JP2005121498A - 弾性表面波センシングシステム - Google Patents

弾性表面波センシングシステム Download PDF

Info

Publication number
JP2005121498A
JP2005121498A JP2003357296A JP2003357296A JP2005121498A JP 2005121498 A JP2005121498 A JP 2005121498A JP 2003357296 A JP2003357296 A JP 2003357296A JP 2003357296 A JP2003357296 A JP 2003357296A JP 2005121498 A JP2005121498 A JP 2005121498A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
signal
sensing system
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003357296A
Other languages
English (en)
Inventor
Nobuyuki Koike
伸幸 小池
Tatsuo Hisamura
達雄 久村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003357296A priority Critical patent/JP2005121498A/ja
Publication of JP2005121498A publication Critical patent/JP2005121498A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 センサ部の小型化を図りながら、測定対象物の外部環境の変化を高精度に検出することができる弾性表面波センシングシステムを提供する。
【解決手段】 圧電基板41上に送受信電極42と反射器43とを形成してなる弾性表面波素子部23において、励起した弾性表面波SAWを送受信電極42と反射器43との間で多重に反射させ、その一次反射信号と二次反射信号との信号差から、外部環境の変化を検出するようにする。これにより、反射器を複数配置することなく、センサ部と問合せ器との間の距離の影響を受けずに精度の高いセンシングシステムを構築できると共に、弾性表面波素子部23の縮小化が図られ、センサ部の小型化を実現することができる。
【選択図】 図3

Description

本発明は、弾性表面波(SAW:Surface Acoustic Wave)を用いて温度、圧力等の外部環境の変化を検出する弾性表面波センシングシステムに関する。
従来より、弾性表面波素子を利用した無線センシングシステムが知られている。この種のセンシングシステムは、測定対象物に取り付けられた弾性表面波素子およびアンテナ手段を備えたセンサ部と、このセンサ部に対して駆動信号を送信するとともに当該センサ部からの応答信号を受信する問合せ器とからなる。
図6は、従来の無線センシングシステムに用いられる弾性表面波素子の構成例を示している。弾性表面波素子1は、櫛形電極構造をなす送受信電極2と複数の反射器3A,3Bとを圧電基板4上に形成することで構成されている。
送受信電極2は、一対の櫛形電極2a,2bを対向させ、一方の櫛形電極の電極間に他方の櫛形電極の電極が位置するように互いに違いに交差配置されている。このような電極配置構造は一般に、IDT(Interdigital Transducers)構造と称されている。また、各反射器3A,3Bはそれぞれ異なるトラック(弾性表面波の伝搬路)上に形成され、互いに送受信電極2に対して距離的に異なる位置に配置されている。
送受信電極2に交流電圧を加えると、公知のように圧電基板4上に弾性表面波が励起される。この弾性表面波は圧電基板4の表面を伝搬し、伝搬路上の反射器3A,3Bにおいて各々弾性表面波の反射が生じる。反射器3A,3Bにより反射された弾性表面波は、再び送受信電極2に戻ってくる。
そこで、弾性表面波の反射波を利用するセンシングシステムでは、送受信電極2で励起された信号(弾性表面波)が反射器3A,3Bで反射されて再び送受信電極2へ戻るときに、外部環境の変化に伴い信号が変化することを利用している。測定対象物の状態変化は位相、周波数、遅延時間といった弾性表面波の伝搬特性の変化という形で抽出することができる。
図7に、駆動信号と反射信号の関係の一例を示す。送受信電極2に加えた交流電圧5により弾性表面波が励起され圧電基板4上を伝搬し、各反射器3A,3Bによって反射された弾性表面波が再び送受信電極2へ戻ってきて反射信号6A,6Bに変換されている様子がわかる。
なお、この出願の発明に関連する先行技術文献として以下に挙げるものがある。
特開平8−285708号公報 特開2002−261572号公報 特開平10−242801号公報 A.Pohl, R.Steindl, L.Reindl 「Measurement of Vibration and Acceleration Utilizing SAW Sensors」 SENSOR 99 Proceedings II A5.3 p53-58
上記特許文献1には、一対の櫛歯状電極を組み合わせた電極を圧電基板上に離間して配置した超音波デバイスから、液体中に漏洩する弾性表面波をダイアフラムに反射させて液体遅延共振回路を構成し、ダイアフラム変位を周波数の変化として検出する形式の圧力センサが開示されている。
また、上記特許文献2,3には、圧電層の上に一対の櫛形電極からなるSAW共振器と2つのグレーティング反射器を形成し、2つのグレーティング反射器間で弾性表面波を多重反射させ、定在波を生じさせることにより、弾性表面波フィルタを構成することが開示されている。
ところで、弾性表面波の反射波を利用したセンシングシステムを無線で使用する場合、弾性表面波素子を有するセンサ部と、このセンサ部からの応答信号を受信する問合せ器との間の距離により、弾性表面波素子からの応答時間が変化してしまう。
そのため、弾性表面波素子を利用したセンシングシステムを無線で応用する場合、従来では複数の反射器を設置し、各反射器による反射信号の信号差を抽出することによりセンシングを行うようにしている(上記非特許文献1参照)。図6及び図7の例では、各反射器3A,3Bの反射信号6A,6Bの信号差を抽出するようにしている。
しかしながら、圧電基板上の異なるトラック上に複数の反射器を配置形成する従来の構成では、弾性表面波素子の基板サイズの小型化に限度があり、センサ部の更なる小型化を図ることができないという問題がある。
その一方で、センサ部と問合せ器との間の距離による弾性表面波素子からの応答時間の変化をキャンセルして、精度高く測定対象物の外部環境の変化を検出する必要がある。
本発明は上述の問題に鑑みてなされ、センサ部の小型化を図りながら、測定対象物の外部環境の変化を高精度に検出することができる弾性表面波センシングシステムを提供することを課題とする。
以上の課題を解決するに当たり、本発明の弾性表面波センシングシステムは、測定対象物に取り付けられ弾性表面波素子を備えたセンサ部と、このセンサ部に対して駆動信号を発信する駆動信号発信手段およびセンサ部からの応答信号を受信して信号処理を行う信号処理手段を備えた問合せ器とを有し、弾性表面波素子が、問合せ器からの駆動信号を受けて弾性表面波を励起させる送受信用電極と、発生した弾性表面波を送受信用電極に向けて反射する反射器とをそれぞれ圧電材料表面に形成してなる弾性表面波センシングシステムにおいて、信号処理手段は、送受信用電極と反射器との間における弾性表面波の複数回の反射による反射信号を検出し、その各々の信号差に基づいて、測定対象物の外部環境の変化を検出することを特徴とする。
本発明の弾性表面波センシングシステムにおいては、送受信用電極と反射器との間の弾性表面波の複数回の反射による反射信号を検出し、その各々の信号差に基づいて、測定対象物の外部環境の変化を検出するようにしているので、反射器を単一で構成することができると共に、当該単一の反射器における複数の反射信号の信号差、即ち遅延時間、位相、周波数等の弾性表面波の伝搬特性の変化に基づいて、センサ部と問合せ器との間の距離に関係なく、温度、圧力等の外部環境の変化を精度高く検出することが可能となる。
好適には、反射器は、同一トラック上に線状のパターンが複数本並置されて構成され、これにより、反射信号電圧を高めて信号の減衰を抑制することができる。
また、反射信号としては、反射器における弾性表面波の一次反射信号と二次反射信号を検出し、これらの間の信号差から、外部環境の変化を検出する。
以上、本発明の弾性表面波センシングシステムによれば、反射器を単一で構成することができるので弾性表面波素子の基板サイズの縮小を図ることができ、これによりセンサ部の小型化を実現することができる。
また、送受信用電極と反射器との間の多重反射による信号差に基づいて外部環境の変化を検出するようにしているので、センサ部と問合せ器との間の距離に依らずに、精度の高いセンシングシステムを構築することができる。
以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明の実施の形態による弾性表面波センシングシステム(以下「センシングシステム」という。)の概略構成図である。本実施の形態のセンシングシステム20は、センサ部21と、問合せ器22とで構成される。
センサ部21は、弾性表面波素子部23およびアンテナ部24aより構成される。弾性表面波素子部23は、外部環境を弾性表面波の変化として検出する部分で、測定対象物に取り付けられる。アンテナ部24aは、問合せ器22との間で電波(無線)信号の送受信を行う部分である。
一方、問合せ器22は、送受信回路部25、信号検出器26、駆動信号発生回路部27、演算回路部28およびアンテナ部24bにより構成されている。駆動信号発生回路部27は、弾性表面波素子部23に供給する駆動信号を発生する部分であり、送受信回路部25は、センサ部21への送信およびセンサ部21からの受信を行う部分である。また、信号検出器26は、センサ部21から返信される信号の位相や周波数等といった情報を抽出する部分であり、演算回路部28は、信号検出器26の信号情報を処理して外部環境情報を抽出する部分である。
なお、アンテナ部24b、送受信回路部25及び駆動信号発生回路部27により本発明の「駆動信号発信手段」が構成され、アンテナ部24b、送受信回路部25、信号検出器26及び演算回路部28により本発明の「信号処理手段」が構成される。
本実施の形態では、後述するように、センサ部21から返信される応答信号の位相、周波数等といった情報を抽出することで、測定対象物に取り付けられたセンサ部21の外部環境による変化を検出するように構成されている。
次に、図2を参照してセンサ部21の構成を説明する。
センサ部21は、回路基板31上に設置されたアンテナ部24a、整合部32および弾性表面波素子部23を有している。各部は回路基板31上の回路パターンとワイヤを介して電気的に接続されているが、これ以外にも、バンプを介したフェイスダウンボンディングや、回路パターンのみで接続することも可能である。
アンテナ部24aは、弾性表面波素子部23を駆動する問合せ器22からの電波(駆動信号)を受信し、また、弾性表面波素子部23による計測信号(応答信号)を送信するもので、ループ、ヘリカル、モノポール、ダイポール、パッチ、チップ、板状逆F、マイクロストリップアンテナ等が用いられる。
アンテナ部24aは、銅、アルミニウム等の線材、あるいは絶縁性フィルム基板上に形成したアンテナコイルパターンで構成されるが、直接、回路基板31上にめっき法、ペースト印刷法、エッチング法あるいは公知の真空薄膜形成技術により作製するようにしてもよい。
整合部32は、アンテナ部24aと弾性表面波素子部23との間のインピーダンス整合をとるためのもので、抵抗器、コイル、キャパシタ等を組み合わせて構成される。これらの各素子は回路基板31上にはんだ等の接合材を介して搭載されるが、アンテナ部24aと同様、回路基板31上に直接、めっき、ペースト印刷、エッチングあるいは真空薄膜形成技術を用いて作製してもよい。
なお、整合部32は上述のようにアンテナ部24aと弾性表面波素子部23との間のインピーダンス整合をとるために設けられたものであるため、整合がとれた状態では省略することができる。
図3は、弾性表面波素子部23の一構成例を示している。弾性表面波素子部23は、圧電基板41上にひとつの送受信電極42と、ひとつ(あるいは一組)の反射器43とが形成されることによって構成されている。
圧電基板41としては、レイリー波を発生する、例えばニオブ酸リチウム単結晶の128°回転Yカット基板が用いられる。なお、これ以外にも、水晶、タンタル酸リチウム、四ホウ酸リチウム、ランガサイト等を適当な方位でカットした基板を使用してもよい。更に、他の圧電材料として、ZnO等の圧電性薄膜をガラス、シリコン単結晶、GaAs等の基板に形成して使用することも可能である。
送受信電極42は、一対の櫛形電極42a,42bを対向させ、一方の櫛形電極の電極間に他方の櫛形電極の電極が位置するように互い違いに交差配置されている。また、アンテナ部24aと弾性表面波素子部23との間の接続は、送受信電極42の端子部分を介して行われ、通常ワイヤ44が用いられるが、フリップチップ方式によりバンプを用いて直接接続することもできる。また、アンテナ部24aが圧電基板41の表面に形成される場合は、送受信電極42および反射器43の形成時のパターニングで接続してもよい。
送受信電極42で励起される弾性表面波の波長をλとすると、送受信電極42の各々の電極ピッチはλ/2、電極幅はλ/4、電極対数は、図では簡略して2対で表しているが、通常10〜50対程度で、伝送の帯域幅などを考慮して決められる。電極厚みは、励起効率を考慮して通常、λ/150〜λ/8の範囲で決定される。これらの条件は、圧電基板41上に十分な弾性表面波を励起させ、さらに、反射器43からの信号強度を十分に抽出できるように決定される。
反射器43は、直線状のパターンが同一トラック上に10〜50本(図では簡略して2本で示している。)所定ピッチ(例えばλ/2)で並置されてなり、全体としてひとつの反射器を構成している。反射器43で反射される弾性表面波の反射波は、反射器43における音響付加効果による反射波と再励起効果による反射波の合成波となる。このように反射器43を複数本の直線状のパターンで構成するのは、反射信号電圧を高くして信号の減衰を抑制するためである。
送受信電極42および反射器43は金属薄膜パターンで形成され、設計に応じた特性が得られるように薄膜の材質、幅、厚さを調整する。薄膜形成方法としては、スパッタ法のほか、蒸着等の真空薄膜形成技術やめっき法、ペースト印刷法等も適用することができる。
送受信電極42および反射器43を形成する材料としては、電気抵抗が小さく軽量であり、パターニングが容易であることから、アルミニウムが好適な例として挙げられる。また、銅、チタン、クロム、金等を適用してもよく、更にはこれら金属同士を混ぜ合わせたり、各種金属を添加したり、あるいは積層構造としてもよい。
次に、以上のように構成されるセンシングシステム20の作用について説明する。
図1,図2を参照して、問合せ器22から定期的に発せられる駆動信号(パルス信号)はセンサ部21のアンテナ部24aで受信され、整合部32を介して弾性表面波素子部23に供給される。駆動信号は、弾性表面波素子部23の送受信電極42に供給され、送受信電極42の櫛形電極ピッチに対応した波長λの弾性表面波SAWが圧電基板41上に励起される(図3)。
送受信電極42にて発生した弾性表面波SAWは、圧電基板41の表面を伝搬し、反射器43に到達する。反射器43で反射された弾性表面波SAWの反射波は、音響付加効果による反射波と再励起効果による反射波の合成波として送受信電極42へ戻る。送受信電極42は、弾性表面波SAWの反射波を受信し電気信号に変換する。
更に、弾性表面波SAWの反射波を送受信電極42で反射させ、弾性表面波を再び反射器43へ向けて伝搬する。これにより、反射器43において弾性表面波SAWの二次反射波を生成し、これを送受信電極42で受信して電気信号に変換する。
送受信電極42は、反射器43において最初に反射された弾性表面波の反射波(一次反射信号)と、二番目に反射された弾性表面波の反射波(二次反射信号)を、応答信号として問合せ器22へ返信する。問合せ器22においては、センサ部21からの応答信号がアンテナ部24b及び送受信回路部25を介して信号検出器26及び演算回路部28へ供給される。
図4は、センサ部21の送受信電極42へ印加される駆動信号44と、反射器43における弾性表面波の一次反射信号45a及び二次反射信号45bの関係の一例を示している。なお、図において縦軸は信号強度、横軸は時間軸であり「E−6」は10のマイナス6乗、すなわち[μsec]を表している。
信号検出器26及び演算回路部28においては、一次反射信号45aと二次反射信号45bとの間の信号差に基づいて、センサ部21の外部環境の変化を検出する。信号差としては、弾性表面波の位相、周波数、遅延時間といった伝搬特性上の差異が該当する。
例えば、温度を感知するセンサとして本発明を適用する場合には、圧電基板として、弾性表面波の伝搬特性に対して大きな温度特性を有する圧電材料を用いる。そして、環境温度が変化したとき圧電基板を伝搬する弾性表面波の位相速度、周波数等の伝搬特性が変化する。このため、反射器43の一次反射信号45aと二次反射信号45bには温度に関しての情報を含むことになり、例えば各反射信号の位相差を抽出することで、温度変化を検出することができる。
また、反射信号間の位相比較による場合以外に、遅延時間を比較する方法、基準周波数からの反射信号の周波数ずれ、信号強度を比較する方法を用いることができる。
一例を挙げるならば、問合せ器22の内部に、弾性表面波の伝搬特性が温度に依存しない参照信号検出用弾性表面波素子(もしくは、問合せ器内部の温度を一定としたときの参照信号検出用弾性表面波素子)を組み込んでおくことにより、センサ部21からの応答信号と、参照信号検出用弾性表面波素子の応答信号を比較することで、センサ部21周囲の温度変化をより高感度に検出することができる。
また、温度センサ以外には、圧電基板が外力により撓む構造とすることで、圧力センサとして用いることができる。更に、弾性表面波伝搬部を触れる構造とすることで触覚センサを構成できる。あるいは、弾性表面波伝搬面に特定の成分を選択的に吸収して重量が変化する膜を設ける構造とすることで、特定の液相、気相の成分センサとして適用することができる。これらは何れも、上記温度センサと同様に、外的要因による弾性表面波の伝搬特性の変化を利用したものである。
更に、センサ部21が取り付けられる測定対象物としては、温度や圧力等を常時モニタリングする必要のある機器や部品、構造物あるいは人体等が該当し、本発明の適用例として、タイヤの空気圧センサ、機器の温度センサ、体温検出センサ、脈圧センサ、呼気検出センサ等、多数挙げられる。
さて、本実施の形態においては、送受信電極42と単一の反射器43との間の複数回の反射による反射信号を応答信号として問合せ器22へ返信するようにしているので、見かけ上、反射器が複数存在するような信号を生成する。
したがって、本実施の形態によれば、これら複数の反射信号の信号差からセンサ部21の外部環境の変化を、センサ部21と問合せ器22との間の距離の影響を受けることなく、十分に高い精度で検出することができると共に、単一の反射器43で構成されているので弾性表面波素子部23を縮小化でき、結果的にセンサ部21の小型化を実現することができる。また、複雑な設計等を必要とせず、製造も容易であり、安価に生産性高く弾性表面波素子部23を構成することができる。
以上、本発明の実施の形態について説明したが、勿論、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
例えば以上の実施の形態では、弾性表面波の一次反射信号及び二次反射信号を検出してこれらの間の信号差から外部環境の変化を検出するようにしたが、これに限らず、反射器に3回以上反射させて得られる三次以上の高次反射信号をも検出対象とすることにより、測定レンジを広げたより拡張性のあるセンシングシステムを構築することができる。
また、以上の実施の形態では、反射器43を複数本の直線状のパターンを並置配置させた構成としたが、これに限らず、一本の直線パターンで反射器を構成することも勿論可能であり、更には櫛形構造に反射器を構成するようにしてもよい。
更に、以上の実施の形態では、センサ部21及び問合せ器22にアンテナ部24a及び24bを設け、両者間において無線で信号の送受信を行うようにしたが、これに代えて、図5に示すように、センサ部51と問合せ器52との間を導電部材53で導通接続し、有線で信号の送受信を行うようなセンシングシステム50を構成してもよい。なお、図5において上述の第1の実施の形態と対応する部分については同一の符号を付し、その詳細な説明は省略する。
導電部材53としては、被覆導線や配線ケーブル、ワイヤハーネス等、信号の送受信を行うのに適した配線部材が該当し、その種類は問われない。
本例のセンシングシステム50によれば、上述の実施の形態と同様な効果を得ることができることは勿論、センサ部51と問合せ器52とが比較的近くに配置される場合等に特に有利な構成である。
本発明の実施の形態のセンシングシステム20を示す概略構成図である。 センサ部21の概略構成図である。 弾性表面波素子部23の一構成例を示す図である。 センサ部21の応答信号の一例を示すプロット図である。 本発明の実施の形態の変形例を示すセンシングシステム50の概略構成図である。 従来の弾性表面波素子部の一構成例を示す図である。 従来のセンサ部の応答信号の一例を示すプロット図である。
符号の説明
20,50…センシングシステム、21,51…センサ部、22,52…問合せ器、23…弾性表面波素子部、24a,24b…アンテナ部、25…送受信回路部、26…信号検出器、27…駆動信号発生回路部、28…演算回路部、41…圧電基板、42…送受信電極、43…反射器、44…駆動信号、45a…一次反射信号、45b…二次反射信号、53…導電部材、SAW…弾性表面波。

Claims (5)

  1. 測定対象物に取り付けられ弾性表面波素子を備えたセンサ部と、このセンサ部に対して駆動信号を発信する駆動信号発信手段および前記センサ部からの応答信号を受信して信号処理を行う信号処理手段を備えた問合せ器とを有し、
    前記弾性表面波素子が、前記問合せ器からの駆動信号を受けて弾性表面波を励起させる送受信用電極と、前記発生した弾性表面波を前記送受信用電極に向けて反射する反射器とをそれぞれ圧電材料表面に形成してなる弾性表面波センシングシステムにおいて、
    前記信号処理手段は、前記送受信用電極と前記反射器との間における弾性表面波の複数回の反射による反射信号を検出し、その各々の信号差に基づいて、前記測定対象物の外部環境の変化を検出する
    ことを特徴とする弾性表面波センシングシステム。
  2. 前記反射信号は、前記反射器における弾性表面波の一次反射信号および二次反射信号である
    ことを特徴とする請求項1に記載の弾性表面波センシングシステム。
  3. 前記反射器は、同一トラック上に線状のパターンが複数本並置されてなる
    ことを特徴とする請求項1に記載の弾性表面波センシングシステム。
  4. 前記センサ部はアンテナ手段を具備し、前記問合せ器と無線により信号の送受信を行う
    ことを特徴とする請求項1に記載の弾性表面波センシングシステム。
  5. 前記センサ部と前記問合せ器との間が導電部材で導通接続されている
    ことを特徴とする請求項1に記載の弾性表面波センシングシステム。
JP2003357296A 2003-10-17 2003-10-17 弾性表面波センシングシステム Pending JP2005121498A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357296A JP2005121498A (ja) 2003-10-17 2003-10-17 弾性表面波センシングシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357296A JP2005121498A (ja) 2003-10-17 2003-10-17 弾性表面波センシングシステム

Publications (1)

Publication Number Publication Date
JP2005121498A true JP2005121498A (ja) 2005-05-12

Family

ID=34614224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357296A Pending JP2005121498A (ja) 2003-10-17 2003-10-17 弾性表面波センシングシステム

Country Status (1)

Country Link
JP (1) JP2005121498A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304087A (ja) * 2006-04-12 2007-11-22 Nissan Motor Co Ltd ワイヤレス表面弾性波センサ
JP2008267847A (ja) * 2007-04-17 2008-11-06 Shinko Electric Co Ltd 検出装置及び検出システム
JP2008275548A (ja) * 2007-05-07 2008-11-13 Shinko Electric Co Ltd 応力測定装置及びアクチュエータ
GB2470256A (en) * 2009-05-11 2010-11-17 Siemens Ag Position determination using surface acoustic waves
WO2012036460A2 (ko) * 2010-09-17 2012-03-22 아주대학교산학협력단 표면 탄성파 기반 마이크로 센서를 이용한 무선측정장치 및 그 방법
CN104359584A (zh) * 2014-11-12 2015-02-18 中国科学院微电子研究所 一种高温声表面波温度传感器
JP2016184805A (ja) * 2015-03-25 2016-10-20 株式会社デンソー 物理量センサ
JP2016195359A (ja) * 2015-04-01 2016-11-17 株式会社デンソー 弾性表面波素子およびそれを用いた物理量センサ
JP2016225743A (ja) * 2015-05-28 2016-12-28 株式会社デンソー 弾性表面波素子およびそれを用いた物理量センサ
JP2020119464A (ja) * 2019-01-28 2020-08-06 日本無線株式会社 弾性表面波デバイス
CN112697262A (zh) * 2020-12-08 2021-04-23 联合微电子中心有限责任公司 水听器及其制造方法
JP7478448B2 (ja) 2019-01-10 2024-05-07 インタ エスアールエル 音波による流体解析用センサ付きデバイス

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304087A (ja) * 2006-04-12 2007-11-22 Nissan Motor Co Ltd ワイヤレス表面弾性波センサ
JP2008267847A (ja) * 2007-04-17 2008-11-06 Shinko Electric Co Ltd 検出装置及び検出システム
JP2008275548A (ja) * 2007-05-07 2008-11-13 Shinko Electric Co Ltd 応力測定装置及びアクチュエータ
US8833170B2 (en) 2009-05-11 2014-09-16 Siemens Aktiengesellschaft Apparatus and method for position determination
GB2470256A (en) * 2009-05-11 2010-11-17 Siemens Ag Position determination using surface acoustic waves
GB2470256B (en) * 2009-05-11 2011-08-10 Siemens Ag Apparatus and method for position determination
US9116034B2 (en) 2010-09-17 2015-08-25 Ajou University Industry Cooperation Foundation Wireless measurement device using surface acoustic wave (SAW)-based micro sensor and method of using the saw-based micro sensor
KR101202878B1 (ko) 2010-09-17 2012-11-19 아주대학교산학협력단 표면 탄성파 기반 마이크로 센서를 이용한 무선측정장치 및 그 방법
WO2012036460A3 (ko) * 2010-09-17 2012-05-18 아주대학교산학협력단 표면 탄성파 기반 마이크로 센서를 이용한 무선측정장치 및 그 방법
WO2012036460A2 (ko) * 2010-09-17 2012-03-22 아주대학교산학협력단 표면 탄성파 기반 마이크로 센서를 이용한 무선측정장치 및 그 방법
CN104359584A (zh) * 2014-11-12 2015-02-18 中国科学院微电子研究所 一种高温声表面波温度传感器
JP2016184805A (ja) * 2015-03-25 2016-10-20 株式会社デンソー 物理量センサ
JP2016195359A (ja) * 2015-04-01 2016-11-17 株式会社デンソー 弾性表面波素子およびそれを用いた物理量センサ
JP2016225743A (ja) * 2015-05-28 2016-12-28 株式会社デンソー 弾性表面波素子およびそれを用いた物理量センサ
JP7478448B2 (ja) 2019-01-10 2024-05-07 インタ エスアールエル 音波による流体解析用センサ付きデバイス
JP2020119464A (ja) * 2019-01-28 2020-08-06 日本無線株式会社 弾性表面波デバイス
CN112697262A (zh) * 2020-12-08 2021-04-23 联合微电子中心有限责任公司 水听器及其制造方法

Similar Documents

Publication Publication Date Title
JP5239741B2 (ja) 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
US11143561B2 (en) Passive microphone/pressure sensor using a piezoelectric diaphragm
JP2005121498A (ja) 弾性表面波センシングシステム
US8207650B2 (en) Surface acoustic wave sensor
EP4302401A1 (en) Two-port acoustic wave sensor device
JP2005214713A (ja) 湿度状態検出システム
JP2007057287A (ja) 弾性表面波デバイス
US20220341881A1 (en) Differential accoustic wave sensors
EP2905616B1 (en) Elastic wave element and elastic wave sensor using same
JP2004343671A (ja) 個体情報検出装置
WO2015158912A1 (en) A differential temperature measuring device comprising surface transverse wave resonators
US11828668B2 (en) Differential acoustic wave pressure sensor with improved signal-to-noise ratio
JP4867858B2 (ja) Sawセンサ
JP2005181292A (ja) 圧力センサ
JP7351508B2 (ja) 認識信号生成素子及び素子認識システム
JP4511207B2 (ja) 圧力センサモジュール
JP4511206B2 (ja) 圧力センサモジュール
US11835414B2 (en) Passive pressure sensor with a piezoelectric diaphragm and a non-piezoelectric substrate
JP4511216B2 (ja) 圧力センサモジュール
JP4511208B2 (ja) 圧力センサモジュール
JP2006337135A (ja) 圧電センサモジュール及び圧電センサシステム
JP5683199B2 (ja) 弾性表面波デバイス
JP2012078331A (ja) 振動センサおよび振動検知システム
JP2011247732A (ja) 弾性表面波素子、弾性表面波センサ、センシングシステム、及び応力測定方法
JP2005208031A (ja) 圧力センサモジュール