JP2000021470A - Conductive member and low compression/low resistance connector using the same - Google Patents

Conductive member and low compression/low resistance connector using the same

Info

Publication number
JP2000021470A
JP2000021470A JP19147598A JP19147598A JP2000021470A JP 2000021470 A JP2000021470 A JP 2000021470A JP 19147598 A JP19147598 A JP 19147598A JP 19147598 A JP19147598 A JP 19147598A JP 2000021470 A JP2000021470 A JP 2000021470A
Authority
JP
Japan
Prior art keywords
particles
low
conductive
conductive member
metallic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19147598A
Other languages
Japanese (ja)
Inventor
Fumio Kono
文夫 河野
Kazuhiko Aoki
和彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP19147598A priority Critical patent/JP2000021470A/en
Publication of JP2000021470A publication Critical patent/JP2000021470A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To hold satisfactory electrically continuos state in a small pressing load by the connection at a low pitch with a base board of a small electrode pitch by respectively blending metallic particles and conductive fiber of a specific quantity with the specific quantity of an insulating elastomer resin. SOLUTION: In this conductive member 1, metallic particles 3a, 3b composed of a group of the large/small two particle sizes and conductive fiber 4 are dispersed uniformly through an insulating elastomer resin 2, and the mutual metallic particles or the metallic particles and the conductive fiber make contact easily with and connected to each other at compressing. In this case, the conductive member 1 is formed by blending 50 to 200 pts.wt. of the metallic particles and 30 to 150 pts.wt. of the conductive fiber with 100 pts.wt. of the insulating elastomer resin. The metallic particles are composed of fine particles having the average particle size of 2 to 3 μm and coarse particles having the average particle size of 30 to 100 μm, a blending rate of the fine particles and the coarse particles falls within a range of 20/80 to 50/50 in the weight ratio, and the conductive member is formed as a structure that the mutual metallic particles or the metallic particles and the conductive fiber are easily contacted with and connected to each other at compression time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、体積抵抗率が小さ
くて弾性がある導電部材、例えば、携帯電話等の押釦ス
イッチの可動接点として、また液晶表示体におけるガラ
ス基板と回路基板との接続、回路基板同士の接続、IC
チップ等の検査装置の電気的接続等に用いられる導電部
材と、これを用いた低圧縮低抵抗コネクタに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive member having a small volume resistivity and elasticity, for example, as a movable contact of a push button switch of a cellular phone or the like, and a connection between a glass substrate and a circuit substrate in a liquid crystal display. Connection between circuit boards, IC
The present invention relates to a conductive member used for electrical connection or the like of an inspection device such as a chip, and a low-compression low-resistance connector using the same.

【0002】[0002]

【従来の技術】従来、電子機器の接続用コネクタには、
カーボンブラック粉末を含む導電性ゴム層と絶縁性ゴム
層とを交互多重に積層するか、あるいは金属粒子を多量
に充填した導電性ゴム層と絶縁性ゴム層とを交互多重に
積層した、いわゆるゼブラ型コネクタや、絶縁性ゴム層
中に複数の金属細線を厚さ方向に配列した異方導電性コ
ネクタが使用されている。
2. Description of the Related Art Conventionally, connectors for connecting electronic devices include:
A so-called zebra in which a conductive rubber layer containing carbon black powder and an insulating rubber layer are alternately multiplexed or a conductive rubber layer filled with a large amount of metal particles and an insulating rubber layer are alternately multiplexed. A type connector and an anisotropic conductive connector in which a plurality of thin metal wires are arranged in an insulating rubber layer in a thickness direction are used.

【0003】しかし、カーボンブラック粉末を含んだコ
ネクタは、この導電層を形成している導電部材の体積抵
抗率が高いため、カラー液晶用モジュールや白黒16階調
以上の液晶用モジュールなどのような低抵抗を必要とす
る接続や、端子間の接続抵抗のバラツキをできるだけ小
さくしたい場合の接続、あるいはプラズマディスプレイ
用モジュール等の高い電流値を必要とする回路基板との
接続において、電流を10mA以上流すとコネクタが発熱し
て温度上昇が起きるため、コネクタとして不適格であっ
た。また金属粒子を多量に充填したコネクタは、導電部
材としての体積抵抗率は低いが硬度が高く、接続する際
に高圧縮荷重にしないと安定した接続ができず、高圧縮
で接続すると回路基板が歪み、基板や回路部品が破損す
るという問題があった。さらに導電性ゴム層と絶縁性ゴ
ム層とを交互多重に積層して成形する際に、高圧力をか
けて成形しないと、金属粒子同士が接触せず、本来の低
い体積抵抗率が得られず、加工条件、加工設備等に制約
があった。
However, in the connector containing the carbon black powder, the conductive member forming the conductive layer has a high volume resistivity, so that a connector such as a color liquid crystal module or a black and white 16 or more gray scale liquid crystal module is used. A current of 10 mA or more flows in connections that require low resistance, connections that want to minimize variations in connection resistance between terminals, or connections with circuit boards that require high current values, such as plasma display modules. The connector was not suitable as a connector because the connector generated heat and a temperature rise occurred. In addition, a connector filled with a large amount of metal particles has a low volume resistivity as a conductive member but has a high hardness, and a stable connection cannot be established unless a high compression load is applied when connecting. There has been a problem that the substrate and circuit components are damaged due to distortion. Furthermore, when the conductive rubber layer and the insulating rubber layer are laminated alternately in multiple layers and molded, unless high pressure is applied, the metal particles do not contact each other, and the original low volume resistivity cannot be obtained. There were restrictions on processing conditions, processing equipment, and the like.

【0004】他方、複数の金属細線を厚さ方向に配列し
た異方導電性コネクタには、金属細線が接続時の圧縮
力によって座屈し易いため、繰り返し使用する検査装置
には使えない;すべての金属細線を完全に接続するに
は、コネクタ全体を高い圧力で圧縮する必要があるた
め、ICチップの端子や検査装置への負担が増大する;
金属細線の接続端面が均一な平滑面でないため、点接
触となり接触不良を起こし易い;接触抵抗をできるだ
け小さくするには、金属細線の先端部分または金属細線
そのものを金メッキする必要があり、製造コストが嵩
む;等の問題があった。
On the other hand, in an anisotropic conductive connector in which a plurality of thin metal wires are arranged in the thickness direction, the thin metal wires are easily buckled by the compressive force at the time of connection, so that they cannot be used for an inspection device used repeatedly; In order to completely connect the thin metal wires, it is necessary to compress the entire connector with a high pressure, which increases the load on the terminals of the IC chip and the inspection device;
Since the connection end surface of the thin metal wire is not a uniform and smooth surface, point contact is likely to occur, resulting in poor contact; in order to reduce the contact resistance as much as possible, the tip of the thin metal wire or the thin metal wire itself needs to be plated with gold, which reduces the manufacturing cost. Bulky; etc.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明の
目的は、体積抵抗率が小さく、安定した抵抗値を示し、
多くの電流を流すことができる導電部材、及び電極ピッ
チの小さな基板との低ピッチでの接続が、小さな押圧荷
重で良好な導通状態を保持できる、この導電部材を用い
た低圧縮低抵抗コネクタを提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a low volume resistivity, a stable resistance value,
A conductive member capable of flowing a large amount of current, and a low compression and low resistance connector using this conductive member that can be connected to a substrate having a small electrode pitch at a low pitch and maintain a good conductive state with a small pressing load. To provide.

【0006】[0006]

【課題を解決するための手段】本発明の導電部材は、絶
縁性エラストマ樹脂 100重量部に、金属粒子50〜 200重
量部と導電繊維30〜 150重量とを配合してなることを特
徴とするもので、この金属粒子は、平均粒径2〜3μm
の細かい粒子と平均粒径30〜 100μm の粗い粒子とから
なり、細かい粒子と粗い粒子の配合割合が重量比で20/
80〜50/50の範囲内であって、圧縮時に金属粒子同士ま
たは金属粒子と導電繊維とが容易に接触接続される構造
であることを好適とする。また、この導電部材を用いた
低圧縮低抵抗コネクタは、導電部材からなる導電層と絶
縁性エラストマ樹脂からなる絶縁層(以下、絶縁層と略
す)とが交互に積層してなるものである。
The conductive member of the present invention is characterized in that 50 to 200 parts by weight of metal particles and 30 to 150 parts by weight of conductive fiber are blended with 100 parts by weight of an insulating elastomer resin. The metal particles have an average particle size of 2 to 3 μm
Of fine particles and coarse particles having an average particle diameter of 30 to 100 μm, and the mixing ratio of the fine particles and the coarse particles is 20 / weight ratio.
It is preferable that the metal particles be in the range of 80 to 50/50 and have a structure in which the metal particles or the metal particles and the conductive fibers are easily contacted and connected at the time of compression. A low-compression low-resistance connector using this conductive member is obtained by alternately laminating conductive layers made of a conductive member and insulating layers made of an insulating elastomer resin (hereinafter abbreviated as insulating layers).

【0007】[0007]

【発明の実施の形態】つぎに本発明の導電部材と、これ
を用いた低圧縮低抵抗コネクタを、例示した図面に基づ
いて説明する。図1は本発明で用いられる導電部材の縦
断面模式図で、この導電部材1は絶縁性エラストマ樹脂
2中に大小2つの粒径の群からなる金属粒子3a、3b
と導電繊維4とが均一に分散され、圧縮時に金属粒子同
士または金属粒子と導電繊維とが容易に接触接続される
構造をしている。図2及び図3は本発明の低圧縮低抵抗
コネクタの異なる態様を斜視図で示したもので、図2の
低圧縮低抵抗コネクタ5aは上記導電部材1からなるシ
ート状またはブロック状の導電層6と同様の形状の絶縁
層7とを交互に積層した構造(以下、これをゼブラ状と
呼ぶ)をしたもの、図3の低圧縮低抵抗コネクタ5bは
上記ゼブラ状本体の左右両側面に絶縁層7からなる側材
8を設けたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a conductive member of the present invention and a low-compression low-resistance connector using the same will be described with reference to the drawings. FIG. 1 is a schematic vertical cross-sectional view of a conductive member used in the present invention. The conductive member 1 has metal particles 3a and 3b having two groups of large and small particle sizes in an insulating elastomer resin 2.
And the conductive fibers 4 are uniformly dispersed, so that the metal particles or the metal particles and the conductive fibers are easily contacted and connected at the time of compression. FIGS. 2 and 3 are perspective views showing different aspects of the low-compression low-resistance connector of the present invention. The low-compression low-resistance connector 5a of FIG. 6, and a low-compression low-resistance connector 5b shown in FIG. 3 is insulated on both left and right sides of the zebra-shaped main body. A side member 8 composed of a layer 7 is provided.

