JP2005105340A - Thick hot rolled steel plate having excellent workability and ductility, and its production method - Google Patents

Thick hot rolled steel plate having excellent workability and ductility, and its production method Download PDF

Info

Publication number
JP2005105340A
JP2005105340A JP2003339781A JP2003339781A JP2005105340A JP 2005105340 A JP2005105340 A JP 2005105340A JP 2003339781 A JP2003339781 A JP 2003339781A JP 2003339781 A JP2003339781 A JP 2003339781A JP 2005105340 A JP2005105340 A JP 2005105340A
Authority
JP
Japan
Prior art keywords
less
plate thickness
ductility
hot
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003339781A
Other languages
Japanese (ja)
Other versions
JP4273906B2 (en
Inventor
Kotaro Ishikawa
幸太郎 石川
Katsumi Nakajima
勝己 中島
Toru Inazumi
透 稲積
Yoshiro Tsuchiya
義郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003339781A priority Critical patent/JP4273906B2/en
Publication of JP2005105340A publication Critical patent/JP2005105340A/en
Application granted granted Critical
Publication of JP4273906B2 publication Critical patent/JP4273906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick steel plate excellent in workability, particularly in stretch-flanging properties, and to provide its production method. <P>SOLUTION: The hot rolled steel plate has a composition comprising 0.02 to 0.2% C, ≤0.5% Si, ≤2.5% Mn, ≤0.02% P and ≤0.005% S, and the balance iron with inevitable impurities, and has a plate thickness of 5 to <15 mm. The surface layer has a bainite single phase structure in 10 to <25% with respect to the plate thickness, and the balance internal layer is composed of ferrite and one or more kinds of hard second phases selected from bainite and pearlite. The hot rolled steel plate can further comprise one or more kinds of metals selected from Ti, Nb, V, Mo, Zr, Cr and B in an amount of 0.01 to 0.3% in total. In the method of producing the hot rolled steel plate, the steel having the above chemical components is continuously cast, is heated at 1,150 to 1,300°C, and is hot-rolled at the finishing temperature of an Ar<SB>3</SB>point or higher, and the central part of the plate thickness is rapidly cooled to the range of 700 to 350°C at ≥100°C/s within 2 s after the completion of the hot rolling and is coiled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、板厚5mm以上15mm未満で、400〜520MPaの強度を保持し加工性に優れた熱延鋼板及びその製造方法に関する。ここで加工性は穴拡げ性とする。   The present invention relates to a hot-rolled steel sheet having a plate thickness of 5 mm or more and less than 15 mm, having a strength of 400 to 520 MPa and excellent workability, and a method for producing the same. Here, workability is assumed to be hole expandability.

従来、加工性はフェライト、ベイナイト等の単相組織を有する鋼板が優れていると知られている。強度範囲400〜520MPaでの熱延鋼板はフェライトを主体として加工性及び延性を確保し、硬質第2相を制御することで強度を保つ設計により加工性向上を行ってきた。この強度レベルでは、フェライトを主体とし、第2相をベイナイトとした熱延鋼板の加工性が良好であり、多くの技術が開発されてきた。例えば、特許文献1特許2255436号公報ではTi添加のフェライト+ベイナイト鋼板により加工性向上の技術が提案されている。このベイナイトはフェライトとの硬度差が、他の第2相(パーライト及びマルテンサイト)に比べて低いため、穴拡げ性の有効因子であるクラックの伝播進展が低い。   Conventionally, it is known that a steel sheet having a single phase structure such as ferrite and bainite is excellent in workability. Hot-rolled steel sheets with a strength range of 400 to 520 MPa have been improved by workability design by ensuring the workability and ductility mainly with ferrite and maintaining the strength by controlling the hard second phase. At this strength level, hot-rolled steel sheets mainly composed of ferrite and bainite as the second phase have good workability, and many techniques have been developed. For example, Japanese Patent No. 2255436 discloses a technique for improving workability by using a Ti-added ferrite + bainite steel sheet. Since this bainite has a lower hardness difference than ferrite compared to the other second phases (pearlite and martensite), the propagation of cracks, which is an effective factor for hole expansibility, is low.

また、フェライトとの硬度差が高いパーライト及びマルテンサイトを利用する際にはこれらの第2相の体積率を低くして加工性向上をさせる技術が提案されている。例えば、特許文献2特開昭58-6936号公報では、ランナウトテーブルにおける急冷において、パーライトの微細分散を行い加工性向上の技術を提供している。特許文献3特開平4-88125号公報では、マルテンサイトの体積率5%とすることで50kgf/mm2以上の高加工性ハイテンの技術を提供している。 In addition, when pearlite and martensite having a high hardness difference from ferrite are used, a technique for improving the workability by reducing the volume fraction of these second phases has been proposed. For example, Japanese Patent Application Laid-Open No. 58-6936 discloses a technique for improving workability by finely dispersing pearlite during rapid cooling on a run-out table. Japanese Patent Application Laid-Open No. 4-88125 provides a technique of high workability high tensile strength of 50 kgf / mm 2 or more by setting the volume ratio of martensite to 5%.

一方で、穴拡げ性の有効因子である亀裂進展に関連する先行技術としては鋼材の分野で不均一組織、具体的には表層に微細なフェライト組織を有するアレスト鋼板が提案されている。これは脆性破壊亀裂に対して亀裂伝播の挙動を低減する働きがあり例えば特許文献4特開昭61−235534号公報で鋼板の板厚両面より板厚1/8以上の距離にわたって平均粒径5μm以下のフェライトを有するが面積率50%以上存在する場合アレスト特性に優れた厚鋼板が提供されている。   On the other hand, as a prior art related to crack growth, which is an effective factor of hole expansibility, an arrested steel sheet having a non-uniform structure, specifically a fine ferrite structure in the surface layer, has been proposed in the field of steel materials. This serves to reduce the behavior of crack propagation with respect to brittle fracture cracks. For example, in Japanese Patent Application Laid-Open No. 61-235534, the average particle diameter is 5 μm over a distance of 1/8 or more of the plate thickness from both sides of the plate thickness. A thick steel plate having the following ferrite but having excellent arrest characteristics when the area ratio is 50% or more is provided.

