JP2005116405A - Electric connector - Google Patents

Electric connector Download PDF

Info

Publication number
JP2005116405A
JP2005116405A JP2003351104A JP2003351104A JP2005116405A JP 2005116405 A JP2005116405 A JP 2005116405A JP 2003351104 A JP2003351104 A JP 2003351104A JP 2003351104 A JP2003351104 A JP 2003351104A JP 2005116405 A JP2005116405 A JP 2005116405A
Authority
JP
Japan
Prior art keywords
conductive contact
contact element
conductive
resin substrate
shield body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003351104A
Other languages
Japanese (ja)
Inventor
Tsutomu Ogino
勉 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2003351104A priority Critical patent/JP2005116405A/en
Publication of JP2005116405A publication Critical patent/JP2005116405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connecting Device With Holders (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an area array type connector for a high frequency IC element without the leakage of a signal current, an interference between adjacent electrodes, and an influence of noise and the like. <P>SOLUTION: The electric connector 1 suitable for the connection of a high frequency IC has a conductive contact element 4 formed integrally to a large number of pierced holes 3 formed in an insulated resin substrate 2, and an outside enclosure conductor (shield body) 5 is formed on the periphery of the conductive contact element 4. Some of the outside enclosure conductors (shield body)4 are formed into chamfer shapes 6 and 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高周波信号を用いるIC素子、または各種電子部品、回路基板の電気的接続に好適な電気コネクターに関する。   The present invention relates to an IC connector using a high-frequency signal, or an electrical connector suitable for electrical connection of various electronic components and a circuit board.

IC素子は、その側面部から入出力用電極が引き出されたQFP( Quad Flat Package )などの形態から、IC素子の高密度化に対応して、IC素子の一面に電極をグリッド状に配置したエリアアレイ型に変化してきている。このようなIC素子を基板と電気的に接続するのに、金属板バネをグリッド状に配置したコネクターや、金属粒子等の導電粒子等を充填混合した導電ゴム接点をグリッド状に配置したコネクター(特許文献1参照)が用いられている。
特願2003−288937号
The IC element is arranged in a grid on one surface of the IC element in accordance with the increase in the density of the IC element from the form such as QFP (Quad Flat Package) in which the input / output electrodes are drawn from the side surface. It is changing to an area array type. In order to electrically connect such an IC element to a substrate, a connector in which metal leaf springs are arranged in a grid shape, or a connector in which conductive rubber contacts filled and mixed with conductive particles such as metal particles are arranged in a grid ( Patent Document 1) is used.
Japanese Patent Application No. 2003-288937

IC素子に用いる信号電流は、近時、益々その周波数が高くなってきている。IC素子に用いられる信号電流の周波数が高くなると、密に配置された電極間で信号電流の漏洩や、隣接電極間での相互干渉、ノイズ等の影響が強くなり、従来のコネクターでは高周波の信号を精度良く伝達することが困難になってきている。   Recently, the frequency of signal currents used for IC elements has been increasing. When the frequency of the signal current used for IC elements increases, the influence of signal current leakage between closely arranged electrodes, mutual interference between adjacent electrodes, noise, etc. becomes stronger. It has become difficult to accurately convey

本発明は、信号電流の漏洩や隣接電極間での相互干渉、ノイズ等の影響のない高周波IC素子用のエリアアレイ型コネクターを提供することを課題とする。   It is an object of the present invention to provide an area array connector for a high frequency IC element that is free from the influence of signal current leakage, mutual interference between adjacent electrodes, noise, and the like.

本発明の電気コネクターは、絶縁性樹脂基板に設けた多数の貫通孔に導電接点素子が一体形成され、前記導電接点素子の周囲に外囲導体(シールド体)が形成されていることを特徴とする。前記外囲導体(シールド体)の一部が切り欠き形状となっていることができる。   The electrical connector of the present invention is characterized in that a conductive contact element is integrally formed in a number of through holes provided in an insulating resin substrate, and an outer conductor (shield body) is formed around the conductive contact element. To do. A part of the surrounding conductor (shield body) may have a cutout shape.