【0008】本発明の導電部材1で母材として使用され
る絶縁性エラストマ樹脂2は、形状的に安定し、自重で
甚だしく変形したり、硬化後、塑性変形しない弾性材料
であればよく、これには天然ゴム、ブタジエン・スチレ
ン、アクリロニトリル・ブタジエン、アクリロニトリル
・ブタジエン・スチレン、スチレン・エチレン・スチレ
ン、エチレン・プロピレン、エチレン・プロピレン・ジ
エン等の各共重合体ゴム、クロロプレンゴム、シリコー
ンゴム、ブタジエンゴム、イソプレンゴム、クロロスル
ホン化ポリエチレンゴム、ポリサルファイドゴム、ブチ
ルゴム、フッ素ゴム、ウレタンゴム、ポリイソブチレン
ゴム等の合成ゴム類のほか、ポリエステルエラストマー
等の熱可塑性エラストマー、塑性化塩化ビニル系樹脂、
酢酸ビニル樹脂、塩化ビニル・酢酸ビニル共重合体樹脂
などが例示されるが、これらの内では時効特性、電気絶
縁性、耐熱性、圧縮永久歪、加工性等に優れ、価格的に
も安定しているシリコーンゴムが好ましい。
The insulating elastomer resin 2 used as the base material in the conductive member 1 of the present invention may be any elastic material which is stable in shape and deforms significantly by its own weight and does not undergo plastic deformation after curing. Natural rubber, butadiene styrene, acrylonitrile butadiene, acrylonitrile butadiene styrene, styrene ethylene styrene, ethylene propylene, copolymer rubbers such as ethylene propylene diene, chloroprene rubber, silicone rubber, butadiene rubber , Synthetic rubbers such as isoprene rubber, chlorosulfonated polyethylene rubber, polysulfide rubber, butyl rubber, fluorine rubber, urethane rubber, polyisobutylene rubber, thermoplastic elastomers such as polyester elastomers, plasticized vinyl chloride resin,
Examples include vinyl acetate resin and vinyl chloride / vinyl acetate copolymer resin. Among these, they are excellent in aging characteristics, electrical insulation, heat resistance, compression set, workability, etc., and are stable in price. Silicone rubber is preferred.

【0009】シリコーンゴム類としては、通常、ジメチ
ル−、メチルフェニル−、メチルビニル−等の各ポリシ
ロキサン類、シリカのような充填剤を配合して適当なレ
オロジー特性が付与されたハロゲン化ポリシロキサン
類、または金属塩類でバルカナイズされ、もしくは硬化
されたハロゲン化ポリシロキサン類等が挙げられる。
As the silicone rubbers, polysiloxanes such as dimethyl-, methylphenyl-, methylvinyl- and the like, and halogenated polysiloxanes which are imparted with appropriate rheological properties by blending fillers such as silica are generally used. Or halogenated polysiloxanes which have been vulcanized or cured with metal salts.

【0010】絶縁性エラストマ樹脂2に配合される金属
粒子3は、少なくともその表面が金属で被覆されている
ものであればよく、これには例えば、金、銀、銅、ニッ
ケル、コバルト、ステンレス鋼、黄銅等の金属単体のみ
からなる球状もしくはフレーク状の粒子、あるいはフェ
ノール樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン
樹脂等の熱硬化性樹脂や熱可塑性樹脂、これらの焼成
品、カーボン、セラミックス、ガラス等の無機材料等の
粉末を核材とし、その表面を前記金属によりメッキ、蒸
着、スパッタ、CVD等の方法で被覆したもの、以上の
2種以上の粒子を混合したもの等が挙げられる。
The metal particles 3 to be mixed with the insulating elastomer resin 2 only need to have at least a surface coated with a metal, such as gold, silver, copper, nickel, cobalt or stainless steel. , Spherical or flake-like particles consisting of a single metal such as brass, or thermosetting resins or thermoplastic resins such as phenolic resins, epoxy resins, silicone resins, and urethane resins, their baked products, carbon, ceramics, glass, etc. A powder obtained by using a powder of an inorganic material or the like as a core material and coating the surface of the powder with the metal by a method such as plating, vapor deposition, sputtering, or CVD, or a mixture of two or more of the above particles.

【0011】これら金属粒子の配合量は絶縁性エラスト
マ樹脂 100重量部に対し50〜 200重量部である。これが
50重量部未満では、圧縮時における金属粒子同士または
金属粒子と導電繊維との接続導通が取りにくく、安定し
た抵抗値が得られなくなり、また 200重量部を超える
と、これ以上の体積抵抗率の向上を必要としなくなり
(10−2〜10−4Ωcmあれば問題ない)、却って導電部
材の硬度が高くなることから、得られるコネクタの低圧
縮での接続が困難となる。
The amount of the metal particles is 50 to 200 parts by weight based on 100 parts by weight of the insulating elastomer resin. This is
If the amount is less than 50 parts by weight, it is difficult to establish connection and conduction between the metal particles or the metal particles and the conductive fibers at the time of compression, and a stable resistance value cannot be obtained. No improvement is required ( 10-2 to 10-4 Ωcm is no problem), and the hardness of the conductive member is rather high, so that it is difficult to connect the obtained connector with low compression.

