JP2004343671A - 個体情報検出装置 - Google Patents

個体情報検出装置 Download PDF

Info

Publication number
JP2004343671A
JP2004343671A JP2003182904A JP2003182904A JP2004343671A JP 2004343671 A JP2004343671 A JP 2004343671A JP 2003182904 A JP2003182904 A JP 2003182904A JP 2003182904 A JP2003182904 A JP 2003182904A JP 2004343671 A JP2004343671 A JP 2004343671A
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
signal
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182904A
Other languages
English (en)
Inventor
Tatsuo Hisamura
達雄 久村
Hiroshi Onuma
博 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003182904A priority Critical patent/JP2004343671A/ja
Publication of JP2004343671A publication Critical patent/JP2004343671A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】素子駆動信号の高周波数化に対応でき、低コストで生産性の高い個体情報検出装置を提供すること。
【解決手段】圧電基板41上の反射器43A〜43Cを弾性表面波の半波長ピッチで交差する一対の櫛形電極で構成し、これらの電極間を短絡又は開放する選択器50A〜50Cを介して接続する。反射器43A〜43Cにおいては、送受信電極42で励起された弾性表面波を反射する際、電極間が短絡している場合は音響付加効果による反射のみ現れる。一方、電極間が開放されている場合は音響付加効果及び再励起効果双方による反射が現れるので、電極間が短絡している状態に比べて強い反射信号が得られる。このように電極間の接続状態に依る反射信号の強弱に基づいて弾性表面波素子部24からの応答信号を符号化する。これにより、櫛形ダブル電極構造とするよりも低コストで反射器を構成できる。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、弾性表面波(SAW)を用いて個体識別及びセンシングを行う個体情報検出装置に関する。
【0002】
【従来の技術】
従来より、弾性表面波の応用として、ワイヤレスでの個体識別及びセンシングを行う個体情報検出装置が知られている。この種の個体情報検出装置は、測定対象物に取り付けられ弾性表面波素子及びアンテナ手段を備えた応答器と、この応答器に対して駆動信号を送信するとともに当該応答器からの応答信号を受信する問合せ器とからなる。
【0003】
このような個体情報検出装置の応答器に弾性表面波素子が用いられるのは、電力を必要としないために応答器をバッテリレスで使用することができるからである。また、同じバッテリレスで駆動されるものとして非接触ICカードに代表されるRFID(Radio Frequency Identification)があるが、これと比較しても、電力供給時の接近が不要で、広い領域をカバーする個体識別及びセンシングデバイスとして期待されている。
【0004】
最初に、弾性表面波素子を用いて測定対象物の個体情報を識別する原理について説明する。
【0005】
図9は、応答器を構成する従来の弾性表面波素子1の一構成例を示している。弾性表面波素子1は、櫛形電極構造をなす送受信電極2と複数の反射器3とを圧電基板4上に形成することで構成されている。送受信電極2は、一対の櫛形電極2a,2bを対向させ、一方の電極間に他方の電極が位置するように互い違いに交差配置されている。このような電極配置構造は、一般に、IDT(Interdigital Transducers)構造と称されている。また、各反射器3は何れについても送受信電極2から距離的に異なる位置に形成されている。
【0006】
送受信電極2の入出力端子5a,5bに交流電圧を加えると、公知のように圧電基板4上に弾性表面波が励起される。この弾性表面波は圧電基板4の表面を伝搬し、伝搬路上に反射器3があると弾性表面波の反射が生じる。つまり、反射器3がある場合は反射信号が得られ、反射器3がない場合は反射信号が得られない。
【0007】
そこで、反射がある場合とない場合とでそれぞれデジタル信号として1,0を割り当てて符号化することで、数〜数十ビットのIDとして活用することができる。図9は「11011001」のIDデータが得られる構成例である。弾性表面波素子を用いた個体識別は、以上のことを基本原理としている。
【0008】
一方、弾性表面波素子を用いた測定対象物のセンシングに関しては、送受信電極2で励起された信号(弾性表面波)が反射器3で反射されて再び送受信電極2に戻ってくるときに、外部環境の変化に伴い信号が変化することを利用している。測定対象物の状態変化は、位相、周波数、遅延時間といった弾性表面波の伝搬特性の変化という形で抽出することができる。
【0009】
ところで、個体情報検出装置としての弾性表面波素子を作製する場合、10000の識別を行うためには反射器の配列の組み合わせを10000通り作る必要がある。しかし、この方法では、製造及び管理面で取り扱いが甚だ煩雑となるという問題がある。
【0010】
このような問題を解決する一方法としては、識別に用いる全ての反射器を後述するような構成の櫛形ダブル電極構造の反射器として予め形成しておき、この櫛形ダブル電極構造の反射器の互い違いに交差する電極間の電位を変えることで、反射効率を著しく変化させ、反射器があるにもかかわらず見かけ上、反射のない状態を作る方法が知られている(下記非特許文献1参照)。
【0011】
図10A及び図10Bに示す構造の反射器7は、一対の櫛形電極7a,7bを対向させ、一方の電極間に他方の電極が位置するように互い違いに交差配置されてなるもので、各櫛形電極7a,7bのそれぞれの先端は2本に分割されたダブル構造を呈しており、それらの電極ピッチは弾性表面波SAWの波長λの4分の1に等しい。以下、この反射器7の構造を「櫛形ダブル電極構造」という。図10Aと図10Bとの違いは、各電極7a,7bが電気的に浮いている(開放されている)か、アースされている(短絡している)かだけである。
【0012】
送受信電極で励起された弾性表面波は、圧電材料の表面を伝わり、反射器7に到達する。このとき、主に2つの効果により弾性表面波の反射が生じる。ひとつめは音響付加効果によるもので、反射器の重み等による音響特性インピーダンスの不連続性に起因する。ふたつめは再励起効果によるもので、弾性表面波が反射器7を通過するときに圧電効果により電圧を誘起し、その電圧が源となって再度、弾性表面波を励起する現象に依るものである。
【0013】
図10Aに示した反射器7の例では、音響付加効果による反射が起こるが、各電極は1/4波長(λ/4)ずれているため、各電極からの反射は逆相となり打ち消し合う。しかし、各電極が電気的に浮いているため、再励起効果による反射波SAW−Rが発生する。
【0014】
一方、図10Bに示した構造の反射器7の例では、音響付加効果による反射は起こるが、各電極は1/4波長(λ/4)ずれているため、各電極からの反射は逆相となり打ち消し合う。また、各電極が電気的にアースされているために、各電極間の電位差がなく再励起効果による反射は起こらない。したがって、この場合には反射器7からの反射信号としての弾性表面波の戻りは無く、反射器7が存在するにもかかわらず、見かけ上、反射器7がないのと等価な状態となる。
【0015】
図10A及び図10Bに示す反射器7は同一の電極構造として、対向している櫛形電極7a,7bをそれぞれ開放、短絡したものであり、上記説明のように、電気的操作により反射波SAW−Rの発生を制御することができる。
【0016】
櫛形ダブル電極構造のこのような特性を利用して、例えば図11に示すような弾性表面波素子10を作製することができる。これは、弾性表面波の励起・検出を行う送受信電極11と、この弾性表面波を反射する複数段の反射器12とを圧電基板13上に形成してなるもので、各段の反射器12はそれぞれ櫛形ダブル電極構造を有している。反射器12の一方側の電極はリード線15を介して電気的にアースされており、他方側の電極はリード線16を介して選択部14に接続されている。選択部14では、各段の反射器の他方側の電極の開放操作及び短絡操作が個別に選択されることにより、個体識別用の所望の符号が作り出されている。
【0017】
このような構成の弾性表面波素子10を用いれば、反射器12の配列パターンを全て同一にして作製した後、選択部14における各電極の開放/短絡の組み合わせを設定することによって容易に任意のIDを付与することが可能となり、製造及び管理の面で非常に優れる。
【0018】
また、下記特許文献1には、図12に示すように、圧電基板125上に、弾性表面波遅延線(素子)に信号を入力するための入力端子118と、弾性表面波遅延線から信号を出力するための出力端子119と、弾性表面波を励起するための励振用すだれ電極120A〜120Hと、励振された弾性表面波を受信するための受信用すだれ電極121と、不要な弾性表面波を吸収するための吸音材122,123とを形成し、励振用すだれ電極120A〜120Hの各電極と入力端子118との接続を制御するスイッチ手段124A〜124Hを切り替えて所望の識別符号を設定する構成が開示されている。
【0019】
この構成は即ち、反射器を設けずに、弾性表面波の励振電極を複数段構成し、各段の励振用すだれ電極120A〜120Hと入力端子118との間の接続/開放状態を選択して目的とする応答波を生成させるようにしたものである。
【0020】
【特許文献1】
特開平9−288176号公報(第4頁、図3−4)
【特許文献2】
特開平8−298430号公報(第2頁)
【非特許文献1】
L.ラインドル(L.Reindl)、W.ルイーレ(W.Ruile)著、「プログラマブル・リフレクターズ・フォー・ソー−アイ・ディー−タグス(Programmable Reflectors for SAW−ID−Tags)、1993ウルトラソニックス・シンポジウム(1993 ULTRASONICS SYMPOSIUM)、アイ・イー・イー・イー(IEEE)、p.125−130
【0021】
【発明が解決しようとする課題】
ところで、近年、弾性表面波素子の駆動信号の高周波数化が進んでいる。弾性表面波素子の電極間隔は周波数に反比例するため、作動周波数を高くすると弾性表面波素子の電極間隔を小さくする必要がある。
【0022】
例えば、音速4000m/sの圧電基板を用いて弾性表面波素子を作製する場合、作動周波数が400MHzのとき波長は10μmであり、弾性表面波素子の反射器がダブル電極構造だと電極のライン・アンド・スペースは1.25μm(λ/8)となる。このため、GHz帯の弾性表面波素子を作製するためには、弾性表面波素子の電極の作製に、高価な高精度露光機を用いたプロセスを導入する必要があり、また、高度の製造技術も要求されるようになる。
【0023】
したがって、上述したような櫛形ダブル電極構造を用いて各電極間の電気的接続を選択しその反射効率に基づく個体情報の検出を行う従来の構成では、素子駆動信号の高周波数化に対応することが非常に困難となり、弾性表面波素子の製造コストの増大を招くと共に生産性の低下が懸念されるという問題がある。
【0024】
本発明は上述の問題に鑑みてなされ、素子駆動信号の高周波数化に対応でき、低コストで生産性の高い個体情報検出装置を提供することを課題とする。
【0025】
【課題を解決するための手段】