本発明の高周波IC接続用に好適な電気コネクターは、導電性素子の周囲に外囲導体(シールド体)を有するので、信号電流の漏洩や隣接電極間での相互干渉、ノイズ等の影響のない高周波IC素子用のエリアアレイ型コネクターとなり、また、外囲導体(シールド体)の一部に切り欠きを設けた場合には、中心導体(導電性素子)に対応するIC素子または基板の電極からの引き出し配線をIC素子または基板の表面で行うことができるので、特性インピーダンスを考慮したIC素子や基板が簡易になり、コスト低減の効果を有する。   The electrical connector suitable for high-frequency IC connection according to the present invention has an outer conductor (shield body) around the conductive element, so that there is no influence of leakage of signal current, mutual interference between adjacent electrodes, noise, and the like. It becomes an area array type connector for high-frequency IC elements, and when a notch is provided in a part of the outer conductor (shield body), the IC element corresponding to the central conductor (conductive element) or the electrode of the substrate Since the lead-out wiring can be performed on the surface of the IC element or the substrate, the IC element or the substrate considering the characteristic impedance is simplified, and the cost can be reduced.

本発明は、高周波信号電流の流れる電極を導通させる導電接点素子の周囲に外囲導体を設けてシールドし、高周波信号電流の漏洩や隣接電極からのノイズ信号の混入を防止することを基本とする。
以下、図を用いて本発明を詳細に説明する。
図1は、本発明の電気コネクターの1実施の形態を示す簡略化した平面模式図である。図2は、図1の本発明の電気コネクターの1実施の形態における細部構造を示す簡略化した断面模式図である。図3は、外囲導体(シールド体)に設けた切り欠きを示す説明図である。
The present invention is based on the provision of an outer conductor around a conductive contact element that conducts an electrode through which a high-frequency signal current flows, and shielding it to prevent leakage of the high-frequency signal current and mixing of noise signals from adjacent electrodes. .
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a simplified schematic plan view showing an embodiment of the electrical connector of the present invention. FIG. 2 is a simplified cross-sectional schematic view showing a detailed structure in an embodiment of the electrical connector of the present invention shown in FIG. FIG. 3 is an explanatory view showing notches provided in the outer conductor (shield body).

図1において、本発明の電気コネクター1は、予め貫通孔3(図2)が設けられた絶縁性樹脂基板2に、貫通孔3を利用して絶縁性樹脂基板2の両面に突出する弾性エラストマーからなる導電接点素子4がグリッド状に多数配置され、その導電接点素子4の内の所要のものの周囲を囲繞して、導電接点素子4と同様に、貫通孔3を利用して絶縁性樹脂基板2の両面に突出する弾性エラストマーからなる外囲導体(シールド体)5が一体的に形成されてなる。
図1では、外囲導体5が全ての導電接点素子4に設けられているが、図2に示すように、シールドを必要とする導電接点素子4にのみ外囲導体5を設けるようにすることもできる。
In FIG. 1, an electrical connector 1 of the present invention is an elastic elastomer that protrudes on both sides of an insulating resin substrate 2 by using the through holes 3 on an insulating resin substrate 2 provided with through holes 3 (FIG. 2) in advance. A plurality of conductive contact elements 4 are arranged in a grid shape, surrounding the periphery of necessary ones of the conductive contact elements 4, and using the through holes 3 as in the case of the conductive contact elements 4, an insulating resin substrate An outer conductor (shield body) 5 made of an elastic elastomer projecting on both surfaces of 2 is integrally formed.
In FIG. 1, the outer conductor 5 is provided on all the conductive contact elements 4. However, as shown in FIG. 2, the outer conductor 5 is provided only on the conductive contact elements 4 that require shielding. You can also.

絶縁性樹脂基板の設ける貫通孔は、導電接点素子用には中心部に1個、外囲導体用には例えば円周位置に90°配置(4個)とか、60°配置(6個)等適宜に配置すればよい。
導電接点素子は、円柱状・角柱状でも良いし、円錐台状・角錐台状でも良い。外囲導体の断面形状も、矩形でも台形でも良い。なお、導電接点素子の中心垂直断面形状と外囲導体の顔面形状とを同等とすることもできるが、外囲導体の厚さを薄目にすることもできる(図1・図2ではそのように描かれている)。
導電接点素子も外囲導体も弾性を有する導電性エラストマーとすることにより、IC素子や基板の電極の高さにバラツキがある場合にも、追随対応することができる。導電接点素子および外囲導体の節煙性樹脂基板表面からの高さは、大きい方が電極高さのバラツキに対応しやすいが、高くなると、押圧圧縮するに際して曲がったりして相互に接触する可能性が出てくるし、導通抵抗も大きくなるので、適宜の兼ね合いで設計する。円錐台状・角錐台状や、断面形状が台形である方が、押圧圧縮に際して相互に接触することがより少なくなるが、それだけ底面積を要することになり、配置密度に制約がでてくる。この面でも両者の兼ね合いで適宜設計する。
The number of through-holes provided in the insulating resin substrate is one at the center for conductive contact elements, 90 ° (4) or 60 ° (6) at the circumferential position for the outer conductor, for example. What is necessary is just to arrange | position suitably.
The conductive contact element may be cylindrical or prismatic, or may be a truncated cone or a truncated pyramid. The cross-sectional shape of the surrounding conductor may be rectangular or trapezoidal. The central vertical cross-sectional shape of the conductive contact element and the face shape of the surrounding conductor can be made equal, but the thickness of the surrounding conductor can also be reduced (as shown in FIGS. 1 and 2). Drawn).
By making the conductive contact element and the surrounding conductor elastic conductive elastomers, it is possible to follow even if the height of the electrode of the IC element or the substrate varies. The larger the height of the conductive contact element and the surrounding conductor from the surface of the smoke-saving resin substrate, the easier it is to cope with variations in the electrode height, but if it is higher, there is a possibility of bending and contact with each other when it is compressed And the conduction resistance increases, so design with an appropriate balance. The frustoconical shape, the truncated pyramid shape, and the trapezoidal cross-sectional shape are less in contact with each other at the time of pressing and compressing, but this requires a bottom area and restricts the arrangement density. Also in this aspect, the design is appropriately made in consideration of both.

導電接点素子および外囲導体は、上記の導電性組成物を金型に貫通孔を形成した絶縁性樹脂基板を配置して成形することによって製造される。導電接点素子と外囲導体とを異なる組成成分の導電性エラストマーとするときは、繰り返し成形する。
この導電接点素子の硬度は、上下方向から圧縮して電気的被接合物の電極を相互に電気的に接合することから、50〜80、好ましくは60〜80のゴム硬さ(JIS K6253 デュロメータ硬さ タイプA)であることが好ましい。ゴム硬さが50未満では十分な反発荷重が得られず、電気的接続が安定しない。また、ゴム硬さが80よりも大きいと圧縮に要する荷重が大きくなり、電気的被接合物を損傷してしまう虞がある。
The conductive contact element and the surrounding conductor are manufactured by arranging and molding the above-described conductive composition on an insulating resin substrate having through holes formed in a mold. When the conductive contact element and the surrounding conductor are made of conductive elastomers having different composition components, they are repeatedly molded.
The hardness of the conductive contact element is 50 to 80, preferably 60 to 80 rubber hardness (JIS K6253 durometer hardness) because the electrodes of the electrical workpieces are electrically joined to each other by being compressed from above and below. Preferably it is type A). If the rubber hardness is less than 50, a sufficient repulsive load cannot be obtained and the electrical connection is not stable. On the other hand, if the rubber hardness is greater than 80, the load required for compression increases, which may damage the electrical workpiece.

導電接点素子と外囲導体との間を絶縁性エラストマーで充填すれば、相互の接触の心配は少なくなるが、絶縁性エラストマーの誘電率の関係から、相互の間隔は広めになる。逆に、空気層として残すことにより、導線接点素子と外囲導体との間隔を小さくすることが可能となり、配置密度を多くすることができる。
外囲導体5は、図3(イ)に示すように、導電接点素子4の全周を囲繞する形態のものとすることができ、この場合には高周波電流のシールド性が最も高い。また、導電接点素子ないしそれに対応する電極から回路基板の表面に他の引き出し配線を設けることができるように、外囲導体の壁の一部に壁の高さ未満の切り欠き6(図3(ロ))あるいは壁の全高さに及ぶ切り欠き7(図3(ハ))を設けることができる。
If the space between the conductive contact element and the outer conductor is filled with an insulating elastomer, the risk of mutual contact is reduced, but the distance between the conductive contact element and the surrounding conductor is increased due to the dielectric constant of the insulating elastomer. On the contrary, by leaving it as an air layer, it is possible to reduce the distance between the conductor contact element and the outer conductor, thereby increasing the arrangement density.
As shown in FIG. 3A, the outer conductor 5 can be configured to surround the entire circumference of the conductive contact element 4, and in this case, the shielding property of the high-frequency current is the highest. In addition, a notch 6 having a height less than the height of the wall is formed in a part of the wall of the outer conductor so that another lead-out wiring can be provided on the surface of the circuit board from the conductive contact element or the corresponding electrode. B)) or a notch 7 (FIG. 3C) extending over the entire height of the wall.

絶縁性樹脂基板2には、導電接点素子を形成するに際して作用する加熱加圧応力にも変形することの極めて少ない絶縁性樹脂基板を用いることが好ましく、特に、絶縁性樹脂基板2に用いられる絶縁性樹脂は、ISO75−1(ASTM D648)1.82MPa荷重における荷重たわみ温度が210℃以上、より好ましくは220℃以上で、線膨張係数が4×10-5/K以下であることが好ましい。この絶縁性樹脂にガラス繊維を配合することも好ましい態様である。
これらの物性を有する樹脂としては、エンジニアプラスチック、中でもPPS(ポリフェニレンスルフィド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、LCR(液晶ポリマー)、PEI(ポリエーテルイミド)、PAI(ポリイミドアミド)、PBT(ポリブチレンテレフタレート)、ポリイミド等が挙げられる。
As the insulating resin substrate 2, it is preferable to use an insulating resin substrate that is very little deformed by heat and pressure stress that acts when forming the conductive contact element, and in particular, the insulating resin substrate 2 is used. The flexible resin preferably has a deflection temperature under load of ISO 75-1 (ASTM D648) 1.82 MPa of 210 ° C. or higher, more preferably 220 ° C. or higher, and a linear expansion coefficient of 4 × 10 −5 / K or lower. It is also a preferred embodiment to mix glass fiber with this insulating resin.
Resins having these physical properties include engineer plastics, especially PPS (polyphenylene sulfide), PES (polyethersulfone), PEEK (polyetheretherketone), LCR (liquid crystal polymer), PEI (polyetherimide), PAI ( Polyimide amide), PBT (polybutylene terephthalate), polyimide and the like.

これらの材料の荷重たわみ温度をより上げ、線膨張係数をより小さくするために、ガラス繊維、ガラスビーズ等を10〜60%の割合で配合することが好ましい。これらの材料の中では、射出成形のし易さ、反り、寸法安定性の点から、ガラス繊維配合PPS、ガラス繊維配合PEIが好適に用いられる。中でも、ガラス繊維を30〜50%配合したPPSが最も好ましい。また、絶縁性樹脂基板を薄くフィルム状に形成する場合は、薄さや耐熱性の点でポリイミドが好適である。
導電接点素子4および外囲導体5の材料は、絶縁性エラストマ材料に導電粒子を配合分散させた導電性組成物からなる。
In order to further increase the deflection temperature under load of these materials and reduce the linear expansion coefficient, it is preferable to blend glass fibers, glass beads, and the like at a ratio of 10 to 60%. Among these materials, glass fiber blended PPS and glass fiber blended PEI are preferably used from the viewpoint of easy injection molding, warpage, and dimensional stability. Among these, PPS containing 30 to 50% glass fiber is most preferable. Further, when the insulating resin substrate is thinly formed into a film, polyimide is preferable from the viewpoint of thinness and heat resistance.
The material of the conductive contact element 4 and the surrounding conductor 5 is made of a conductive composition in which conductive particles are blended and dispersed in an insulating elastomer material.

絶縁性エラストマ材料としては、硬化前に流動性を有し、硬化させることによって架橋構造を形成する各種のエラストマ(常温付近でゴム状弾性を有するものの総称)が用いられる。具体的には、シリコーンゴム、フッ素ゴム、ポリウレタンゴム、ポリブタジエンゴム、ポリイソプロピレンゴム、クロロプレンゴム、ポリエステル系ゴム、スチレン・ブタジエン共重合体ゴム、天然ゴム等が挙げられる。また、これらの独立及び連泡の発泡体等でも可能である。
これらの中では、電気絶縁性、耐熱性、圧縮永久歪み、加工性等にすぐれているシリコーンゴムが好ましい。
As the insulating elastomer material, various elastomers that are fluid before curing and form a cross-linked structure by curing (generic name for materials having rubber-like elasticity near normal temperature) are used. Specific examples include silicone rubber, fluorine rubber, polyurethane rubber, polybutadiene rubber, polyisopropylene rubber, chloroprene rubber, polyester rubber, styrene / butadiene copolymer rubber, and natural rubber. These independent and open-cell foams are also possible.
In these, the silicone rubber which is excellent in electrical insulation, heat resistance, compression set, workability, etc. is preferable.

導電粒子は、粒状あるいはフレーク状のものが挙げられ、少なくとも表面が金属で被覆されているものであれば用いられ得る。
例えば、金、銀、銅、プラチナ、パラジウム、ニッケル、アルミニウム等の金属単体、あるいはこれらの合金からなる粒状若しくはフレーク状の粒子であり、その他、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂等の熱硬化性樹脂、これらの焼成品、カーボン、セラミックス、シリカ等の無機材料を核材として、その表面に前記金属によりめっき、蒸着、スパッタ等の方法で被覆したもの、等が挙げられる。
The conductive particles may be granular or flaky, and any conductive particles can be used as long as at least the surface is coated with a metal.
For example, a single metal such as gold, silver, copper, platinum, palladium, nickel, and aluminum, or granular or flaky particles made of an alloy thereof, and in addition, phenol resin, epoxy resin, silicone resin, urethane resin, etc. Examples include thermosetting resins, these baked products, inorganic materials such as carbon, ceramics, silica, and the like, whose surfaces are coated with the metal by plating, vapor deposition, sputtering, or the like.

これらの中では、導通抵抗、コストの観点から、粒状の銀粉末が好ましく、さらには加熱加圧成形時の導通抵抗の安定性から、タップ密度が2.0g/cm3以下で、比表面積が0.7m2/g以下の粒状銀粉末を、絶縁性エラストマ100重量部に対して300〜700重量部配合するのが好ましい。
導電接点素子4および外囲導体5の材料は、同じ絶縁性エラストマ材料と同じ導電粒子を同じ量配合するものとすることもできるが、絶縁性エラストマ材料と導電粒子の組合せを異ならせることも可能であり、導電粒子の配合量を異ならせることもできる。
Among these, granular silver powder is preferable from the viewpoint of conduction resistance and cost, and further, the tap density is 2.0 g / cm 3 or less and the specific surface area is from the stability of conduction resistance at the time of heat and pressure molding. It is preferable to mix 300 to 700 parts by weight of a granular silver powder of 0.7 m 2 / g or less with respect to 100 parts by weight of the insulating elastomer.
The material of the conductive contact element 4 and the outer conductor 5 can be the same insulating elastomer material and the same amount of the same conductive particles, but the combination of the insulating elastomer material and the conductive particles can be different. It is also possible to vary the blending amount of the conductive particles.

導電性組成物には、硬化剤を配合することが好ましい。硬化剤としては、例えば、既知のオルガノハイドロジェンポリシロキサン/白金系触媒(付加反応用硬化剤)又は有機過酸化物触媒を使用し得る。
一方、上記オルガノハイドロジェンポリシロキサンは、ケイ素原子に直結した水素原子を少なくとも2個以上有するものであれば特に制限されず、直鎖状、分岐鎖状、環状のいずれであってもよいが、下記平均組成式(1)で表されるものが好ましい。特に重合度が300以下のものが好ましい。
abSiO(4-a-b)/2…………(1)
(上記平均組成式(1)中、Rは非置換又は置換の1価炭化水素基で、好ましくは脂肪族不飽和結合を有さないものである。a、bは、0≦a<3、0<b<3、0<a+b<3の数である。)
It is preferable to add a curing agent to the conductive composition. As the curing agent, for example, a known organohydrogenpolysiloxane / platinum catalyst (addition reaction curing agent) or an organic peroxide catalyst can be used.
On the other hand, the organohydrogenpolysiloxane is not particularly limited as long as it has at least two hydrogen atoms directly bonded to silicon atoms, and may be linear, branched, or cyclic, What is represented by the following average composition formula (1) is preferable. Particularly preferred are those having a degree of polymerization of 300 or less.
R a H b SiO (4-ab) / 2 (1)
(In the above average composition formula (1), R is an unsubstituted or substituted monovalent hydrocarbon group, preferably having no aliphatic unsaturated bond. A and b are 0 ≦ a <3, 0 <b <3, 0 <a + b <3.)

具体的には、ジメチルハイドロジェンシリル基で末端が封鎖されたジオルガノポリシロキサン、ジメチルシロキサン単位とメチルハイドロジェンシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジメチルハイドロジェンシロキサン単位(H(CH32SiO0.6単位)とSiO2単位とからなる低粘度流体、1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ハイドロジェン−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン等が例示される。 Specifically, a diorganopolysiloxane whose end is blocked with a dimethylhydrogensilyl group, a copolymer of a dimethylsiloxane unit with a methylhydrogensiloxane unit and a terminal trimethylsiloxy unit, a dimethylhydrogensiloxane unit (H (CH 3 ) Low viscosity fluid composed of 2 SiO 0.6 units) and SiO 2 units, 1,3,5,7-tetrahydrogen-1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3, 5,7-trihydrogen-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-hydrogen-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, etc. Illustrated.

0.3mm径の導電接点素子用の貫通孔をXY方向共に2mmピッチで600個(20個×30個)穿孔し、その周囲4箇所に同一円周上に外囲導体用の貫通孔を穿孔したガラス繊維50%入りPPSからなる厚さ0.5mmの絶縁性樹脂基板に、ジメチルシロキサン単位99.85モル%とメチルビニルシロキサン単位0.15モル%とからなる平均重合度が約8000のメチルビニルポリシロキサン100重量部に、粒状の銀粉末(平均粒径7.3μm、タップ密度1.4g/cm3、比表面積0.60m2/g)を450重量部と、上記のメチルビニルポリシロキサンと銀粉末の混合物100重量部に対しジクミルパーオキサイドを0.5重量部配合した導電性シリコーンゴム組成物を載せ、上下型からなる金型で160℃、5分間の成形条件で加熱加圧成形し、絶縁性樹脂基板と複数の導電接点素子および外囲導体とが一体化された、図1・図3(イ)に示すタイプの電気コネクタを実施例として製造した。 600 (20 x 30) through-holes for conductive contact elements with a diameter of 0.3 mm are drilled at 2 mm pitches in the XY direction, and through-holes for surrounding conductors are drilled on the same circumference at four locations. An insulating resin substrate made of PPS containing 50% glass fiber and having a thickness of 0.5 mm has a mean degree of polymerization of about 8000 consisting of 99.85 mol% dimethylsiloxane units and 0.15 mol% methylvinylsiloxane units. 450 parts by weight of granular silver powder (average particle size 7.3 μm, tap density 1.4 g / cm 3 , specific surface area 0.60 m 2 / g) in 100 parts by weight of vinyl polysiloxane, and the above methyl vinyl polysiloxane A conductive silicone rubber composition in which 0.5 parts by weight of dicumyl peroxide is blended with 100 parts by weight of a mixture of silver and silver powder is placed, and molding is performed at 160 ° C. for 5 minutes using a mold consisting of upper and lower molds. Heated pressing at matter, an insulating resin substrate and a plurality of conductive contact elements and the outer 囲導 body are integrated, it was prepared as in Example types of electrical connectors shown in FIGS. 1 and 3 (b).