【0012】また上記金属粒子は、平均粒径2〜3μm
の細かい粒子と平均粒径30〜 100μm の粗い粒子との大
小2つの粒径の群からなっており、細かい粒子と粗い粒
子の配合割合が重量比で20/80〜50/50の範囲内にある
ことが好ましい。これは1種類の粒径の粒子だけで粒子
同士の導通を図るべく、その配合量を増やすと、導電部
材の硬度が高くなって加工しにくくなるが、細かい粒子
と粗い粒子を併用するときは、一方の粒子の間に他方の
粒子が充填されるため、少ない配合量での導通が可能と
なり、その結果、硬度も高くならず、加工し易い導電部
材となる。特に上記のように粗い粒子の配合割合を多く
して粗い粒子の間を細かい粒子で繋ぐようにすると、硬
度が高くならずに導通し易くなる。しかし、上記範囲外
では低圧縮時の導通が得られないほか硬度が高くなるの
で好ましくない。
The metal particles have an average particle size of 2 to 3 μm.
Of fine particles and coarse particles with an average particle size of 30 to 100 μm. The compounding ratio of fine particles and coarse particles is within the range of 20/80 to 50/50 by weight. Preferably, there is. This is because if the compounding amount is increased to achieve conduction between the particles by only one kind of particle size, the hardness of the conductive member becomes high and it becomes difficult to process, but when fine particles and coarse particles are used together, Since the other particles are filled between the one particles, conduction can be achieved with a small blending amount. As a result, a conductive member which does not have high hardness and is easy to process can be obtained. In particular, when the mixing ratio of the coarse particles is increased to connect the coarse particles with the fine particles as described above, the hardness is not increased, and the conductivity is easily increased. However, outside the above range, it is not preferable because conduction at the time of low compression cannot be obtained and hardness becomes high.

【0013】金属粒子と共に配合される導電繊維4は、
少なくともその表面が金属で被覆されているものであれ
ばよく これには例えば、銅、銅合金、ステンレス鋼、
タングステン、ニッケル、ハンダ合金等の金属線;炭素
繊維、セラミックス、ガラス繊維等の無機繊維や各種天
然または合成繊維等の表面を、前記金属、特には金によ
るメッキ、蒸着、スパッタ、CVD等の方法で被覆した
もの等が例示される。これらは耐環境性を向上するため
に防錆処理を施したものでもよい。
The conductive fiber 4 blended with the metal particles
It is sufficient that at least the surface is coated with metal.For example, copper, copper alloy, stainless steel,
Metal wires such as tungsten, nickel, and solder alloys; methods such as plating, vapor deposition, sputtering, and CVD of the surface of inorganic fibers such as carbon fibers, ceramics, and glass fibers and various natural or synthetic fibers with the above metals, particularly gold. And the like. These may be those subjected to rust prevention treatment in order to improve environmental resistance.

【0014】これらの導電繊維は絶縁性エラストマ樹脂
中に金属粒子と共に配合され、金属粒子間の接続を容易
にし、コネクタとしたときの圧縮に高い圧力を必要とせ
ず、しかも一般的に使用されている形状の繊維とするこ
とでコストを抑えられることから、直径が2〜 500μm
、特には10〜 100μm で、長さが 0.1〜20mm、特には
1〜10mm、さらには3〜5mmの範囲内のものが好まし
い。
[0014] These conductive fibers are blended with metal particles in an insulating elastomer resin to facilitate connection between metal particles, do not require high pressure for compression when formed into a connector, and are commonly used. Since the cost can be reduced by using fibers of a certain shape, the diameter is 2 to 500 μm
Preferably, it is 10 to 100 μm and has a length of 0.1 to 20 mm, particularly 1 to 10 mm, and more preferably 3 to 5 mm.

【0015】導電繊維の絶縁性エラストマ樹脂 100重量
部に対する配合量は、抵抗値が低く、低圧縮でも安定し
た接続ができるということから、30〜 150重量部とする
必要がある。これが30重量部未満では金属粒子との接続
導通が不十分で求める抵抗値にすることができず、また
150重量部を超えると体積抵抗率も十分に小さくなるが
導電部材としての硬度が高くなるため、低圧縮で安定し
た抵抗値が得られにくくなり、却って回路基板間や電子
部品と安定した接続を得ようとすると、基板の反りや回
路パターンの部分剥離を起こしたり、電子部品の固定時
に内部破壊を起こし易くなる。
The amount of the conductive fibers to be added to 100 parts by weight of the insulating elastomer resin must be 30 to 150 parts by weight because the resistance value is low and a stable connection can be achieved even at a low compression. If this is less than 30 parts by weight, the connection continuity with the metal particles is insufficient and the desired resistance value cannot be obtained, and
If it exceeds 150 parts by weight, the volume resistivity will be sufficiently small, but the hardness of the conductive member will be high, and it will be difficult to obtain a stable resistance value with low compression. If it is obtained, warpage of the substrate, partial peeling of the circuit pattern, and internal destruction when fixing the electronic component are likely to occur.

【0016】本発明の導電部材1は、オープンロール、
3本ロール、擂潰器等の混練・分散装置を用いて、上記
した金属粒子3と導電繊維4とを絶縁性エラストマ樹脂
2中に均一に分散させることによって得ることができる
が、この導電部材には、その耐熱性、老化防止性、引張
強度、圧縮永久歪、加工性等の各種物性を向上させる目
的で、各種添加剤、シリカ等の補強剤等を添加してもよ
い。
The conductive member 1 of the present invention comprises an open roll,
It can be obtained by uniformly dispersing the metal particles 3 and the conductive fibers 4 in the insulating elastomer resin 2 using a kneading / dispersing device such as a three-roller or a crusher. For the purpose of improving various physical properties such as heat resistance, anti-aging property, tensile strength, compression set, and workability, various additives and a reinforcing agent such as silica may be added.

【0017】前述したゼブラ状をした低圧縮低抵抗コネ
クタ5aにおいて、この絶縁層7を構成する絶縁材料
は、上記絶縁性エラストマ樹脂2と同様のものでよく、
また導電部材の作製時に使用した絶縁材料と同一であっ
ても別のものであってもよいが、導電層6と絶縁層7と
が互いに剥離することのないように、密着一体化してい
ることが必要とされるので、これらは同一の材料のもの
を使用するのが好ましい。
In the above-mentioned zebra-shaped low-compression low-resistance connector 5a, the insulating material forming the insulating layer 7 may be the same as the insulating elastomer resin 2 described above.
The insulating material may be the same as or different from the insulating material used in manufacturing the conductive member, but the conductive layer 6 and the insulating layer 7 must be tightly integrated so as not to be separated from each other. It is preferable that these are made of the same material.

【0018】この低圧縮低抵抗コネクタの硬度は40〜80
°H、特には50〜70°Hとするのが好ましく、これによ
り金属粒子や導電繊維が混合されていても、一般に用い
られているカーボン系の導電層を有するコネクタと変わ
らない、5〜15%という低い圧縮率での接続が可能とな
り、確実で安定した接続状態が得られ易く、回路基板、
電子部品に与える負荷が少なくなり、またICチップ検
査などの検査機器の小型化、軽量化が達成される。
The hardness of the low-compression low-resistance connector is 40 to 80.
° H, particularly preferably 50 to 70 ° H, so that even if metal particles or conductive fibers are mixed, it is the same as a generally used connector having a carbon-based conductive layer. % Connection is possible, and a stable and stable connection state can be easily obtained.
The load on the electronic component is reduced, and the size and weight of the inspection device such as the IC chip inspection are reduced.

【0019】この低圧縮低抵抗コネクタは、印刷法やカ
レンダー法等、様々の方法で製造されるが、安定した生
産性を考慮すると、導電層と絶縁層をカレンダー法によ
り積層して製造する方法が好ましい。その一例を詳細に
説明すると、ポリエチレンテレフタレートフィルム上に
絶縁性エラストマ樹脂をカレンダーで薄膜に製膜して設
け、加熱硬化して絶縁層を形成した後、この絶縁層の上
に導電部材をカレンダーで薄膜に製膜して設けて導電層
を形成し、得られたシートからポリエチレンテレフタレ
ートフィルムを剥離して積層シートを得る。この工程の
繰り返しで多数枚の積層シートを得た後、これらを同じ
順に積層して積層ブロック体とし、加硫処理する。これ
を積層面を横切る方向にスライスして導電層と絶縁層と
が交互に筋状に配列されているシートを得る。このシー
トを二次加硫した後、導電層と絶縁層を横切る所定の幅
で裁断して本発明の低圧縮低抵抗コネクタを得る。
The low-compression low-resistance connector is manufactured by various methods such as a printing method and a calendar method. However, in consideration of stable productivity, a method of manufacturing by stacking a conductive layer and an insulating layer by a calendar method. Is preferred. An example will be described in detail. An insulating elastomer resin is formed into a thin film with a calender on a polyethylene terephthalate film, provided with heat and cured to form an insulating layer, and then a conductive member is calendered on the insulating layer. A conductive layer is formed by forming a thin film, and the polyethylene terephthalate film is peeled off from the obtained sheet to obtain a laminated sheet. After obtaining a large number of laminated sheets by repeating this step, these are laminated in the same order to form a laminated block body, and vulcanization treatment is performed. This is sliced in a direction crossing the lamination surface to obtain a sheet in which conductive layers and insulating layers are alternately arranged in a streak shape. After secondary vulcanization of the sheet, the sheet is cut at a predetermined width across the conductive layer and the insulating layer to obtain the low compression low resistance connector of the present invention.

【0020】なお、図3に示したゼブラ状本体の左右両
側面に側材8を設けた構造の低圧縮低抵抗コネクタで
は、本体部分と側材とで厚さや材質が互いに異なってい
てもよい。この低圧縮低抵抗コネクタにおいて、ゼブラ
状本体の圧縮荷重が高い場合にはゴム硬度が50°H、特
には40°H以下の低硬度の絶縁ゴムからなる側材を使用
することで、得られる低圧縮低抵抗コネクタ全体の圧縮
荷重を低減させることができる。
In the case of the low-compression low-resistance connector shown in FIG. 3 in which side members 8 are provided on both left and right sides of the zebra-shaped main body, the thickness and the material may be different between the main body portion and the side members. . In this low-compression low-resistance connector, when the compression load of the zebra-shaped body is high, it can be obtained by using a side member made of a low-hardness insulating rubber having a rubber hardness of 50 ° H, particularly 40 ° H or less. The compression load of the low compression low resistance connector as a whole can be reduced.

【0021】[0021]

【実施例】以下、本発明を実施例および比較例によりさ
らに具体的に説明する。 (実施例1)ベースフィルムとしての厚さ 100μm のポ
リエチレンテレフタレートフィルム上に、絶縁性シリコ
ーンゴムKE971U(信越化学工業社製、商品名)を厚さが
50μm の薄膜となるようにカレンダーで分出しし、 200
℃の加熱炉に導入して硬化させて絶縁層を形成した。一
方、同じ絶縁性シリコーンゴム 100重量部に、平均粒径
2μm と平均粒径50μm の2種類の銀粒子を重量比30:
70の割合で配合し 150℃で30分間加熱処理して得られた
混合銀粒子 150重量部と、直径30μm 、長さ10mmの真鍮
線に金メッキを施してなる導電繊維 100重量部とを混合
・混練して導電部材を調製した。この導電部材を、上記
絶縁層上に、厚さが50μm の薄膜となるようにカレンダ
ーで分出しして導電層を積層・形成した後、ベースフィ
ルムを剥離して積層シートを得た。同様の手順で多数枚
の積層シートを得た後、これらを同じ順に積層して積層
ブロック体とし、加硫処理後、積層面を横切る方向にス
ライスした。さらに二次加硫して、硬度が60°H(JIS
K 6391に基づいて測定)で、導電層と絶縁層とが交互に
筋状に配列されているシートを得た後、このシートを、
その導電層と絶縁層を横切る所定の幅で裁断して本発明
の低圧縮低抵抗コネクタを得た。
The present invention will be more specifically described below with reference to examples and comparative examples. Example 1 An insulating silicone rubber KE971U (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was formed on a polyethylene terephthalate film having a thickness of 100 μm as a base film.
Separate with a calender to form a 50μm thin film, 200
The resultant was introduced into a heating furnace at a temperature of ° C. and cured to form an insulating layer. On the other hand, two kinds of silver particles having an average particle size of 2 μm and an average particle size of 50 μm were mixed with 100 parts by weight of the same insulating silicone rubber in a weight ratio of 30:
A mixture of 150 parts by weight of mixed silver particles obtained by blending at a ratio of 70 and heat-treated at 150 ° C. for 30 minutes, and 100 parts by weight of a conductive fiber obtained by applying gold plating to a brass wire having a diameter of 30 μm and a length of 10 mm was mixed. A conductive member was prepared by kneading. The conductive member was calendered on the insulating layer so as to form a thin film having a thickness of 50 μm, and the conductive layer was laminated and formed. The base film was peeled off to obtain a laminated sheet. After obtaining a large number of laminated sheets in the same procedure, they were laminated in the same order to form a laminated block, and after vulcanization, sliced in a direction crossing the laminated surface. After secondary vulcanization, the hardness is 60 ° H (JIS
K 6391) to obtain a sheet in which conductive layers and insulating layers are alternately arranged in a streak shape,
By cutting at a predetermined width across the conductive layer and the insulating layer, a low-compression low-resistance connector of the present invention was obtained.

【0022】(実施例2)実施例1において、上記混合
銀粒子の配合量を80重量部としたほかは同様にして、本
発明の低圧縮低抵抗コネクタを得た。
Example 2 A low-compression low-resistance connector according to the present invention was obtained in the same manner as in Example 1, except that the amount of the mixed silver particles was changed to 80 parts by weight.

【0023】(比較例1)実施例1において、上記混合
銀粒子の配合量を 500重量部とし導電繊維を配合しなか
ったほかは同様にして、低抵抗コネクタを得た。
Comparative Example 1 A low-resistance connector was obtained in the same manner as in Example 1, except that the amount of the mixed silver particles was 500 parts by weight and no conductive fiber was used.

【0024】(比較例2)実施例1において、上記2種
類の銀粒子の配合割合を10:90としたほかは同様にし
て、低抵抗コネクタを得た。
Comparative Example 2 A low-resistance connector was obtained in the same manner as in Example 1, except that the mixing ratio of the two kinds of silver particles was 10:90.

【0025】(比較例3)実施例1において、上記2種
類の銀粒子の配合割合を60:40としたほかは同様にし
て、低抵抗コネクタを得た。
Comparative Example 3 A low-resistance connector was obtained in the same manner as in Example 1, except that the mixing ratio of the two kinds of silver particles was changed to 60:40.

【0026】上記各実施例及び比較例で製造した各コネ
クタについて、下記の方法でガス発生、加硫遅れ及び体
積抵抗率を測定し、これらの結果に基づいて総合的に判
定し、さらに下記の方法で硬度、接続信頼性及び圧縮荷
重を測定し、これらの結果を表1に示した。
For each connector manufactured in each of the above Examples and Comparative Examples, gas generation, vulcanization delay and volume resistivity were measured by the following methods, and comprehensive judgment was made based on these results. The hardness, connection reliability, and compression load were measured by the method, and the results are shown in Table 1.

【0027】(上記試験方法の明細) ・ガス発生:プレス機で200kg/cm の加圧下、 165℃
で10分間加硫し、この間のガスの発生状態を調べた。ガ
スの発生がない場合を○とした。
(Specifications of the above test method) Gas generation: 165 ° C. under a pressure of 200 kg / cm 2 by a press machine
For 10 minutes, and the state of gas generation during that time was examined. The case where no gas was generated was evaluated as ○.

【0028】・加硫遅れ:オシレーティングディスクレ
オメーターASTM-100型(東洋精機製作所製)を用いてAS
TM-D-2084 の方法に準じて加硫特性を測定した。導電性
材料が添加されていない絶縁性エラストマの加硫時間と
比較して、時間差が20秒未満の場合を○とした。
Vulcanization delay: AS using ASTM-100 oscillating disc rheometer (manufactured by Toyo Seiki Seisakusho)
The vulcanization characteristics were measured according to the method of TM-D-2084. The case where the time difference was less than 20 seconds compared with the vulcanization time of the insulating elastomer to which the conductive material was not added was evaluated as ○.

【0029】・体積抵抗率:電圧電流法によるSRIS-230
1 の方法に準じて測定し、10−2Ωcmより低い値を
「良」とした。
Volume resistivity: SRIS-230 by voltage / current method
The measurement was carried out according to the method described in 1, and a value lower than 10 −2 Ωcm was defined as “good”.

【0030】・接続信頼性:電極ピッチ 0.5mm、厚さ
1.6mmの基板間に挟み、コネクタを10%圧縮した状態で
導通抵抗を測定し、安定した状態で導通抵抗が 250mΩ
以下、電流値が 200mAまで流せて、基板の反り、損傷等
のないものを○、そうでないものを×とした。
Connection reliability: electrode pitch 0.5 mm, thickness
Conduction resistance is measured with the connector compressed by 10%, sandwiched between 1.6mm boards, and the conduction resistance is 250mΩ in a stable state.
In the following, the case where the current value can be flowed up to 200 mA and there is no warpage or damage of the substrate is indicated by "O", and the case where it is not such is indicated by "X".

【0031】・圧縮荷重:10%圧縮時の荷重が5〜8kg
/cm未満を「小」、それ以上の荷重を「大」とした。
Compressive load: 5 to 8 kg load at 10% compression
Less than / cm 2 was defined as “small” and more than that was defined as “large”.

【0032】[0032]

【表1】 表1に示されるように、実施例1及び2の本発明の低圧
縮低抵抗コネクタでは、ガス発生や加硫遅れがなく、コ
ネクタとして低圧縮で、実用的な低抵抗を示した。
[Table 1] As shown in Table 1, the low-compression low-resistance connectors of Examples 1 and 2 of the present invention exhibited no gas generation or vulcanization delay, low compression as a connector, and practical low resistance.

【0033】[0033]

【発明の効果】本発明の低圧縮低抵抗コネクタは、抵抗
値のバラツキが少なく、安定した接続が得られ、微小電
流を流せることから、カラー液晶用モジュールやプラズ
マディスプレイ用モジュール等との接続に好適に用いる
ことができ、高い電流値を必要とする回路にも十分安定
した状態で使用できる。しかも接続時の圧縮率を低くす
ることができるため、ICチップ等の検査時の接続に用
いると、ICチップの端子の変形やチップ内部破壊の防
止、また検査機器に与える負荷の低減等により、より精
度のよい検査が行えると同時に、検査機器の小型化、軽
量化を図ることができる。さらに既存の設備で製造で
き、生産性が高く、製造コストを低減することができ
る。
The low-compression low-resistance connector of the present invention has a small variation in resistance value, can provide a stable connection, and can flow a small current, so that it can be connected to a color liquid crystal module, a plasma display module, or the like. It can be suitably used, and can be used in a circuit requiring a high current value in a sufficiently stable state. Moreover, since the compression ratio at the time of connection can be reduced, when used for connection at the time of inspection of an IC chip, etc., the deformation of the terminal of the IC chip and the destruction inside the chip are prevented, and the load applied to the inspection equipment is reduced. In addition to performing more accurate inspection, the size and weight of the inspection device can be reduced. Furthermore, it can be manufactured with existing equipment, and the productivity is high and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる導電部材の縦断面模式図で
ある。
FIG. 1 is a schematic longitudinal sectional view of a conductive member used in the present invention.

【図2】本発明の低圧縮低抵抗コネクタの一態様を示す
斜視図である。
FIG. 2 is a perspective view showing one embodiment of the low compression low resistance connector of the present invention.

【図3】本発明の低圧縮低抵抗コネクタの別の態様を示
す斜視図である。
FIG. 3 is a perspective view showing another embodiment of the low compression low resistance connector of the present invention.

【符号の説明】[Explanation of symbols]

1:導電部材、 2:絶縁性エ
ラストマ樹脂、3a:細かい金属粒子、
3b:粗い金属粒子、4:導電繊維、
5a、5b:低圧縮低抵抗コネクタ、6:導電層、
7:絶縁層、8:側材。
1: conductive member, 2: insulating elastomer resin, 3a: fine metal particles,
3b: coarse metal particles, 4: conductive fiber,
5a, 5b: low compression low resistance connector, 6: conductive layer,
7: insulating layer, 8: side material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁性エラストマ樹脂 100重量部に、金属
粒子50〜 200重量部と導電繊維30〜 150重量とを配合し
てなることを特徴とする導電部材。
1. A conductive member comprising 100 to 100 parts by weight of an insulating elastomer resin, 50 to 200 parts by weight of metal particles and 30 to 150 parts by weight of conductive fibers.
【請求項2】金属粒子が、平均粒径2〜3μm の細かい
粒子と平均粒径30〜 100μm の粗い粒子とからなり、細
かい粒子と粗い粒子の配合割合が重量比で20/80〜50/
50の範囲内であって、圧縮時に金属粒子同士または金属
粒子と導電繊維とが接触接続される構造である請求項1
記載の導電部材。
2. The metal particles are composed of fine particles having an average particle diameter of 2 to 3 μm and coarse particles having an average particle diameter of 30 to 100 μm, and the mixing ratio of the fine particles and the coarse particles is 20/80 to 50 /
2. The structure according to claim 1, wherein the metal particles are in contact with each other or between the metal particles and the conductive fibers during compression.
The conductive member as described in the above.
【請求項3】請求項1記載の導電部材からなる導電層と
絶縁性エラストマ樹脂からなる絶縁層とが交互に積層し
てなる低圧縮低抵抗コネクタ。
3. A low-compression low-resistance connector in which conductive layers made of the conductive member according to claim 1 and insulating layers made of an insulating elastomer resin are alternately laminated.
JP19147598A 1998-07-07 1998-07-07 Conductive member and low compression/low resistance connector using the same Pending JP2000021470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19147598A JP2000021470A (en) 1998-07-07 1998-07-07 Conductive member and low compression/low resistance connector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19147598A JP2000021470A (en) 1998-07-07 1998-07-07 Conductive member and low compression/low resistance connector using the same

Publications (1)

Publication Number Publication Date
JP2000021470A true JP2000021470A (en) 2000-01-21

Family

ID=16275281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19147598A Pending JP2000021470A (en) 1998-07-07 1998-07-07 Conductive member and low compression/low resistance connector using the same

Country Status (1)

Country Link
JP (1) JP2000021470A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116379A2 (en) * 2004-05-06 2005-12-08 Integral Technologies, Inc. Low cost hardware manufactured from conductive loaded resin-based materials
US7230572B2 (en) * 2001-02-15 2007-06-12 Integral Technologies, Inc. Low cost antenna devices comprising conductive loaded resin-based materials with conductive wrapping
US7317420B2 (en) * 2001-02-15 2008-01-08 Integral Technologies, Inc. Low cost omni-directional antenna manufactured from conductive loaded resin-based materials
US7372422B2 (en) * 2001-02-15 2008-05-13 Integral Technologies, Inc. Low cost electronic probe devices manufactured from conductive loaded resin-based materials
JP2008241346A (en) * 2007-03-26 2008-10-09 Fujitsu Ltd Probe and measuring instrument using it
US20200037437A1 (en) * 2018-07-24 2020-01-30 Samsung Electro-Mechanics Co., Ltd. Electronic device module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230572B2 (en) * 2001-02-15 2007-06-12 Integral Technologies, Inc. Low cost antenna devices comprising conductive loaded resin-based materials with conductive wrapping
US7317420B2 (en) * 2001-02-15 2008-01-08 Integral Technologies, Inc. Low cost omni-directional antenna manufactured from conductive loaded resin-based materials
US7372422B2 (en) * 2001-02-15 2008-05-13 Integral Technologies, Inc. Low cost electronic probe devices manufactured from conductive loaded resin-based materials
WO2005116379A2 (en) * 2004-05-06 2005-12-08 Integral Technologies, Inc. Low cost hardware manufactured from conductive loaded resin-based materials
WO2005116379A3 (en) * 2004-05-06 2009-04-09 Integral Technologies Inc Low cost hardware manufactured from conductive loaded resin-based materials
JP2008241346A (en) * 2007-03-26 2008-10-09 Fujitsu Ltd Probe and measuring instrument using it
US20200037437A1 (en) * 2018-07-24 2020-01-30 Samsung Electro-Mechanics Co., Ltd. Electronic device module

Similar Documents

Publication Publication Date Title
US5403194A (en) Elastic interconnector
US3971610A (en) Conductive elastomeric contacts and connectors
JP3038859B2 (en) Anisotropic conductive sheet
JP2000195339A (en) Anisotropic conductive adhesive film
JP2000200636A (en) Conductive elastomer mutual connector
CN1631665A (en) Laminar composition and method for preparing the same
KR20100124148A (en) Conductive contactor for substrate surface mount
JPS6032285B2 (en) Method for manufacturing pressurized conductive elastomer
US6180221B1 (en) Conductive elastomer for grafting to thermoplastic and thermoset substrates
KR20050059083A (en) Anisotropic conductive sheet, its manufacturing method, and its application
JP2004265729A (en) Anisotropic conductive sheet
TW445680B (en) Press-contact electrical interconnectors and method for producing the same
EP0909118B1 (en) Conductive elastomer for grafting to an elastic substrate
JP2000021470A (en) Conductive member and low compression/low resistance connector using the same
US20090078449A1 (en) Dielectric sheet
JP4236367B2 (en) Semiconductor socket and manufacturing method thereof
JPH0997643A (en) Low resistance connector and manufacture thereof
EP1487055A1 (en) Anisotropic conductive sheet and its manufacturing method
JPH10247536A (en) Anisotropic conductive sheet and its manufacture
JPH11273772A (en) Anisotropic conductive sheet and its manufacture
JPWO2003079496A1 (en) Anisotropic conductive sheet and manufacturing method thereof
TW200828477A (en) Device and method for testing semiconductor element, and manufacturing method thereof
CN1191927C (en) Conductive elastomers and method for fabricating the same
JPH10200242A (en) Anisotropic conductive rubber sheet
JPWO2019078295A1 (en) Electrical connector and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Effective date: 20040329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040721