以上の課題を解決するに当たり、本発明の個体情報検出装置は、測定対象物の情報を搭載する弾性表面波素子及びアンテナ手段を備えた応答器と、この応答器に対して駆動信号を発信する駆動信号発信手段及び応答器からの応答信号を受信して信号処理を行う信号処理手段を備えた問合せ器とを有し、上記弾性表面波素子が、問合せ器からの駆動信号を受けて弾性表面波を励起させる送受信用電極と、発生した弾性表面波を送受信用電極に向けて反射する1乃至複数の反射器とをそれぞれ圧電材料表面に形成してなる個体情報検出装置において、上記1乃至複数の反射器が各々、上記弾性表面波の半波長ピッチで交差する一対の櫛形電極構造を有すると共に、一対の櫛形電極が各々の電極間を短絡又は開放するスイッチ手段を介して接続されてなり、上記信号処理手段は、上記一対の櫛形電極の電極間の接続状態に依る反射信号の受信レベルに基づいて上記応答信号を符号化することを特徴とする。
【0026】
本発明の個体情報検出装置においては、反射器を構成する一対の櫛形電極の電極間が短絡しているときは再励起効果による反射は現れず音響付加効果による反射のみ現れる。これに対して電極間が開放されていると音響付加効果及び再励起効果双方による反射が現れるので、電極間が短絡している状態に比べて強い反射信号が得られる。そこで本発明では、反射器を構成する一対の櫛形電極間の接続状態(短絡/開放)に起因する弾性表面波の反射効率の差、すなわち、上記電極間が短絡しているときの反射信号レベルと電極間が開放されているときの反射信号レベルとの差を利用して個体情報を検出するようにしている。
【0027】
具体的に、本発明では、上記信号処理手段は、反射信号の受信レベルに応じて設定される識別用閾値に基づいて上記応答信号を符号化するようにしている。
【0028】
あるいは、上記信号処理手段は、送受信電極と反射器との複数回の反射による反射信号の受信レベルに応じて設定される識別用閾値に基づいて上記応答信号を符号化するようにしている。
【0029】
本発明では、1乃至複数の反射器が各々、弾性表面波の半波長ピッチで交差する一対の櫛形電極構造を有しているので、従来の櫛形ダブル電極構造に比べて電極幅を大きくすることができ、これにより駆動信号の高周波数化に十分に対応することが可能となる。
【0030】
また、これら一対の櫛形電極が各々の電極間を短絡又は開放するスイッチ手段を介して接続されているので、測定対象物に対して個別に付与される固有IDを上記スイッチ手段の選択によって容易に形成できる。
【0031】
更に、問合せ器に具備される信号処理手段が、一対の櫛形電極の電極間の接続状態に依る反射信号の受信レベルに基づいて応答信号を符号化するように構成されているので、スイッチ手段による電極間の短絡/開放状態に起因する反射効率の差異を利用した応答信号の符号化、識別を行うことができる。
【0032】
したがって、本発明によれば、弾性表面波素子の駆動信号が高周波数化しても反射器の電極形成を容易に行って、弾性表面波素子の製造コストを低減することができる。また、櫛形ダブル電極構造の反射器を用いることなく測定対象物の個体情報の検出を適正に行うことができる。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0034】
図1は本発明の実施の形態による個体情報検出装置20の概略構成を示している。個体情報検出装置20は、応答器21と、問合せ器22とで構成される。
【0035】
応答器21は、弾性表面波(SAW)素子部24及びアンテナ部23より構成されている。弾性表面波素子部24はIDデータ等の個体情報を弾性表面波の変化として検出する部分で、測定対象物に取り付けられ、当該測定対象物のID情報を搭載している。アンテナ部23は、問合せ器22との間で電波信号の送受信を行う部分である。
【0036】
一方、問合せ器22は、送受信回路部26、演算回路部27、駆動信号発生回路部28及びアンテナ部25により構成されている。駆動信号発生回路部28は弾性表面波素子部24に供給する駆動信号を発生する部分で、送受信回路部26は応答器21への送信及び応答器21からの受信を行う部分である。
【0037】
また、演算回路部27は応答器21からの応答信号を信号処理して個体情報を抽出する部分であり、本発明に係る信号処理手段に相当する。演算回路部27は、応答器21から返信される特定周波数の応答信号を増幅する増幅回路や、受信した応答信号を抽出し1,0判定を行う処理回路等で構成されている。
【0038】
本実施の形態では、後述するように応答器21から返信される応答信号の信号レベルの強弱に基づいて、当該応答信号を「1」,「0」の2値により符号化するように構成されている。
【0039】
また、これら応答器21と問合せ器22との間の信号の授受は、それぞれのアンテナ部23,25間における無線通信によってなされるようになっている。
【0040】
次に、図2は応答器21の概略構成を示している。応答器21は、回路基板31上に設置されたアンテナ部23、状態選択部32、整合部33及び弾性表面波素子部24を有している。各部は回路基板31上の回路パターンとワイヤを介して電気的に接続されているが、これ以外にも、バンプを介したフェイスダウンボンディングや回路パターンのみで接続することも可能である。
【0041】
アンテナ部23は、弾性表面波素子部24を駆動する問合せ器22から発せられる電波(駆動信号)を受信し、また、弾性表面波素子部24による計測信号(応答信号)を送信するもので、ループ、ヘリカル、モノポール、ダイポール、パッチ、チップ、板状逆F、マイクロストリップアンテナ等が用いられる。
【0042】
アンテナ部23は銅、アルミニウム等の線材、あるいは絶縁性フィルム基板上に形成したアンテナコイルパターンで構成されるが、直接、回路基板31上にめっき法、ペースト印刷法、エッチング法あるいは公知の真空薄膜形成技術により作製するようにしてもよい。
【0043】
整合部33は、アンテナ部23と弾性表面波素子部24との間のインピーダンス整合をとるためのもので、抵抗器、コイル、キャパシタ等を組み合わせて構成される。これらの各素子は回路基板33上にはんだ等で搭載されるが、アンテナ部23と同様、回路基板31上に直接、めっき、ペースト印刷、エッチングあるいは真空薄膜形成技術を用いて作製してもよい。
【0044】
なお、整合部33は上述のようにアンテナ部23と弾性表面波素子部24との間のインピーダンス整合をとるために設けられたものであるため、整合がとれた状態では省略することができる。
【0045】
図3は弾性表面波素子部24の構成を示している。弾性表面波素子部24は、圧電基板41の表面に、送受信電極42と、複数段(本例では3段)の反射器43A,43B,43Cとが形成された弾性表面波素子で構成されている。
【0046】
圧電基板41としては、レイリー波を発生する、例えばニオブ酸リチウム単結晶の128°回転Yカット基板が用いられる。なお、これ以外にも、水晶、タンタル酸リチウム、四ホウ酸リチウム、ランガサイト等を適切な方位でカットした基板を使用してもよい。更に、他の圧電材料として、ZnO等の圧電性薄膜をガラス、シリコン単結晶、GaAs等の基板に形成して使用することも可能である。
【0047】
送受信電極42は、一対の櫛形電極42a,42bを対向させてなり、一方の櫛形電極42aの電極間に他方の櫛形電極42bの電極が位置するように互い違いに交差配置されている。送受信電極42を構成する各櫛形電極42a,42bには、この弾性表面波素子部24に対する入出力端子46a,46bがそれぞれ設けられている。
【0048】
アンテナ部23と弾性表面波素子部24との間の接続は送受信電極42の入出力端子46a,46bを介して行われ、この接続は通常ワイヤが用いられるが、フリップチップ方式によりバンプを用いて直接接続することもできる。また、アンテナ部23が圧電基板41の表面に形成される場合には、送受信電極42及び後述する各段の反射器43A〜43Cの形成時のパターニングで接続してもよい。また、圧電基板41端部での弾性表面波の反射による干渉を軽減するために、図示していない吸音材を圧電基板41の端部に塗布してもよい。
【0049】
送受信電極42は金属薄膜パターンで構成される。送受信電極42は、設計に応じた特性が得られるように、薄膜の材質、幅、厚さを調整する。薄膜形成方法としては、スパッタ法のほか、蒸着等の真空薄膜形成技術や、めっき法、ペースト印刷法等も適用することができる。
【0050】
送受信電極42で励起される弾性表面波SAWの波長をλとすると、送受信電極42の電極ピッチはλ/2、電極幅はλ/4、電極対数は図中では簡略して3対で表しているが通常10〜50対程度で、伝送の帯域幅などを考慮して決められる。また、電極厚みはλ/30としたが特に限定されるものではなく、励起効率を勘案して通常、λ/150〜λ/8の範囲で決定される。
【0051】
送受信電極42を形成する材料としては、電気抵抗が小さく軽量であり、パターニングが容易であることから、アルミニウムが好適な例として挙げられる。これ以外には、銅、チタン、タンタル、クロム、金等を適用してもよく、更にはこれら金属同士を混ぜ合わせたり、各種金属を添加したり、あるいは積層構造としてもよい。
【0052】
反射器43A〜43Cもまた、金属薄膜パターンで構成され、設計に応じた特性が得られるように、薄膜の材質、幅、厚さを調整する。薄膜形成方法としては、スパッタ法のほか、蒸着等の真空薄膜形成技術や、めっき法、ペースト印刷法等も適用することができる。
本実施の形態では、反射器は43A〜43Cの3本で説明するが、通常1本から数十本で構成され、下記制御方法に対して最適な本数を設定する。
【0053】
反射器43A〜43Cの電極ピッチはλ/2、電極幅はλ/4、電極対数は図では簡略して示しているが通常10〜50対程度で、伝送の帯域幅などを考慮して決められる。また、電極厚みはλ/30としたが特に限定されるものではなく、励起効率を勘案して通常、λ/150〜λ/8の範囲で決定される。
【0054】
反射器43A〜43Cを形成する材料としては、電気抵抗が小さく軽量であり、パターニングが容易であることから、アルミニウムが好適な例として挙げられる。これ以外には、銅、チタン、タンタル、クロム、金等を適用してもよく、更にはこれら金属同士を混ぜ合わせたり、各種金属を添加したり、あるいは積層構造としてもよい。
【0055】
各反射器43A〜43Cは、送受信電極42で励起され圧電基板41上を伝搬する弾性表面波を送受信電極42へ向けて反射するように、弾性表面波の伝搬方向から見てそれぞれ単列に所定の間隔をあけて形成されている。各反射器43A〜43Cはそれぞれ一対の櫛形電極構造を有し、一方の櫛形電極43aの電極間に他方の櫛形電極43bの電極が位置するように互い違いに交差配置されている。
【0056】
本実施の形態では、各反射器43A〜43Cにおいて、一対の櫛形電極間の交差幅が、送受信電極42から遠ざかるに従って大きく形成されている。すなわち、送受信電極42に最も近い反射器43Aの電極交差幅をR1、中央の反射器43Bの電極交差幅をR2、最外方に位置する反射器43Cの電極交差幅をR3としたときに、送受信電極42から見て、電極交差幅R1〜R3がR1<R2<R3(≦送受信電極42の電極交差幅)の関係になっている。
【0057】
なお、電極交差幅R1〜R3は、各反射器における弾性表面波の損失を考慮して、送受信電極42に対して各反射器43A〜43Cからの反射信号がそれぞれ同程度となるような大きさに形成するようにする。
【0058】
単一の反射器列を構成する各反射器43A〜43Cの一方側の櫛形電極43aは、それぞれ共通リード線48を介して状態選択部32に接続されている。また、各反射器43A〜43Cの他方側の櫛形電極43bは、それぞれ個別リード線49A,49B,49Cを介して状態選択部32に接続されている。
【0059】
状態選択部32には、各反射器43A〜43Cから引き出された個別リード線49A〜49Cがそれぞれ共通リード線48に対して短絡又は開放の何れの状態をとるかを選択するスイッチ手段としての選択器50A,50B,50Cが備えられている。
【0060】
本実施の形態における選択器50A〜50Cは、共通リード線48と個別リード線49A〜49Cの間を接続した状態(ON状態)で用意され、必要に応じて切断(OFF状態)する。切断はレーザー熱、過度電流による配線の溶断、あるいは外部からの物理的刺激による切断という方法で行い、溶断あるいは切断される部分はそれらに適した構造としておく。例えば、溶断の場合であれば、熱で溶け易いはんだ等の金属を用いて細線化しておくのが好ましい。
【0061】
但し、これらの方法では一度回路を遮断してしまうと新たに接続できないので、自由に何度も切り換え得るようにする場合は、電気的あるいは機械的に動作するスイッチ装置を用いる。この場合、複数の反射器を設けて、同時あるいは順次切り替えることもできるし、1本の反射器だけを用いて連続的に切り替えることもできる。
【0062】
選択器50A〜50Cは、各反射器43A〜43Cの櫛形電極間を同電位にしたり、当該電極間に電位差を生じさせるためのものである。この構成により、選択器50A〜50Cの接続形態を制御することによって、各反射器43A〜43Cの全ての反射効率を制御することができるようになる。なお、共通リード線48は電気的に接地されていてもよい。
【0063】
図4A及び図4Bは、反射器43の電極間電位とその反射効率との関係を示している。図4Aは電極43a,43b間が開放されている状態(選択器OFF)を示し、図4Bは電極43a,43b間が短絡している状態(選択器ON)を示している。
【0064】
図4Aの例では、弾性表面波SAWは反射器43で音響付加効果による反射が起こる。このとき、反射器43の各櫛形電極43a,43b間の電極ピッチは弾性表面波SAWの半波長であるので、各電極からの反射は全て同相となって重畳されることになる。また、電極43a,43bは互いに開放されているため、再励起効果による反射も加わる。したがって、弾性表面波SAWの当該反射器43における反射波SAW−Rは、これらの合成波となる。
【0065】
これに対して、図4Bの例では、弾性表面波SAWは反射器43で音響付加効果による反射が起こるのは上述と同様であるが、電極43a,43bは互いに短絡して同電位となっているので、再励起効果による反射は起こらない。したがって、弾性表面波SAWの当該反射器43における反射波SAW−Rは、音響付加効果による反射波のみで、図4Aの場合の反射波よりも信号レベルは弱く(小さく)なる。
【0066】
次に、以上のように構成される本実施の形態による個体情報検出装置20の作用について説明する。
【0067】
図1及び図2を参照して、問合せ器22から発せられた駆動信号としての無線信号は応答器21のアンテナ部23で受信され、整合部33を介して弾性表面波素子部24に供給される。図3に示すように、駆動信号は入出力端子46a,46bを介して弾性表面波素子部24を構成する送受信電極42に供給される。これにより、送受信電極42の櫛形電極42a及び42bの電極ピッチに対応した波長λの弾性表面波SAWが圧電基板41上に励起される。
【0068】
送受信電極42にて発生した弾性表面波SAWは、圧電基板41の表面を伝搬し、反射器43A〜43Cが形成されるトラック上を進行する。弾性表面波SAWに対する各反射器43A〜43Cの反射効率は、状態選択部32の選択器50A〜50Cにおいてあらかじめ選択された個別リード線49A〜49Cと共通リード線48との短絡又は開放の何れかの接続状態に対応して決定されている。
【0069】
今、状態選択部32を構成する各選択器のうち、選択器50A及び選択器50Bが開放状態、選択器50Cが短絡状態に設定されているとすると、反射器43A及び反射器43Bに到達した弾性表面波SAWは音響付加効果による反射波と再励起効果による反射波の合成波が送受信電極42へ戻るが、反射器43Cに到達した弾性表面波SAWは音響付加効果による反射波のみが送受信電極42へ戻ることになる。
【0070】
送受信電極42は、弾性表面波SAWの反射波SAW−Rを受信し電気信号に変換する。送受信電極42で受信された弾性表面波SAWの反射信号は、入出力端子46a,46b、整合部33及びアンテナ部23を介して応答信号として問合せ器22へ返信される。問合せ器22においては応答器21からの応答信号がアンテナ部25及び送受信回路部26を介して演算回路部27へ供給される。
【0071】
演算回路部27における応答信号の符号化処理について図5を参照して説明する。演算回路部27においては、図5に模式的に示す応答信号をその信号レベル(パルス)の強弱に基づいて符号化する。より具体的には、応答信号の識別レベルを閾値Sthとして予め設定しておき、当該閾値Sth以上の反射信号は「1」、反対に閾値Sth未満の反射信号は「0」にそれぞれ割り当ててコード化する。図の例では、反射器43Aの反射信号43AR及び反射器43Bの反射信号43BRが「1」、反射器43Cの反射信号43CRが「0」となり、応答信号が「1,1,0」というように符号化される。
【0072】
本発明者らは、実際に本発明の効果を調べるために反射器を開放、短絡した場合の反射信号強度を測定した。反射器の電極対数は13対で、測定周波数は300MHzとした。
【0073】
実験は送受信電極42に直接電圧を加え、反射器43A〜43Cからの反射信号を読み取る方法で行い、開放、短絡時の反射信号は、送受信電極42の入力信号に対しそれぞれ、−19dB、−25dBと6dBの出力差が認められた。図5の例では、識別レベル(閾値Sth)を例えば−22dBとして、それ以上の信号が得られた場合は符号「1」を割り当て、それ未満の信号には符号「0」を割り当ててコード化を行うことができる。
【0074】
なお、応答信号の符号化を行うための識別レベル(閾値Sth)は、上述したような固定値に限られない。すなわち、応答器21と問合せ器22との間の通信距離が変動する場合には、電波の受信強度が変わり信号強度も変化するため閾値は固定値とせず、図6に示すように受信信号レベルを基準に閾値Vthを設定することが好ましい。
【0075】
例えば、基準信号用の開放あるいは短絡状態の反射器からの反射信号43M,43mに対して、プラスあるいはマイナス数dB(デシベル)といった決め方ができる。また、更に確実性を期すためには開放反射器と短絡反射器を別々に設け、両方の反射信号強度の中間を閾値とすることができる。
【0076】
一方、弾性表面波は、反射器を通過する毎に反射によりエネルギーが減少し、一般に送受信電極42から遠い反射器ほど反射信号が順次減少する。そこで本実施の形態では、図3に示したように、送受信電極42から遠くなるに従って反射器の電極交差幅を大きく形成しているので(R1<R2<R3)、弾性表面波SAWの反射によるエネルギー減少を抑制でき、これにより各反射器43A〜43Cからそれぞれ同程度の反射信号強度が得られ、音響付加効果による反射波及びこれと再励起効果による反射波の合成波の各々の反射信号の間の出力差を明瞭化でき、応答信号の適正なコード化を図ることができる。
【0077】
なお、上記のように送受信電極42からの弾性表面波SAWの伝搬方向に沿って各反射器の電極交差幅を増大させる構成以外に又はこれに加えて、電極厚を大きくしたり、電極対数を増加する等の方法も適用可能である。更に、各反射器43A〜43Cを弾性表面波SAWの異なるトラック上に配置するようにしてもよい。
【0078】
以上のように、本実施の形態によれば、弾性表面波素子部24の駆動信号の高周波数化にも十分に対応して適正な固体情報を検出することができる。また、反射器43A〜43Cを構成する櫛形電極の電極ピッチを弾性表面波の半波長としているので、櫛形ダブル電極構造で反射器を構成する場合に比べて反射器の電極幅を2倍に形成でき、これにより高価な露光設備等を用いることなく安価に生産性高く弾性表面波素子部24を構成することができる。
【0079】
更に、反射器43A〜43Cを構成する一対の櫛形電極が各々の電極間を短絡又は開放する選択器50A〜50Cを介して接続されているので、測定対象物に対して個別に付与される固有IDを選択器50A〜50Cの選択によって容易に形成することができる。
【0080】
さて次に、本発明の他の実施の形態による弾性表面波素子部24’の構成を図7に示す。
この弾性表面波素子部24’は、圧電基板41の表面に、送受信電極42と、櫛形電極構造の単一の反射器43とが形成された弾性表面波素子で構成されている。反射器43を構成する一対の櫛形電極43a,43bは選択器50を介して互いに接続されており、各櫛形電極43a,43bの短絡又は開放の何れかの状態が選択できるようになっている。
なお、その他の構成について図3を参照して説明した上述の実施の形態と同様であるのでその説明は省略し、対応する部分については同一の符号を付している。
【0081】
このような構成の弾性表面波素子部24’からの応答信号を受信する問合せ器において、本発明の信号処理手段に相当する演算回路部27(図1)は、送受信電極42と反射器43との間の複数回の反射による反射信号の受信レベルに応じて設定される識別用閾値に基づいて上記応答信号を符号化するように構成されている。
【0082】
つまり、上述の実施の形態においては、複数の反射器で反射された弾性表面波の一次反射信号の受信レベルに基づいて応答信号の符号化を行うようにしたが、本例では弾性表面波の高次の反射信号の受信レベルに基づいて応答信号の符号化を行うようにしている。これにより、反射器43が開放時の反射信号レベルと短絡時の反射信号レベルとの間により大きな信号差をもたせることが可能となる。
【0083】
図8A,Bは、本発明者らが図7に示した構成の弾性表面波素子24’を試作して得られた、反射器43の開放時(図8A)および短絡時(図8B)における一次と二次の反射特性である。反射器43の電極対数は13対で、測定周波数は300MHzとした。
【0084】
図8A,Bにおいて、S0は入力信号、S1は送受信電極42からの入力信号が反射器43で反射して再び送受信電極42に帰ったときの反射信号(一次反射信号)、S2は一次反射信号が送受信電極42及び反射器43に再度反射して送受信電極42に帰ったときの反射信号(二次反射信号)である。開放、短絡時の一次反射信号S1は、送受信電極42の入力信号に対しそれぞれ、−19dB、−25dBと6dBの出力差が認められたが、更に二次反射信号S2では12dBの信号差が得られた。
【0085】
更に、三次、四次と高次の反射信号を用いると、より大きな出力差を得ることができる。但し、反射信号が高次になるほど信号の大きさが小さくなる傾向にあるので、求められる信号差と検出可能な信号レベルに応じて反射回数を設定する必要がある。
【0086】
以上のように、送受信電極42と反射器43との複数回の反射による反射信号の受信レベルに基づいて応答信号を符号化する構成により、反射器43を構成する櫛形電極43a,43b間の接続状態に依る反射信号のレベル差を大きくできるので、これら反射信号の受信レベルに応じた識別用閾値の設定自由度を広げられるとともに、精度の高い識別が可能となる。
なお、以上の説明では、反射器43が単一の場合を例に挙げたが、勿論これに限らず、反射器が複数配置された構成にも同様に適用可能である。
【0087】
以上、本発明の実施の形態について説明したが、勿論、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0088】
例えば以上の実施の形態では、測定対象物のIDデータの検出装置に本発明を適用した例について説明したが、これに限らず、測定対象物の状態変化を弾性表面波の伝搬特性の変化として感知する種々のセンサにも本発明は適用可能である。
【0089】
例えば温度を感知するセンサに本発明を適用する場合には、弾性表面波の伝搬路となる圧電基板として、伝搬特性に対して大きな温度特性を有する圧電材料を用いる。このようにすると、環境温度が変わると圧電基板を伝搬する弾性表面波の位相速度、周波数等の伝搬特性が変化する。このため、反射器からの反射信号は温度に関しての情報を含むことになり、例えば各反射信号の位相差を抽出することで温度変化を感知することができる。また、反射信号間の位相比較による場合以外に、遅延時間を比較する方法、基準周波数からの反射信号の周波数ずれ、信号強度を比較する方法を用いることができる。
【0090】
また、温度センサ以外には、圧電基板が外力により撓む構造とすることで、圧力センサとして用いることができる。更に、弾性表面波伝搬部を触れる構造とすることで触覚センサを構成できる。あるいは、弾性表面波伝搬面に特定の成分を選択的に吸収して重量が変化する膜を設ける構造とすることで特定の液相、気相の成分センサとして適用することができる。何れも上記温度センサと同様に外的要因による弾性表面波の伝搬特性の変化を利用したものである。
【0091】
【発明の効果】
以上述べたように、本発明の個体情報検出装置によれば、弾性表面波素子部の駆動信号の高周波数化にも十分に対応して適正な固体情報検出を可能としながら、反射器を構成する櫛形電極の電極ピッチを従来よりも大きく形成でき、これにより低コストで生産性の高い固体情報検出装置を構成することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による個体情報検出装置20の概略構成図である。
【図2】個体情報検出装置20の応答器21の概略構成図である。
【図3】応答器21を構成する弾性表面波素子部24の概略構成図である。
【図4】反射器43の作用を説明する図であり、Aは電極間が開放されている状態における反射の例を示し、Bは電極間が同電位とされている状態における反射の例を示している。
【図5】問合せ器22における信号処理作用を説明する図である。
【図6】図5の変形例を説明する図である。
【図7】本発明の他の実施の形態による弾性表面波素子部24’の概略構成図である。
【図8】弾性表面波素子24’における反射器43の一次と二次の反射特性を示す図であり、Aは反射器の開放時、Bはその短絡時をそれぞれ示している。
【図9】従来の個体情報検出装置における弾性表面波素子部の構成を説明する図である。
【図10】一対の櫛形ダブル電極構造で構成された反射器による弾性表面波素子の反射作用を説明する図であり、Aは電極間が開放されている状態における反射の例を示し、Bは電極間が同電位とされている状態における反射の例を示している。
【図11】図10に示した構成の反射器を電気的に制御することによって反射効率を任意に設定可能とした素子部の構成例を説明する図である。
【図12】従来の他の弾性表面波素子部の構成を説明する図である。
【符号の説明】
20…個体情報検出装置、21…応答器、22…問合せ器、23,25…アンテナ部、24,24’…弾性表面波素子部、26…送受信回路部、27…演算回路部、28…駆動信号発生回路部、32…状態選択部、41…圧電基板、42…送受信電極、43,43A〜43C…反射器、48…共通リード線、49A〜49C…個別リード線、50,50A〜50C…選択器、R1〜R3…電極交差幅、SAW…弾性表面波、SAW−R…弾性表面波の反射波。

Claims (5)

  1. 測定対象物の情報を搭載する弾性表面波素子及びアンテナ手段を備えた応答器と、前記応答器に送信される駆動信号を発生する駆動信号発生手段及び前記応答器からの応答信号を受信して信号処理を行う信号処理手段を備えた問合せ器とを有し、
    前記弾性表面波素子が、前記問合せ器からの駆動信号を受けて弾性表面波を励起させる送受信用電極と、前記発生した弾性表面波を前記送受信用電極に向けて反射する1乃至複数の反射器とをそれぞれ圧電材料表面に形成してなる個体情報検出装置において、
    前記1乃至複数の反射器が各々、前記弾性表面波の半波長ピッチで交差する一対の櫛形電極構造を有すると共に、
    前記一対の櫛形電極が各々の電極間を短絡又は開放するスイッチ手段を介して接続されてなり、
    前記信号処理手段は、前記一対の櫛形電極の電極間の接続状態に依る反射信号の受信レベルに基づいて前記応答信号を符号化する
    ことを特徴とする個体情報検出装置。
  2. 前記信号処理手段は、前記反射信号の受信レベルに応じて設定される識別用閾値に基づいて前記応答信号を符号化する
    ことを特徴とする請求項1に記載の個体情報検出装置。
  3. 前記信号処理手段は、前記送受信用電極と前記反射器との複数回の反射による反射信号の受信レベルに応じて設定される識別用閾値に基づいて前記応答信号を符号化する
    ことを特徴とする請求項1に記載の個体情報検出装置。
  4. 前記1乃至複数の反射器の一方側の櫛形電極が共通の配線を介して前記スイッチ手段に導出され、他方側の櫛形電極が個別の配線を介して前記スイッチ手段に導出されている
    ことを特徴とする請求項1に記載の個体情報検出装置。
  5. 前記各反射器の電極交差幅が、前記送受信電極から遠ざかるに従って大きく形成されている
    ことを特徴とする請求項1に記載の個体情報検出装置。
JP2003182904A 2003-03-14 2003-06-26 個体情報検出装置 Pending JP2004343671A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182904A JP2004343671A (ja) 2003-03-14 2003-06-26 個体情報検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003069163 2003-03-14
JP2003182904A JP2004343671A (ja) 2003-03-14 2003-06-26 個体情報検出装置

Publications (1)

Publication Number Publication Date
JP2004343671A true JP2004343671A (ja) 2004-12-02

Family

ID=33542937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182904A Pending JP2004343671A (ja) 2003-03-14 2003-06-26 個体情報検出装置

Country Status (1)

Country Link
JP (1) JP2004343671A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175362A (zh) * 2011-03-07 2011-09-07 合肥工业大学 多功能柔性触觉传感器
CN102322974A (zh) * 2011-06-03 2012-01-18 东南大学 一种阵列式温度触觉传感装置
CN102749092A (zh) * 2012-07-13 2012-10-24 合肥工业大学 用于智能机器人人工敏感皮肤的柔性复合式阵列传感器
JP2014048246A (ja) * 2012-09-03 2014-03-17 National Univ Corp Shizuoka Univ 物理量検出システム、物理量検出方法および物理量検出プログラム
CN105651315A (zh) * 2016-01-28 2016-06-08 东南大学 一种基于二线制等电势法的阻性传感器阵列快速读出电路
CN105698827A (zh) * 2016-01-28 2016-06-22 东南大学 基于二线制等电势法的阻性传感器阵列读出电路
CN106352927A (zh) * 2016-09-29 2017-01-25 中国科学院重庆绿色智能技术研究院 一种石墨烯分布式多物理量传感器阵列系统
JP2018072245A (ja) * 2016-11-01 2018-05-10 株式会社デンソー センサシステム
JP2021516906A (ja) * 2018-03-16 2021-07-08 フレクエンシスFrec’N’Sys Rfid及びセンサ用途のためのsawタグ用複合基板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175362A (zh) * 2011-03-07 2011-09-07 合肥工业大学 多功能柔性触觉传感器
CN102322974A (zh) * 2011-06-03 2012-01-18 东南大学 一种阵列式温度触觉传感装置
CN102749092A (zh) * 2012-07-13 2012-10-24 合肥工业大学 用于智能机器人人工敏感皮肤的柔性复合式阵列传感器
JP2014048246A (ja) * 2012-09-03 2014-03-17 National Univ Corp Shizuoka Univ 物理量検出システム、物理量検出方法および物理量検出プログラム
CN105651315A (zh) * 2016-01-28 2016-06-08 东南大学 一种基于二线制等电势法的阻性传感器阵列快速读出电路
CN105698827A (zh) * 2016-01-28 2016-06-22 东南大学 基于二线制等电势法的阻性传感器阵列读出电路
CN106352927A (zh) * 2016-09-29 2017-01-25 中国科学院重庆绿色智能技术研究院 一种石墨烯分布式多物理量传感器阵列系统
JP2018072245A (ja) * 2016-11-01 2018-05-10 株式会社デンソー センサシステム
JP2021516906A (ja) * 2018-03-16 2021-07-08 フレクエンシスFrec’N’Sys Rfid及びセンサ用途のためのsawタグ用複合基板

Similar Documents

Publication Publication Date Title
US8736140B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
CN102197590B (zh) 表面声波谐振器、表面声波振荡器以及表面声波模块装置
US4737790A (en) Passive interrogator label system with a surface acoustic wave transponder operating at its third harmonic and having increased bandwidth
US7747220B2 (en) Wireless communication system using surface acoustic wave (SAW) second harmonic techniques
US20020047494A1 (en) Programmable surface acoustic wave (SAW) filter
CN101796722A (zh) 弹性波器件、使用其的双工器以及使用该双工器的通信机
TW445710B (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP2004343671A (ja) 個体情報検出装置
JPH0856133A (ja) 表面弾性波デバイスの製法
JP4411539B2 (ja) Saw共振子
JP2004129185A (ja) Sawセンサ、sawセンサを用いた個体識別装置、およびsawセンサの製造方法
KR100889231B1 (ko) 탄성경계파 장치
EP1120908A1 (en) Elastic wave device
WO2016019756A1 (zh) 分布式声表面波谐振器及声表面波传感系统
JP2004191334A (ja) 個体情報検出装置
JP2010104031A (ja) 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
JP2001024471A (ja) 弾性表面波共振子および弾性表面波フィルタ
JP4761192B2 (ja) 弾性表面波素子片、弾性表面波デバイスおよび電子機器
JP4175090B2 (ja) 表面弾性波素子モジュール及びその製造方法
JP2004350255A (ja) 弾性表面波素子
KR100437492B1 (ko) 표면 탄성파 소자
JP2023049867A (ja) モジュール
JP2011221829A (ja) 弾性表面波トランスポンダ
JP2013085273A (ja) 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
JP2011035872A (ja) 表面弾性波装置