applied to the inner peripheral side of the heat-sealed portion. A method of manufacturing a secondary battery that applies pressure.
前記上部外装部材と前記下部外装部材とを熱融着部で熱融着するステップは、前記上部外装部材及び下部外装部材の熱融着部を2つのシールバーの間に挟んで前記熱融着部に押圧力を印可しながら、前記上部外装部材と前記下部外装部材とを熱融着部で熱融着するステップであり、
前記2つのシールバーの間隔は、前記熱融着部の内周側に対応する前記2つのシールバーの間隔より、前記熱融着部の外周側に対応する前記2つのシールバーの間隔の方が狭くなっている請求項13記載の二次電池の製造方法。
The step of heat-sealing the upper exterior member and the lower exterior member with a heat-sealed portion includes the step of heat-sealing the heat-sealed portions of the upper exterior member and the lower exterior member between two seal bars. A step of heat-sealing the upper exterior member and the lower exterior member at a heat-sealing portion while applying a pressing force to the portion,
The interval between the two seal bars is greater than the interval between the two seal bars corresponding to the outer peripheral side of the thermal fusion part than the interval between the two seal bars corresponding to the inner peripheral side of the thermal fusion part. The method for manufacturing a secondary battery according to claim 13, wherein is narrowed.
前記上部外装部材と前記下部外装部材とを熱融着部で熱融着するステップにおいて、前記上部外装部材と前記下部外装部材との間に合成樹脂シートを介在させて、前記上部外装部材と前記下部外装部材とを熱融着部で熱融着する請求項13記載の二次電池の製造方法。   In the step of heat-sealing the upper exterior member and the lower exterior member at a thermal fusion part, a synthetic resin sheet is interposed between the upper exterior member and the lower exterior member, and the upper exterior member and the The method for manufacturing a secondary battery according to claim 13, wherein the lower exterior member is heat-sealed at the heat-sealing portion.
JP2003363224A 2003-10-23 2003-10-23 Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery Expired - Fee Related JP4182856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363224A JP4182856B2 (en) 2003-10-23 2003-10-23 Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363224A JP4182856B2 (en) 2003-10-23 2003-10-23 Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery

Publications (2)

Publication Number Publication Date
JP2005129344A true JP2005129344A (en) 2005-05-19
JP4182856B2 JP4182856B2 (en) 2008-11-19

Family

ID=34642610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363224A Expired - Fee Related JP4182856B2 (en) 2003-10-23 2003-10-23 Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP4182856B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335309A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Battery pack
JP2008198484A (en) * 2007-02-13 2008-08-28 Toshiba Corp Battery and its manufacturing method
JP2009295297A (en) * 2008-06-02 2009-12-17 Sony Corp Exterior member for battery element, and nonaqueous electrolyte secondary battery using the same
JP2010080326A (en) * 2008-09-26 2010-04-08 Asahi Kasei Corp Power storage element and method for manufacturing the same
JP2011129451A (en) * 2009-12-21 2011-06-30 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2012209124A (en) * 2011-03-29 2012-10-25 Fdk Tottori Co Ltd Electrochemical element, method for manufacturing the same, and sealing die for manufacturing element
JP5201757B1 (en) * 2012-09-13 2013-06-05 太陽誘電株式会社 Electrochemical devices
KR20140146958A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 a secondary battery sealing by sealant
JP2015072803A (en) * 2013-10-03 2015-04-16 凸版印刷株式会社 Outer packaging body for battery and battery using the same
JP2016506049A (en) * 2012-12-28 2016-02-25 エルジー・ケム・リミテッド Pouch case sealing device and sealing method for secondary battery
JP2017228381A (en) * 2016-06-21 2017-12-28 Necエナジーデバイス株式会社 Battery and manufacturing method of battery
CN110137425A (en) * 2019-06-21 2019-08-16 珠海冠宇电池有限公司 A method of improving lithium ion battery electrochemical corrosion