各導電接点素子については、切頭円錐台形状を呈しており、高さが1.5mm切頭円錐の縮径端部の径が0.3mm、切頭円錐の拡径端部が0.5mm径の大きさとし、基板の表裏両面からそれぞれ0.5mm突出させるようにした。外囲導体の断面形状は、導電接点素子の断面形状の内、台形の上辺0.2mm、下辺0.3mmとした。
こうして製造された電気コネクタは、導電接点素子の位置ずれが最大0.05mmと小さく、絶縁性樹脂基板の反りも最大0.05mmと小さいもので、実装基板とLGAの間に狭持させ、20%の圧縮量にて実装基板とLGAとを電気コネクタで導通させたところ、電気的接続は全く問題なく、高周波電流の漏洩や相互干渉も見られないものであった。
なお、実施例の絶縁性樹脂基板の荷重たわみ温度は270℃、線膨張係数は2.5×10-5/Kであった。
Each conductive contact element has a truncated frustoconical shape, the height of the reduced diameter end of the truncated cone of 1.5 mm is 0.3 mm, and the expanded end of the truncated cone is 0.5 mm. The diameter was set to protrude 0.5 mm from both the front and back surfaces of the substrate. The cross-sectional shape of the outer conductor was a trapezoidal upper side of 0.2 mm and a lower side of 0.3 mm of the cross-sectional shape of the conductive contact element.
The electrical connector manufactured in this way has a small displacement of the conductive contact element as small as 0.05 mm and a small warp of the insulating resin substrate as small as 0.05 mm, and is sandwiched between the mounting substrate and the LGA. When the mounting board and the LGA were made conductive with an electrical connector at a compression amount of%, there was no problem in electrical connection, and no leakage of high-frequency current or mutual interference was observed.
The insulating resin substrate of the example had a deflection temperature under load of 270 ° C. and a linear expansion coefficient of 2.5 × 10 −5 / K.

本発明によれば、高周波化が進むICパッケージの接続用の電気コネクタとして、極めて有用である。   The present invention is extremely useful as an electrical connector for connecting an IC package whose frequency is increasing.

本発明の電気コネクターの1実施の形態を示す簡略化した平面模式図である。It is the simplified plane schematic diagram which shows one Embodiment of the electrical connector of this invention. 図1の本発明の電気コネクターの1実施の形態における細部構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the detailed structure in one Embodiment of the electrical connector of this invention of FIG. 外囲導体(シールド体)に設けた切り欠きを示す説明図である。It is explanatory drawing which shows the notch provided in the surrounding conductor (shield body).

符号の説明Explanation of symbols

1:電気コネクター
2:絶縁性樹脂基板
3:貫通孔
4:導電接点素子
5:外囲導体(シールド体)
6:切り欠き
7:切り欠き
1: Electrical connector 2: Insulating resin substrate 3: Through hole 4: Conductive contact element 5: Outer conductor (shield body)
6: Notch 7: Notch

Claims (2)

絶縁性樹脂基板に設けた多数の貫通孔に導電接点素子を一体形成した電気コネクタであって、前記導電接点素子の周囲に外囲導体(シールド体)が形成されていることを特徴とする電気コネクター。   An electrical connector in which conductive contact elements are integrally formed in a large number of through-holes provided in an insulating resin substrate, wherein an outer conductor (shield body) is formed around the conductive contact elements. connector. 前記外囲導体(シールド体)の一部が切り欠き形状となっている請求項1に記載の電気コネクター。   The electrical connector according to claim 1, wherein a part of the outer conductor (shield body) has a cutout shape.
JP2003351104A 2003-10-09 2003-10-09 Electric connector Pending JP2005116405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351104A JP2005116405A (en) 2003-10-09 2003-10-09 Electric connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351104A JP2005116405A (en) 2003-10-09 2003-10-09 Electric connector

Publications (1)

Publication Number Publication Date
JP2005116405A true JP2005116405A (en) 2005-04-28

Family

ID=34542471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351104A Pending JP2005116405A (en) 2003-10-09 2003-10-09 Electric connector

Country Status (1)

Country Link
JP (1) JP2005116405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159506B1 (en) * 2019-03-25 2020-09-24 주식회사 센서뷰 Massive MIMO Antenna Device
CN114744425A (en) * 2021-01-07 2022-07-12 和硕联合科技股份有限公司 Electric connector assembly and electric connector thereof
CN114744425B (en) * 2021-01-07 2024-06-04 和硕联合科技股份有限公司 Electric connector assembly and electric connector thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159506B1 (en) * 2019-03-25 2020-09-24 주식회사 센서뷰 Massive MIMO Antenna Device
CN114744425A (en) * 2021-01-07 2022-07-12 和硕联合科技股份有限公司 Electric connector assembly and electric connector thereof
CN114744425B (en) * 2021-01-07 2024-06-04 和硕联合科技股份有限公司 Electric connector assembly and electric connector thereof

Similar Documents

Publication Publication Date Title
CN100539061C (en) Probe device is equipped with the wafer inspection equipment of this probe device and chip detection method
US7001191B2 (en) Conductive contact elements and electric connectors
JP2000200636A (en) Conductive elastomer mutual connector
JP2005056860A (en) Anisotropic conductive connector and application product of the same
WO2004093254A1 (en) Anisotropic conductive connector and circuit-device electrical-inspection device
JPS61250906A (en) Conductive elastomer sheet
JP3788258B2 (en) Anisotropic conductive connector and its application products
JP2004519822A (en) Shielded carrier with components for land grid array connector
US20040217342A1 (en) Anisotropically conductive connector, production process thereof and application product thereof
KR102444643B1 (en) Conductive particle and data signal transmission connector having the same
JP2004335450A (en) Anisotropic conductive connector and electric inspection device for circuit device
JP3257433B2 (en) Method for producing anisotropic conductive sheet and anisotropic conductive sheet
JP3865019B2 (en) Anisotropic conductive sheet and manufacturing method thereof
JP2005116405A (en) Electric connector
KR101683010B1 (en) The non-alignment rubber contactor, Rubber contact sheet containing the same, Manufacturing method thereof and Test socket using the same
JP4470316B2 (en) Anisotropic conductive sheet and electrical inspection device for circuit device
JP2005056791A (en) Electric connector
JP4099905B2 (en) Support for anisotropic conductive sheet and anisotropic conductive sheet with support
JP4215468B2 (en) Electrical connector
JP2004047268A (en) Insulation displacement connector
JP2000021470A (en) Conductive member and low compression/low resistance connector using the same
JPH09320667A (en) Anisotropic conductive sheet
US10944191B1 (en) Offset ;lug connector on a board connection area
JP2001283954A (en) Anisotropy conductive connector, inspection apparatus having the same, and manufacturing method of anisotropy connector
KR100441578B1 (en) Anisotropically Conductive Sheet and Connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090406