上記の微細フェライト粒径に対する脆性亀裂伝播抑制の技術は特許文献5特開平2‐301540号公報及び特許文献6特開平8-295982号公報においてフェライト組織の微細化によるものが提供されている。   The technology for suppressing the propagation of brittle cracks with respect to the fine ferrite grain size is disclosed in Japanese Patent Application Laid-Open No. 2-301540 and Japanese Patent Application Laid-Open No. 8-299592, which are based on the refinement of the ferrite structure.

上記の表層フェライト組織微細化技術は脆性破壊から延性破壊に適用され、例えば特許文献7特開2000-328177号公報においてミクロ組織がフェライト、パーライト及びベイナイトから構成され、両表面部の板厚5%以上で円相当粒径7μm以下の面積、アスペクト比:2〜4のフェライトが50%有し、ベイナイト分率が5〜25%以下である層から構成され、中心部は板厚の50%に亘って円相当粒径4〜10μm、アスペクト比:2.0のフェライトを有し、ベイナイト分率が10%以下である層から構成されていると報告されている。   The above-mentioned surface layer ferrite structure refinement technique is applied from brittle fracture to ductile fracture. For example, in Japanese Patent Application Laid-Open No. 2000-328177, the microstructure is composed of ferrite, pearlite, and bainite, and the thickness of both surface portions is 5%. The above is composed of a layer with an area equivalent to a circle equivalent grain size of 7 μm or less and an aspect ratio of 2 to 4 with 50% ferrite and a bainite fraction of 5 to 25% or less. It is reported that it is composed of a layer having a ferrite with an equivalent particle diameter of 4 to 10 μm and an aspect ratio of 2.0 and having a bainite fraction of 10% or less.

また、薄物材の板厚方向に不均一な組織を利用した技術があり、特許文献8特開平7-258795号公報では缶素材鋼板への適用が提案されている。これは、熱延の仕上げ温度をAr3点以上としてその後、平均冷却速度30℃/s以上で急冷し、巻き取り温度500〜670℃で巻き取ることで、フェライト粒径制御を板厚表層から100μmまでの板厚に対して行い、表面性状の優れた鋼板を提供している。

特許2255436号公報 特開昭58-6936号公報 特開平4-88125号公報 特開昭61−235534号公報 特開平2‐301540号公報 特開平8-295982号公報 特開2000-328177号公報 特開平7-258795号公報
In addition, there is a technique that utilizes a non-uniform structure in the thickness direction of a thin material, and Japanese Patent Application Laid-Open No. 7-258795 proposes application to a can material steel plate. This is because the finishing temperature of hot rolling is set to Ar 3 or higher, and then rapidly cooled at an average cooling rate of 30 ° C / s or higher, and wound at a winding temperature of 500 to 670 ° C. This is done for sheet thicknesses of up to 100μm, providing steel sheets with excellent surface properties.

Japanese Patent No. 2255436 JP 58-6936 Japanese Unexamined Patent Publication No. 4-88125 JP 61-235534 A JP-A-2-301540 JP-A-8-295982 JP 2000-328177 A Japanese Unexamined Patent Publication No. 7-258795

厚物鋼板、主に板厚5mm以上では薄鋼板(5mm未満)に比べて従来技術では熱間圧延後の冷却能が落ちる。これによるフェライト組織の細粒化や第2相組織の主にベイナイトの制御が困難であり、パーライトが形成する。このパーライトは、強度を確保することができない可能性があり、また、フェライトの硬度差があるため、加工性も劣化し、延性も乏しい。例えば、特許文献1〜3記載の技術を厚物鋼板に適用すると、板厚中央部では粗大なフェライト+パーライト組織となり、強度が低下し、加工性も損なわれる。特に、特許文献3記載の技術は、ランナウト冷却速度が50℃/sのため、板厚中央ではマルテンサイトが生成しない可能性があり、パーライト組織の生成により強度及び加工性が劣化するという問題がある。   Thick steel plates, mainly with a thickness of 5 mm or more, have lower cooling capacity after hot rolling in the prior art than thin steel plates (less than 5 mm). This makes it difficult to refine the ferrite structure and mainly control the bainite in the second phase structure, and pearlite is formed. This pearlite may not be able to ensure strength, and since there is a difference in hardness of ferrite, workability is deteriorated and ductility is poor. For example, when the techniques described in Patent Documents 1 to 3 are applied to a thick steel plate, a coarse ferrite + pearlite structure is formed in the central portion of the plate thickness, the strength is lowered, and the workability is also impaired. In particular, the technique described in Patent Document 3 has a problem that martensite may not be generated at the center of the plate thickness because the runout cooling rate is 50 ° C./s, and the strength and workability deteriorate due to generation of a pearlite structure. is there.

一方で、板厚方向に均一でない組織を用いる方法については、特許文献4記載の技術は、表面性状の向上を目的としており、加工性、特に伸びフランジ性については言及されていない。特許文献5〜7記載の技術は、いずれも表層部のフェライト粒の細粒化により、破壊靭性におけるアレスト特性を向上させるというもので、伸びフランジ性についての適用はなされていない。   On the other hand, regarding the method of using a structure that is not uniform in the plate thickness direction, the technique described in Patent Document 4 aims to improve surface properties, and does not mention workability, particularly stretch flangeability. The techniques described in Patent Documents 5 to 7 all improve the arrest characteristics in fracture toughness by refining ferrite grains in the surface layer portion, and are not applied to stretch flangeability.