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233133A (en) * 1998-02-18 1999-08-27 Matsushita Electric Ind Co Ltd Battery in which laminated sheet is used for sheath case
JP2000156242A (en) * 1998-11-20 2000-06-06 Mitsubishi Chemicals Corp Lithium secondary battery
JP2000223087A (en) * 1999-01-29 2000-08-11 Mitsubishi Electric Corp Thin battery and its manufacture
JP2000251854A (en) * 1999-02-25 2000-09-14 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP2001199413A (en) * 2000-01-18 2001-07-24 Dainippon Printing Co Ltd Heat seal method for container, and container for battery manufactured by using the heat seal method
JP2002117828A (en) * 2000-10-04 2002-04-19 Sanyo Electric Co Ltd Battery block, battery pack and fixing structure of battery pack
JP2002134094A (en) * 2000-10-20 2002-05-10 Nec Mobile Energy Kk Enclosed type battery
JP2005116278A (en) * 2003-10-06 2005-04-28 Nec Lamilion Energy Ltd Laminated battery, protection member and battery unit for the laminated battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233133A (en) * 1998-02-18 1999-08-27 Matsushita Electric Ind Co Ltd Battery in which laminated sheet is used for sheath case
JP2000156242A (en) * 1998-11-20 2000-06-06 Mitsubishi Chemicals Corp Lithium secondary battery
JP2000223087A (en) * 1999-01-29 2000-08-11 Mitsubishi Electric Corp Thin battery and its manufacture
JP2000251854A (en) * 1999-02-25 2000-09-14 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP2001199413A (en) * 2000-01-18 2001-07-24 Dainippon Printing Co Ltd Heat seal method for container, and container for battery manufactured by using the heat seal method
JP2002117828A (en) * 2000-10-04 2002-04-19 Sanyo Electric Co Ltd Battery block, battery pack and fixing structure of battery pack
JP2002134094A (en) * 2000-10-20 2002-05-10 Nec Mobile Energy Kk Enclosed type battery
JP2005116278A (en) * 2003-10-06 2005-04-28 Nec Lamilion Energy Ltd Laminated battery, protection member and battery unit for the laminated battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335309A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Battery pack
JP2008198484A (en) * 2007-02-13 2008-08-28 Toshiba Corp Battery and its manufacturing method
JP2009295297A (en) * 2008-06-02 2009-12-17 Sony Corp Exterior member for battery element, and nonaqueous electrolyte secondary battery using the same
JP2010080326A (en) * 2008-09-26 2010-04-08 Asahi Kasei Corp Power storage element and method for manufacturing the same
JP2011129451A (en) * 2009-12-21 2011-06-30 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2012209124A (en) * 2011-03-29 2012-10-25 Fdk Tottori Co Ltd Electrochemical element, method for manufacturing the same, and sealing die for manufacturing element
JP5201757B1 (en) * 2012-09-13 2013-06-05 太陽誘電株式会社 Electrochemical devices
JP2014075374A (en) * 2012-09-13 2014-04-24 Taiyo Yuden Co Ltd Electrochemical device
JP2016506049A (en) * 2012-12-28 2016-02-25 エルジー・ケム・リミテッド Pouch case sealing device and sealing method for secondary battery
US9755195B2 (en) 2012-12-28 2017-09-05 Lg Chem, Ltd. Apparatus and method for sealing pouch case of secondary battery
KR20140146958A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 a secondary battery sealing by sealant
KR101661562B1 (en) 2013-06-18 2016-10-04 주식회사 엘지화학 a secondary battery sealing by sealant
JP2015072803A (en) * 2013-10-03 2015-04-16 凸版印刷株式会社 Outer packaging body for battery and battery using the same
JP2017228381A (en) * 2016-06-21 2017-12-28 Necエナジーデバイス株式会社 Battery and manufacturing method of battery
CN110137425A (en) * 2019-06-21 2019-08-16 珠海冠宇电池有限公司 A method of improving lithium ion battery electrochemical corrosion

Also Published As

Publication number Publication date
JP4182856B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP5830953B2 (en) Secondary battery, battery unit and battery module
JP4182858B2 (en) Secondary battery and assembled battery
JP4894129B2 (en) Thin battery and battery pack
US20120244423A1 (en) Laminate case secondary battery
JP2005251617A (en) Secondary battery and battery pack
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP5205713B2 (en) Bipolar secondary battery
JP4852882B2 (en) Secondary battery and method for manufacturing secondary battery
JP2006324143A (en) Secondary battery
JP5871067B2 (en) Battery structure
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
JP2005129393A (en) Secondary battery
JP2004047239A (en) Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP3797311B2 (en) Thin battery support device and assembled battery including the same
JP2005149783A (en) Secondary battery, battery pack, complex battery pack, and vehicle
JP3711962B2 (en) Thin battery
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery
JP2005332608A (en) Secondary battery, battery pack, composite battery pack and vehicle
JP2004055346A (en) Battery pack, composite battery pack, and vehicle mounting it
JP4720129B2 (en) Secondary battery
JP2006236775A (en) Secondary battery
JP2009110812A (en) Battery and method of manufacturing the same
JP5119615B2 (en) Secondary battery and assembled battery
JP3719235B2 (en) Thin battery, assembled battery, composite assembled battery and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees