JP2005116628A - Solid-state imaging device and manufacturing method thereof - Google Patents

Solid-state imaging device and manufacturing method thereof Download PDF

Info

Publication number
JP2005116628A
JP2005116628A JP2003345904A JP2003345904A JP2005116628A JP 2005116628 A JP2005116628 A JP 2005116628A JP 2003345904 A JP2003345904 A JP 2003345904A JP 2003345904 A JP2003345904 A JP 2003345904A JP 2005116628 A JP2005116628 A JP 2005116628A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
substrate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003345904A
Other languages
Japanese (ja)
Inventor
Michihito Kawabata
理仁 川端
Takafumi Kishi
隆文 岸
Yoshinori Okamoto
嘉紀 岡本
Masanori Yasutake
正憲 安武
Shoichi Tanaka
彰一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003345904A priority Critical patent/JP2005116628A/en
Publication of JP2005116628A publication Critical patent/JP2005116628A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging device and a manufacturing method thereof which can prevent flow and dislocation of resin, ensures excellent imaging characteristic, simplification of manufacturing processes, and electrical and mechanical connections, and realizes improvement in the bonding quality of a solid-state image sensor. <P>SOLUTION: The solid-state imaging device comprises an insulating substrate 3 provided with a through-hole 1 and a wiring circuit 2, the solid-state image sensor 5 loaded to the through-hole 1, and a light transmitting member 8 which is arranged to close the through-hole keeping the predetermined interval from the solid-stage image sensor 5. The solid-state image sensor 5 is electrically connected to the wiring circuit of the insulating substrate 3, and the surrounding thereof is deposited via a resin layer 4. A region facing to the through-hole among the resin layer is forming a wall type light hardening layer 4S, while the remaining region is forming a thermosetting layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体撮像装置およびその製造方法に係り、特に、監視カメラ、医療用カメラ、車載用カメラなどの半導体撮像素子を用いて形成される小型の固体撮像装置における撮像エリアへの樹脂の染み出し防止に関するものである。   The present invention relates to a solid-state imaging device and a manufacturing method thereof, and in particular, a resin stain in an imaging area in a small-sized solid-state imaging device formed using a semiconductor imaging device such as a surveillance camera, a medical camera, and an in-vehicle camera. This is related to prevention.

近年、この種の撮像装置は、レンズなどの光学系を介して入力される画像を電気信号として出力するものである。そしてこの撮像装置の小型化、高性能化に伴い、カメラも小型化され、各方面で使用されてきており、映像の入力装置としての市場を広げている。   In recent years, this type of imaging apparatus outputs an image input via an optical system such as a lens as an electrical signal. With the downsizing and high performance of this imaging device, the camera has also been downsized and used in various fields, expanding the market as a video input device.

従来の半導体撮像素子を用いた撮像装置は、レンズ、半導体撮像素子、その駆動回路および信号処理回路などを搭載したLSI等の部品を夫々筐体あるいは構造体に形成してこれらを組み合わせている。このような組み合わせによる実装構造のひとつに、平板状のプリント基板上に各素子部品を搭載することによって形成されるものがある。   In a conventional image pickup apparatus using a semiconductor image pickup device, components such as an LSI on which a lens, a semiconductor image pickup device, a driving circuit thereof, a signal processing circuit, and the like are mounted are respectively formed in a housing or a structure and combined. One mounting structure based on such a combination is formed by mounting each element component on a flat printed board.

そこで、装置の更なる小型化をはかるために、CCD,CMOSなどの撮像素子をベアチップ方式で実装したものが提案されている。実装基板は、撮像素子の撮像エリアの性能を阻害することなく外部レンズに取り出すことができるように、撮像エリアを臨むように実装基板に開口部を設けるか、撮像エリア部が透明体となるように形成される。
この一例として、対向する第1および第2の主面に連通した開口部を有し、複数のリードを備えた配線基板に、固体撮像素子を実装した、固体撮像装置が提案されている(特許文献1)。この例では、図8に一例を示すように、貫通開口部101を有するとともに配線パターン102を形成した配線基板103の開口部を連続して取り囲むように絶縁性接着剤104を形成し、フェースダウンで固体撮像素子チップ105を接合している。そしてこの配線基板の貫通開口部101を臨むように接着剤107を介して透光性基板108が接合されている。
Therefore, in order to further reduce the size of the device, a device in which an image pickup device such as a CCD or CMOS is mounted by a bare chip method has been proposed. The mounting substrate is provided with an opening in the mounting substrate so as to face the imaging area, or the imaging area portion becomes a transparent body so that the mounting substrate can be taken out to the external lens without impairing the performance of the imaging area of the imaging device. Formed.
As an example of this, a solid-state imaging device has been proposed in which a solid-state imaging device is mounted on a wiring board having openings that communicate with opposing first and second main surfaces and having a plurality of leads (patent). Reference 1). In this example, as shown in FIG. 8, an insulating adhesive 104 is formed so as to continuously surround the opening of the wiring substrate 103 having the through opening 101 and the wiring pattern 102 formed thereon, and face down The solid-state image pickup device chip 105 is joined. And the translucent board | substrate 108 is joined through the adhesive agent 107 so that the through-opening part 101 of this wiring board may be faced.

そしてこの場合、固体撮像素子チップ105のバンプ106が前記配線パターンと電気的に接続しており、両者の位置合わせは極めて重要である。
従来、異方性導電性樹脂(ACFやACP)、あるいは絶縁性樹脂(NCFやNCP)を用いた熱圧接法による実装方法がとられている。
しかしながら熱硬化による樹脂硬化方法では、樹脂が硬化前に撮像エリアに流れ出し、これが撮像の障害となるという問題が発生している。
In this case, the bumps 106 of the solid-state imaging device chip 105 are electrically connected to the wiring pattern, and the alignment of both is extremely important.
2. Description of the Related Art Conventionally, a mounting method using a thermal pressure welding method using an anisotropic conductive resin (ACF or ACP) or an insulating resin (NCF or NCP) is used.
However, in the resin curing method by thermal curing, there is a problem that the resin flows out to the imaging area before curing, which becomes an obstacle to imaging.

またこの問題を防止するために、本来配線を必要としない領域にダミー配線パターンを形成し、ダミー配線パターンをダムにして樹脂の流れ出しを防止する方法が提案されている。しかしながら、このようなダミー配線パターンは導体パターンであるため、放熱性も高い。従って熱圧接に際し、放熱性を高める結果となり、熱圧接に際し、より大きな熱量を必要とすることになる。従って必要な加熱温度・時間を、このようなダムのない場合に比べ、加熱温度を高く設定したり、時間を長く設定したりする必要がある。これはCCDやCMOSの耐熱性や、実装生産性に影響が大きい。   In order to prevent this problem, a method has been proposed in which a dummy wiring pattern is formed in a region that originally does not require wiring, and the dummy wiring pattern is used as a dam to prevent the resin from flowing out. However, since such a dummy wiring pattern is a conductor pattern, heat dissipation is also high. Therefore, the heat release performance is improved in the heat welding, and a larger amount of heat is required in the heat welding. Therefore, it is necessary to set the required heating temperature / time higher than the case where there is no dam like this, or set the time longer. This greatly affects the heat resistance of CCD and CMOS and the mounting productivity.

また、本出願人は、チップと配線パターンとを接合した後、この接合部に、紫外線(UV)照射をしながらUV硬化性の付加された絶縁性樹脂を流し込むという方法を提案している(特許文献2)。
この方法では、先にチップと配線パターンとの接合を行い、この後絶縁性樹脂を流し込むという方法がとられるため、使用する樹脂は低粘度化が必須であり、また濡れによる広がりが大きいため必要以上に樹脂を供給する必要がある。
また電気的接続と樹脂による接合とが2段階で行われるため、生産性が十分でない。
また、電気的接続のなされた接合部の接合を保持するため、熱歪の少ない条件下で加熱しなければならず、熱硬化を低温でゆっくり行う必要がある。
また電気的接続を保持した状態で絶縁性樹脂による接合を行う必要があるため、可撓性基板では接合が外れてしまうおそれがあるなど多くの制約があった。
Further, the present applicant has proposed a method in which after the chip and the wiring pattern are bonded, an insulating resin to which UV curing is added is poured into the bonded portion while being irradiated with ultraviolet rays (UV) ( Patent Document 2).
In this method, the chip and the wiring pattern are first joined, and then an insulating resin is poured. Therefore, it is essential that the resin to be used has a low viscosity and the spread due to wetting is large. It is necessary to supply the resin above.
Further, since electrical connection and resin bonding are performed in two stages, productivity is not sufficient.
Further, in order to maintain the joint of the joint portion to which electrical connection is made, it must be heated under conditions with less thermal distortion, and it is necessary to perform the thermal curing slowly at a low temperature.
In addition, since it is necessary to perform bonding with an insulating resin in a state where electrical connection is maintained, there are many restrictions such as a possibility that the bonding may be removed with a flexible substrate.

特許第3207319号公報Japanese Patent No. 3307319 特開平11−220115号公報JP-A-11-220115

このように、従来の実装方法では、実装時における接着性樹脂の流出により、CCDなどのベアチップの汚染を招くことがある。
そして樹脂の流出を防止するために配線パターンでダムを形成しようとすると、熱圧着時に熱の流出を招き熱効率が悪く、十分な接合が出来ないという問題がある。
また、電気的接続後、樹脂の流し込みを行う場合には生産性が十分でなく、絶縁性樹脂の硬化時に電気的接続の脱落を招きやすいという問題がある。
本発明は、前記実情に鑑みてなされたもので、樹脂の流出を防止するとともに位置ずれを防止し、撮像特性に優れた固体撮像装置を提供することを目的とする。
また製造工程の簡略化をはかることを目的とする。
また、固体撮像素子の電気的接続及び機械的接続を確実にするとともに、固体撮像素子の接着品質の向上をはかることを目的とする。
As described above, in the conventional mounting method, the leakage of the adhesive resin at the time of mounting may cause contamination of the bare chip such as a CCD.
If a dam is formed with a wiring pattern in order to prevent the resin from flowing out, there is a problem in that heat flow out at the time of thermocompression bonding, the heat efficiency is poor, and sufficient bonding cannot be performed.
Further, when the resin is poured after the electrical connection, the productivity is not sufficient, and there is a problem that the electrical connection is likely to drop when the insulating resin is cured.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid-state imaging device excellent in imaging characteristics by preventing outflow of resin and preventing displacement.
Another object is to simplify the manufacturing process.
It is another object of the present invention to ensure the electrical connection and mechanical connection of the solid-state image sensor and to improve the adhesion quality of the solid-state image sensor.

そこで本発明では、貫通開口部を有し、配線回路部を備えた基板と、前記貫通開口部に装着された固体撮像素子とを具備し、前記基板の前記配線回路部に対して前記固体撮像素子が電気的に接続され、この電気的に接続された部分の周囲が樹脂層を介して固着されており、前記樹脂層のうち前記貫通開口部に臨む領域が壁状に光硬化され、残る領域が熱硬化されている。   Therefore, the present invention includes a substrate having a through-opening portion and having a wiring circuit portion, and a solid-state imaging device attached to the through-opening portion, and the solid-state imaging with respect to the wiring circuit portion of the substrate. The elements are electrically connected, and the periphery of the electrically connected portion is fixed via a resin layer, and the region of the resin layer that faces the through opening is photocured into a wall shape and remains. The area is heat cured.

この構成により、樹脂層の貫通開口部に臨む領域が壁状に光硬化されており、この光硬化された樹脂層がダムとなって樹脂の流出を防止しているため、樹脂の染み出しなしに、信頼性の高い実装構造を得ることが可能となる。また、貫通開口部に緻密で均一なUV硬化層が形成されるため、水分の浸入経路を絶ち、長寿命で信頼性の高いものとなる。また樹脂の流出により応力集中を伴う形状となるのを回避でき、より高い接続信頼性を得ることが可能となる。   With this configuration, the area facing the through opening of the resin layer is photocured in the shape of a wall, and this photocured resin layer acts as a dam to prevent the resin from flowing out, so there is no resin seepage In addition, a highly reliable mounting structure can be obtained. In addition, since a dense and uniform UV cured layer is formed in the through-opening portion, the moisture intrusion route is cut off, resulting in a long life and high reliability. In addition, it is possible to avoid a shape with stress concentration due to the outflow of the resin, and higher connection reliability can be obtained.

また、本発明では、上記固体撮像装置において、前記固体撮像素子から所定の間隔を隔てて前記貫通開口部を塞ぐように配設された透光性部材を具備し、前記基板は絶縁性基板であり、前記配線回路部は、前記絶縁性基板上の前記固体撮像素子の装着される部分にその一部が露呈せしめられた配線パターンを有するとともに、前記固体撮像素子は前記回路部の前記配線パターンにフェースダウンで直接接続されている。
またこの配線回路部は、前記絶縁性基板上の前記固体撮像素子の装着される部分にその一部が露呈せしめられた配線パターンを有する多層配線構造であってもよい。
この構成により、所望の配線パターンを具備した固体撮像装置を小型化することが可能となる。
In the present invention, the solid-state imaging device includes a translucent member disposed so as to close the through-opening portion at a predetermined interval from the solid-state imaging device, and the substrate is an insulating substrate. And the wiring circuit portion has a wiring pattern in which a part of the solid-state imaging device on the insulating substrate is exposed, and the solid-state imaging device is connected to the wiring pattern of the circuit portion. Directly connected face down.
Further, the wiring circuit portion may have a multilayer wiring structure having a wiring pattern in which a part of the wiring circuit portion is exposed to a portion where the solid-state imaging device is mounted on the insulating substrate.
With this configuration, it is possible to reduce the size of the solid-state imaging device having a desired wiring pattern.

また、本発明では、上記固体撮像装置において、前記基板は、遮光性基板である。
この構成により、裏面から光を照射するのみで貫通開口部の周縁にのみ選択的に光照射を行うことができ、上記壁状の光硬化された領域を容易に作業性よく形成することが可能となる。
In the present invention, in the solid-state imaging device, the substrate is a light-shielding substrate.
With this configuration, it is possible to selectively irradiate only the periphery of the through opening by irradiating light from the back surface, and the above-mentioned wall-shaped photocured region can be easily formed with good workability. It becomes.

また、本発明では、上記固体撮像装置において、前記樹脂層はUV硬化性及び熱硬化性を具備した樹脂で構成される。
この構成により、UV照射により極めて容易にダムとなるUV硬化層を形成することができ、またこの後加熱により良好に熱硬化させることができる。
In the present invention, in the solid-state imaging device, the resin layer is made of a resin having UV curable properties and thermosetting properties.
With this configuration, it is possible to form a UV cured layer that becomes a dam very easily by UV irradiation, and after that, it can be thermally cured well by heating.

また、本発明では、上記固体撮像装置において、前記樹脂層はUV硬化性の付加された熱硬化性アクリル樹脂で構成される。   In the present invention, in the solid-state imaging device, the resin layer is made of a thermosetting acrylic resin to which UV curing is added.

また、本発明では、上記固体撮像装置において、前記樹脂層はUV硬化性の付加された熱硬化性エポキシ樹脂で構成される。   In the present invention, in the solid-state imaging device, the resin layer is made of a thermosetting epoxy resin to which UV curing is added.

さらにまた、ベース樹脂として、Pbフリーはんだリフロー条件にも耐える、耐熱性に優れたエポキシ樹脂を用い、温度が200±50℃、時間が1〜30secの加熱条件で、熱圧接方式により電極間接続と電極周辺の封止を可能とする熱硬化型の硬化系、例えば、重付加型の酸無水物系や触媒型のアニオン重合系(アミン、イミダゾールなど)の硬化樹脂を用いるのが望ましい。そしてこのベース樹脂にUV硬化系樹脂として、触媒型のカチオン重合系の硬化樹脂を付加する。   Furthermore, an epoxy resin that can withstand Pb-free solder reflow conditions and has excellent heat resistance is used as the base resin, and the electrodes are connected by a hot-pressure welding method under heating conditions of 200 ± 50 ° C and time of 1 to 30 seconds. It is desirable to use a thermosetting type curing system that can seal the periphery of the electrode, for example, a polyaddition type acid anhydride type or a catalyst type anionic polymerization type (amine, imidazole, etc.) cured resin. Then, a catalyst-type cationic polymerization-type cured resin is added as a UV-curable resin to the base resin.

また、本発明では、上記固体撮像装置において、前記基板が、信号処理回路の集積化された半導体基板である。
この構成により、チップ部品の搭載が不要でかつ小型化薄型化が可能となり、しかも実装後ダイシングすることにより個々の部品に分割するいわゆるCSP工程での形成が容易となる。
In the present invention, in the solid-state imaging device, the substrate is a semiconductor substrate on which a signal processing circuit is integrated.
With this configuration, it is not necessary to mount a chip component, and it is possible to reduce the size and thickness. In addition, it is easy to form in a so-called CSP process of dividing into individual components by dicing after mounting.

また、本発明は、中央部に貫通開口部を有し、配線回路部を有する基板に、前記貫通開口部を臨むように樹脂層を形成する工程と、前記樹脂層を介して固体撮像素子を装着する固体撮像素子装着工程と、前記絶縁性基板側から前記貫通開口部を介して紫外線(UV)を照射し、前記樹脂層のうち、前記貫通開口部を臨むように形成された領域を硬化してUV硬化層を形成する工程と、前記固体撮像素子と前記配線回路部とが電気的に接続するように加圧しつつ前記樹脂層を加熱し、前記固体撮像素子を前記配線回路部に熱圧着する工程とを含む。
この構成により、貫通開口部を介してUV硬化を行うことにより、マスクを新たに形成することなく、貫通開口部を臨むUV硬化層を形成することができる。そして熱圧着を行うことによりこのUV硬化層がダムとなり、樹脂の流出を防止することができ、容易に作業性よく信頼性の高い接合を実現することが可能となる。また、電気的接合と機械的接合が同一工程で実現され得るため、信頼性の高いものとなる。
According to another aspect of the present invention, there is provided a step of forming a resin layer on a substrate having a through-opening portion at a center portion and having a wiring circuit portion so as to face the through-opening portion, A solid-state imaging device mounting step for mounting, and irradiating ultraviolet rays (UV) from the insulating substrate side through the through-opening portion, and curing a region formed to face the through-opening portion of the resin layer Forming the UV cured layer and heating the resin layer while applying pressure so that the solid-state imaging device and the wiring circuit unit are electrically connected to each other to heat the solid-state imaging device to the wiring circuit unit. Crimping.
With this configuration, by performing UV curing through the through opening, a UV cured layer that faces the through opening can be formed without forming a new mask. Then, by performing thermocompression bonding, this UV cured layer becomes a dam, and the resin can be prevented from flowing out, so that it is possible to easily realize highly reliable bonding with good workability. In addition, since electrical bonding and mechanical bonding can be realized in the same process, the reliability is high.

また、本発明は、前記固体撮像装置の製造方法において、前記熱圧着する工程の後、前記基板の前記貫通開口部を塞ぐように透光性部材を装着する透光性部材装着工程を含む。
この構成により、固体撮像素子を実装後、透光性部材を接合しているため、固体撮像素子圧着時に発生するガスを効率よく逃がすことができる。
The present invention also includes a translucent member mounting step of mounting the translucent member so as to close the through opening of the substrate after the thermocompression bonding step in the method of manufacturing the solid-state imaging device.
With this configuration, since the translucent member is bonded after the solid-state image sensor is mounted, the gas generated when the solid-state image sensor is pressed can be efficiently released.

また、本発明は、前記固体撮像装置の製造方法において、前記固体撮像素子装着工程に先立ち、配線層を有する前記基板の貫通開口部を塞ぐように透光性部材を装着する透光性部材装着工程を含む。
この構成により、上記効果に加え、固体撮像素子実装後の熱工程が少なくなり、素子特性の劣化を防止することができる。
Further, according to the present invention, in the method for manufacturing the solid-state imaging device, prior to the solid-state imaging element mounting step, the translucent member is mounted so as to close the through-opening portion of the substrate having the wiring layer. Process.
With this configuration, in addition to the above effects, the number of thermal processes after mounting the solid-state imaging device is reduced, and deterioration of device characteristics can be prevented.

また、本発明は、前記固体撮像装置の製造方法において、前記基板は遮光性基板である。
この構成により、貫通開口部を介して光硬化処理を行うことによりダムを形成する際、自己整合的に良好な壁状のUV硬化層を形成することができる。
In the method for manufacturing the solid-state imaging device according to the present invention, the substrate is a light-shielding substrate.
With this configuration, when a dam is formed by performing a photocuring process through the through opening, a good wall-shaped UV cured layer can be formed in a self-aligning manner.

また、本発明は、前記固体撮像装置の製造方法において、前記基板は透光性基板である。
この構成により、光硬化処理を行うことによりダムを形成する際、設計が極めて容易となる。
Moreover, this invention is a manufacturing method of the said solid-state imaging device, The said board | substrate is a translucent board | substrate.
With this configuration, when a dam is formed by performing a photocuring process, the design becomes extremely easy.

また、本発明は、前記固体撮像装置の製造方法において、前記UV硬化層を形成する工程に先立ち、前記基板に遮光性部材を装着する工程を含む。
この構成により、透光性基板を用いる場合にも容易に作業性よくダムを形成することができる。
The present invention also includes a step of mounting a light-shielding member on the substrate prior to the step of forming the UV cured layer in the method of manufacturing the solid-state imaging device.
With this configuration, a dam can be easily formed with good workability even when a translucent substrate is used.

また、本発明は、前記固体撮像装置の製造方法において、前記UV硬化層を形成する工程は、前記配線回路部の接合部に開口する遮光性部材をマスクとしてUV照射を行い、前記配線回路部をマスクとして少なくとも一部を自己整合的にUV硬化する工程である。
この方法によれば、配線回路部をマスクとして利用するため自己整合的にUV硬化層のエッジが形成されるため、マスク精度が不要でありながらも、樹脂の染み出しを高精度に実現することができる。
なお、ここで貫通開口部とは、形状的な開口のみならず、透光性窓も含むものとする。
Further, in the method of manufacturing the solid-state imaging device according to the present invention, in the step of forming the UV cured layer, the wiring circuit unit is configured to perform UV irradiation using a light-shielding member opening at a joint of the wiring circuit unit as a mask Is a step of UV-curing at least partly in a self-aligning manner using a mask as a mask.
According to this method, since the edge of the UV cured layer is formed in a self-aligned manner because the wiring circuit portion is used as a mask, it is possible to realize the exudation of the resin with high accuracy while the mask accuracy is unnecessary. Can do.
Here, the through opening portion includes not only a shape opening but also a translucent window.

本発明によれば、貫通開口部からのUV照射により形成されたUV硬化層をダムとして、熱圧着により電気的接続と機械的接続とを同時に実現するようにしているため、作業性の向上をはかるとともに信頼性の高い固体撮像装置を形成することが可能となる。   According to the present invention, since the UV cured layer formed by UV irradiation from the through-opening is used as a dam, electrical connection and mechanical connection are simultaneously realized by thermocompression bonding, so that workability is improved. In addition, it is possible to form a solid-state imaging device with high reliability.

以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
(実施の形態1)
本実施の形態1の固体撮像装置の要部説明図を図1に示す。
この固体撮像装置は、固体撮像素子チップ5を配設するに際し、UV硬化性の付加された熱硬化性樹脂層4を用いて絶縁性基板の貫通開口部1を臨む領域に固着してなるもので、先にこの貫通開口部から光照射を行い、壁状にUV硬化することによりUV硬化層4Sを形成し、これをダムとして、熱硬化性樹脂を硬化させることにより、熱硬化層4Hを形成し撮像エリアとなる貫通開口部への樹脂の流れ出しを防止するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is an explanatory diagram of a main part of the solid-state imaging device according to the first embodiment.
When this solid-state imaging device is disposed, the solid-state imaging device chip 5 is fixed to a region facing the through-opening portion 1 of the insulating substrate using the thermosetting resin layer 4 to which UV curing is added. Then, the UV curing layer 4S is formed by first irradiating light from this through-opening portion and UV-curing into a wall shape. By using this as a dam, the thermosetting resin is cured, so that the thermosetting layer 4H is formed. This prevents the resin from flowing out to the through opening that is formed and serves as an imaging area.

すなわち、この固体撮像装置は、貫通開口部1を有し、配線回路部を備えた遮光性の絶縁性基板3と、この貫通開口部1に装着された固体撮像素子チップ5と、固体撮像素子チップ5から所定の間隔を隔てて前記貫通開口部1を塞ぐように配設された透光性部材としてのガラス基板8とを具備し、この絶縁性基板3の配線回路部に対して固体撮像素子チップ5を電気的に接続すると共にその周囲が、UV硬化性の付加された熱硬化性樹脂からなる樹脂層4を介して固着せしめられており、この樹脂層のうち貫通開口部1に臨む領域が壁状のUV硬化層4Sを構成し、その内側に残る領域が熱硬化層4Hを構成してなる。   That is, this solid-state imaging device has a light-shielding insulating substrate 3 having a through-opening portion 1 and having a wiring circuit portion, a solid-state imaging device chip 5 mounted in the through-opening portion 1, and a solid-state imaging device. And a glass substrate 8 as a translucent member disposed so as to close the through opening 1 at a predetermined interval from the chip 5, and solid-state imaging with respect to the wiring circuit portion of the insulating substrate 3. The element chip 5 is electrically connected and the periphery thereof is fixed through a resin layer 4 made of a UV curable thermosetting resin, and faces the through opening 1 in the resin layer. The region constitutes the wall-shaped UV curable layer 4S, and the region remaining inside the region constitutes the thermosetting layer 4H.

ここでこの絶縁性基板3は、中央に1辺3mmの角型の貫通開口部1を有し、スクリーン印刷法で形成された膜厚20μm程度の銅パターンからなる配線パターン2を表面及び裏面に形成してなるポリフタルアミド樹脂からなる板厚100μmの遮光性基板で構成されている。
また、この絶縁性基板の他方の面側には透光性のガラス基板8からなるIRフィルタおよびレンズ鏡筒10が形成されている。一方このレンズ鏡筒10の周りにはI/Oコネクタ11、コンデンサや抵抗などのチップ部品12、制御MCM13等が固着されている。
Here, the insulating substrate 3 has a square through opening 1 having a side of 3 mm at the center, and a wiring pattern 2 made of a copper pattern having a thickness of about 20 μm formed by a screen printing method on the front and back surfaces. It is composed of a light-shielding substrate having a thickness of 100 μm made of a polyphthalamide resin formed.
Further, an IR filter and a lens barrel 10 made of a translucent glass substrate 8 are formed on the other surface side of the insulating substrate. On the other hand, around the lens barrel 10, an I / O connector 11, a chip component 12 such as a capacitor and a resistor, a control MCM 13 and the like are fixed.

この絶縁性樹脂は、重付加型の酸無水物系や触媒型のアニオン重合系(アミン、イミダゾール)などの硬化樹脂に、触媒型のカチオン重合系の硬化樹脂を付加してなるものである。ここで触媒としては、高圧水銀ランプ、メタルハライドランプ、ガリウムランプなどの主波長で、100〜1000mW/cm2の照度を当て、照射量で、1000〜3000mJ/cm2で硬化が成り立つ触媒量を添加するのが望ましい。また、UV硬化された領域は、この樹脂層を加熱する際に、熱流動により、応力破壊しない膜厚・硬度にすることが望ましい。更に膜厚・硬度は、電極との接合に影響しないものである必要がある。具体的には、上記UV照射で硬化厚み50±25μm、硬度は、実装するICのパシベーション膜を破壊しない硬度を上限に設計を行う。 This insulating resin is obtained by adding a catalyst type cationic polymerization type cured resin to a cured resin such as a polyaddition type acid anhydride type or a catalyst type anionic polymerization type (amine, imidazole). Here, as a catalyst, an amount of a catalyst capable of curing at 1000 to 3000 mJ / cm 2 is added by applying an illuminance of 100 to 1000 mW / cm 2 at a main wavelength of a high pressure mercury lamp, a metal halide lamp, a gallium lamp or the like. It is desirable to do. Further, it is desirable that the UV-cured region has a film thickness and hardness that does not cause stress breakdown by heat flow when the resin layer is heated. Furthermore, the film thickness and hardness need not affect the bonding with the electrode. Specifically, the thickness of 50 ± 25 μm cured by UV irradiation and the hardness are designed with the upper limit being the hardness that does not break the passivation film of the IC to be mounted.

また、ICパシッベーションを破壊しない上限硬度で、樹脂層を熱圧着する際に膜が破れる場合は、熱圧着時にもUV照射することで、破壊して出てきた樹脂をUV硬化すれば、より確実に接合することができる。この場合、熱圧着温度はUV硬化性触媒がガス化しない温度で行う必要がある。これにより、UV硬化した状態から、熱硬化による実装を行った場合、従来の熱硬化性樹脂実装と同じ接続信頼性を得ることができかつ、UV硬化した膜が絶縁性樹脂の流れ出しを防ぐため固体撮像装置の撮像特性を良好に維持することができる。   In addition, when the film is torn when the resin layer is thermocompression-bonded with an upper limit hardness that does not destroy the IC passivation, if the resin that has been broken out is UV-cured by UV irradiation even during thermocompression bonding, more It can be reliably joined. In this case, the thermocompression bonding temperature needs to be performed at a temperature at which the UV curable catalyst is not gasified. As a result, when mounting by thermosetting from the UV-cured state, the same connection reliability as conventional thermosetting resin mounting can be obtained, and the UV-cured film prevents the insulating resin from flowing out. The imaging characteristics of the solid-state imaging device can be maintained well.

また、従来の絶縁性樹脂のみの場合は、絶縁性樹脂の供給形状と同一の波打ったフィレット形状となることが多いが、開口部に均一で緻密なUV硬化層膜が形成されるので、水分の浸入経路を絶つことができ耐湿性の向上をはかることができる。また、応力集中を伴う形状を回避することができ、より高い接続信頼性を得ることが可能となる。
ここで光学フィルタを構成する透光性のガラス基板3は水晶屈折板で構成され、接着剤を介して周縁部で絶縁性基板1に固定されている。
In addition, in the case of only the conventional insulating resin, it often has a wavy fillet shape that is the same as the supply shape of the insulating resin, but a uniform and dense UV cured layer film is formed in the opening. It is possible to cut off the moisture infiltration route and improve the moisture resistance. In addition, a shape with stress concentration can be avoided, and higher connection reliability can be obtained.
Here, the translucent glass substrate 3 constituting the optical filter is composed of a quartz crystal refracting plate, and is fixed to the insulating substrate 1 at the peripheral edge via an adhesive.

次に、この固体撮像装置の製造方法について説明する。
まず、図2(a)に示すように、ポリフタルアミド樹脂からなる遮光性の絶縁性基板3を用意し、中央に1辺3mmの角型の貫通開口部1を形成するとともに、スクリーン印刷法によって膜厚20μm程度の銅パターンからなる配線パターン2を形成する。なおこの銅パターンの表面は熱圧着法に適したNi、Auめっきであることが望ましい。
続いて、図2(b)に示すように、この絶縁性基板の配線パターンの一部を覆うように上述した絶縁性樹脂を塗布し樹脂層4を形成する。
こののち、薄膜を挟むように積層して薄膜コンデンサを形成したり、配線パターン間に抵抗体薄膜を配置し、薄膜抵抗体を形成したり、さらには必要に応じてチップ部品を接続する。
Next, a method for manufacturing the solid-state imaging device will be described.
First, as shown in FIG. 2A, a light-shielding insulating substrate 3 made of a polyphthalamide resin is prepared, a square through opening 1 having a side of 3 mm is formed at the center, and a screen printing method is used. Thus, the wiring pattern 2 made of a copper pattern with a film thickness of about 20 μm is formed. The surface of the copper pattern is preferably Ni or Au plating suitable for the thermocompression bonding method.
Subsequently, as shown in FIG. 2B, the above-described insulating resin is applied so as to cover a part of the wiring pattern of the insulating substrate, and the resin layer 4 is formed.
After that, a thin film capacitor is formed by laminating the thin films, a thin film resistor is formed between the wiring patterns, a thin film resistor is formed, and chip components are connected as necessary.

さらに図2(c)に示すように、この絶縁性基板3表面の配線パターン2に、固体撮像素子チップ5のバンプ6が接するように、配置し、樹脂の熱硬化温度を上まわらない温度で加熱するとともに若干加圧して仮固定し、貫通開口部1を介して絶縁性基板3側からUV照射を行う。ここでUV照射の条件は、このUV硬化層4Sが壁厚50μm程度となるように、使用する樹脂層および固体撮像素子チップに応じて決定するようにすればよい。   Further, as shown in FIG. 2C, the wiring pattern 2 on the surface of the insulating substrate 3 is arranged so that the bumps 6 of the solid-state imaging device chip 5 are in contact with each other at a temperature that does not exceed the thermosetting temperature of the resin. Heating and slightly pressing and temporarily fixing, UV irradiation is performed from the insulating substrate 3 side through the through opening 1. Here, the UV irradiation conditions may be determined according to the resin layer and the solid-state imaging device chip to be used so that the UV cured layer 4S has a wall thickness of about 50 μm.

この後図2(d)に示すように、この絶縁性基板3表面の配線パターン2に、固体撮像素子チップ5のバンプ6が当接するように、ツールTで加熱しつつ加圧する。
そして、200℃10秒程度の熱圧着処理を行い、配線パターンとバンプとの接続を
確実化し、半導体チップと絶縁性基板との接合を確実にする。このとき加熱加圧と同時に
UV照射を行うようにしてもよい。なお、熱圧着処理については150℃30秒、250度1秒程度でもよい。
Thereafter, as shown in FIG. 2 (d), pressure is applied while heating with the tool T so that the bumps 6 of the solid-state imaging device chip 5 come into contact with the wiring pattern 2 on the surface of the insulating substrate 3.
Then, a thermocompression treatment at 200 ° C. for about 10 seconds is performed to ensure the connection between the wiring pattern and the bump, and to ensure the bonding between the semiconductor chip and the insulating substrate. At this time, UV irradiation may be performed simultaneously with heating and pressurization. The thermocompression treatment may be performed at 150 ° C. for 30 seconds and about 250 ° C. for 1 second.

そして、熱圧着用のツールTを外し、図2(e)に示すように接続がなされる。   And the tool T for thermocompression bonding is removed, and the connection is made as shown in FIG.

一方、水晶板の表面に所望の屈折率を有する多層構造の誘電体薄膜を蒸着し誘電体干渉フィルタからなるガラス基板8からなる透光性部材としての光学フィルタを形成する。
そして、絶縁性基板3の固体撮像素子チップ搭載面に対向する面側に、貫通開口部1を塞ぐように、光学フィルタ(8)を貼着する。
On the other hand, a multilayered dielectric thin film having a desired refractive index is vapor-deposited on the surface of the quartz plate to form an optical filter as a translucent member made of a glass substrate 8 made of a dielectric interference filter.
Then, an optical filter (8) is attached to the surface of the insulating substrate 3 facing the solid-state imaging element chip mounting surface so as to close the through opening 1.

続いて、絶縁性基板3にコネクタ11、コンデンサ、抵抗などのチップ部品12、制御MCM13などを接続し、最後に、レンズ鏡筒10を、図示しない接着性樹脂によって絶縁性基板3または光学フィルタとしてのガラス基板8に接続し図1に示した固体撮像装置が形成される。   Subsequently, a connector 11, a capacitor, a chip component 12 such as a resistor, a control MCM 13 and the like are connected to the insulating substrate 3, and finally the lens barrel 10 is formed as an insulating substrate 3 or an optical filter by an adhesive resin (not shown). The solid-state imaging device shown in FIG. 1 is formed by connecting to the glass substrate 8.

このようにして形成された固体撮像装置では、貫通開口部1を臨むように所定の厚さで形成された壁状のUV硬化層4Sによって樹脂の流れ出しを確実に防止することができるため確実で信頼性の高い接続が可能となる。   In the solid-state imaging device formed in this way, the resin can be reliably prevented from flowing out by the wall-shaped UV cured layer 4S formed with a predetermined thickness so as to face the through opening 1. A highly reliable connection is possible.

また、固体撮像素子を配線パターン上に装着(仮固定)と同時に、UV照射を行い、ダムとなるUV硬化層4Sを形成し、仮固定したのち、熱圧着によりバンプと配線パターンとの電気的接続と、機械的接合とを同時に行うようにしているため、生産性が高い。
また、ダムの存在により、十分に加熱し樹脂の流動性を高めた上で加圧することができ、確実な接続が可能となり、固体撮像素子の配線回路部との接続の確実性を高めることができる。
At the same time as mounting (temporarily fixing) the solid-state imaging device on the wiring pattern, UV irradiation is performed to form a UV curable layer 4S serving as a dam. After temporarily fixing, the electrical connection between the bump and the wiring pattern is achieved by thermocompression bonding. Since the connection and the mechanical joining are performed simultaneously, the productivity is high.
In addition, due to the presence of the dam, it is possible to pressurize after sufficiently heating and improving the fluidity of the resin, enabling a reliable connection and improving the reliability of the connection to the wiring circuit portion of the solid-state imaging device. it can.

また、固体撮像素子の配線パターンへの位置決めに際しても、粘度の高い樹脂を用いて仮固定するようにすれば、熱圧着工程間出に位置ずれが発生することもない。
また、仮固定なしに一括固定するようにしてもよいことはいうまでもない。
Further, when the solid-state imaging device is positioned on the wiring pattern, if it is temporarily fixed using a resin having a high viscosity, a positional shift does not occur during the thermocompression bonding process.
Needless to say, it may be fixed together without temporary fixing.

また、絶縁性基板への貫通開口部の形成に際しては、レーザ加工等を用いればよい。また配線回路部の形成に際しても、スクリーン印刷法に限定されることなく、スパッタリングあるいはメッキ等を用いるようにしてもよい。   In forming the through opening in the insulating substrate, laser processing or the like may be used. Further, the formation of the wiring circuit portion is not limited to the screen printing method, and sputtering or plating may be used.

(実施の形態2)
本実施の形態2の固体撮像装置の製造工程について説明する。
前記実施の形態1では、固体撮像素子チップを装着後、透光性部材としてのガラス基板8を形成したが、本実施の形態ではガラス基板を先に装着する。
(Embodiment 2)
A manufacturing process of the solid-state imaging device according to the second embodiment will be described.
In the first embodiment, the glass substrate 8 as the translucent member is formed after mounting the solid-state imaging device chip. In the present embodiment, the glass substrate is mounted first.

次に、この固体撮像装置の製造方法について説明する。
まず、前記実施の形態1と同様に、遮光性の絶縁性基板3を用意し、貫通開口部1を形成するとともに、配線パターン2を形成した後、この絶縁性基板3の貫通開口部1を塞ぐように、固体撮像素子チップ搭載面に対向する面側に、光学フィルタ3を貼着する(図3(a))。
続いて、図3(b)に示すように、この絶縁性基板の配線パターンの一部を覆うように上述した絶縁性樹脂を塗布し樹脂層4を形成する。
Next, a method for manufacturing the solid-state imaging device will be described.
First, as in the first embodiment, a light-shielding insulating substrate 3 is prepared, a through opening 1 is formed, a wiring pattern 2 is formed, and then the through opening 1 of the insulating substrate 3 is formed. The optical filter 3 is stuck on the surface facing the solid-state image sensor chip mounting surface so as to close (FIG. 3A).
Subsequently, as shown in FIG. 3B, the above-described insulating resin is applied so as to cover a part of the wiring pattern of the insulating substrate, and the resin layer 4 is formed.

さらに図3(c)に示すように、前記実施の形態1と同様に、この絶縁性基板3表面の配線パターン2に、固体撮像素子チップ5のバンプ6が接するように配置し、若干加圧して仮固定し、貫通開口部1を介して絶縁性基板3側からUV照射を行い、壁状のUV硬化層4Sを形成する。   Further, as shown in FIG. 3C, as in the first embodiment, the bumps 6 of the solid-state imaging device chip 5 are arranged so as to contact the wiring pattern 2 on the surface of the insulating substrate 3 and slightly pressurized. Then, UV irradiation is performed from the insulating substrate 3 side through the through opening 1 to form a wall-shaped UV cured layer 4S.

この後前記実施の形態1と同様にして、図3(d)に示すように、この絶縁性基板3表面の配線パターン2に、固体撮像素子チップ5が当接するように、ツールTで加熱しつつ加圧する。   Thereafter, in the same manner as in the first embodiment, as shown in FIG. 3D, the tool T is heated so that the solid-state imaging device chip 5 comes into contact with the wiring pattern 2 on the surface of the insulating substrate 3. While applying pressure.

そして、熱圧着用のツールTを外し、図3(e)に示すように接続がなされ、図1に示した固体撮像装置が形成される。   Then, the tool T for thermocompression bonding is removed, and connection is made as shown in FIG. 3E, so that the solid-state imaging device shown in FIG. 1 is formed.

この方法によっても前記実施の形態1と同様に、UV硬化層4Sによって樹脂の流れ出しを確実に防止することができるため確実で信頼性の高い接続が可能となる。
またこの方法によれば、上記効果に加えて、固体撮像素子チップが、ガラス基板(透光性部材)8の固着に際して発生するガスによる汚染を防止することができる。
Also by this method, as in the first embodiment, since the resin flow can be reliably prevented by the UV cured layer 4S, a reliable and highly reliable connection is possible.
Further, according to this method, in addition to the above effects, the solid-state imaging device chip can be prevented from being contaminated by gas generated when the glass substrate (translucent member) 8 is fixed.

さらにここでは固体撮像素子実装時に発生する、内部ガスを抜くことができるように、貫通開口部1に通じる貫通孔を光学フィルタの一部または光学フィルタ接着部などに形成しておくのが望ましい。他部については、上記第1の実施の形態と同様に形成されている。   Further, here, it is desirable to form a through hole leading to the through opening 1 in a part of the optical filter or an optical filter bonding portion so that the internal gas generated when the solid-state imaging device is mounted can be extracted. Other parts are formed in the same manner as in the first embodiment.

(実施の形態3)
前記実施の形態では、遮光性の絶縁性基板を用いた場合について説明したが、この例では透光性の絶縁性基板を用いた場合について説明する。
この場合、図2(c)、(d)および図3(c)、(d)に相当するUV照射工程において、図4に示すように貫通開口部に相当する領域に開口Oを有する金属製の遮光マスクMを装着した状態でUV照射を行う点が異なるのみである。
この方法によっても絶縁性基板を自由に選択することができ、しかも遮光マスクを装着するのみでよいため作業性も向上する。
なお、この場合、透光性基板13は貫通開口部をもたない透光性基板であってもよい。
(Embodiment 3)
In the above embodiment, the case where a light-shielding insulating substrate is used has been described. In this example, a case where a light-transmitting insulating substrate is used will be described.
In this case, in the UV irradiation process corresponding to FIGS. 2C and 2D and FIGS. 3C and 3D, as shown in FIG. 4, a metal having an opening O in a region corresponding to the through opening is provided. The only difference is that the UV irradiation is performed with the light-shielding mask M attached.
Also by this method, the insulating substrate can be freely selected, and the workability is improved because it is only necessary to attach the light shielding mask.
In this case, the translucent substrate 13 may be a translucent substrate having no through opening.

(実施の形態4)
前記実施の形態では、周辺回路を構成するチップ部品を形成したハイブリッド基板を用いたが、この例では、回路部品を集積化したシリコン基板を貼り合わせたり、このシリコン基板を基板として用いるなど半導体基板23を用いてもよい。また図5に示すように多層配線基板を用いてもよい。
これにより、小型化をはかることができるとともに、実装後ダイシングをするいわゆるチップサイズパッケージとして実装することも可能となる。
(Embodiment 4)
In the above embodiment, the hybrid substrate on which the chip components constituting the peripheral circuit are formed is used. However, in this example, a semiconductor substrate such as a silicon substrate on which circuit components are integrated or a silicon substrate is used as a substrate. 23 may be used. A multilayer wiring board may be used as shown in FIG.
As a result, it is possible to reduce the size and mount the chip as a so-called chip size package that performs dicing after mounting.

製造に際しても、所望の素子領域を形成してなる半導体基板23を形成し、この半導体基板23上に固体撮像素子基板、および光学フィルタとなる透光性基板を接合し、最後にダイシングラインにしたがってダイシングし、固体撮像装置を得るようにすることも可能である。   Also in manufacturing, a semiconductor substrate 23 formed by forming a desired element region is formed, a solid-state image pickup device substrate and a translucent substrate serving as an optical filter are bonded onto the semiconductor substrate 23, and finally according to a dicing line. It is also possible to obtain a solid-state imaging device by dicing.

(実施の形態5)
また前記実施の形態では、樹脂層は、貫通開口部を形成した後、1工程の塗布によって形成したが、本実施の形態では、貫通開口部に対応する領域に感光性樹脂を塗布形成した後、貫通開口部を開口し、この貫通開口部を介して、UV照射をし、UV硬化レジスト層14Sからなるダムを形成した後、熱硬化性樹脂層14Hを形成する。
(Embodiment 5)
Moreover, in the said embodiment, after forming the through-opening part, the resin layer was formed by application | coating of 1 process, However, in this Embodiment, after apply | coating and forming the photosensitive resin in the area | region corresponding to a through-opening part The through opening is opened, and UV irradiation is performed through the through opening to form a dam composed of the UV curable resist layer 14S, and then the thermosetting resin layer 14H is formed.

この状態で固体撮像素子チップ5を装着し、前記実施の形態2の図2(d)に示した工程と同様にして、熱圧着を行う。すなわち図6(a)に示すように、膜厚20μm程度のめっき層からなる配線パターン2の形成された板厚100μm程度の遮光性の絶縁性基板3の表面に、膜厚50μm程度の感光性フォトレジスト14Rを塗布し、打ち抜きまたはケミカルエッチングにより貫通開口部1を形成する。ここで感光性樹脂膜としては、ポリイミド、エポキシ、ウレタン変成エポキシなどを用いる、   In this state, the solid-state imaging element chip 5 is mounted, and thermocompression bonding is performed in the same manner as the process shown in FIG. That is, as shown in FIG. 6A, a light-sensitive insulating substrate 3 having a thickness of about 100 μm on which a wiring pattern 2 made of a plating layer having a thickness of about 20 μm is formed has a photosensitivity having a thickness of about 50 μm. A photoresist 14R is applied, and the through opening 1 is formed by punching or chemical etching. Here, as the photosensitive resin film, polyimide, epoxy, urethane modified epoxy or the like is used.

そして図6(b)に示すように、この貫通開口部1を介して遮光性基板の裏面側から光照射を行いUV硬化層14Sを形成する。
さらに図6(c)に示すように、このUV硬化層14Sをダムとして、この内側に熱硬化性樹脂層14Nを塗布する。この熱硬化性樹脂層としてはエポキシ、ウレタン変成エポキシ等を用いる。
And as shown in FIG.6 (b), light irradiation is performed from the back surface side of a light-shielding board | substrate through this through-opening part 1, and the UV hardening layer 14S is formed.
Further, as shown in FIG. 6 (c), a thermosetting resin layer 14N is applied to the inside of the UV cured layer 14S as a dam. As the thermosetting resin layer, epoxy, urethane-modified epoxy or the like is used.

このようにして、UV硬化層14Sをダムとして内側に熱硬化性樹脂層14Nを形成した絶縁性基板3の貫通開口部1に臨む配線パターン2に、固体撮像素子チップ5のバンプ6が接するように、配置し、前記実施の形態1及び2と同様に、熱圧着を行う。   In this way, the bumps 6 of the solid-state imaging device chip 5 are in contact with the wiring pattern 2 facing the through opening 1 of the insulating substrate 3 in which the UV curable layer 14S is used as a dam and the thermosetting resin layer 14N is formed inside. In the same manner as in the first and second embodiments, thermocompression bonding is performed.

このようにして形成された固体撮像装置では、貫通開口部1を臨むように所定の厚さで形成された壁状のUV硬化層14Sによって樹脂の流れ出しを確実に防止することができるため確実で信頼性の高い接続が可能となる。
また本実施の形態では、UV硬化性樹脂層と熱硬化性樹脂層とを別に形成したが、UV硬化層にも若干の熱硬化性物質を含有させるようにしてもより良好な固定が可能となる。
In the solid-state imaging device thus formed, the resin can be reliably prevented from flowing out by the wall-shaped UV cured layer 14 </ b> S formed with a predetermined thickness so as to face the through opening 1. A highly reliable connection is possible.
In this embodiment, the UV curable resin layer and the thermosetting resin layer are separately formed. However, even if the UV curable layer contains some thermosetting substance, better fixing is possible. Become.

(実施の形態6)
また前記実施の形態5では、UV硬化層の形成に際し、遮光性の絶縁性基板を用い、この絶縁性基板に形成された貫通開口部を介して光照射をすることにより実現したが、この例では、フィルムキャリアなどの透光性基板を使用した例について説明する。
この方法では、前記実施の形態1乃至4と同様に、UV硬化性の付加された熱硬化性の樹脂を用いた感光性の樹脂テープを用い、配線パターンおよび遮光マスクM1をマスクとして接合すべき領域にUV硬化層19Sと化した樹脂層とその内側に熱硬化樹脂層を形成した樹脂層のパターンを接合領域に形成するものである。
(Embodiment 6)
In the fifth embodiment, the UV cured layer is formed by using a light-shielding insulating substrate and irradiating light through a through opening formed in the insulating substrate. Now, an example using a translucent substrate such as a film carrier will be described.
In this method, similar to the first to fourth embodiments, a photosensitive resin tape using a UV curable thermosetting resin is used, and the wiring pattern and the light shielding mask M1 should be joined together as a mask. A pattern of a resin layer having a UV curable layer 19S formed in the region and a resin layer having a thermosetting resin layer formed therein is formed in the bonding region.

まず、銅箔を貼着したフィルム基板を出発材料としフォトリソグラフィを用いて銅箔をパターニングすることにより、銅パターンからなる配線パターン12を形成する。そして、この透光性基板13に感光性の樹脂テープ19を貼着する。
そして図7(a)に示すように、固体撮像素子チップのバンプに対応する領域に開口Oを有する金属製の遮光マスクM1を装着した状態でUV照射を行う。
これにより図7(b)に示すように、開口Oに相当する領域の感光性樹脂テープ19が硬化せしめられ、UV硬化層19Sからなるダムが形成される。このとき、配線パターン12上の感光性の樹脂テープ19は配線パターン12によって遮光され、そのまま樹脂層19Nとして残る。
First, the wiring pattern 12 which consists of a copper pattern is formed by patterning copper foil using photolithography using the film substrate which stuck copper foil as a starting material. Then, a photosensitive resin tape 19 is attached to the translucent substrate 13.
Then, as shown in FIG. 7A, UV irradiation is performed with a metal light-shielding mask M1 having an opening O in a region corresponding to the bumps of the solid-state imaging device chip.
As a result, as shown in FIG. 7B, the photosensitive resin tape 19 in the region corresponding to the opening O is cured, and a dam composed of the UV cured layer 19S is formed. At this time, the photosensitive resin tape 19 on the wiring pattern 12 is shielded by the wiring pattern 12 and remains as it is as the resin layer 19N.

この状態で、貫通開口部1を打ち抜きにより形成し、前記実施の形態と同様に、固体撮像素子チップを搭載し熱圧着することにより、樹脂層19Nは良好に流動化され、熱硬化によって強固な接合状態を形成する。   In this state, the through-opening 1 is formed by punching, and the resin layer 19N is fluidized well and hardened by thermosetting by mounting the solid-state imaging device chip and thermocompression bonding as in the above embodiment. A joined state is formed.

この方法によっても絶縁性基板を自由に選択することができ、しかも遮光マスクを装着するのみでよいため作業性も向上する。また、配線パターン12を遮光マスクとして使用し、配線パターン12上の樹脂層がUV硬化するのを防ぐことができるため、自己整合的にUV硬化層が形成され、信頼性の高い接続を実現することが可能となる。
この方法によれば、配線パターンをマスクの一部に用いるため、高度のマスク精度は不要であり、容易に高精度の微細パターン構造を形成することができる。
Also by this method, the insulating substrate can be freely selected, and the workability is improved because it is only necessary to attach the light shielding mask. Further, since the wiring pattern 12 can be used as a light shielding mask and the resin layer on the wiring pattern 12 can be prevented from being UV-cured, a UV-cured layer is formed in a self-aligning manner and a highly reliable connection is realized. It becomes possible.
According to this method, since the wiring pattern is used as a part of the mask, a high degree of mask accuracy is unnecessary, and a highly accurate fine pattern structure can be easily formed.

なお、貫通開口部を打ち抜きによって形成したが、この貫通開口部は不要である場合もある。この場合はこの貫通開口部に相当する領域に対応して樹脂テープに孔を形成しておくようにすればよい。   Although the through opening is formed by punching, this through opening may be unnecessary. In this case, a hole may be formed in the resin tape corresponding to the region corresponding to the through opening.

また実施の形態では透光性部材として光学フィルタを用いたが光学フィルタに限定されることなく、透光性の封止部材、レンズなど適宜変形可能である。   In the embodiments, an optical filter is used as the translucent member. However, the optical filter is not limited to the optical filter, and a translucent sealing member, a lens, and the like can be appropriately modified.

また、前記実施の形態では、固体撮像素子チップについて説明したが、これに限定されることなく、通常のICチップなど、中空実装の必要な半導体チップにも適用可能であることはいうまでもない。   Although the solid-state imaging device chip has been described in the above embodiment, it is needless to say that the present invention is not limited to this and can be applied to a semiconductor chip that requires hollow mounting, such as a normal IC chip. .

本発明の固体撮像装置は、貫通開口部からのUV照射により形成されたUV硬化層をダムとして、熱圧着により電気的接続と機械的接続とを同時に実現するようにしているため、作業性が良好でかつ信頼性の高いことから、カメラとして、光通信分野に限定されることなく、CD、DVDなどの読み取り素子、複写機の読み取り素子、医療機器あるいはドアホンなど、種々の光学機器への適用が可能である。   In the solid-state imaging device of the present invention, the UV cured layer formed by UV irradiation from the through-opening is used as a dam, and electrical connection and mechanical connection are realized simultaneously by thermocompression bonding. Because it is good and reliable, the camera is not limited to the optical communication field, but can be applied to various optical devices such as reading elements such as CD and DVD, reading elements of copiers, medical equipment and door phones. Is possible.

本発明の第1の実施の形態における固体撮像装置を示す断面図である。It is sectional drawing which shows the solid-state imaging device in the 1st Embodiment of this invention. 本発明の第1の実施の形態の固体撮像装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the solid-state imaging device of the 1st Embodiment of this invention. 本発明の第2の実施の形態の固体撮像装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the solid-state imaging device of the 2nd Embodiment of this invention. 本発明の第3の実施の形態における固体撮像装置を示す断面図である。It is sectional drawing which shows the solid-state imaging device in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における固体撮像装置を示す断面図である。It is sectional drawing which shows the solid-state imaging device in the 4th Embodiment of this invention. 本実施の形態5の固体設像装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the solid-state image device of this Embodiment 5. 本実施の形態6の固体撮像装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the solid-state imaging device of this Embodiment 6. 従来例の固体撮像装置を示す要部説明図である。It is principal part explanatory drawing which shows the solid-state imaging device of a prior art example.

符号の説明Explanation of symbols

1 貫通開口部
2 配線パターン
3 絶縁性基板
4 樹脂層
4S UV硬化層
4H 熱硬化層
5 固体撮像素子
6 バンプ
8 光学フィルタ(透光性部材)
10 鏡筒
DESCRIPTION OF SYMBOLS 1 Through opening part 2 Wiring pattern 3 Insulating board | substrate 4 Resin layer 4S UV hardening layer 4H Thermosetting layer 5 Solid-state image sensor 6 Bump 8 Optical filter (translucent member)
10 Lens tube

Claims (13)

貫通開口部を有し、配線回路部を備えた基板と、
前記貫通開口部に装着された固体撮像素子とを具備し、
前記基板の前記配線回路部に対して前記固体撮像素子が電気的に接続され、
この電気的に接続された部分の周囲が樹脂層を介して固着されており、
前記樹脂層のうち前記貫通開口部に臨む領域が壁状に光硬化され、
残る領域が熱硬化されている固体撮像装置。
A substrate having a through opening and a wiring circuit portion;
Comprising a solid-state imaging device attached to the through opening,
The solid-state imaging device is electrically connected to the wiring circuit portion of the substrate;
The periphery of this electrically connected part is fixed via a resin layer,
Of the resin layer, the region facing the through opening is photocured in a wall shape,
A solid-state imaging device in which the remaining region is thermally cured.
請求項1に記載の固体撮像装置であって、
前記固体撮像素子から所定の間隔を隔てて前記貫通開口部を塞ぐように配設された透光性部材を具備し、
前記基板は、絶縁性基板であり、
前記配線回路部は、前記絶縁性基板上の前記固体撮像素子の装着される部分にその一部が露呈せしめられた配線パターンを有し、
前記固体撮像素子は前記回路部の前記配線パターンにフェースダウンで直接接続されている固体撮像装置。
The solid-state imaging device according to claim 1,
Comprising a translucent member disposed so as to close the through opening at a predetermined interval from the solid-state imaging device;
The substrate is an insulating substrate;
The wiring circuit portion has a wiring pattern in which a part of the wiring circuit portion is exposed to a portion where the solid-state imaging device is mounted on the insulating substrate.
The solid-state imaging device, wherein the solid-state imaging device is directly connected face-down to the wiring pattern of the circuit unit.
請求項1または2に記載の固体撮像装置であって、
前記基板は、遮光性基板である固体撮像装置。
The solid-state imaging device according to claim 1 or 2,
The solid-state imaging device, wherein the substrate is a light-shielding substrate.
請求項1乃至3のいずれかに記載の固体撮像装置であって、
前記樹脂層は紫外線(UV)硬化性及び熱硬化性を具備した樹脂で構成される固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 3,
The resin layer is a solid-state imaging device composed of a resin having ultraviolet (UV) curability and thermosetting.
請求項4に記載の固体撮像装置であって、
前記樹脂層は紫外線硬化性の付加された熱硬化性アクリル樹脂で構成される固体撮像装置。
The solid-state imaging device according to claim 4,
The resin layer is a solid-state imaging device composed of a thermosetting acrylic resin to which ultraviolet curing is added.
請求項4に記載の固体撮像装置であって、
前記樹脂層はUV硬化性の付加された熱硬化性エポキシ樹脂で構成される固体撮像装置。
The solid-state imaging device according to claim 4,
The resin layer is a solid-state imaging device composed of a thermosetting epoxy resin to which UV curing is added.
請求項1に記載の固体撮像装置であって、
前記基板は、信号処理回路の集積化された半導体基板である固体撮像装置。
The solid-state imaging device according to claim 1,
The solid-state imaging device, wherein the substrate is a semiconductor substrate on which a signal processing circuit is integrated.
中央部に貫通開口部を有し、配線回路部を有する基板に、前記貫通開口部を臨むように樹脂層を形成する工程と、
前記樹脂層を介して固体撮像素子を装着する固体撮像素子装着工程と、
前記基板側から前記貫通開口部を介して紫外線を照射し、前記樹脂層のうち、前記貫通開口部を臨むように形成された領域を硬化してUV硬化層を形成する工程と、
前記固体撮像素子と前記配線回路部とが電気的に接続するように加圧しつつ前記樹脂層を加熱し、前記固体撮像素子を前記配線回路部に熱圧着する工程とを含む固体撮像装置の製造方法。
Forming a resin layer on a substrate having a through-opening in a central part and having a wiring circuit part so as to face the through-opening;
A solid-state image sensor mounting step of mounting the solid-state image sensor via the resin layer;
Irradiating ultraviolet rays from the substrate side through the through opening, curing a region of the resin layer formed to face the through opening, and forming a UV cured layer;
Manufacturing the solid-state imaging device including a step of heating the resin layer while applying pressure so that the solid-state imaging element and the wiring circuit unit are electrically connected, and thermocompression-bonding the solid-state imaging element to the wiring circuit unit Method.
請求項8に記載の固体撮像装置の製造方法であって、
前記熱圧着する工程の後、
前記基板の前記貫通開口部を塞ぐように透光性部材を装着する透光性部材装着工程とを含む固体撮像装置の製造方法。
It is a manufacturing method of the solid-state imaging device according to claim 8,
After the thermocompression bonding step,
And a translucent member mounting step of mounting a translucent member so as to close the through opening of the substrate.
請求項8に記載の固体撮像装置の製造方法であって、
前記固体撮像素子装着工程に先立ち、
配線層を有する前記基板の貫通開口部を塞ぐように透光性部材を装着する透光性部材装着工程を含むことを特徴とする固体撮像装置の製造方法。
It is a manufacturing method of the solid-state imaging device according to claim 8,
Prior to the solid-state image sensor mounting step,
A method for manufacturing a solid-state imaging device, comprising: a translucent member mounting step of mounting a translucent member so as to close a through opening of the substrate having a wiring layer.
請求項8乃至10のいずれかに記載の固体撮像装置の製造方法であって、
前記基板は遮光性基板である固体撮像装置の製造方法。
It is a manufacturing method of the solid-state image sensing device according to any one of claims 8 to 10,
The method for manufacturing a solid-state imaging device, wherein the substrate is a light-shielding substrate.
請求項8乃至10のいずれかに記載の固体撮像装置の製造方法であって、
前記基板は透光性基板であって、
前記UV硬化層を形成する工程に先立ち、前記基板に前記貫通開口部に対応した位置に開口を有する遮光性部材を装着する工程を含む固体撮像装置の製造方法。
It is a manufacturing method of the solid-state image sensing device according to any one of claims 8 to 10,
The substrate is a translucent substrate,
Prior to the step of forming the UV cured layer, a method of manufacturing a solid-state imaging device including a step of mounting a light-shielding member having an opening at a position corresponding to the through opening on the substrate.
請求項12に記載の固体撮像装置の製造方法であって、
前記UV硬化層を形成する工程は、前記配線回路部の接合部に開口する遮光性部材をマスクとしてUV照射を行い、前記配線回路部をマスクとして少なくとも一部を自己整合的にUV硬化する工程である固体撮像装置の製造方法。
It is a manufacturing method of the solid-state imaging device according to claim 12,
The step of forming the UV cured layer includes a step of performing UV irradiation using a light-shielding member opening at a joint portion of the wiring circuit portion as a mask, and UV curing at least a part of the wiring circuit portion as a mask in a self-aligning manner A method for manufacturing a solid-state imaging device.
JP2003345904A 2003-10-03 2003-10-03 Solid-state imaging device and manufacturing method thereof Pending JP2005116628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345904A JP2005116628A (en) 2003-10-03 2003-10-03 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345904A JP2005116628A (en) 2003-10-03 2003-10-03 Solid-state imaging device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005116628A true JP2005116628A (en) 2005-04-28

Family

ID=34539036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345904A Pending JP2005116628A (en) 2003-10-03 2003-10-03 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005116628A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171925A (en) * 2007-01-10 2008-07-24 Denso Corp Manufacturing method for bonding structure
JP2008226895A (en) * 2007-03-08 2008-09-25 New Japan Radio Co Ltd Optical semiconductor device and its manufacturing method
US7679669B2 (en) 2006-05-18 2010-03-16 Samsung Electro-Mechanics Co., Ltd. Camera module package
JP2010510542A (en) * 2006-11-16 2010-04-02 テッセラ・ノース・アメリカ・インコーポレイテッド Control of stray light and related method in camera system employing optical laminate
JP2011086670A (en) * 2009-10-13 2011-04-28 Renesas Electronics Corp Manufacturing method of solid-state image pickup device
JP2011243612A (en) * 2010-05-14 2011-12-01 Sony Corp Semiconductor device and its manufacturing method and electronic apparatus
US8300124B2 (en) 2005-11-25 2012-10-30 Samsung Electro-Mechanics Co., Ltd. Image sensor module and camera module package having the same
CN102833474A (en) * 2012-08-10 2012-12-19 苏州佳世达电通有限公司 Camera and camera mounting method
WO2014010258A1 (en) * 2012-07-13 2014-01-16 パナソニック株式会社 Acrylic resin composition for semiconductor sealing, semiconductor device using same, and manufacturing method thereof
US9118825B2 (en) 2008-02-22 2015-08-25 Nan Chang O-Film Optoelectronics Technology Ltd. Attachment of wafer level optics
US9419032B2 (en) 2009-08-14 2016-08-16 Nanchang O-Film Optoelectronics Technology Ltd Wafer level camera module with molded housing and method of manufacturing
JP2020068349A (en) * 2018-10-26 2020-04-30 パナソニック株式会社 Imaging module
WO2021098631A1 (en) * 2019-11-18 2021-05-27 维沃移动通信有限公司 Electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799218A (en) * 1992-10-02 1995-04-11 Matsushita Electric Ind Co Ltd Semiconductor device, image sensor and their production
JPH11121653A (en) * 1997-07-31 1999-04-30 Fuji Film Microdevices Co Ltd Semiconductor device and method for manufacturing it
JPH11220115A (en) * 1998-01-30 1999-08-10 Matsushita Electric Ind Co Ltd Manufacture of solid-state image-pickup device
JP2001085653A (en) * 1999-09-13 2001-03-30 Sony Corp Solid-state image pick up device and manufacturing method thereof
JP2001308301A (en) * 2000-04-19 2001-11-02 Sony Corp Solid-state image sensing device and its manufacturing method
JP2002198502A (en) * 2000-12-26 2002-07-12 Seiko Epson Corp Optical instrument, its manufacturing method, and electronic equipment
JP2003168792A (en) * 2001-11-30 2003-06-13 Matsushita Electric Ind Co Ltd Solid state image pickup device and its manufacturing method
JP2003174154A (en) * 2001-12-05 2003-06-20 Matsushita Electric Ind Co Ltd Solid-state imaging device and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799218A (en) * 1992-10-02 1995-04-11 Matsushita Electric Ind Co Ltd Semiconductor device, image sensor and their production
JPH11121653A (en) * 1997-07-31 1999-04-30 Fuji Film Microdevices Co Ltd Semiconductor device and method for manufacturing it
JPH11220115A (en) * 1998-01-30 1999-08-10 Matsushita Electric Ind Co Ltd Manufacture of solid-state image-pickup device
JP2001085653A (en) * 1999-09-13 2001-03-30 Sony Corp Solid-state image pick up device and manufacturing method thereof
JP2001308301A (en) * 2000-04-19 2001-11-02 Sony Corp Solid-state image sensing device and its manufacturing method
JP2002198502A (en) * 2000-12-26 2002-07-12 Seiko Epson Corp Optical instrument, its manufacturing method, and electronic equipment
JP2003168792A (en) * 2001-11-30 2003-06-13 Matsushita Electric Ind Co Ltd Solid state image pickup device and its manufacturing method
JP2003174154A (en) * 2001-12-05 2003-06-20 Matsushita Electric Ind Co Ltd Solid-state imaging device and its manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300124B2 (en) 2005-11-25 2012-10-30 Samsung Electro-Mechanics Co., Ltd. Image sensor module and camera module package having the same
US7679669B2 (en) 2006-05-18 2010-03-16 Samsung Electro-Mechanics Co., Ltd. Camera module package
JP2010510542A (en) * 2006-11-16 2010-04-02 テッセラ・ノース・アメリカ・インコーポレイテッド Control of stray light and related method in camera system employing optical laminate
JP2008171925A (en) * 2007-01-10 2008-07-24 Denso Corp Manufacturing method for bonding structure
JP2008226895A (en) * 2007-03-08 2008-09-25 New Japan Radio Co Ltd Optical semiconductor device and its manufacturing method
US9118825B2 (en) 2008-02-22 2015-08-25 Nan Chang O-Film Optoelectronics Technology Ltd. Attachment of wafer level optics
US9419032B2 (en) 2009-08-14 2016-08-16 Nanchang O-Film Optoelectronics Technology Ltd Wafer level camera module with molded housing and method of manufacturing
JP2011086670A (en) * 2009-10-13 2011-04-28 Renesas Electronics Corp Manufacturing method of solid-state image pickup device
JP2011243612A (en) * 2010-05-14 2011-12-01 Sony Corp Semiconductor device and its manufacturing method and electronic apparatus
WO2014010258A1 (en) * 2012-07-13 2014-01-16 パナソニック株式会社 Acrylic resin composition for semiconductor sealing, semiconductor device using same, and manufacturing method thereof
CN102833474A (en) * 2012-08-10 2012-12-19 苏州佳世达电通有限公司 Camera and camera mounting method
CN102833474B (en) * 2012-08-10 2015-04-08 苏州佳世达电通有限公司 Camera and camera mounting method
JP2020068349A (en) * 2018-10-26 2020-04-30 パナソニック株式会社 Imaging module
JP7294792B2 (en) 2018-10-26 2023-06-20 ヌヴォトンテクノロジージャパン株式会社 Imaging module
WO2021098631A1 (en) * 2019-11-18 2021-05-27 维沃移动通信有限公司 Electronic device

Similar Documents

Publication Publication Date Title
US7547955B2 (en) Semiconductor imaging device and method for manufacturing the same
JP3207319B2 (en) Photoelectric conversion device and method of manufacturing the same
JP3540281B2 (en) Imaging device
KR100684703B1 (en) Solid state imaging device and producing method thereof
US7893514B2 (en) Image sensor package, method of manufacturing the same, and image sensor module including the image sensor package
JP3604248B2 (en) Method for manufacturing semiconductor device
JP2005333142A (en) Chip package, image sensor module including the package, and manufacturing method for them
JP2010045463A (en) Display element, electronic element module, manufacturing method thereof, and electronic information device
KR20060046412A (en) Imaging and electronic apparatus
JP2005116628A (en) Solid-state imaging device and manufacturing method thereof
US20050253275A1 (en) Flip chip package and process of forming the same
JP2004242166A (en) Optical module, its manufacturing method, and electronic equipment
JP2010252164A (en) Solid-state image sensing device
JP2002329851A (en) Image pickup module, its manufacturing method, and image pickup equipment having the same
JP2000269472A (en) Image pickup device
US7888157B2 (en) Image sensor chip package method
JP2002009265A (en) Solid-state image pickup device
JP2005268567A (en) Substrate and its manufacturing method
JP2010034668A (en) Solid-state imaging device and electronic apparatus equipped with the same
JP2006080597A (en) Image pickup module and method of manufacturing the same
JP2005051535A (en) Imaging apparatus and manufacturing method therefor
JP4361300B2 (en) OPTICAL MODULE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
KR100862697B1 (en) Printed circuit board for camera module and camera module using the same
JPH09186308A (en) Manufacture of solid-state image pickup module
US20020074628A1 (en) Flexible wiring film, and semiconductor apparatus and system using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301