また、このような組織微細化技術を延性破壊に適用した特許文献8記載の技術は、伸びフランジ性に対する考慮がされていない。また、表層の微細フェライト+ベイナイト組織を利用するものであり、体積率の制御が困難である。特に厚物鋼板にこの技術を適用すると、表層組織におけるベイナイト体積率が冷却条件により大きく変化し、安定した材質を得ることが困難である。   In addition, the technique described in Patent Document 8 in which such a structure refinement technique is applied to ductile fracture does not consider stretch flangeability. In addition, the fine ferrite + bainite structure of the surface layer is used, and it is difficult to control the volume ratio. In particular, when this technique is applied to a thick steel plate, the bainite volume fraction in the surface layer structure varies greatly depending on the cooling conditions, and it is difficult to obtain a stable material.

本発明では、以上の問題を解決して、厚物鋼板において加工性とりわけ伸びフランジ性に優れた鋼板及びその製造方法を提供する。
The present invention solves the above problems and provides a steel plate having excellent workability, particularly stretch flangeability, and a method for producing the same in a thick steel plate.

これらの課題は、次の発明により解決される。その発明は、化学組成が質量%でC:0.02〜0.2%、Si:0.5%以下、Mn:2.5%以下、P:0.02%以下、S:0.005%以下を含み残部が鉄及び不可避的不純物よりなり、鋼板の板厚が5mm以上15mm未満を有し、表層及び裏層に板厚の10%以上25%未満でベイナイト単相組織を有し、内層残部がフェライトとベイナイトまたはパーライトのうち一種類以上の硬質第二相からなることを特徴とする加工性及び延性に優れた熱延鋼板である。   These problems are solved by the following invention. The invention has a chemical composition of% by mass, C: 0.02 to 0.2%, Si: 0.5% or less, Mn: 2.5% or less, P: 0.02% or less, S: 0.005% or less, the balance being iron and inevitable impurities The steel sheet has a thickness of 5 mm or more and less than 15 mm, the surface layer and the back layer have a bainite single phase structure at 10% or more and less than 25% of the sheet thickness, and the inner layer remainder is one type of ferrite and bainite or pearlite. It is a hot-rolled steel sheet excellent in workability and ductility characterized by comprising the above hard second phase.

ここで、化学組成が更にTi,Nb,V,Mo,Zr,Cr,Bのうち一種類以上を合計で0.01〜0.3%含むことを特徴とする加工性及び延性に優れた熱延鋼板とすることもできる。   Here, a hot-rolled steel sheet having excellent workability and ductility is characterized in that the chemical composition further includes one or more of Ti, Nb, V, Mo, Zr, Cr, B in a total of 0.01 to 0.3%. You can also.

また、製造方法の発明は、上記の化学組成からなる鋼を連続鋳造して鋳片となし、1150℃〜1300℃の温度域に加熱した後、仕上げ温度をAr3点以上とする条件で熱間圧延を行い、熱間圧延終了後2秒以内に急速冷却を開始して板厚中央部を冷却速度100℃/s以上で700〜350℃の範囲まで急速冷却し、巻き取ることを特徴とする加工性及び延性に優れた熱延鋼板の製造方法である。 In addition, the invention of the manufacturing method is that the steel having the above chemical composition is continuously cast into a slab, heated to a temperature range of 1150 ° C to 1300 ° C, and then heated under the condition that the finishing temperature is Ar 3 point or higher. It is characterized in that hot rolling is performed and rapid cooling is started within 2 seconds after the end of hot rolling, and the central part of the plate thickness is rapidly cooled to a range of 700 to 350 ° C at a cooling rate of 100 ° C / s or more. This is a method for producing a hot-rolled steel sheet having excellent workability and ductility.

この発明においては更に、表層及び裏層からそれぞれ板厚の10%以上25%未満については冷却速度200℃/s以上で550℃以下まで急速冷却することを特徴とする加工性及び延性に優れた熱延鋼板の製造方法とすることもできる。   In this invention, the surface layer and the back layer are excellent in workability and ductility characterized by rapid cooling to 550 ° C. or less at a cooling rate of 200 ° C./s or more for 10% or more and less than 25% of the plate thickness, respectively. It can also be set as the manufacturing method of a hot-rolled steel plate.

本発明は、鋼板の表層(表裏面とも)がベイナイト単相組織であり、内層をフェライト+硬質第二相とすることにより、加工性及び延性を向上させている。以下、本発明における、鋼組成、鋼組織及び製造条件について説明する。   In the present invention, the surface layer (both front and back surfaces) of the steel sheet has a bainite single-phase structure, and the inner layer is made of ferrite + hard second phase, thereby improving workability and ductility. Hereinafter, the steel composition, steel structure and production conditions in the present invention will be described.

(1)鋼組織について
鋼板表層部:表層及び裏層からそれぞれ板厚の10%以上25%未満についてベイナイト単相
板厚5mm以上15mm未満の鋼板で、強度が400MPa以上、穴拡げ率が100%以上となるには、板厚方向に対して表層及び裏層ベイナイト単相組織が10%以上必要である。一方、板厚方向に対して表層及び裏層ベイナイト単相組織が25%以上では延性の低下があるため、25%未満とした。なお、表層及び裏層ベイナイト単相組織を板厚の20〜10%とすることにより更に望ましい強度-延性バランスが得られる。
(1) Steel structure Steel plate surface layer: 10% or more and less than 25% of the plate thickness from the surface layer and the back layer, respectively. A bainite single-phase steel plate with a thickness of 5 mm or more and less than 15 mm, with a strength of 400 MPa or more and a hole expansion rate of 100%. In order to achieve the above, the surface layer and the back layer bainite single phase structure needs to be 10% or more in the thickness direction. On the other hand, when the surface layer and back layer bainite single-phase structures are 25% or more in the thickness direction, ductility is lowered, so the content was made less than 25%. A more desirable strength-ductility balance can be obtained by setting the single-phase structure of the surface layer and the back layer bainite to 20 to 10% of the plate thickness.

鋼板内層部:フェライトと硬質第2相
板厚5mm以上15mm未満の鋼板で、良好な延性を得るためには、残部をフェライトとパーライト又はベイナイトのうち1種類又は2種類以上の硬質第2相を有する組織とする。その結果、鋼板内部については、通常の複合組織鋼板と同様の延性を確保することができる。
Steel plate inner layer: Ferrite and hard second phase To obtain good ductility with a steel plate with a thickness of 5 mm or more and less than 15 mm, the balance is made of ferrite, pearlite, or bainite with one or more types of hard second phase. It is assumed that it has an organization. As a result, about the inside of a steel plate, the same ductility as a normal composite structure steel plate can be ensured.

上記に示す組織により、延性を板厚内部の組織で確保し、強度及び加工性を表層の単相組織により向上させることができる。   By the structure shown above, ductility can be ensured by the structure inside the plate thickness, and the strength and workability can be improved by the single-phase structure of the surface layer.

(2)鋼組成
C:0.02〜0.2%
Cは鋼板の強度を確保するため添加する。0.02%未満では400MPa以上の強度が得られず、0.2%を超えると加工性及び延性が劣化するため、0.02〜0.2%添加する。
(2) Steel composition
C: 0.02-0.2%
C is added to ensure the strength of the steel sheet. If it is less than 0.02%, strength of 400 MPa or more cannot be obtained, and if it exceeds 0.2%, workability and ductility deteriorate, so 0.02 to 0.2% is added.

Si:0.5%以下
Siは固溶強化元素で強度を確保するために添加する。0.5%を超えると表面性状が劣化するため、0.5%以下とする。
Si: 0.5% or less
Si is a solid solution strengthening element and is added to ensure strength. If it exceeds 0.5%, the surface properties deteriorate, so 0.5% or less.

Mn:2.5%以下
Mnは固溶強化元素で強度を確保するために添加する。しかし、Mnが 2.5%を超えると加工性及び延性が劣化するため、2.5%以下とする。なお、0.5%以下では強度確保の効果が小さいので、Mnを0.5%以上とし、0.5〜2.5%とすることが好ましい。
Mn: 2.5% or less
Mn is a solid solution strengthening element and is added to ensure strength. However, if Mn exceeds 2.5%, workability and ductility deteriorate, so 2.5% or less. In addition, since the effect of ensuring strength is small at 0.5% or less, Mn is set to 0.5% or more, preferably 0.5 to 2.5%.

P:0.02%以下
Pは連続鋳造時のスラブ表面またはスラブ表層下における割れを助長する有害な元素である。Pが0.02%を超えると連続鋳造時にスラブ表面又はスラブ表層下で割れ発生が著しくなるために0.02%以下とする。
P: 0.02% or less
P is a harmful element that promotes cracking on the slab surface or under the slab surface during continuous casting. If P exceeds 0.02%, cracking becomes remarkable on the slab surface or under the slab surface during continuous casting, so 0.02% or less.

S:0.005%以下
SはMnSを形成し加工性及び延性の劣化を引き起すため0.005%以下とする。

選択元素については次のようになる。
Ti,Nb,V,Mo,Zr,Cr、B:一種類以上を合計で0.01〜0.3%
これらの元素は炭窒化物を形成し、強度を向上させる。一種類以上の合計で0.01%未満ではその効果を得られず、0.3%を越えると加工性を劣化させるため0.01〜0.3%とする。
S: 0.005% or less
S is 0.005% or less in order to form MnS and cause deterioration of workability and ductility.

The selective elements are as follows.
Ti, Nb, V, Mo, Zr, Cr, B: 0.01 to 0.3% of one or more types in total
These elements form carbonitrides and improve strength. If the total of one or more types is less than 0.01%, the effect cannot be obtained, and if it exceeds 0.3%, the workability is deteriorated, so 0.01 to 0.3%.

尚、本発明においては、その他の元素は特に規定せず、例えばCu:2%以下、Sn:0.01%以下などを含有することができる。   In the present invention, other elements are not particularly defined, and can contain, for example, Cu: 2% or less, Sn: 0.01% or less, and the like.

(3)製造条件
鋳片加熱温度:1150〜1300℃
連続鋳造された鋳片を板厚中央温度において1150℃〜1300℃の温度域に加熱する。加熱温度が1150℃未満では、熱間圧延の仕上温度が確保しにくくなる。一方、加熱温度が1300℃を超えると、表面疵が発生しやすくなる。
(3) Manufacturing conditions Slab heating temperature: 1150-1300 ° C
The continuously cast slab is heated to a temperature range of 1150 ° C. to 1300 ° C. at the plate thickness central temperature. When the heating temperature is less than 1150 ° C., it is difficult to ensure the finishing temperature of hot rolling. On the other hand, when the heating temperature exceeds 1300 ° C., surface defects are likely to occur.

仕上げ温度:Ar3以上
仕上温度がAr3温度未満となると、表層部にフェライトが生成し、ベイナイト単相生成が不可能となる。従って、熱間圧延の仕上げ温度をAr3以上とする。
Finishing temperature: Ar 3 or more When the finishing temperature is lower than the Ar 3 temperature, ferrite is generated in the surface layer, and bainite single-phase generation is impossible. Therefore, the hot rolling finishing temperature is set to Ar 3 or higher.

熱間圧延後の冷却:熱間圧延終了後2秒以内に急冷開始
熱間圧延終了後は、フェライトの微細化促進による良好な延性及び強度を得るために急冷を行う。急冷開始時間が2秒を超えると、急冷中に相変態が開始し、表層部がベイナイト単相組織とならないことがある。従って、熱間圧延終了後2秒以内に急冷開始とする。
Cooling after hot rolling: Rapid cooling starts within 2 seconds after hot rolling is completed. After hot rolling, rapid cooling is performed to obtain good ductility and strength by promoting the refinement of ferrite. If the rapid cooling start time exceeds 2 seconds, phase transformation may start during rapid cooling, and the surface layer portion may not have a bainite single phase structure. Therefore, rapid cooling is started within 2 seconds after the end of hot rolling.

急冷の冷却速度:板厚中央部で100℃/s以上
板厚中央部の冷却速度が100℃/s未満では400MPa以上の強度及び100%以上の穴拡げ性が得られないため、冷却速度は100℃/s以上とする。
Rapid cooling rate: 100 ° C / s or more at the center of the plate thickness If the cooling rate at the center of the plate thickness is less than 100 ° C / s, strength of 400 MPa or more and hole expandability of 100% or more cannot be obtained. 100 ℃ / s or more.

急冷の停止温度:板厚中央部で700〜350℃の範囲
急冷の停止温度が700℃を超えると、フェライトの回復又はオーステナイトが生成し、表層部がベイナイト単相組織とならない。更にその後、巻き取り温度が700℃を超えた場合、フェライト組織の回復により強度が400MPaを確保できなくなる。一方、急冷の停止温度が350℃未満となると、板厚中央部もベイナイトあるいはマルテンサイト組織となり、鋼板の材質が硬質で低延性となる。更に、巻き取り装置への負荷が大きくなるという問題もあるため、350℃以上とする。
Quenching stop temperature: 700 to 350 ° C. at the center of the plate thickness When the quenching stop temperature exceeds 700 ° C., ferrite recovery or austenite is generated, and the surface layer portion does not have a bainite single phase structure. After that, when the coiling temperature exceeds 700 ° C., the strength cannot be ensured to 400 MPa due to the recovery of the ferrite structure. On the other hand, when the quenching stop temperature is less than 350 ° C., the central portion of the plate thickness also has a bainite or martensite structure, and the steel plate material is hard and has low ductility. Furthermore, since there is a problem that the load on the winding device becomes large, the temperature is set to 350 ° C. or higher.

板厚表層部の冷却条件:200℃/s以上で550℃以下まで急冷
更に、板厚表層部の冷却条件を規定することにより、板厚方向の所定部分をベイナイト単相とする。板厚表層部の冷却速度が200℃/s未満では、板厚表層部の少なくとも10%以上をベイナイト単相とすることができなくなる。また、板厚表層部の冷却停止温度が550℃より高いと、フェライトが生成し、やはり板厚表層部をベイナイト単相とすることができなくなる。従って、板厚表層部の冷却条件として、好ましくは冷却速度200℃以上で550℃の変態点まで冷却させる必要がある。
Cooling condition of the surface layer part of the plate thickness: Rapid cooling to 200 ° C./s or more and 550 ° C. or less Further, by defining the cooling condition of the surface layer part of the sheet thickness, a predetermined portion in the sheet thickness direction is made a bainite single phase. When the cooling rate of the plate thickness surface layer portion is less than 200 ° C./s, at least 10% or more of the plate thickness surface layer portion cannot be made into a bainite single phase. On the other hand, if the cooling stop temperature of the plate thickness surface layer portion is higher than 550 ° C., ferrite is generated, and the plate thickness surface layer portion cannot be made into a bainite single phase. Therefore, it is necessary to cool to a transformation point of 550 ° C. preferably at a cooling rate of 200 ° C. or higher as a cooling condition for the plate thickness surface layer portion.

ここで、表層にベイナイトを形成させた後、板厚表層部は低温のため強度が高くなっているので、板厚中央温度に表層温度が合ってから、即ち表層温度が十分復熱してから巻き取るのが、装置の負荷低減のために望ましい。   Here, after the bainite is formed on the surface layer, the strength of the surface layer portion is high due to the low temperature, and therefore the winding is performed after the surface layer temperature matches the center temperature of the plate thickness, that is, after the surface layer temperature has sufficiently recovered. It is desirable to reduce the load on the apparatus.

本発明は、鋼板の板厚表層部をベイナイト単相組織とし、内層(板厚中央部)をフェライト+硬質第二相とすることにより、加工性及び延性を向上させている。厚物熱延鋼板においても、本発明では板厚表層部の冷却速度と急冷停止温度を規定することにより、このような構造の鋼板を製造することが可能である。
In the present invention, the workability and ductility are improved by making the plate thickness surface layer portion of the steel plate have a bainite single-phase structure and the inner layer (plate thickness center portion) is made of ferrite + hard second phase. Even in a thick hot-rolled steel sheet, in the present invention, it is possible to manufacture a steel sheet having such a structure by defining the cooling rate and quenching stop temperature of the surface layer portion of the sheet thickness.

以下、発明を実施するための最良の形態について、実施例により説明する。   Hereinafter, the best mode for carrying out the invention will be described with reference to examples.

鋼板の穴拡げ試験結果について述べる。表1に示す化学組成の鋼を溶製後、連続鋳造によりスラブを製造した。また、これらのスラブを表2に示す圧延条件により熱延鋼板を製造し、試験に用いるサンプルを採取した。ここで、No.1〜8は本発明の範囲内の発明鋼、No.9はMn,P,Sが本発明の範囲を外れた比較鋼である。   The results of the steel sheet hole expansion test will be described. After melting the steel having the chemical composition shown in Table 1, slabs were produced by continuous casting. In addition, hot-rolled steel sheets were produced from these slabs under the rolling conditions shown in Table 2, and samples used for the tests were collected. Here, Nos. 1 to 8 are invention steels within the scope of the present invention, and No. 9 is a comparative steel in which Mn, P and S are outside the scope of the present invention.

Figure 2005105340
Figure 2005105340

表2に製造条件及び機械的特性値を示す。上記表1に示す鋼のスラブを1200℃に加熱後、通常操業の仕上げ温度の850℃(Ar3点以上)で圧延し、板厚を8mmとした。その後、発明例のNo.1〜3については、板厚中央は冷却速度を150〜250℃/sで停止温度を650〜470℃とし、表層についてはそれぞれ220〜340℃/s、450〜520℃とした。一方、比較例については、No.5〜8が板厚中央の冷却速度が発明範囲より低く、No.4〜8が表層の冷却速度が発明範囲より低くなっている。比較例の内、No.9のみはこれらの冷却条件をいずれも発明範囲内とした。 Table 2 shows manufacturing conditions and mechanical property values. The steel slab shown in Table 1 above was heated to 1200 ° C. and then rolled at a finishing temperature of normal operation of 850 ° C. (Ar 3 points or more) to a thickness of 8 mm. Thereafter, for Nos. 1 to 3 of the inventive examples, the center of the plate thickness is set to a cooling rate of 150 to 250 ° C./s and a stop temperature of 650 to 470 ° C., and the surface layers are 220 to 340 ° C./s and 450 to 520, respectively. C. On the other hand, as for the comparative examples, No. 5 to 8 have a cooling rate at the center of the plate thickness lower than the invention range, and Nos. 4 to 8 have a cooling rate of the surface layer lower than the invention range. Of the comparative examples, only No. 9 has these cooling conditions within the scope of the invention.

Figure 2005105340
Figure 2005105340

ここで、引張試験はJIS5号試験片を用いて実施した。本発明の化学組成と製造条件を満たす材料はNo.1〜3であり、本発明の製造条件から外れる比較例は材料No.4〜8である。比較例について説明すると、No.4は冷却開始時間が2秒を超えた例(板厚中央、表層共)である。No.5は冷却開始時間は2秒以内であるが、冷却速度が発明範囲外(通常冷却〜40℃/s)であり、No.6,7は冷却開始時間も2秒を超え、冷却速度も発明範囲外(通常冷却)である。No.8は冷却開始時間が2秒を超え、表層のみ冷却速度100℃/sではあるがやはり発明範囲外(<200℃/s)である。   Here, the tensile test was implemented using the JIS5 test piece. The materials satisfying the chemical composition and production conditions of the present invention are Nos. 1 to 3, and the comparative examples that deviate from the production conditions of the present invention are materials Nos. 4 to 8. The comparative example will be described. No. 4 is an example in which the cooling start time exceeded 2 seconds (both in the center of the plate thickness and the surface layer). No. 5 has a cooling start time of 2 seconds or less, but the cooling rate is outside the scope of the invention (normal cooling to 40 ° C / s), and No. 6 and 7 have a cooling start time of more than 2 seconds. Is also outside the scope of the invention (normal cooling). In No. 8, the cooling start time exceeds 2 seconds, and only the surface layer has a cooling rate of 100 ° C./s, but it is also outside the scope of the invention (<200 ° C./s).

図1に加工性(TS-λ(穴拡げ率)バランス)を示す。図1より発明例は比較例に比べて強度-穴拡げ率バランスが向上していることが明らかである。   Fig. 1 shows the workability (TS-λ (hole expansion ratio) balance). From FIG. 1, it is clear that the invention example has an improved strength-hole expansion ratio balance as compared with the comparative example.

図2に、これらの鋼板の板厚表面と板厚中央の組織を示す。発明例(No.1)は図2に示すような板厚表面にベイナイト単相、それ以外の組織をフェライトと第2相から成り立っている。これに対して、比較例(No.6)は、板厚表層部がベイナイト単相組織とならず、板厚中央部と同様のフェライト+パーライト組織であり、また粒径も発明例より大きい。   FIG. 2 shows the structure of the plate thickness surface and the plate thickness center of these steel plates. Inventive Example (No. 1) is composed of a bainite single phase on the plate thickness surface as shown in FIG. 2, and other structures consisting of ferrite and second phase. On the other hand, in the comparative example (No. 6), the plate thickness surface layer portion does not have a bainite single phase structure, but has the same ferrite + pearlite structure as the plate thickness central portion, and the particle size is larger than that of the invention example.

なお、比較例No.9はP,Sが本発明の組成を外れた例であり、組織は本発明と同様、板厚表層部がベイナイト単相組織、板厚中央部がフェライト+第2相となっているものの、延性と穴拡げ性が極端に低下している。
Comparative Example No. 9 is an example in which P and S deviated from the composition of the present invention, and the structure was the same as in the present invention, the plate thickness surface layer portion being a bainite single phase structure, and the plate thickness center portion being ferrite + second phase. However, the ductility and hole expansibility are extremely low.

伸びフランジ性の有効因子である打ち抜き穴端面の亀裂伝播特性試験について検討した結果を述べる。本発明での穴広げ試験における亀裂伝播特性を図3に示す試験片により行った。試験片は熱延鋼帯の幅方向(C方向)よりサンプル採取し、8t×100L×30wとして試験片50Lの端面の片側に機械穴(研磨)及び一方に打ち抜きのノッチ加工を行った。この試験の穴端面近傍の応力状態は一軸引っ張りであり、穴拡げ試験を模擬している。また、この試験の伸びは穴拡げ率λに対応し、穴拡げ率による亀裂進展を観察することで表層ベイナイトがλに及ぼす影響を検討した。   The results of a study on the crack propagation characteristic test of the punched hole end face, which is an effective factor for stretch flangeability, are described. The crack propagation characteristics in the hole expansion test in the present invention were performed using the test piece shown in FIG. The test piece was sampled from the width direction (C direction) of the hot-rolled steel strip, 8 t × 100 L × 30 w, machined (polished) on one side of the end face of the test piece 50L, and notched by punching on one side. The stress state in the vicinity of the hole end face of this test is uniaxial tension, which simulates a hole expansion test. The elongation of this test corresponds to the hole expansion rate λ, and the effect of surface bainite on λ was examined by observing the crack growth due to the hole expansion rate.

サンプルは強度が470MPaでλに差がある表2の表層にベイナイトを有するNo.1(λ=140%)とフェライト+パーライト均一組織No.6(λ=70%)として、表層にこの試験片で引張試験を行い、伸びに対する打ち抜き穴のノッチ部における亀裂伝播を観察し板厚方向に進展する亀裂長さを測定した。また、伸びは評点間距離10mmとして行った。   The sample is No.1 (λ = 140%) with bainite in the surface layer of Table 2 where the strength is 470 MPa and there is a difference in λ, and ferrite + pearlite uniform structure No.6 (λ = 70%). A tensile test was carried out, and the crack propagation at the notch portion of the punched hole with respect to the elongation was observed to measure the crack length that propagates in the thickness direction. Elongation was performed with a distance between the scores of 10 mm.

結果を図4に示す。図中、Bはベイナイト、F+Pはフェライト+パーライトを示す。図4より、この両サンプルは強度がほぼ同等のため穴端面に亀裂が生じるのが、ほぼ同じ伸びであり、比較材と発明材は亀裂長さが表層部までほぼ同様の速度で進展しているが、発明材は亀裂が表層部に到達すると進展が伸びに対して低下しており、発明材は比較材に比べて亀裂伝播を抑制していることが明らかである。以上より、表層のベイナイトが穴拡げ性を向上させていることが明らかである。
The results are shown in FIG. In the figure, B represents bainite, and F + P represents ferrite + pearlite. According to Fig. 4, both samples have almost the same strength, and cracks are generated at the hole end faces, but the elongation is almost the same, and the crack length of the comparative material and the invention material progresses to the surface layer at almost the same speed. However, when the crack reaches the surface layer part, the progress of the inventive material decreases with respect to the elongation, and it is clear that the inventive material suppresses crack propagation compared to the comparative material. From the above, it is clear that the bainite on the surface layer improves the hole expandability.

強度と延性における本発明の効果を示す図。The figure which shows the effect of this invention in intensity | strength and ductility. 板厚方向断面におけるミクロ組織を示す図。The figure which shows the microstructure in a plate | board thickness direction cross section. 亀裂伝播特性試験用の切り欠き試験片。Notch specimen for crack propagation property test. 亀裂伝播特性を示す図。The figure which shows a crack propagation characteristic.

Claims (4)

化学組成が質量%でC:0.02〜0.2%、Si:0.5%以下、Mn:2.5%以下、P:0.02%以下、S:0.005%以下を含み残部が鉄及び不可避的不純物よりなり、鋼板の板厚が5mm以上15mm未満を有し、表層及び裏層に板厚の10%以上25%未満でベイナイト単相組織を有し、内層残部がフェライトとベイナイトまたはパーライトのうち一種類以上の硬質第二相からなることを特徴とする加工性及び延性に優れた熱延鋼板。
C: 0.02-0.2%, Si: 0.5% or less, Mn: 2.5% or less, P: 0.02% or less, S: 0.005% or less, with the balance being iron and inevitable impurities. The plate thickness is 5 mm or more and less than 15 mm, the surface layer and the back layer have a bainite single-phase structure at 10% or more and less than 25% of the plate thickness, and the inner layer balance is one of one or more hard ferrite or bainite or pearlite. A hot-rolled steel sheet excellent in workability and ductility characterized by comprising two phases.
請求項1記載の加工性及び延性に優れた熱延鋼板において、化学組成が更にTi,Nb,V,Mo,Zr,Cr,Bのうち一種類以上を合計で0.01〜0.3%含むことを特徴とする加工性及び延性に優れた熱延鋼板。
The hot-rolled steel sheet having excellent workability and ductility according to claim 1, wherein the chemical composition further contains one or more of Ti, Nb, V, Mo, Zr, Cr, and B in a total amount of 0.01 to 0.3%. A hot-rolled steel sheet with excellent workability and ductility.
請求項1又は2記載の化学組成からなる鋼を連続鋳造して鋳片となし、1150℃〜1300℃の温度域に加熱した後、仕上げ温度をAr3点以上とする条件で熱間圧延を行い、熱間圧延終了後2秒以内に急速冷却を開始して板厚中央部を冷却速度100℃/s以上で700〜350℃の範囲まで急速冷却し、巻き取ることを特徴とする加工性及び延性に優れた熱延鋼板の製造方法。
A steel having the chemical composition according to claim 1 or 2 is continuously cast to form a slab, heated to a temperature range of 1150 ° C to 1300 ° C, and then hot-rolled under a condition where the finishing temperature is set to Ar 3 or higher. Workability is characterized by starting rapid cooling within 2 seconds after the end of hot rolling, rapidly cooling the center of the plate thickness to a range of 700 to 350 ° C at a cooling rate of 100 ° C / s or more And the manufacturing method of the hot-rolled steel plate excellent in ductility.
表層及び裏層からそれぞれ板厚の10%以上25%未満については冷却速度200℃/s以上で550℃以下まで急速冷却することを特徴とする請求項3記載の加工性及び延性に優れた熱延鋼板の製造方法。 The heat excellent in workability and ductility according to claim 3, characterized in that 10% or more and less than 25% of the plate thickness from the surface layer and the back layer is rapidly cooled to 550 ° C or less at a cooling rate of 200 ° C / s or more. A method for producing rolled steel sheets.
JP2003339781A 2003-09-30 2003-09-30 Thick hot rolled steel sheet excellent in workability and ductility and method for producing the same Expired - Fee Related JP4273906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339781A JP4273906B2 (en) 2003-09-30 2003-09-30 Thick hot rolled steel sheet excellent in workability and ductility and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339781A JP4273906B2 (en) 2003-09-30 2003-09-30 Thick hot rolled steel sheet excellent in workability and ductility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005105340A true JP2005105340A (en) 2005-04-21
JP4273906B2 JP4273906B2 (en) 2009-06-03

Family

ID=34534880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339781A Expired - Fee Related JP4273906B2 (en) 2003-09-30 2003-09-30 Thick hot rolled steel sheet excellent in workability and ductility and method for producing the same

Country Status (1)

Country Link
JP (1) JP4273906B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133965A1 (en) * 2008-05-02 2009-11-05 新日本製鐵株式会社 Hot-rolled steel plate for steel tubes for machine structural purposes which is excellent in fatigue characteristics and bending formability and process for production of the plate
KR100954201B1 (en) * 2007-12-24 2010-04-21 주식회사 포스코 Hot-rolled steel sheet superior in tensile strength and elongation and manufacturing method thereof
JP2010174332A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
CN101892428A (en) * 2010-07-16 2010-11-24 攀钢集团钢铁钒钛股份有限公司 High-strength hot continuous rolling steel plate and production method thereof
JP2012021214A (en) * 2010-07-16 2012-02-02 Jfe Steel Corp Hot-rolled high tensile steel sheet for high strength welded steel pipe for line pipe, and method of producing the same
JP2015063736A (en) * 2013-09-25 2015-04-09 新日鐵住金株式会社 High strength hot rolled steel sheet excellent in fatigue strength and production method thereof
KR101546124B1 (en) * 2013-03-28 2015-08-20 현대제철 주식회사 Hot-rolled steel and method of manufacturing the same
JP2021031702A (en) * 2019-08-20 2021-03-01 日本製鉄株式会社 Production method of thick steel sheet and thick steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954201B1 (en) * 2007-12-24 2010-04-21 주식회사 포스코 Hot-rolled steel sheet superior in tensile strength and elongation and manufacturing method thereof
WO2009133965A1 (en) * 2008-05-02 2009-11-05 新日本製鐵株式会社 Hot-rolled steel plate for steel tubes for machine structural purposes which is excellent in fatigue characteristics and bending formability and process for production of the plate
JP2010174332A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
CN101892428A (en) * 2010-07-16 2010-11-24 攀钢集团钢铁钒钛股份有限公司 High-strength hot continuous rolling steel plate and production method thereof
JP2012021214A (en) * 2010-07-16 2012-02-02 Jfe Steel Corp Hot-rolled high tensile steel sheet for high strength welded steel pipe for line pipe, and method of producing the same
KR101546124B1 (en) * 2013-03-28 2015-08-20 현대제철 주식회사 Hot-rolled steel and method of manufacturing the same
JP2015063736A (en) * 2013-09-25 2015-04-09 新日鐵住金株式会社 High strength hot rolled steel sheet excellent in fatigue strength and production method thereof
JP2021031702A (en) * 2019-08-20 2021-03-01 日本製鉄株式会社 Production method of thick steel sheet and thick steel sheet
JP7381842B2 (en) 2019-08-20 2023-11-16 日本製鉄株式会社 thick steel plate

Also Published As

Publication number Publication date
JP4273906B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
KR101343747B1 (en) Steel with excellent anti-ductile crack generation characteristics in weld heat-affected zone and base material and manufacturing method therefor
JP5042914B2 (en) High strength steel and manufacturing method thereof
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
WO2008013300A1 (en) Process for producing pearlitic rail excellent in wearing resistance and ductility
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
JP2006118000A (en) Lightweight high strength steel having excellent ductility and its production method
JP2017179540A (en) Hot rolled steel sheet and manufacturing method therefor
JP2007119850A (en) Wear resistant steel plate with excellent low-temperature toughness, and method for manufacturing the same
JP2008184638A (en) Thick high tensile strength steel plate, and method for producing the same
JP2006274317A (en) High strength hot rolled steel sheet having excellent hole expansion workability, and method for producing the same
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP2005314796A (en) High strength hot rolled steel sheet having excellent elongation property, stretch flange property and tensile fatigue property, and its production method
JP4273906B2 (en) Thick hot rolled steel sheet excellent in workability and ductility and method for producing the same
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
JP6036615B2 (en) Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP5257289B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP7070814B1 (en) Thick steel plate and its manufacturing method
JP2768807B2 (en) Manufacturing method of thin steel sheet
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP2005054250A (en) High tensile strength steel sheet having excellent base metal toughness and haz toughness
JP5157417B2 (en) Steel sheet and manufacturing method thereof
JP4319940B2 (en) High carbon steel plate with excellent workability, hardenability and toughness after heat treatment
JP2003231939A (en) High-strength steel sheet superior in sr resistance, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Ref document number: 4273906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees