WO2009133965A1 - Hot-rolled steel plate for steel tubes for machine structural purposes which is excellent in fatigue characteristics and bending formability and process for production of the plate - Google Patents

Hot-rolled steel plate for steel tubes for machine structural purposes which is excellent in fatigue characteristics and bending formability and process for production of the plate Download PDF

Info

Publication number
WO2009133965A1
WO2009133965A1 PCT/JP2009/058732 JP2009058732W WO2009133965A1 WO 2009133965 A1 WO2009133965 A1 WO 2009133965A1 JP 2009058732 W JP2009058732 W JP 2009058732W WO 2009133965 A1 WO2009133965 A1 WO 2009133965A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
hot
fatigue characteristics
fatigue
bending
Prior art date
Application number
PCT/JP2009/058732
Other languages
French (fr)
Japanese (ja)
Inventor
福士孝聡
中村英幸
穴井功
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Publication of WO2009133965A1 publication Critical patent/WO2009133965A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention relates to a hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and bending formability, and a method for producing the same.
  • Examples of the mechanical structural steel pipe of the present invention include an automobile structural steel pipe and an automobile undercarriage part steel pipe.
  • Steel for machine structures has been widely used in the industry as a material for parts and parts used in general machinery, industrial machinery, construction machinery, transport machinery (automobiles, transport vehicles, etc.).
  • One of the steel materials is a cylindrical hollow body structural steel pipe and a material steel plate for the mechanical structural steel pipe (for example, a hot rolled steel sheet (including a hot rolled steel strip)).
  • the steel pipe and the steel sheet for steel pipe are required to have bend formability for fatigue characteristics due to repeated load during use and parts processing.
  • machine structural steel pipes automobile structural steel pipes are also applied to safety parts of automobiles, so that not only bend formability but also excellent fatigue characteristics are required.
  • automobile structural steel pipe is an automobile undercarriage part steel pipe.
  • automobile undercarriage parts include axle bikes arranged between the left and right wheels of a car, and suspension members around the axle. Since these are repeatedly subjected to impact load and torsional load during running, high strength and high fatigue characteristics are required.
  • automobile structural members, especially automobile undercarriage parts are often processed into complex part shapes and require high formability. In particular, the bending radius For parts subjected to bend forming with small R, extremely high bend formability is required.
  • an automobile axle beam which is an automobile underbody part
  • a cylindrical workpiece for example, a steel pipe
  • Patent Document 1 There has been proposed an axle beam having a modified cross-section cylindrical body.
  • steel materials with high fatigue characteristics and high bendability for example, machine structural steel pipes, automobile structural steel pipes, automobile undercarriage parts steel pipes, and steel plates made of these steel pipes
  • steel pipes and steel plate materials including steel strips that sufficiently satisfy fatigue characteristics and bendability are not obtained.
  • hardening heat treatment such as quenching and annealing is performed to improve the fatigue characteristics and strength of the parts to the desired level.
  • the cost of the parts increases as a matter of course.
  • additional strengthening means for example, surface hardening treatment
  • machine-structured steel pipes for example, automobile structural steel pipes, automobile undercarriage parts steel pipes, etc.
  • steel plates including steel strips
  • Patent Document 2 As a steel material (welded steel pipe, steel strip for welded steel pipe material) having both fatigue characteristics and workability required for various forming (workability of bending, hydraulic pressure, pipe expansion, contraction pipe, etc.), Patent Document 2 The invention shown in (2) has been proposed.
  • the invention steel material of Patent Document 2 is a material in which a large amount of ferrite structure in which ultra-fine and specific element ratio (Ti, Mo) composite carbides are dispersed and precipitated is produced.
  • the area ratio of the ferrite structure which is a soft phase, is 60 to 100%. It is high and the particle size of the precipitate is very small, so it has excellent moldability.
  • the invention steel material of Patent Document 2 has a large amount of soft ferrite structure, so the remaining part of the structure and the balance become hard, and the hard structure becomes mixed with ferrite. .
  • a hard structure cannot sufficiently tolerate heat during severe bending and cracking may occur.
  • there may be microvoids in the steel that do not cause cracking even if cracking does not occur in bending. There is.
  • steel pipes are used as components in parts such as mechanical structures and automobile structures and fatigue loads are applied, fatigue cracks may be generated from the microvoids created by bending during the production of parts.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-321846
  • An object of the present invention is to provide a hot rolled steel sheet for machine structural steel pipes and a hot rolled steel for automobile structural steel pipes having excellent fatigue characteristics and excellent bendability. It is to provide hot-rolled steel sheets for steel plates or automobile undercarriage parts steel pipes and a method for producing these steel sheets.
  • the inventors of the present invention have a hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and excellent bendability (for example, hot-rolled steel sheets for automotive structural steel pipes, hot-rolled steel sheets for automobile undercarriage parts steel pipes, and these steel sheets).
  • a hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and excellent bendability
  • the generation of microvoids and fatigue cracks at each thickness part of the hot-rolled steel sheet and the process of fatigue crack growth / progression were continued from before and after bending to the fatigue load. investigated.
  • the present inventors have found that fatigue cracks in steel pipe mechanical structural members, for example, steel pipe automobile structural members, steel pipe automobile undercarriage parts, surface layer portion of the steel sheet (depth 0. 0 from the steel surface).
  • the work cracks when bending the steel pipe are the surface layer of the steel material with the highest processing strain (depth within 0.05 mm from the steel surface, surface coating layer It was newly found that it occurs at a depth within 0.05 mm from the interface of the railway.
  • the steel surface layer has the desired characteristics by controlling the structure of the steel surface layer to a uniform fine grain structure main body, making it hard to a medium level, and further reducing the grain boundary precipitated carbides.
  • a steel sheet for steel pipe is obtained.
  • the present inventors have obtained a suitable component system and production process. This specific condition of the surface layer portion is sufficiently effective for a steel pipe material steel plate having a steel plate thickness of 0.7 to 20, and the steel plate of the present invention includes a steel strip.
  • the gist of the present invention is as follows: (1) In the surface layer portion of steel, 80% or more of the surface area of the microstructure is Paynite, Vickers hardness Hv is 210 or more and 300 or less, and the major axis length of Paynai ⁇ A hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bend formability, characterized in that the average value of is less than 5 m and the average grain size of grain boundary carbides is less than 0.5 m.
  • the surface layer of the steel of the present invention is a portion within 0.05 mm in the thickness direction from the steel surface of the steel plate (including steel strip). However, the Vickers hardness Hv is the value at a depth of 0.05 mm in the thickness direction from the steel surface of the steel plate (including steel strip).
  • the steel of (1) above is in mass%, C: 0, 05 to 0.19%, Si: 0.05 to 1.0%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.025% Ti: 0.005-0.1%, Cr: 0.03-1.0%, So 1, AI: 0.005-0.1%, N: 0.0005-0.01%, B: 0.0001-0.01%
  • a hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bend formability characterized by being a steel composed of the balance Fe and inevitable impurities.
  • Nb 0.003 to 0.2%
  • V 0.001 to 0.2%
  • W 0.001 to 0.1%
  • Inclusion form control element group Ca: 0.0001-0.02%
  • Mg 0.0001-0.02%
  • Zr 0.0001-0.02%
  • REM 0.0001-0.02%
  • a hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability characterized by being a steel that contains one or more of the above elements and satisfies the formula ⁇ A>.
  • the hot rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability characterized in that the mechanical structural steel pipe is an automobile structural steel pipe .
  • a hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and bending formability characterized in that the automobile structure is an automobile undercarriage part in (4) above.
  • the steel slab of (6) is in mass%, and As a group of elements for promoting the formation of paynite,
  • Nb 0.003 to 0.2%
  • V 0.001 to 0.2%
  • W 0.001 to 0.1%
  • Inclusion form control element group
  • the surface layer of steel 80% or more of the area fraction of the microstructure is the paynite, and the Vickers hardness Hv 210 or more and 300 or less, the average value of the long axis length of bainite is 5 or less, and the average grain boundary carbide particle size is 0.5 2 m or less.
  • Vickers hardness Hv is a value at a depth of 0.05 mm from the steel surface.
  • Hot rolled steel sheet for machine structural steel pipe of the present invention Hot rolled steel sheet for automobile structural steel pipe
  • the hot-rolled steel sheet for steel pipes for automobile undercarriage parts is the surface layer of steel (part from the steel surface to a depth of 0.05 mm, but the scale layer and functional coating layer on the surface of the steel surface (metallized layer, sprayed layer) If there is a nitriding layer, etc.), the following requirements (a), (b) in the part from the iron surface interface to 0.05mm depth, where the picker hardness Hv is 0.05mm depth position from the metal surface interface) ), (C), and (d) are all satisfied, both fatigue characteristics and bend formability are excellent.
  • Average grain boundary carbide particle size is 0 or less.
  • the Hv value at a depth of 0.05 dragon depth from the steel surface is set to Vickers hardness of the steel surface layer. It should be Hv.
  • the hot-rolled steel sheet for steel pipes of the present invention (including steel strips) is less prone to fatigue cracks, and the fatigue crack growth rate is extremely slow and has excellent fatigue properties.
  • the reason is that, according to requirement (a), the structure of the steel surface layer is almost uniform and bainitic, so fatigue damage is not localized, and because Hv is 210 or more as in requirement (b), fatigue occurs.
  • the steel surface layer where the crack starts is hard and fatigue cracks are less likely to occur.
  • the average value of the major axis length of the bait is 5 lim or less as in requirement (c)
  • the area of the grain boundary that increases fatigue crack growth resistance is large, and in addition, as in requirement (d)
  • the grain boundary carbide average grain size is as fine as 0.5 ⁇ m or less, so the grain boundary strength is high and fatigue crack growth resistance is high. After bending the steel pipe, it is difficult for microvoids to form in the steel surface layer, so it is possible to suppress the occurrence and propagation of fatigue cracks caused by these microvoids.
  • the hot-rolled steel sheet for steel pipes of the present invention is also excellent in bend formability.
  • the above requirements (a), (b), (c), (d) are all limited requirements for the steel surface layer, but other than the steel surface layer (for example, the center of the plate thickness, 1 Z 4 parts, etc. You may be satisfied with Even if one or more of the above requirements (a), (b), (c), (d) are satisfied at the center of the plate thickness of steel sheet for steel pipes or 1 Z 4 parts, the present invention It does not deviate from. Therefore, the hot-rolled steel sheet (including steel strip) obtained by the present invention is excellent in both fatigue characteristics and bending formability, which are contradictory characteristics. Therefore, mechanical structural members, automotive structural members, Suitable as material for undercarriage parts (for example, steel pipes or steel sheets for steel pipes).
  • the hot-rolled steel sheet (including steel strip) of the present invention and a steel pipe made of the steel sheet (including steel strip) are applicable it can.
  • the steel sheet (including steel strip) of the present invention has sufficient bending formability as a raw material
  • the above-mentioned mechanical structural member for example, an automobile structural member or an automobile undercarriage part has a portion with a small bending radius R. Forming cracks can be prevented during bending. Also, bending does not lead to cracking, but it can suppress the formation of local microvoids in the steel surface layer that degrade the fatigue properties of the member or part.
  • the steel pipe made of the steel plate of the present invention, and the member or part made of the steel pipe are Heat treatment such as hardening or strengthening can be omitted.
  • Heat treatment such as hardening or strengthening
  • the heat treatment cost can be reduced.
  • advantages such as not only that the appearance scale of the member or component can be prevented from being adhered by the oxidation scale during the heat treatment, but also the shape change caused by the heat treatment can be prevented.
  • FIG. 1 is a graph showing the relationship between the microstructure area ratio of the bainite and fatigue characteristics in the present invention.
  • FIG. 2 is a graph showing the relationship between the texture area ratio of the vine and the bend formability in the present invention.
  • FIG. 3 is a graph showing the relationship between the average value of the long axis length of the bait and the fatigue characteristics in the present invention.
  • FIG. 4 is a graph showing the relationship between the average value of the long axis length of the bait and the bending formability in the present invention.
  • FIG. 5 is a graph showing the relationship between the grain boundary carbide average grain size and the fatigue characteristics in the present invention.
  • FIG. 6 is a graph showing the relationship between the grain boundary carbide average particle size and the bending formability in the present invention.
  • FIG. 7 is a diagram showing the relationship between the ⁇ A> formula BP and the long axis length of the bin according to the present invention.
  • FIG. 8 is a graph showing the relationship between ⁇ A> formula BP and the grain boundary carbide average particle size in the present invention.
  • FIG. 9 is a schematic diagram showing the heat history of hot rolling-cooling in the present invention.
  • FIG. 10 is a diagram showing the relationship between Vc and the bayonet texture ratio in the present invention.
  • FIG. 11 is a diagram showing the relationship between Vc and hardness in the present invention.
  • the surface layer portion of the steel of the present invention is a portion from the steel surface to a depth of 0.05 mm, it may be a position of 0.05 ⁇ depth from the steel surface. Fatigue properties and bendability are almost the same even when the center of the steel plate thickness, 1 to 4 structure, hardness, grain size, and precipitates change.
  • the present inventors are not able to bend steel pipes in parts that are formed by bending a steel pipe even when there are micro-voids in the steel (for example, a void diameter of l ⁇ m or less). It was newly found that only the fine voids formed on the steel surface by forming have an effect on the deterioration of fatigue properties.
  • a steel pipe made of a hot rolled steel sheet having a thickness of 0.7 to 20 mm and a hot rolled steel sheet (including a steel strip) of that thickness is possible, and the tensile strength is 590 MPa class, 685 MPa class, 780 MPa.
  • the requirements (a) to (d) for the structure, hardness, crystal grain size, and grain boundary carbide of the steel surface layer are limited. The reasons for this are described below.
  • Figures 1 and 2 show the relationship between the texture fraction of the steel surface layer and the fatigue limit, which is an indicator of fatigue properties, and the limit bending rate, which is an indicator of bending formability.
  • Figures 1 and 2 show the results when the requirements (b), (c), and (d) for the steel surface layer are satisfied near the boundary of the range.
  • the Paynite structure area fraction is the value in the steel surface layer (within 0.05 mm depth from the steel interface).
  • the fatigue limit sharply increases until the bainite area ratio reaches 80%, and the area ratio of Paynai ⁇ reaches 80MPa and is extremely high at 400MPa or more and is almost stabilized. .
  • the critical bending strain is , ⁇ rt Payt area ratio increases rapidly to 80% and increases to over 35% at 80%.
  • the organization ratio of paynite is preferably close to 100%, and it may be 100%, but as the remaining organization of bainite, ferritic, partite, martensite, one type of residual austenite or two or more types Even when the total content is 20% or less, the effect of the present invention can be sufficiently obtained if the surface layer of the steel satisfies the requirements (b), (c) and (d).
  • the surface area fraction of the steel surface layer requirement (a) must be 80% or more.
  • phase softer than the Paynite is excessively present in the steel surface layer, micropoids and fatigue cracks are likely to occur in the soft phase.
  • phase harder than the paynite is excessively present in the steel surface layer, fatigue cracks are likely to occur in the microvoids at or near the interface between the hard phase and the paynite phase.
  • Phases that are softer than bainite include ferrite, paleite, and stable residual austenite, and phases that are harder than bainite are martensite and unstable residues that generate processing-induced martensite. There are austenites.
  • Steel surface layer Vickers hardness Hv is moderate to 210 or more and 300 or less, so even though the hardness of the steel surface layer part that is the starting point of fatigue cracks as a member or part is relatively hard, When bending a component material (hot-rolled steel sheet for steel pipes), micro-powders do not occur due to the combination of the following requirements (c) and (d), and a fatigue load is applied when used as a member or component. Even if it is received, fatigue cracks due to microvoids are generated and progressed less easily in the steel surface layer.
  • the Vickers hardness Hv is less than 210, even if the surface area of the Paynai ⁇ is 80% or more, the surface layer is too soft and fatigue cracks are generated in the surface layer when subjected to fatigue load. The fatigue limit is considerably lowered because it is easy to do. Also, when the picker hardness Hv is over 300, the bending formability is extremely high. It will decline.
  • the Bickers hardness Hv which is the requirement (b) of the surface layer of steel, needs to be 2 10 or more and 300 or less.
  • Figures 3 and 4 show the relationship between the mean value of the major axis length of the steel surface layer and the fatigue limit, which is an indicator of fatigue properties, and the limit bending rate, which is an indicator of bending formability.
  • the long axis length of the bainite is the value of the steel surface layer (depth within 0.05 mm from the interface).
  • the average value of the ellipse major axis length exceeds 5 m, the fatigue crack growth resistance is remarkably reduced, so that the fatigue limit decreases rapidly from 400 MPa as the average value increases. To do.
  • the average value is preferably small, but if it is 5, the effect of crystal refinement can be obtained.
  • Rotation 4 when the average value of the major axis length of the bainite exceeds 5, the area of the crystal grain boundary is small, so that the bending formability is remarkably lowered. Therefore, the average value of the major axis length of the bainite in the surface layer of steel must be 5 m or less.
  • the major axis length of the bainite may be the major axis length in the crystal elongation direction of the bainitic structure (for example, the main rolling direction in the plate thickness section of the steel sheet).
  • the grain boundary carbide average grain size of the steel surface layer is 0.5 m or less, the grain boundary strength is high and the fatigue crack growth resistance is high, so the fatigue characteristics are excellent.
  • Figures 5 and 6 show the relationship between the average grain size of grain boundary carbides in the steel surface layer and the fatigue limit, which is an index of fatigue properties, and the limit bending rate, which is an index of bending formability.
  • the average grain boundary carbide grain size is the value of the steel surface layer part (within 0.05 mm depth from the interface). When the average grain size exceeds 0.5 / m, voids are generated along the grain boundaries of the Painay ⁇ in the surface layer of the steel during the bending test, and cracks propagate along the voids during the fatigue test. For this reason, the bending formability and fatigue characteristics are rapidly reduced.
  • the average grain size of the grain boundary carbide is preferably small, even if it is extremely fine, for example, 0.005 ⁇ m, in the member and parts made of the steel pipe using the steel plate of the present invention, the bending formability is impaired. And good fatigue properties can be obtained. Since the crystal grain boundary strength is high during bending, it is difficult to break, and even during fatigue testing, the crystal grain boundary strength is high, so the resistance to crack growth is high.
  • the structure area fraction of bainite is corroded with 3% nital solution after embedding and polishing the plate thickness cross section, and the surface layer of the steel (part from the steel surface to a depth of 0.05mm, but 400 times with an optical microscope) If there is a scale layer or coating layer on the surface of the iron surface (such as a plating layer, thermal spray layer, or nitriding layer), observe the microstructure of the surface from the surface of the iron surface to 0.05 mm deep) The area ratio of the G portion was quantified.
  • the Vickers hardness is not appropriate on the surface because it is easily affected by the scale layer and coating layer on the steel other than steel. For this reason, the hardness of the surface layer of the steel sheet of the present invention is measured at a depth of 0.05 mm from the steel ground interface where the correct hardness can be measured, using a micro pick-up measuring machine (based on JIS Z 2244) And measured with a load of 50 gf (test force 0.4903 N).
  • the average long axis length of Paynite is obtained by observing the crystal orientation distribution image by EBSP (Electron Back Scattering Pattern) method, identifying the grain boundary of the crystal from the hue difference due to the difference in crystal orientation,
  • the average grain size was calculated by measuring the grain size in the major axis length direction in the drawing direction (the main rolling direction in the plate thickness section of the steel sheet).
  • ⁇ Grain boundary carbide average particle size is 50 m x 5 by observing the mouth structure at 2000 times with a scanning electron microscope after corroding and polishing the plate thickness cross section and then corroding with 3% nitrite solution.
  • the particle size of the carbide existing at the grain boundary in the range of 0 im is 5
  • the fatigue properties and bendability of hot-rolled steel sheets for steel pipes can be evaluated by conducting a bending fatigue test and a bend forming test.
  • a bending fatigue test specimens with a parallel part in the longitudinal center were collected from the steel sheet consisting of the above surface layer part, and the test was performed by changing the stress conditions with both swings at a frequency of 30 Hz, and the fatigue limit was obtained.
  • the magnitude of bending strain on the outermost surface (limit bending strain) was calculated and evaluated. Judgment criteria to be good were to achieve both fatigue characteristics with a fatigue limit of 400 MPa or more and bend formability with a limit bending strain of 35% or more.
  • the following steel composition may be the composition of the entire steel sheet as usual, but only the surface layer may have this steel composition.
  • C is preferably 0.05% or more in order to obtain the strength level required for the steel sheet (for example, 590MPa class, 690MPa class, 780MPa class, 865MPa class).
  • a preferable range of C is 0.05 to 0.19%.
  • the preferable range of Si is 0.05 to 1.0%.
  • Mn is effective in securing hardenability and obtaining a bainitic structure, and for that purpose 0.3% or more is desirable. More than 2.5%, the Mn0 prayer center polarized by by that defect and MnS 2 becomes remarkable. A preferable range of Mn is 0.3 to 2.5%.
  • P tends to concentrate at the grain boundaries, and if it exceeds 0.03%, the fatigue strength of the grain boundaries may be reduced. For this reason, P is preferably 0.03% or less.
  • S exceeds 0.025%, coarse MnS may be formed, which may impair bending formability and fatigue characteristics. For this reason, S is preferably 0.025% or less.
  • Ti is effective in suppressing the coarsening of the austenite grain size and achieving refinement of the crystal structure in the steel structure of the steel surface layer. To obtain this effect, it is desirable to contain 0.005% or more. On the other hand, if it exceeds 0.1%, the above-mentioned crystal refining effect is almost saturated, and coarse TiN may be generated, resulting in deterioration of fatigue characteristics and bending formability. For this reason, Ti is preferably 0.005 to 0.1%.
  • Cr is effective for improving the hardenability and obtaining a fine bainite structure, and is also effective for reducing grain boundary carbides.
  • the Cr content is preferably 0.03% or more.
  • the Cr content exceeds 1.0%, the surface area of hard martensite is greatly increased in the steel surface layer, making it difficult to obtain the desired surface area of the Painai. There is a case.
  • the amount of coarse carbides increases, and the effect of improving the bending formability and fatigue characteristics due to the increase in grain boundary strength may decrease, or conversely, the bending formability and fatigue characteristics may be hindered.
  • Cr is preferably 0.03 to 1.0%.
  • Sol.Al and N produce austenite grains by producing A1N in the manufacturing process of steel materials (such as hot-rolled steel sheets for steel pipes and steel pipes) that are the materials of the above-mentioned parts. This is effective in preventing grain coarsening and promoting the refinement of crystal grains in the paynite structure. If A1 is less than 0.005%, the effect is not always sufficient. If A1 is 0.1% and ⁇ exceeds 0.01%, the cleanliness of the steel is reduced and coarse A1N is formed, resulting in bending formability and ⁇ or fatigue properties. May decrease. It is sufficient that the wrinkle is 0.0005% or more to use the effect of suppressing the coarsening of the austenite grains of A1N. Sol. Al is preferably 0.005 to 0.1%, and N is preferably 0.0005 to 0.01%.
  • B is an extremely effective element for improving the hardenability of steel and obtaining a fine bainitic structure. If B is less than 0.0001%, the effect is not always sufficient. If it exceeds 0.01%, coarse borides (borated carbides, boronitrides, borocarbonitides, etc.) are likely to be formed and hardenability is increased. In addition, it tends to be the starting point of cracks and microvoids when bending or when fatigue load is applied. B is preferably 0.0001 to 0.01%.
  • 0.27Mn, 0.2Cr, 0.05Cu, 0, llNi, 0.25Mo means 0, 27XMn, 0.2XCr, 0.05XCu, 0. llXNi> 0.25 XMo, respectively.
  • one or more element groups are selected from the following element groups [I], [II], [III], and It is possible to contain one or more elements.
  • Nb 0.003 to 0.2%
  • V 0.001 to 0.2%
  • W 0.001 to 0.1%.
  • Inclusion form control element group Ca: 0.0001 to 0.02%, Mg: 0.0001 to 0.02%, Zr: 0.0001 to 0.02%, REM: 0.0001 to 0.02%.
  • Cu, Ni, and Mo of the element group [I] that promotes the formation of bainite all improve the hardenability and are effective for the formation of the Painai cocoon structure.
  • the contribution of each element of the [I] group is as indicated by the formula A>.
  • Cu, Ni, and Mo are less than 0.005%, less than 0.005%, and less than 0.02%, respectively, it is difficult to obtain the bainite formation promoting effect of each element.
  • Cu, Ni and Mo are more than 1.0%, more than 10% and more than 1.0%, a large amount of hard phase is likely to be formed in the surface layer of steel. It is difficult to satisfy the organization ratio of Paynite above 80%.
  • Cu can be contained in the steel in the range of 0.005 to 1.0%, Ni in the range of 0.005 to 1.0%, and Mo in the range of 0.02 to 1.0%.
  • the crystal of the element group [II] and the Nb, V, and W of the grain boundary carbide refinement element group are the fine bainite and the fine grain boundary, which are constituent elements of the present invention. Effective for the formation of carbides. For this purpose, it is desirable that Nb is 0.003% or more, V is 0.001% or more, and W is 0.001% or more. Also, if Nb exceeds 0.2%, V exceeds 0.2%, and W exceeds 0.1%, coarse carbides are likely to form in the steel, becoming the starting point of cracking during bending, or forming near the coarse carbides.
  • V is 0.003 to 0.2%
  • Nb is 0.001 to 0.2%
  • W is 0.001 to 0.1%.
  • Ca may contain 0.0001 to 0.02%
  • Mg may contain 0.0001 to 0.02%
  • Zr may contain 0.0001 to 0.02%
  • REM may contain 0.0001 to 0.02%.
  • Ca, Mg, Zr, and REM all have the effect of improving formability by controlling the morphology of sulfides.
  • the steel slab having the above composition is heated to 1070 ° C or higher and 1300 ° C or lower, and then subjected to hot rolling at a finish rolling temperature of 850 or higher and 1070 ° C or lower. Effective for obtaining grain size of grain boundary carbide.
  • hot rolling is preferably performed in a temperature range of 850 ° C or higher, which is almost an austenite single phase and a recrystallization region.
  • the finish rolling temperature of hot rolling is preferably 850 ° C or higher and 1070 ° C or lower.
  • controlling the steel sheet cooling after hot rolling to 300 ° C or less with the cooling rate Vc (° CZ s) of the ⁇ B> formula is effective for producing fine grain and fine grain boundary carbides. is there.
  • the surface area of ferrite and cocoon is greatly increased and the desired surface area ratio of the ridge is not obtained, and the surface hardness Hv is less than 2 10 and cracks are generated from the surface layer due to fatigue load. It is easy to generate and grow, and sufficient fatigue characteristics cannot be obtained.
  • the Vickers hardness Hv is the value of the steel surface layer (depth 0.05mm from the steel interface).
  • the hot-rolled steel sheet having the above steel composition is controlled to be cooled to Vc satisfying the formula ⁇ B> of the present invention up to 300 ° C or less. Even if the controlled cooling with Vc of the present invention is stopped at a temperature within room temperature to 250 ⁇ : and the hot-rolled steel sheet coil is held in a temperature range of 300 ° C or lower (for example, stacking of hot-rolled coils), the present invention It does not deviate from.
  • the hot-rolled steel sheet of the present invention is effective as a steel sheet for machine structural steel pipes, for example, automobile structural steel pipes and automobile undercarriage parts steel pipes.
  • the hot-rolled steel sheet of the present invention is effective when applied to machine structural steel pipes such as automobile structural steel pipes and steel pipes used for undercarriage parts of automobiles, but also requires both fatigue characteristics and bend formability. For example, it goes without saying that it is effective even when applied to steel pipe parts of transport vehicles such as airplanes and railways that are transport machines. Further, the steel sheet for machine structural steel pipes with excellent fatigue characteristics and bend formability according to the present invention is adjusted within the scope of the present invention by adjusting the components and hot rolling conditions so as to increase the surface layer hardness within the scope of the present invention. Therefore, it is possible to make hot-rolled steel sheets and steel pipes for steel pipes that can be applied to machine structural members and parts where fatigue characteristics are particularly important. By making it lower within the scope of the invention, it is possible to provide a hot-rolled steel sheet for steel pipes and steel pipes that can be applied to machine structural members / parts where bending formability is particularly important.
  • Table 3 and Table 4 show the steel surface layer structure, Vickers hardness ⁇ , grain size of grainy carbides and average grain size of grain boundary carbides obtained with 4 nun plate thickness. . Tables 1 to 4 that deviate from the requirements of the present invention are underlined. In Tables 1 and 2, the blank for the selected element indicates no addition.
  • the area fraction of Paynai ⁇ was eroded by embedding and polishing the thickness of the plate thickness, then corroded with a 3% Nayar solution, observing the microstructure at 400 times with an optical microscope, and quantifying the area ratio of the bainite portion. Asked.
  • the Pitzers hardness was measured with a micro Vickers measuring instrument (based on JI S Z 2244) at a load of 50 gf (test force 0.49N) from the plate surface.
  • For the average long axis length of the paynite observe the crystal orientation distribution image by the EBSP (Electron Back Scattering Pattern) method, identify the grain boundary of the crystal from the hue difference due to the difference in crystal orientation, and then extend the crystal elongation.
  • EBSP Electro Back Scattering Pattern
  • the grain size in the major axis length direction in the direction (main rolling direction in the plate thickness section of the steel plate) was measured, and the average value was calculated.
  • the average grain size of the grain boundary carbides is obtained by embedding and polishing a plate thickness cross section obtained by removing the scale on the steel surface with an acid, then corroding with a 3% nital solution, and using a scanning electron microscope within a depth of 0.05 mm from the steel surface.
  • the microstructure of 5 fields was observed at 2000 times, and the circle equivalent particle diameter of the carbide existing at the grain boundary was measured in the range of 50 mX50 m, and the average value was obtained.
  • a bending fatigue test and a bend form test were performed.
  • the target value is to achieve both fatigue characteristics with a fatigue limit of 400 MPa or more and bending formability with a limit bending strain of 35% or more.
  • Table 2 shows the absolute values and evaluation of the test results for fatigue limit and critical bending strain.
  • the fatigue limit was evaluated as ⁇ for 400 MPa or more and X for less than 400 MPa.
  • the evaluation of the critical bending strain was indicated by ⁇ for 35% or more and X for less than 35%.
  • Tables 3 and 4 show the test results.
  • the steel sheet of the present invention has a substantially small variation in structure from the bainitic structure, has an appropriate surface hardness, and has an average bainite ellipse long axis length average value, average grain boundary carbide grain size, and grain boundary strength. Is expensive. Therefore, as shown in Table 3 and Table 4, the product of the present invention can achieve both fatigue characteristics with a fatigue limit of 400 MPa or more and bending formability with a limit bending strain of 35% or more.
  • compositional area fraction of Bainite, Pitzka's hardness, Beiny ⁇ ellipse major axis length average value, average grain boundary carbide particle size, component or part of hot rolling and cooling conditions are included in the present invention.
  • the comparative example deviating from the above range it is impossible to achieve both fatigue characteristics and bend formability.
  • Comparative Example 1 since the amount of C is too large, the surface hardness of the surface layer portion is over 300, too hard, the grain boundary carbide average particle size is too large, and the moldability is insufficient.
  • the average long axis length of the bainite and the average grain size of grain boundary carbide are large and not sufficiently refined, so that the fatigue characteristics are insufficient.
  • Comparative Example 4 since the heating temperature is low, the precipitates in the steel are not sufficiently solutioned, and the additive elements are not sufficiently refined in the vain ⁇ crystals and grain boundary carbides. The average long axis length and average grain size of grain boundary carbide could not be sufficiently refined. As a result, the fatigue characteristics were insufficient.
  • Comparative Example 5 since the finish rolling temperature was low, the steel surface layer part was a structure mainly composed of ferrite, so that sufficient hardness could not be secured and fatigue characteristics were insufficient.
  • Comparative Example 6 shows the cooling rate Since the degree is low at less than 1.2 C, the structure ratio of the ferrite is too low and the structure ratio of the ferrite increases, and the average length of the long axis of the vein and the average grain boundary carbide grain The diameter was too large to be sufficiently miniaturized, and the fatigue characteristics were insufficient.
  • Comparative Example 7 because the cooling stop temperature is high, bainite transformation occurs at a high temperature, and the average grain size of grain boundary carbides becomes coarse, so that the fatigue characteristics are insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

A hot-rolled steel plate for steel tubes for machine structural purposes which is excellent in fatigue characteristics and bending formability; and a process for production of the plate.  In the surface layer of the hot-rolled steel plate for steel tubes for machine structural purposes, bainite accounts for 80% or above of the microstructure; the Vickers hardness (Hv) is 210 to 300; the average major-axis length of bainite is 5μm or below; and the mean particle diameter of grain boundary carbides is 0.5 μm or below.  Since the surface layer from which crack starts because of fatigue or bending is constituted of a uniform fine bainite-base structure, the plate is excellent in both fatigue characteristics and bending formability.

Description

発明の名称 疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼 板とその製造方法 技術分野 Title of Invention Hot rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bend formability and manufacturing method thereof Technical Field
本発明は、 疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼 板とその製造方法に関するものである。 本発明の機械構造鋼管とし ては、 例えば、 自動車構造鋼管、 自動車足回り部品鋼管等がある。 背景技術  The present invention relates to a hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and bending formability, and a method for producing the same. Examples of the mechanical structural steel pipe of the present invention include an automobile structural steel pipe and an automobile undercarriage part steel pipe. Background art
機械構造用鋼材は、 一般機械、 産業機械、 建設機械、 輸送機械 ( 自動車、 輸送車両など) 等で使用される部材ゃ部品用の素材として 産業界で広く使用されてきている。 前記鋼材のひとつに、 筒状中空 体の機械構造鋼管と、 その機械構造鋼管用の素材鋼板 (例えば熱延 鋼板 (熱延鋼帯含む) ) がある。 前記の鋼管および鋼管用素材鋼板 (例えば熱延鋼板 (熱延鋼帯含む) ) については、 使用時の繰り返 し荷重による疲労特性と部材ゃ部品加工のために曲げ成形性が要求 される。 機械構造鋼管の中でも自動車構造鋼管は、 自動車の保安部 材にも適用されるので、 曲げ成形性ばかりでなく、 特に優れた疲労 特性が要求される。 この自動車構造鋼管の一例に自動車足回り部品 鋼管がある。 自動車足回り部品としては、 自動車の左右の車輪間に 配置されるアクスルビ一ムゃ、 その周辺のサスペンショ ン部材など がある。 これらは、 いずれも走行中に繰り返して衝撃荷重やねじり 荷重等を受けるため、 高い強度とともに高い疲労特性が必要である 。 また、 自動車構造部材、 特に自動車足回り部品は、 複雑な部品形 状に加工する場合が多く高い成形性が必要である。 特に、 曲げ半径 Rの小さな曲げ成形を施す部材ゃ部品においては、 極めて高い曲げ 成形性が必要である。 Steel for machine structures has been widely used in the industry as a material for parts and parts used in general machinery, industrial machinery, construction machinery, transport machinery (automobiles, transport vehicles, etc.). One of the steel materials is a cylindrical hollow body structural steel pipe and a material steel plate for the mechanical structural steel pipe (for example, a hot rolled steel sheet (including a hot rolled steel strip)). The steel pipe and the steel sheet for steel pipe (for example, hot-rolled steel sheet (including hot-rolled steel strip)) are required to have bend formability for fatigue characteristics due to repeated load during use and parts processing. Among machine structural steel pipes, automobile structural steel pipes are also applied to safety parts of automobiles, so that not only bend formability but also excellent fatigue characteristics are required. One example of this automobile structural steel pipe is an automobile undercarriage part steel pipe. Examples of automobile undercarriage parts include axle bikes arranged between the left and right wheels of a car, and suspension members around the axle. Since these are repeatedly subjected to impact load and torsional load during running, high strength and high fatigue characteristics are required. In addition, automobile structural members, especially automobile undercarriage parts, are often processed into complex part shapes and require high formability. In particular, the bending radius For parts subjected to bend forming with small R, extremely high bend formability is required.
例えば、 自動車足回り部品である自動車アクスルビームについて は、 特許文献 1 に示されるように筒状の被加工体 (例えば鋼管) の 内面に液体圧力を付与しつつプレス加工する方法とその方法で得ら れる異型断面筒状体のアクスルビ一ムが提案されている。 このァク スルビーム素材として、 高い疲労特性と高い曲げ成形性を有する鋼 材 (例えば、 機械構造鋼管、 自動車構造鋼管、 自動車足回り部品鋼 管やそれら鋼管の素材鋼板) が望まれているが、 現状、 必ずしも疲 労特性と曲げ成形性とを十分に満足する鋼管及び鋼管用素材鋼板 ( 鋼帯含む) は得られていない。 そのため、 鋼管をプレス加工した後 に焼入れや焼鈍などの硬化熱処理を行って部材ゃ部品の疲労特性や 強度を所望レベルまで向上しているのが現状である。 こうした硬化 熱処理を行うと部材ゃ部品のコス トが高くなることは勿論であるが 、 熱処理を施すことから部材や部品の形状が変化して追加矯正が必 要になる場合があったり、 部材ゃ部品が軟化する場合には追加の強 化手段 (例えば表面硬質化処理など) が必要になることがあるとい う問題があった。 このために、 疲労特性と曲げ成形性に優れた機械 構造鋼管 (例えば自動車構造鋼管、 自動車足回り部品鋼管など) お よびその鋼管用素材となる鋼板 (鋼帯含む) が産業界で待望されて いる。  For example, an automobile axle beam, which is an automobile underbody part, is obtained by a method of pressing while applying liquid pressure to the inner surface of a cylindrical workpiece (for example, a steel pipe) as shown in Patent Document 1, and obtained by the method. There has been proposed an axle beam having a modified cross-section cylindrical body. As this beam material, steel materials with high fatigue characteristics and high bendability (for example, machine structural steel pipes, automobile structural steel pipes, automobile undercarriage parts steel pipes, and steel plates made of these steel pipes) are desired. At present, steel pipes and steel plate materials (including steel strips) that sufficiently satisfy fatigue characteristics and bendability are not obtained. Therefore, after the steel pipe is pressed, hardening heat treatment such as quenching and annealing is performed to improve the fatigue characteristics and strength of the parts to the desired level. When such a heat treatment is carried out, the cost of the parts increases as a matter of course. However, since the heat treatment is performed, the shape of the parts and parts may change and additional correction may be required. There is a problem that additional strengthening means (for example, surface hardening treatment) may be required when the parts are softened. For this reason, machine-structured steel pipes (for example, automobile structural steel pipes, automobile undercarriage parts steel pipes, etc.) with excellent fatigue characteristics and bendability, and steel plates (including steel strips) that serve as steel pipe materials are highly anticipated in the industry. Yes.
また、 疲労特性と各種成形等に必要な加工性 (曲げ、 液圧、 拡管 、 縮管などの加工性) の両方を具備する鋼材 (溶接鋼管、 溶接鋼管 素材用鋼帯) として、 特許文献 2に示す発明が提案されている。 こ の特許文献 2の発明鋼材は、 超微細で特定元素比の (T i , Mo) 複合 炭化物が分散析出したフェライ ト組織を多量に生成したものである 。 また、 柔らかい相であるフェライ ト組織の面分率が 60〜100 %と 高く、 析出物の粒径が極めて小さいために成形性には優れている。 一方、 特許文献 2の発明鋼材は、 柔らかいフェライ ト組織が多量に 生成しているので、 残部組織のパーライ トやべイナィ トは硬質にな り、 硬い組織がフェライ 卜と入り混じった組織となる。 このような 組織では、 厳しい曲げ成形の際には硬い組織は加ェに十分には耐え る事ができず割れが発生する可能性がある。 更に、 鋼管から機械構 造部材ゃ自動車構造部材ゃ自動車足回り部品を製造する際には、 曲 げ成形で割れが生じなくても割れに至らない微小ボイ ドが鋼中に存 在する可能性がある。 鋼管が機械構造、 自動車構造等で部材ゃ部品 として使用され疲労荷重が加わると、 部材ゃ部品製造時の曲げ成形 で生じた微小ボイ ドから疲労亀裂が発生し進展する可能性がある。 先行技術文献 In addition, as a steel material (welded steel pipe, steel strip for welded steel pipe material) having both fatigue characteristics and workability required for various forming (workability of bending, hydraulic pressure, pipe expansion, contraction pipe, etc.), Patent Document 2 The invention shown in (2) has been proposed. The invention steel material of Patent Document 2 is a material in which a large amount of ferrite structure in which ultra-fine and specific element ratio (Ti, Mo) composite carbides are dispersed and precipitated is produced. In addition, the area ratio of the ferrite structure, which is a soft phase, is 60 to 100%. It is high and the particle size of the precipitate is very small, so it has excellent moldability. On the other hand, the invention steel material of Patent Document 2 has a large amount of soft ferrite structure, so the remaining part of the structure and the balance become hard, and the hard structure becomes mixed with ferrite. . In such a structure, a hard structure cannot sufficiently tolerate heat during severe bending and cracking may occur. Furthermore, when manufacturing machine structural members, automobile structural members, and automobile undercarriage parts from steel pipes, there may be microvoids in the steel that do not cause cracking even if cracking does not occur in bending. There is. When steel pipes are used as components in parts such as mechanical structures and automobile structures and fatigue loads are applied, fatigue cracks may be generated from the microvoids created by bending during the production of parts. Prior art documents
特許文献 Patent Literature
特許文献 1 特開 2001— 321846号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 2001-321846
特許文献 2 特開 2003— 321748号公報 発明の概要  Patent Document 2 JP 2003-321748 A Summary of the Invention
発明が解決しょうとする課題 Problems to be solved by the invention
上記した様に、 機械構造 (例えば自動車構造、 自動車足回り部品 など) 鋼管や鋼管用素材鋼板 (特に熱延鋼板) として、 今まで十分 に疲労特性と曲げ成形性を両立できるものは得られていない。 一般 的に、 鋼材の疲労特性は、 鋼材自体か鋼材を加工した部材または部 品の強度が高い方が優れる傾向にあり、 鋼材の曲げ成形性は、 強度 が低い方が優れる傾向にある。 このために、 相反する特性を両立す るのは非常に困難である。 本発明の目的は、 疲労特性に優れかつ曲 げ成形性に優れた機械構造鋼管用熱延鋼板、 自動車構造鋼管用熱延 鋼板、 又は自動車足回り部品鋼管用熱延鋼板とそれら鋼板の製造方 法を提供することである。 課題を解決するための手段 As described above, mechanical structures (for example, automobile structures, automobile undercarriage parts, etc.) Steel pipes and material steel plates for steel pipes (especially hot-rolled steel sheets) that have been able to achieve both sufficient fatigue properties and bendability have been obtained so far. Absent. In general, the fatigue properties of steel materials tend to be better when the strength of the steel material itself or a member or part processed from the steel material is higher, and the bending formability of the steel material tends to be better when the strength is lower. For this reason, it is very difficult to achieve conflicting characteristics. An object of the present invention is to provide a hot rolled steel sheet for machine structural steel pipes and a hot rolled steel for automobile structural steel pipes having excellent fatigue characteristics and excellent bendability. It is to provide hot-rolled steel sheets for steel plates or automobile undercarriage parts steel pipes and a method for producing these steel sheets. Means for solving the problem
本発明者らは、 疲労特性に優れかつ曲げ成形性に優れた機械構造 鋼管用熱延鋼板、 (例えば、 自動車構造鋼管用熱延鋼板、 自動車足 回り部品鋼管用熱延鋼板、 及びそれら鋼板からなる鋼管) を得るた めに、 熱延鋼板の板厚各部位での微小ボイ ドの生成や疲労亀裂の発 生 · 進展過程を曲げ成形の加工前後から疲労荷重負荷に至るまで継 続して検討した。 その結果、 本発明者らは、 鋼管製の機械構造部材 、 例えば、 鋼管製の自動車構造部材、 鋼管製の自動車足回り部品の 疲労亀裂が、 素材鋼板の表層部 (鋼材表面から深さ 0. 05匪以内、 表 面被覆層がある場合には地鉄界面から深さ 0. 05mm以内) で発生する ことを新たに見出した。 また、 前記の鋼管製部材ゃ鋼管製部品の製 作時、 鋼管を曲げ成形する際の加工割れは、 加工歪が最も高い鋼材 表層部 (鋼材表面から深さ 0. 05匪以内、 表面被覆層がある場合には 地鉄界面から深さ 0. 05mm以内) で発生することを新たに見出した。  The inventors of the present invention have a hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and excellent bendability (for example, hot-rolled steel sheets for automotive structural steel pipes, hot-rolled steel sheets for automobile undercarriage parts steel pipes, and these steel sheets). In order to obtain a steel pipe, the generation of microvoids and fatigue cracks at each thickness part of the hot-rolled steel sheet and the process of fatigue crack growth / progression were continued from before and after bending to the fatigue load. investigated. As a result, the present inventors have found that fatigue cracks in steel pipe mechanical structural members, for example, steel pipe automobile structural members, steel pipe automobile undercarriage parts, surface layer portion of the steel sheet (depth 0. 0 from the steel surface). It was newly found that it occurs at a depth of 0.05 mm or less from the surface of the railway when there is a surface coating layer within 05 mm. In addition, when manufacturing the above-mentioned steel pipe parts and steel pipe parts, the work cracks when bending the steel pipe are the surface layer of the steel material with the highest processing strain (depth within 0.05 mm from the steel surface, surface coating layer It was newly found that it occurs at a depth within 0.05 mm from the interface of the railway.
更に、 曲げ成形加工時に鋼材表層部に生じた微小ポイ ドが、 加工 後に部材又は部品として使用する際に、 疲労亀裂の発生や進展を促 進することを新たに見出した。 この知見に注目し、 鋼材表層部のミ クロ組織、 硬さ、 組織の結晶形態、 粒界析出物存在状態等に着目し て種々検討した結果、 本発明者らは、 特定条件下において、 疲労特 性に優れ、 かつ曲げ成形性にも優れた機械構造鋼管用熱延鋼板、 自 動車構造鋼管用熱延鋼板、 または自動車足回り部品鋼管用熱延鋼板 が得られることを新たに見出したものである。 つまり、 鋼材表層部 の組織を均一微細なペイナイ ト組織主体に制御して中程度に硬く し 、 更に粒界析出炭化物を微細化することで目的とする特性を有する 鋼管用素材鋼板が得られる。 その上、 前記の特定条件を工業的に有 利に得る方法を検討して、 本発明者らは、 好適な成分系と製造プロ セスを得るに至った。 なお、 この表層部の特定条件は、 鋼板板厚 0. 7〜 20 の鋼管用素材鋼板において十分に有効であり、 更に本発明 鋼板とは鋼帯も含むものである。 Furthermore, it was newly found that the micro-point generated on the steel surface layer during bending forming promotes the generation and development of fatigue cracks when used as a member or part after processing. As a result of various investigations focusing on this knowledge and focusing on the microstructure, hardness, crystal morphology of the structure, the presence of grain boundary precipitates, etc., the present inventors have found fatigue under specific conditions. Newly discovered that hot-rolled steel sheets for machine structural steel pipes, hot-rolled steel sheets for automotive structural steel pipes, or hot-rolled steel sheets for automobile undercarriage parts steel pipes with excellent characteristics and excellent bend formability can be obtained. It is. In other words, it has the desired characteristics by controlling the structure of the steel surface layer to a uniform fine grain structure main body, making it hard to a medium level, and further reducing the grain boundary precipitated carbides. A steel sheet for steel pipe is obtained. In addition, by studying a method for industrially obtaining the specific conditions, the present inventors have obtained a suitable component system and production process. This specific condition of the surface layer portion is sufficiently effective for a steel pipe material steel plate having a steel plate thickness of 0.7 to 20, and the steel plate of the present invention includes a steel strip.
本発明の要旨は、 ( 1 ) 鋼の表層部において、 ミクロ組織の面分 率の 80%以上がペイナイ トであり、 ビッカース硬さ Hvが 210以上 300 以下であり、 ペイナイ 卜の長軸長さの平均値が 5 m以下であり、 更に粒界炭化物平均粒径が 0.5 m以下であることを特徴とする疲 労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。 なお、 本発 明の鋼の表層部とは、 鋼板 (鋼帯含む) の鋼表面から厚み方向に 0. 05mm以内の部位である。 但し、 ビッカース硬さ Hvは、 鋼板 (鋼帯含 む) の鋼表面から厚み方向に 0.05mm深さ位置の値とする。  The gist of the present invention is as follows: (1) In the surface layer portion of steel, 80% or more of the surface area of the microstructure is Paynite, Vickers hardness Hv is 210 or more and 300 or less, and the major axis length of Paynai 卜A hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bend formability, characterized in that the average value of is less than 5 m and the average grain size of grain boundary carbides is less than 0.5 m. The surface layer of the steel of the present invention is a portion within 0.05 mm in the thickness direction from the steel surface of the steel plate (including steel strip). However, the Vickers hardness Hv is the value at a depth of 0.05 mm in the thickness direction from the steel surface of the steel plate (including steel strip).
( 2 ) 上記 ( 1 ) の鋼が、 質量%で、 C : 0, 05〜0.19%、 Si : 0. 05〜 1.0%、 Mn: 0.3〜2.5%、 P : 0.03%以下、 S : 0.025 %以下、 Ti : 0.005〜0.1%、 Cr: 0.03〜 1.0%、 So 1, AI : 0.005〜 0.1 %、 N : 0.0005〜0.01%、 B : 0.0001〜0.01%を含有し、 かつく A>式を 満たし、 残部 Fe及び不可避不純物からなる鋼であることを特徴とす る疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。  (2) The steel of (1) above is in mass%, C: 0, 05 to 0.19%, Si: 0.05 to 1.0%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.025% Ti: 0.005-0.1%, Cr: 0.03-1.0%, So 1, AI: 0.005-0.1%, N: 0.0005-0.01%, B: 0.0001-0.01% A hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bend formability, characterized by being a steel composed of the balance Fe and inevitable impurities.
3C≤0.27Mn+0.2Cr + 0.05Cu+0. llNi + 0.25Mo≤3C+0.3…く A> 但し、 <A>式の C, Mn, Cr, Cu, Ni, Moの値は質量%。  3C≤0.27Mn + 0.2Cr + 0.05Cu + 0.llNi + 0.25Mo≤3C + 0.3 ... A> However, the values of C, Mn, Cr, Cu, Ni, and Mo in <A> are mass%.
(3) 上記 ( 2) の鋼が、 更に、 質量%で、  (3) The steel of (2) above is further mass%,
ペイナイ ト生成促進元素群として、  As a group of elements for promoting the formation of paynite,
Cu: 0.005〜 1.0%、 Ni: 0.005〜 1.0%、 Mo: 0.02〜 1.0 %、 結晶と粒界炭化物の微細化元素群として、  Cu: 0.005-1.0%, Ni: 0.005-1.0%, Mo: 0.02-1.0%, As a group of refined elements of crystals and grain boundary carbides,
Nb: 0.003〜0.2%、 V : 0.001〜0.2%、 W: 0.001〜 0.1 %、 介在物形態制御元素群として、 Ca: 0.0001- 0.02% , Mg: 0.0001〜0.02%、 Zr: 0.0001〜 0.02 % 、 REM: 0.0001〜0.02%の中の 1つまたは 2つ以上の元素群から選 択され、 各選択された元素群内の元素 1種または 2種以上を含有し 、 かつ <A>式を満たす鋼であることを特徴とする疲労特性と曲げ 成形性に優れた機械構造鋼管用熱延鋼板。 Nb: 0.003 to 0.2%, V: 0.001 to 0.2%, W: 0.001 to 0.1%, Inclusion form control element group, Ca: 0.0001-0.02%, Mg: 0.0001-0.02%, Zr: 0.0001-0.02%, REM: 0.0001-0.02% A hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability, characterized by being a steel that contains one or more of the above elements and satisfies the formula <A>.
3C≤0.27Mn+0.2Cr+0.05CU+ 0. llNi + 0.25Mo≤3C+0.3…く A> 但し、 <A>式の C, Mn, Cr, Cu, Ni, Moの値は質量%。  3C≤0.27Mn + 0.2Cr + 0.05CU + 0. llNi + 0.25Mo≤3C + 0.3 ... A> However, the values of C, Mn, Cr, Cu, Ni, and Mo in <A> are mass%.
(4) 上記の ( 1 ) または ( 2) または ( 3) において、 機械構 造鋼管が自動車構造鋼管であることを特徴とする疲労特性と曲げ成 形性に優れた機械構造鋼管用熱延鋼板。  (4) In the above (1), (2) or (3), the hot rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability, characterized in that the mechanical structural steel pipe is an automobile structural steel pipe .
( 5) 上記の (4) において、 自動車構造が自動車足回り部品で あることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管 用熱延鋼板。  (5) A hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and bending formability, characterized in that the automobile structure is an automobile undercarriage part in (4) above.
( 6 ) 質量%で、 C : 0.05〜0.19%、 Si: 0.05〜 0%、 Mn: 0.3 〜2.5%、 P : 0.03%以下、 S : 0.025 %以下、 T i: 0.005〜 0.1 %、 Cr: 0.03〜 1.0%、 Sol. A1 : 0.005〜0.1%、 N : 0.0005〜 0.01 %、 B : 0.0001〜0.01%を含有し、 かつく A>式を満たし、 残部 Fe及び 不可避不純物からなる鋼スラブを 1070°C以上 1300°C以下に加熱した 後、 仕上げ圧延温度を 850°C以上 1070°C以下とする熱間圧延を施し 、 仕上げ圧延後 <B>式に示す冷却速度 Vc (°C/sec) で 300°C以下 まで冷却することを特徴とする疲労特性と曲げ成形性に優れた機械 構造鋼管用熱延鋼板の製造方法。  (6) By mass%, C: 0.05 to 0.19%, Si: 0.05 to 0%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.025% or less, Ti: 0.005 to 0.1%, Cr: A steel slab containing 0.03 to 1.0%, Sol. A1: 0.005 to 0.1%, N: 0.0005 to 0.01%, B: 0.0001 to 0.01%, satisfying the A> formula, and the balance Fe and inevitable impurities. After heating to ° C or higher and 1300 ° C or lower, hot rolling at a finish rolling temperature of 850 ° C or higher and 1070 ° C or lower is performed, and after finish rolling Cooling rate Vc (° C / sec) shown in formula <B> A method for producing hot-rolled steel sheets for machine structural steel pipes with excellent fatigue characteristics and bendability, which is characterized by cooling to 300 ° C or lower.
3C≤0.27Mn+0.2Cr+0.05CU+0. llNi + 0.25Mo≤3C+0.3…く A> 3C≤0.27Mn + 0.2Cr + 0.05CU + 0.llNi + 0.25Mo≤3C + 0.3 ... A>
1.2/C≤Vc≤ 1.8/0··< B > 1.2 / C≤Vc≤ 1.8 / 0
但し、 <A>式、 く B>式の C, Mn, Cr, Cu, Ni, Moの値は質量% However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formulas <A> and B> are mass%.
( 7 ) 前記 ( 6 ) の鋼スラブが、 質量%で、 更に ペイナイ ト生成促進元素群として、 (7) The steel slab of (6) is in mass%, and As a group of elements for promoting the formation of paynite,
Cu: 0.005〜 1.0%、 Ni : 0.005〜 1.0%、 Mo : 0.02〜 1.0%、 結晶と粒界炭化物の微細化元素群として、  Cu: 0.005-1.0%, Ni: 0.005-1.0%, Mo: 0.02-1.0%, As a group of refined elements of crystals and grain boundary carbides,
Nb: 0.003〜0.2%、 V : 0.001〜0.2%、 W : 0.001〜 0.1 %、 介在物形態制御元素群として、  Nb: 0.003 to 0.2%, V: 0.001 to 0.2%, W: 0.001 to 0.1%, Inclusion form control element group,
Ca:' 0.0001〜0.02%、 Mg: 0.0001〜 0.02 %、 Zr: 0.0001〜 0.02 % 、 REM: 0.0001〜0.02%の中の 1つまたは 2つ以上の元素群から選 択され、 各選択された元素群内の元素 1種または 2種以上を含有す ることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用 熱延鋼板の製造方法。  Each element selected from one or more element groups of Ca: '0.0001-0.02%, Mg: 0.0001-0.02%, Zr: 0.0001-0.02%, REM: 0.0001-0.02% A method for producing a hot-rolled steel sheet for a machine structural steel pipe having excellent fatigue characteristics and bending formability, characterized by containing one or more elements in the group.
( 8 ) 前記の ( 6 ) または ( 7 ) 記載の方法において、 機械構造 鋼管が自動車構造鋼管であることを特徴とする疲労特性と曲げ成形 性に優れた機械構造鋼管用熱延鋼板の製造方法。  (8) The method according to (6) or (7), wherein the mechanical structure steel pipe is an automobile structural steel pipe, and the method for producing a hot rolled steel sheet for a mechanical structure steel pipe having excellent fatigue characteristics and bending formability .
( 9 ) 前記の ( 8 ) 記載の方法において、 自動車構造が自動車足 回り部品であることを特徴とする疲労特性と曲げ成形性に優れた機 械構造鋼管用熱延鋼板の製造方法。  (9) A method for producing a hot-rolled steel sheet for a machine-structured steel pipe excellent in fatigue characteristics and bending formability, characterized in that the automobile structure is an automobile undercarriage part in the method described in (8) above.
但し、 前記の ( 6 ) , ( 7 ) , ( 8 ) , ( 9 ) は、 いずれも、 鋼 の表層部において、 ミクロ組織の面分率の 80%以上がペイナイ トで あり、 ビッカース硬さ Hvが 210以上 300以下であり、 ベイナイ トの長 軸長さの平均値が 5 以下であり、 更に平均粒界炭化物粒径が 0. 5 2 m以下である機械構造鋼管用、 自動車構造鋼管用、 或は自動車 足回り部品鋼管用の熱延鋼板 (鋼帯含む) に好適な製造方法である 。 尚、 ビッカース硬さ Hvは、 鋼の表面から 0.05mm深さ位置の値であ る。 発明の効果  However, in the above (6), (7), (8), (9), in the surface layer of steel, 80% or more of the area fraction of the microstructure is the paynite, and the Vickers hardness Hv 210 or more and 300 or less, the average value of the long axis length of bainite is 5 or less, and the average grain boundary carbide particle size is 0.5 2 m or less. Or it is a manufacturing method suitable for hot-rolled steel sheets (including steel strips) for automobile undercarriage parts steel pipes. Vickers hardness Hv is a value at a depth of 0.05 mm from the steel surface. The invention's effect
本発明の機械構造鋼管用熱延鋼板、 自動車構造鋼管用熱延鋼板、 または自動車足回り部品鋼管用熱延鋼板は、 鋼の表層部 (鋼表面か ら 0.05讓深さまでの部位、 但し、 地鉄表面上にスケール層、 機能付 与被覆層 (メツキ処理層、 溶射層、 窒化処理層など) がある場合に は、 地鉄界面から 0.05匪深さまでの部位、 但しピッカース硬さ Hvは 地鉄界面から 0.05匪深さ位置) において、 次の要件 ( a ) , (b ) , ( c ) , ( d) を全て満足するため、 疲労特性と曲げ成形性の両 方がともに優れる。 Hot rolled steel sheet for machine structural steel pipe of the present invention, Hot rolled steel sheet for automobile structural steel pipe, Alternatively, the hot-rolled steel sheet for steel pipes for automobile undercarriage parts is the surface layer of steel (part from the steel surface to a depth of 0.05 mm, but the scale layer and functional coating layer on the surface of the steel surface (metallized layer, sprayed layer) If there is a nitriding layer, etc.), the following requirements (a), (b) in the part from the iron surface interface to 0.05mm depth, where the picker hardness Hv is 0.05mm depth position from the metal surface interface) ), (C), and (d) are all satisfied, both fatigue characteristics and bend formability are excellent.
( a ) ミクロ組織面分率の 80%以上 (100%以下) がべイナイ ト組 織。  (a) More than 80% (100% or less) of the microstructure area fraction is a bait organization.
( b ) ピツカ一ス硬さ Hvが 210以上 300以下。  (b) Pickers hardness Hv is 210 or more and 300 or less.
( c ) ベイナイ トの長軸長さの平均値が 5 m以下。  (c) The average long axis length of bainite is 5 m or less.
( d) 平均粒界炭化物粒径が 0. 以下。  (d) Average grain boundary carbide particle size is 0 or less.
但し、 要件 (b) の硬さは、 鋼表面 (または地鉄界面) 近傍では ビッカース圧痕が適切に得られ難いので、 鋼の表面から 0.05龍深さ 位置の Hv値を鋼の表層部ビッカース硬さ Hvとすれば良い。  However, as for the hardness of requirement (b), it is difficult to obtain a Vickers indentation in the vicinity of the steel surface (or the steel interface). Therefore, the Hv value at a depth of 0.05 dragon depth from the steel surface is set to Vickers hardness of the steel surface layer. It should be Hv.
本発明の鋼管用熱延鋼板 (鋼帯含む) は、 疲労亀裂が発生し難く 、 疲労亀裂の進展速度も極めて遅く疲労特性に優れる。 その理由は 、 要件 ( a) により、 鋼表層部の組織がほぼ均一でベイナイ ト組織 であるので疲労損傷が局所化せず、 かつ要件 ( b ) のように Hvが 21 0以上であるから疲労亀裂の起点となる鋼表層部の硬さが硬く疲労 亀裂が発生し難い。 更に要件 ( c ) のようにべイナイ トの長軸長さ の平均値が 5 lim以下であるから疲労亀裂の進展抵抗を高める結晶 粒界の面積が大きく、 その上、 要件 ( d ) のように粒界炭化物平均 粒径が 0.5^ m以下と微細であるから結晶粒界の強度が高く、 疲労 亀裂の進展抵抗が高い。 鋼管を曲げ成形加工した後に、 鋼表層部に 微小ボイ ドが生成し難いので、 この微小ボイ ド起因の疲労亀裂の発 生 · 進展を抑制することが出来る。 また本発明の各鋼管用熱延鋼板は、 曲げ成形性にも優れる。 その 理由は、 要件 ( a ) と要件 (b ) を満足するので、 鋼表層部の組織 がほぼ均一で鋼表層部の硬さが Hv300以下であり硬さが過度に硬す ぎない。 更に要件 ( c ) と要件 ( d) を満足するので曲げ成形の際 に割れの起点となる鋼表層部の結晶が微細で靭性が高く、 微細な粒 界炭化物により結晶粒界の強度が高い。 また、 要件 ( a) , ( b ) , ( c ) , ( d) を組合せた場合には、 加工割れまで至らない鋼表 層部の微小ボイ ドの生成も防ぐことが可能である。 The hot-rolled steel sheet for steel pipes of the present invention (including steel strips) is less prone to fatigue cracks, and the fatigue crack growth rate is extremely slow and has excellent fatigue properties. The reason is that, according to requirement (a), the structure of the steel surface layer is almost uniform and bainitic, so fatigue damage is not localized, and because Hv is 210 or more as in requirement (b), fatigue occurs. The steel surface layer where the crack starts is hard and fatigue cracks are less likely to occur. Furthermore, since the average value of the major axis length of the bait is 5 lim or less as in requirement (c), the area of the grain boundary that increases fatigue crack growth resistance is large, and in addition, as in requirement (d) In addition, the grain boundary carbide average grain size is as fine as 0.5 ^ m or less, so the grain boundary strength is high and fatigue crack growth resistance is high. After bending the steel pipe, it is difficult for microvoids to form in the steel surface layer, so it is possible to suppress the occurrence and propagation of fatigue cracks caused by these microvoids. The hot-rolled steel sheet for steel pipes of the present invention is also excellent in bend formability. The reason is that the requirements (a) and (b) are satisfied, so the structure of the steel surface layer is almost uniform, the hardness of the steel surface layer is Hv300 or less, and the hardness is too high. Furthermore, since the requirement (c) and the requirement (d) are satisfied, the crystal of the steel surface layer which is the starting point of cracking during bending is fine and has high toughness, and the grain boundary strength is high due to the fine grain boundary carbide. In addition, when requirements (a), (b), (c), and (d) are combined, it is possible to prevent the formation of microvoids in the steel surface layer that do not lead to work cracking.
前記の要件 ( a ) , ( b ) , ( c ) , ( d) は、 いずれも鋼表層 部の限定要件であるが、 鋼の表層部以外 (例えば板厚の中心部、 1 Z 4部など) で満足していても良い。 鋼管用素材鋼板の板厚の中心 部や 1 Z 4部で、 上記 ( a ) , ( b ) , ( c ) , ( d) の限定要件 の一つ又は二つ以上を満足しても本発明を逸脱するものではない。 従って本発明により得られた熱延鋼板 (鋼帯含む) は、 相反する 特性である疲労特性と曲げ成形性が共に優れるので、 この両特性が 要求される機械構造部材、 自動車構造部材、 自動車の足回り部品の 素材 (例えば鋼管または鋼管用素材鋼板) として適する。 例えば特 許文献 1 の 〔発明の属する技術分野〕 に示す異型断面筒状部品の素 材としても、 本発明の熱延鋼板 (鋼帯含む) およびその鋼板 (鋼帯 含む) からなる鋼管は適用できる。 本発明の鋼板 (鋼帯含む) は、 素材として十分な曲げ成形性を有するので前記の機械構造部材、 例 えば、 自動車構造部材ゃ自動車足回り部品に曲げ半径 Rの小さな部 位がある場合でも曲げ成形時に成形割れを防ぐことができる。 また 曲げ成形では割れに至らないが、 部材又は部品の疲労特性を低下さ せる鋼表層部での局所的な微小ボイ ドの形成を抑制できる。 部品又 は部材としても十分な疲労特性を有する。 このために、 本発明の鋼 板からなる鋼管、 及びその鋼管からなる部材又は部品は、 成形後の 硬質化又は高強度化等の熱処理を省略できる。 前記の熱処理の省略 により、 熱処理コス トの削減が可能である。 更に熱処理時の酸化ス ケールが付着するのを防止できて前記部材又は部品の外観品位を損 なわないばかりか、 前記の熱処理に起因する形状変化も防止できる 等、 多くの利点がある。 図面の簡単な説明 The above requirements (a), (b), (c), (d) are all limited requirements for the steel surface layer, but other than the steel surface layer (for example, the center of the plate thickness, 1 Z 4 parts, etc. You may be satisfied with Even if one or more of the above requirements (a), (b), (c), (d) are satisfied at the center of the plate thickness of steel sheet for steel pipes or 1 Z 4 parts, the present invention It does not deviate from. Therefore, the hot-rolled steel sheet (including steel strip) obtained by the present invention is excellent in both fatigue characteristics and bending formability, which are contradictory characteristics. Therefore, mechanical structural members, automotive structural members, Suitable as material for undercarriage parts (for example, steel pipes or steel sheets for steel pipes). For example, as a material for a modified cross-section cylindrical part shown in [Technical field to which the invention belongs] in Patent Document 1, the hot-rolled steel sheet (including steel strip) of the present invention and a steel pipe made of the steel sheet (including steel strip) are applicable it can. Since the steel sheet (including steel strip) of the present invention has sufficient bending formability as a raw material, the above-mentioned mechanical structural member, for example, an automobile structural member or an automobile undercarriage part has a portion with a small bending radius R. Forming cracks can be prevented during bending. Also, bending does not lead to cracking, but it can suppress the formation of local microvoids in the steel surface layer that degrade the fatigue properties of the member or part. It has sufficient fatigue characteristics as a component or member. Therefore, the steel pipe made of the steel plate of the present invention, and the member or part made of the steel pipe are Heat treatment such as hardening or strengthening can be omitted. By omitting the heat treatment, the heat treatment cost can be reduced. Furthermore, there are many advantages such as not only that the appearance scale of the member or component can be prevented from being adhered by the oxidation scale during the heat treatment, but also the shape change caused by the heat treatment can be prevented. Brief Description of Drawings
図 1 は、 本発明におけるべイナイ トの組織面分率と疲労特性との 関係を示した図である。  FIG. 1 is a graph showing the relationship between the microstructure area ratio of the bainite and fatigue characteristics in the present invention.
図 2は、 本発明におけるべイナィ 卜の組織面分率と曲げ成形性と の関係を示した図である。  FIG. 2 is a graph showing the relationship between the texture area ratio of the vine and the bend formability in the present invention.
図 3は、 本発明におけるべイナイ トの長軸長さ平均値と疲労特性 との関係を示した図である。  FIG. 3 is a graph showing the relationship between the average value of the long axis length of the bait and the fatigue characteristics in the present invention.
図 4は、 本発明におけるべイナイ トの長軸長さ平均値と曲げ成形 性との関係を示した図である。  FIG. 4 is a graph showing the relationship between the average value of the long axis length of the bait and the bending formability in the present invention.
図 5は、 本発明における粒界炭化物平均粒径と疲労特性との関係 を示した図である。  FIG. 5 is a graph showing the relationship between the grain boundary carbide average grain size and the fatigue characteristics in the present invention.
図 6は、 本発明における粒界炭化物平均粒径と曲げ成形性との関 係を示した図である。  FIG. 6 is a graph showing the relationship between the grain boundary carbide average particle size and the bending formability in the present invention.
図 7は、 本発明における < A >式 BPとべイナィ トの長軸長さとの 関係を示した図である。  FIG. 7 is a diagram showing the relationship between the <A> formula BP and the long axis length of the bin according to the present invention.
図 8は、 本発明におけるく A >式 BPと粒界炭化物平均粒径との関 係を示した図である。  FIG. 8 is a graph showing the relationship between <A> formula BP and the grain boundary carbide average particle size in the present invention.
図 9は、 本発明における熱間圧延—冷却の熱履歴を示す模式図で ある。  FIG. 9 is a schematic diagram showing the heat history of hot rolling-cooling in the present invention.
図 10は、 本発明における Vcとべイナィ 卜の組織面分率との関係を 示した図である。 図 1 1は、 本発明における Vcと硬さとの関係を示した図である。 発明を実施するための形態 FIG. 10 is a diagram showing the relationship between Vc and the bayonet texture ratio in the present invention. FIG. 11 is a diagram showing the relationship between Vc and hardness in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の鋼の表層部とは鋼の表面から 0. 05匪深さまでの部分であ る力 要件 ( b ) については、 鋼表面から 0. 05πιηι深さ位置としても 良い。 鋼の板厚の中心部や 1ノ 4の組織、 硬さ、 結晶粒径、 析出物 が変化しても疲労特性や曲げ成形性はほとんど変わらない。  With regard to the force requirement (b) in which the surface layer portion of the steel of the present invention is a portion from the steel surface to a depth of 0.05 mm, it may be a position of 0.05πιηι depth from the steel surface. Fatigue properties and bendability are almost the same even when the center of the steel plate thickness, 1 to 4 structure, hardness, grain size, and precipitates change.
前記のように、 本発明者らは、 鋼中に微小ポイ ド (例えば、 ボイ ド径が l ^ m以下) が存在する場合でも、 素鋼管を曲げ成形した部 材ゃ部品では、 鋼管の曲げ成形で鋼表層部に生成した微小ボイ ドの みが、 疲労特性の低下に影響を与えることを新たに見出した。  As described above, the present inventors are not able to bend steel pipes in parts that are formed by bending a steel pipe even when there are micro-voids in the steel (for example, a void diameter of l ^ m or less). It was newly found that only the fine voids formed on the steel surface by forming have an effect on the deterioration of fatigue properties.
本発明によれば、 板厚 0. 7〜20mmの熱延鋼板、 及びその板厚の熱 延鋼板 (鋼帯含む) からなる鋼管が可能であり、 引張強度が 590MP a 級、 685MPa級、 780MPa級、 865MP a級の鋼管用熱延鋼板に好適である 本発明において、 鋼の表層部の組織、 硬さ、 結晶粒径、 粒界炭化 物に係る前記要件 ( a ) 〜 ( d ) の限定理由について以下に述べる 鋼の表層部のペイナイ 卜の組織面分率と疲労特性の指標である疲 労限と曲げ成形性の指標である限界曲げ率との関係を図 1、 図 2に 示す。 図 1 と図 2は、 前記の鋼の表層部の要件 ( b ) , ( c ) , ( d ) を範囲境界付近で満足する場合の結果である。 なお、 ペイナイ ト組織面分率は鋼表層部 (地鉄界面から深さ 0. 05匪以内) の値であ る。  According to the present invention, a steel pipe made of a hot rolled steel sheet having a thickness of 0.7 to 20 mm and a hot rolled steel sheet (including a steel strip) of that thickness is possible, and the tensile strength is 590 MPa class, 685 MPa class, 780 MPa. In the present invention, in the present invention, the requirements (a) to (d) for the structure, hardness, crystal grain size, and grain boundary carbide of the steel surface layer are limited. The reasons for this are described below. Figures 1 and 2 show the relationship between the texture fraction of the steel surface layer and the fatigue limit, which is an indicator of fatigue properties, and the limit bending rate, which is an indicator of bending formability. Figures 1 and 2 show the results when the requirements (b), (c), and (d) for the steel surface layer are satisfied near the boundary of the range. The Paynite structure area fraction is the value in the steel surface layer (within 0.05 mm depth from the steel interface).
図 1 に示すように疲労限は、 ベイナイ トの面分率が 80 %に至るま で急激に向上し、 ペイナイ 卜の面分率 80 %で 400MP a以上と極めて高 い値となりほぼ安定化する。 また図 2に示すように限界曲げ歪は、 _ . . , Λ rt ペイナイ トの面分率が 80 %まで急激に向上し、 80 %で 35 %以上と高 くなる。 ペイナイ トの組織面分率は 100 %に近い方が好ましく 100 % でもかまわないが、 ベイナイ トの残部組織として、 フェライ ト、 パ 一ライ ト、 マルテンサイ ト、 残留オーステナイ トの一種または 2種 以上の合計が 20 %以下を含有する場合でも、 鋼の表層部が前記の ( b ) , ( c ) , ( d ) の要件を同時に満足する場合には、 本発明の 効果は十分に得られる。 このために鋼の表層部の要件 ( a ) のべィ ナイ トの組織面分率は 80 %以上必要である。 As shown in Fig. 1, the fatigue limit sharply increases until the bainite area ratio reaches 80%, and the area ratio of Paynai 卜 reaches 80MPa and is extremely high at 400MPa or more and is almost stabilized. . As shown in Fig. 2, the critical bending strain is , Λ rt Payt area ratio increases rapidly to 80% and increases to over 35% at 80%. The organization ratio of paynite is preferably close to 100%, and it may be 100%, but as the remaining organization of bainite, ferritic, partite, martensite, one type of residual austenite or two or more types Even when the total content is 20% or less, the effect of the present invention can be sufficiently obtained if the surface layer of the steel satisfies the requirements (b), (c) and (d). For this purpose, the surface area fraction of the steel surface layer requirement (a) must be 80% or more.
ペイナイ トより軟質な相が鋼表層部に過度に存在する場合には、 その軟質な相中に、 微小ポイ ドや疲労亀裂が発生し易い。 又、 ペイ ナイ トより硬質な相が鋼表層部に過度に存在する場合には、 硬質な 相とペイナイ ト相との界面やその界面付近で、 微小ボイ ドゃ疲労亀 裂が発生し易い。 ベイナイ トより軟質な相としてはフェライ ト、 パ 一ライ ト、 安定的な残留オーステナイ トなどがあり、 ベイナイ トよ り硬質な相としてはマルテンサイ ト、 加工誘起マルテンサイ トを生 成する不安定な残留オーステナイ トなどがある。  If a phase softer than the Paynite is excessively present in the steel surface layer, micropoids and fatigue cracks are likely to occur in the soft phase. In addition, if a phase harder than the paynite is excessively present in the steel surface layer, fatigue cracks are likely to occur in the microvoids at or near the interface between the hard phase and the paynite phase. Phases that are softer than bainite include ferrite, paleite, and stable residual austenite, and phases that are harder than bainite are martensite and unstable residues that generate processing-induced martensite. There are austenites.
鋼の表層部ビッカース硬さ Hvが 210以上 300以下の中程度であるの で、 部材又は部品として疲労亀裂の起点となる鋼表層部の硬さが比 較的に硬いにも関わらず、 部材又は部品用素材 (鋼管用熱延鋼板) の曲げ成形の際に微小ポイ ドが下記の要件 ( c ) と要件 ( d ) との 組合せによって発生せず、 更に、 部材又は部品として使用時に疲労 荷重を受けても微小ボイ ド起因の疲労亀裂の発生 · 進展が鋼表層部 では起き難い。  Steel surface layer Vickers hardness Hv is moderate to 210 or more and 300 or less, so even though the hardness of the steel surface layer part that is the starting point of fatigue cracks as a member or part is relatively hard, When bending a component material (hot-rolled steel sheet for steel pipes), micro-powders do not occur due to the combination of the following requirements (c) and (d), and a fatigue load is applied when used as a member or component. Even if it is received, fatigue cracks due to microvoids are generated and progressed less easily in the steel surface layer.
ビッカース硬さ Hvが 210未満では、 表層部のペイナイ 卜の組織面 分率が 80 %以上であっても表層部が軟らかすぎて、 疲労荷重を受け た場合には、 表層部に疲労亀裂が生成し易いので疲労限がかなり低 下する。 またピツカ一ス硬さ Hvが 300超では、 曲げ成形性が極端に 低下してしまう。 このために鋼の表層部の要件 (b ) である、 ビッ カース硬さ Hvは 2 1 0以上 3 00以下が必要である。 When the Vickers hardness Hv is less than 210, even if the surface area of the Paynai 卜 is 80% or more, the surface layer is too soft and fatigue cracks are generated in the surface layer when subjected to fatigue load. The fatigue limit is considerably lowered because it is easy to do. Also, when the picker hardness Hv is over 300, the bending formability is extremely high. It will decline. For this purpose, the Bickers hardness Hv, which is the requirement (b) of the surface layer of steel, needs to be 2 10 or more and 300 or less.
ベイナイ トの長軸長さの平均値が 5 z m以下では、 疲労亀裂の進 展抵抗を高める結晶粒界の面積が大きく、 ペイナイ ト主体の組織で も曲げ成形性に優れている。  When the average long axis length of bainite is 5 zm or less, the area of the grain boundary that increases the fatigue resistance of fatigue cracks is large, and even the structure mainly composed of bainite is excellent in bending formability.
鋼の表層部のペイナイ 卜の長軸長さの平均値と疲労特性の指標で ある疲労限と曲げ成形性の指標である限界曲げ率との関係を図 3、 図 4に示す。 なお、 ベイナイ トの長軸長さは鋼表層部 (地鉄界面か ら深さ 0. 05 mm以内) の値である。  Figures 3 and 4 show the relationship between the mean value of the major axis length of the steel surface layer and the fatigue limit, which is an indicator of fatigue properties, and the limit bending rate, which is an indicator of bending formability. The long axis length of the bainite is the value of the steel surface layer (depth within 0.05 mm from the interface).
図 3に示すように前記の楕円長軸長さの平均値が 5 m超では、 疲労亀裂の進展抵抗が著しく低下するので、 前記の平均値の増加に 伴って疲労限が 400MP aから一気に低下する。 また、 前記の平均値は 、 小さい方が好ましいが、 5 であれば結晶微細化による効果は 得られる。 また回 4に示すように前記のベイナイ トの長軸長さの平 均値が 5 超では、 結晶粒界の面積が少ないため、 曲げ成形性も 著しく低下する。 よって、 鋼の表層部のベイナイ トの長軸長さの平 均値は 5 m以下が必要である。 尚、 前記の長軸長さの平均値は、 例えば 0. 0 1 mと極端に細かくても疲労特性に悪影響を及ぼすこと はない。 このべイナイ トの長軸長さは、 ベイナイ ト組織の結晶伸延 方向 (例えば鋼板の板厚断面での主たる圧延方向) の長軸長さをと ればよい。  As shown in Fig. 3, when the average value of the ellipse major axis length exceeds 5 m, the fatigue crack growth resistance is remarkably reduced, so that the fatigue limit decreases rapidly from 400 MPa as the average value increases. To do. The average value is preferably small, but if it is 5, the effect of crystal refinement can be obtained. In addition, as shown in Rotation 4, when the average value of the major axis length of the bainite exceeds 5, the area of the crystal grain boundary is small, so that the bending formability is remarkably lowered. Therefore, the average value of the major axis length of the bainite in the surface layer of steel must be 5 m or less. Incidentally, even if the average value of the major axis length is extremely fine, for example, 0.0 1 m, fatigue characteristics are not adversely affected. The major axis length of the bainite may be the major axis length in the crystal elongation direction of the bainitic structure (for example, the main rolling direction in the plate thickness section of the steel sheet).
鋼の表層部の粒界炭化物平均粒径が 0. 5 m以下では結晶粒界の 強度が高く疲労亀裂の進展抵抗が高いので疲労特性に優れる。  When the grain boundary carbide average grain size of the steel surface layer is 0.5 m or less, the grain boundary strength is high and the fatigue crack growth resistance is high, so the fatigue characteristics are excellent.
鋼の表層部の粒界炭化物の平均粒径と疲労特性の指標である疲労 限と曲げ成形性の指標である限界曲げ率との関係を図 5、 図 6に示 す。 なお、 粒界炭化物平均粒径は鋼表層部 (地鉄界面から深さ 0. 0 5 mm以内) の値である。 前記の平均粒径が 0.5/ m超では、 曲げ成形試験時に、 鋼の表層 部のペイナイ 卜の結晶粒界に沿ってボイ ドが発生し、 疲労試験時に そのボイ ドに沿ってき裂が進展するため、 曲げ成形性および疲労特 性が急激に低下してしまう。 前記の粒界炭化物の平均粒径は小さい 方が好ましいが、 例えば 0.005^ mと極端に細かくても、 本発明の 鋼板を用いた鋼管からなる前記部材及び部品においては、 曲げ成形 性を損なうことなく良好な疲労特性が得られる。 曲げ加工時には結 晶粒界の強度が高いので割れ難く、 疲労試験時にも結晶粒界の強度 が高いので、 亀裂の進展抵抗が高い。 Figures 5 and 6 show the relationship between the average grain size of grain boundary carbides in the steel surface layer and the fatigue limit, which is an index of fatigue properties, and the limit bending rate, which is an index of bending formability. The average grain boundary carbide grain size is the value of the steel surface layer part (within 0.05 mm depth from the interface). When the average grain size exceeds 0.5 / m, voids are generated along the grain boundaries of the Painay 卜 in the surface layer of the steel during the bending test, and cracks propagate along the voids during the fatigue test. For this reason, the bending formability and fatigue characteristics are rapidly reduced. Although the average grain size of the grain boundary carbide is preferably small, even if it is extremely fine, for example, 0.005 ^ m, in the member and parts made of the steel pipe using the steel plate of the present invention, the bending formability is impaired. And good fatigue properties can be obtained. Since the crystal grain boundary strength is high during bending, it is difficult to break, and even during fatigue testing, the crystal grain boundary strength is high, so the resistance to crack growth is high.
以下に、 本発明における表層のベイナイ ト面分率、 硬さ、 結晶粒 サイズ、 粒界炭化物粒径の求め方を参考として記す。  Hereinafter, the method for obtaining the bainitic area fraction, hardness, crystal grain size, and grain size of grain boundary carbide in the present invention will be described as a reference.
ベイナイ トの組織面分率は、 板厚断面を埋め込み研磨後、 3 %ナ イタール溶液にて腐食し、 光学顕微鏡にて 400倍で鋼の表層部 (鋼 表面から 0.05mm深さまでの部位、 但し、 地鉄表面上にスケール層や 被覆層 (メツキ処理層、 溶射層、 窒化処理層など) がある場合には 、 地鉄界面から 0.05體深さまでの部位) のミクロ組織を観察し、 ベ ィナイ ト部分の面積率を定量化して求めた。  The structure area fraction of bainite is corroded with 3% nital solution after embedding and polishing the plate thickness cross section, and the surface layer of the steel (part from the steel surface to a depth of 0.05mm, but 400 times with an optical microscope) If there is a scale layer or coating layer on the surface of the iron surface (such as a plating layer, thermal spray layer, or nitriding layer), observe the microstructure of the surface from the surface of the iron surface to 0.05 mm deep) The area ratio of the G portion was quantified.
ビッカース硬さは、 表面では鋼以外の地鉄上のスケール層や被覆 層の影響を受けやすく適切ではない。 このために本発明鋼板の表層 部の硬さは、 正しい硬さが測定できる鋼の地鉄界面から 0.05匪深さ 位置での硬さを、 マイクロピツカ一ス測定機 (JIS Z 2244に準拠) で 50gfの荷重 (試験力 0.4903 N) で測定した。  The Vickers hardness is not appropriate on the surface because it is easily affected by the scale layer and coating layer on the steel other than steel. For this reason, the hardness of the surface layer of the steel sheet of the present invention is measured at a depth of 0.05 mm from the steel ground interface where the correct hardness can be measured, using a micro pick-up measuring machine (based on JIS Z 2244) And measured with a load of 50 gf (test force 0.4903 N).
ペイナイ トの長軸長さ平均値は、 EBSP (Electron Back Scatteri ng Pattern) 法により結晶方位分布像を観察し、 結晶方位の差によ る色相差から結晶の粒界を特定して、 その結晶伸延方向 (鋼板の板 厚断面での主たる圧延方向) の長軸長さ方向の粒径を測定し、 その 平均値を算出した。 ,ν 粒界炭化物平均粒径は、 板厚断面を埋め込み研磨後、 3 %ナイ夕 ール溶液にて腐食し、 走査型電子顕微鏡にて 2000倍でミク口組織を 観察し、 50 m X 5 0 i mの範囲で粒界に存在する炭化物の粒径を 5 The average long axis length of Paynite is obtained by observing the crystal orientation distribution image by EBSP (Electron Back Scattering Pattern) method, identifying the grain boundary of the crystal from the hue difference due to the difference in crystal orientation, The average grain size was calculated by measuring the grain size in the major axis length direction in the drawing direction (the main rolling direction in the plate thickness section of the steel sheet). , ν Grain boundary carbide average particle size is 50 m x 5 by observing the mouth structure at 2000 times with a scanning electron microscope after corroding and polishing the plate thickness cross section and then corroding with 3% nitrite solution. The particle size of the carbide existing at the grain boundary in the range of 0 im is 5
視野で測定し、 その平均値を求めた。 Measured in the field of view, the average value was obtained.
鋼管用熱延鋼板の疲労特性と曲げ成形性は、 曲げ疲労試験と、 曲 げ成形試験を行い評価すれば良い。 曲げ疲労試験は、 前記の表層部 からなる鋼板から長手方向中央部に平行部のある試験片を採取し、 周波数 30Hzの両振りで、 応力条件を変えて試験を行い、 疲労限を求 めた。 また曲げ成形試験は、 板厚 t = 1. 2匪の鋼板を、 先端に種々 の曲率半径 Rのついた V字のポンチで押し込み、 割れ発生する限界 の Rの大きさを調査し、 その時の最外表面の曲げ歪の大きさ (限界 曲げ歪) を算出して評価した。 良好とする判断基準は、 疲労限 400M P a以上の疲労特性と限界曲げ歪 35 %以上の曲げ成形性を両立するこ ととした。  The fatigue properties and bendability of hot-rolled steel sheets for steel pipes can be evaluated by conducting a bending fatigue test and a bend forming test. In the bending fatigue test, specimens with a parallel part in the longitudinal center were collected from the steel sheet consisting of the above surface layer part, and the test was performed by changing the stress conditions with both swings at a frequency of 30 Hz, and the fatigue limit was obtained. . In the bending test, a steel plate with a thickness of t = 1.2 mm was pushed with a V-shaped punch with various curvature radii R at the tip, and the limit R at which cracking occurred was investigated. The magnitude of bending strain on the outermost surface (limit bending strain) was calculated and evaluated. Judgment criteria to be good were to achieve both fatigue characteristics with a fatigue limit of 400 MPa or more and bend formability with a limit bending strain of 35% or more.
次に、 前記の本発明の鋼表層の組織、 硬さ、 結晶粒サイズ、 粒界 炭化物平均粒径を同時に満足するのに好適な鋼組成について述べる 。 以下の鋼組成は、 通常のように鋼板全体の組成で良いが、 表層部 のみがこの鋼組成であってもかまわない。  Next, a steel composition suitable for simultaneously satisfying the structure, hardness, grain size, and grain boundary carbide average grain size of the steel surface layer of the present invention will be described. The following steel composition may be the composition of the entire steel sheet as usual, but only the surface layer may have this steel composition.
Cは、 鋼板で必要とされる強度レベル (例えば 590MP a級、 690MP a 級、 780MP a級、 865MP a級) を得るために 0. 05 %以上が好ましい。 一  C is preferably 0.05% or more in order to obtain the strength level required for the steel sheet (for example, 590MPa class, 690MPa class, 780MPa class, 865MPa class). One
方、 0. 19 %を超えると前記べイナイ トの生成制御が難しく、 硬質の マルテンサイ トの生成が増え、 表層硬さが過剰になり、 曲げ成形性 が損なわれる場合があり、 また靭性が低下して疲労特性に影響する On the other hand, if it exceeds 0.19%, it is difficult to control the production of the bainite, the formation of hard martensite increases, the surface hardness becomes excessive, the bend formability may be impaired, and the toughness decreases. Affect fatigue properties
。 Cの好ましい範囲は、 0. 05〜0. 19 %である。 . A preferable range of C is 0.05 to 0.19%.
S iは、 曲げ加工性や疲労特性を阻害する粗大な酸化物を抑制する ための脱酸元素として 0. 05 %以上を含有させることが有効である。  It is effective to contain 0.05% or more of Si as a deoxidizing element for suppressing coarse oxides that hinder bending workability and fatigue characteristics.
一方、 1. 0 %超を添加すると鋼管製造時 (例えば電鏠溶接時) に溶 接部に Si02起因の欠陥を発生する可能性がある。 したがって、 Siの 好ましい範囲は 0.05〜1.0%である。 On the other hand, if over 1.0% is added, it will dissolve during steel pipe production (for example, during electric welding). It may occur defects Si0 2 due to the contact portion. Therefore, the preferable range of Si is 0.05 to 1.0%.
Mnは、 焼入れ性を確保し、 ベイナイ ト組織を得るために有効であ り、 そのためには 0.3%以上が望ましい。 2.5%を超えると Mn02によ る欠陥発生及び MnSによる中心偏祈が顕著になる。 Mnの好ましい範 囲は 0.3〜2.5%である。 Mn is effective in securing hardenability and obtaining a bainitic structure, and for that purpose 0.3% or more is desirable. More than 2.5%, the Mn0 prayer center polarized by by that defect and MnS 2 becomes remarkable. A preferable range of Mn is 0.3 to 2.5%.
Pは、 結晶粒界に濃化し易く、 0.03%超では粒界の疲労強度を低 下させる場合がある。 このために、 Pは 0.03%以下が望ましい。 ま た、 Sは、 0.025%超では粗大な MnSを形成して曲げ成形性や疲労特 性を損なう場合がある。 このため、 Sは 0.025 %以下が望ましい。  P tends to concentrate at the grain boundaries, and if it exceeds 0.03%, the fatigue strength of the grain boundaries may be reduced. For this reason, P is preferably 0.03% or less. In addition, if S exceeds 0.025%, coarse MnS may be formed, which may impair bending formability and fatigue characteristics. For this reason, S is preferably 0.025% or less.
Tiは、 オーステナイ ト粒径の粗大化を抑制し、 鋼の表層部のペイ ナイ ト組織の結晶の微細化を達成するのに有効である。 この効果を 得るには 0.005 %以上含有することが望ましい。 一方、 0.1%超では 、 前記の結晶の微細化効果がほぼ飽和し、 また粗大な TiNを生成し て疲労特性及び曲げ成形性を低下させる可能性がある。 このため、 Tiは 0.005〜0.1%が好ましい。  Ti is effective in suppressing the coarsening of the austenite grain size and achieving refinement of the crystal structure in the steel structure of the steel surface layer. To obtain this effect, it is desirable to contain 0.005% or more. On the other hand, if it exceeds 0.1%, the above-mentioned crystal refining effect is almost saturated, and coarse TiN may be generated, resulting in deterioration of fatigue characteristics and bending formability. For this reason, Ti is preferably 0.005 to 0.1%.
Crは、 焼入性を向上し微細なペイナイ ト組織を得るために有効で あり、 かつ粒界炭化物を微細化するためにも有効である。 これらの 効果を得るには Crの含有量は 0.03%以上が好ましい。 一方、 Crの含 有量が 1.0%を超えると、 鋼の表層部での硬質なマルテンサイ 卜の 組織面分率が大幅に増加し所望のペイナイ 卜の組織面分率を得るこ とが難しくなる場合がある。 また、 粗大化した炭化物が多くなり、 粒界強度の上昇による曲げ成形性および疲労特性の改善効果が低下 するか、 逆に、 曲げ成形性および疲労特性を阻害する可能性がある 。 Crは、 0.03〜1.0%が好ましい。  Cr is effective for improving the hardenability and obtaining a fine bainite structure, and is also effective for reducing grain boundary carbides. In order to obtain these effects, the Cr content is preferably 0.03% or more. On the other hand, if the Cr content exceeds 1.0%, the surface area of hard martensite is greatly increased in the steel surface layer, making it difficult to obtain the desired surface area of the Painai. There is a case. In addition, the amount of coarse carbides increases, and the effect of improving the bending formability and fatigue characteristics due to the increase in grain boundary strength may decrease, or conversely, the bending formability and fatigue characteristics may be hindered. Cr is preferably 0.03 to 1.0%.
Sol.Alと Nは、 前記の部材ゃ部品の素材となる鋼材 (例えば鋼管 用熱延鋼板や鋼管) の製造過程で A1Nを生成してオーステナイ ト粒 の粗大化を抑制してペイナイ ト組織の結晶粒の微細化を促進するた めに有効である。 A1が 0.005 %未満ではその効果が必ずしも十分で はなく、 A1が 0.1%、 Νが 0.01%を越えると鋼の清浄度が下がると ともに粗大な A1Nが生成して曲げ成形性及び Ζ又は疲労特性が低下 する場合がある。 Νは、 A1Nの前記オーステナイ ト粒の粗大化抑制 効果を利用するには 0.0005 %以上あれば十分である。 Sol. Alは 0.00 5〜0.1%が望ましく、 Nは 0.0005〜0.01%が望ましい。 Sol.Al and N produce austenite grains by producing A1N in the manufacturing process of steel materials (such as hot-rolled steel sheets for steel pipes and steel pipes) that are the materials of the above-mentioned parts. This is effective in preventing grain coarsening and promoting the refinement of crystal grains in the paynite structure. If A1 is less than 0.005%, the effect is not always sufficient.If A1 is 0.1% and Ν exceeds 0.01%, the cleanliness of the steel is reduced and coarse A1N is formed, resulting in bending formability and Ζ or fatigue properties. May decrease. It is sufficient that the wrinkle is 0.0005% or more to use the effect of suppressing the coarsening of the austenite grains of A1N. Sol. Al is preferably 0.005 to 0.1%, and N is preferably 0.0005 to 0.01%.
Bは、 鋼の焼入性を向上させ、 微細なベイナイ ト組織を得るため に極めて有効な元素である。 Bが 0.0001 %未満ではその効果は必ず しも十分でなく、 0.01%を超えると粗大な硼化物 (硼化炭化物、 硼 化窒化物、 硼化炭窒化物など) を生成し易くなり焼入性を損ない、 また曲げ成形の際や疲労荷重が負荷された際に割れ起点や微小ボイ ドの起点にもなり易い。 Bは、 0.0001〜0.01%が好ましい。  B is an extremely effective element for improving the hardenability of steel and obtaining a fine bainitic structure. If B is less than 0.0001%, the effect is not always sufficient. If it exceeds 0.01%, coarse borides (borated carbides, boronitrides, borocarbonitides, etc.) are likely to be formed and hardenability is increased. In addition, it tends to be the starting point of cracks and microvoids when bending or when fatigue load is applied. B is preferably 0.0001 to 0.01%.
次に、 本発明において重要である、 ペイナイ 卜と粒界炭化物の平 均粒径とを微細に制御する際に有効な鋼組成の関係式 <A>につい て説明する。 本発明者らは、 B (ホウ素) のべイナイ トの生成作用 に着目し、 微細なベイナイ ト組織を得るのに好適なベイナイ ト生成 パラメ一ター、 BP=0.27Mn+ 0.2Cr+ 0.05Cu+ 0, llNi + 0.25Moとく A>式を新たに見出した。 この式は Bのべイナィ 卜の生成促進作用 も利用するので、 Bが鋼 (少なく とも鋼の表層部) に 0.0001〜0.01 %含有される場合には有効である。  Next, the relational expression <A> of the steel composition, which is important in the present invention and is effective in finely controlling the Painai grain and the average grain size of the grain boundary carbide, will be described. The present inventors paid attention to the formation of B (boron) bainite, and suitable bainite generation parameters for obtaining a fine bainitic structure, BP = 0.27Mn + 0.2Cr + 0.05Cu + 0, llNi + Newly found 0.25Mo and A> formula. Since this formula also uses the promotion of B basin ナ formation, it is effective when B is contained in steel (at least in the surface layer of steel) by 0.0001-0.01%.
3C≤0.27Μη+0· 2Cr+0.05Cu + 0. llNi + 0.25Mo≤3C+0.3…く A〉 但し、 <A>式の C , Mn, Cr, Cu, Ni, Moの値は質量%。  3C≤0.27Μη + 0 · 2Cr + 0.05Cu + 0. llNi + 0.25Mo≤3C + 0.3 ... A> However, the values of C, Mn, Cr, Cu, Ni, and Mo in <A> are mass%.
<A>式の 0.27Mn、 0.2Cr、 0.05Cu、 0, llNi、 0.25Moは、 各々 0, 2 7XMn、 0.2XCr、 0.05XCu、 0. llXNi> 0.25 XMoを意味する。  In the formula <A>, 0.27Mn, 0.2Cr, 0.05Cu, 0, llNi, 0.25Mo means 0, 27XMn, 0.2XCr, 0.05XCu, 0. llXNi> 0.25 XMo, respectively.
前記 BPが 3C未満の場合には、 図 7、 図 8 に示すように、 急激にベ ィナイ ト楕円長軸長さや粒界炭化物平均粒径が増大し、 本発明の表 層部の限定要件である上限のペイナイ 卜楕円長軸長さ 5 と平均 粒界炭化物粒径 0.5^mを超える。 また、 く A〉式の BPが 3C+0.3を 超過する場合には、 表層部でマルテンサイ 卜が過度に生成して、 ベ ィナイ トの組織面分率を 80 %未満になり易く、 ピッカース硬さ Hvが 300を超える場合がある。 When the BP is less than 3C, as shown in FIG. 7 and FIG. 8, the length of the veneer ellipse major axis and the average grain size of grain boundary carbides suddenly increase. The upper limit Painai, which is the limiting requirement of the layer part, exceeds the ellipse major axis length of 5 and the average grain boundary carbide grain size of 0.5 ^ m. In addition, if the BP in the formula (A) exceeds 3C + 0.3, martensite is excessively generated in the surface layer, and the surface area fraction of the beanite tends to be less than 80%, and the picker hardness is low. Hv may exceed 300.
前記の基本的な鋼組成以外に、 更に次の元素群 〔 I〕 、 〔II〕 、 〔III〕 の中から一つまたは二つ以上の元素群を選択し、 更に選択 された元素群中の 1種または 2種以上の元素を含有することが可能 である。  In addition to the basic steel composition, one or more element groups are selected from the following element groups [I], [II], [III], and It is possible to contain one or more elements.
〔 I〕 ベイナイ ト生成促進元素群として、 Cu: 0.005〜 1.0%、 Ni : 0.005〜 1.0% , Mo: 0.02〜 1.0%。  [I] As a group of bainite formation promoting elements, Cu: 0.005-1.0%, Ni: 0.005-1.0%, Mo: 0.02-1.0%.
〔II〕 結晶微細化元素群として、 Nb: 0.003〜0.2%、 V : 0.001 〜0.2%、 W : 0.001〜0.1%。  [II] As a crystal refinement element group, Nb: 0.003 to 0.2%, V: 0.001 to 0.2%, W: 0.001 to 0.1%.
〔III〕 介在物形態制御元素群として、 Ca: 0.0001〜0.02%、 Mg : 0.0001〜0.02%、 Zr : 0.0001〜0.02%、 REM: 0.0001〜 0.02 %。  [III] Inclusion form control element group: Ca: 0.0001 to 0.02%, Mg: 0.0001 to 0.02%, Zr: 0.0001 to 0.02%, REM: 0.0001 to 0.02%.
前記の元素群 〔 I〕 のべイナイ ト生成促進元素群の Cu, Ni、 と Mo は、 いずれも焼入性を向上しペイナイ 卜組織の生成に有効である。 〔 I〕 群の各元素の寄与は、 前記く A〉式の通りである。 Cu, Ni, Moが、 それぞれ、 0.005 %未満、 0.005 %未満、 0.02%未満の場合に は、 各元素のベイナイ ト生成促進作用が十分には得られにく い。 一 方、 Cu, Ni, Moが、 それぞれ、 1.0%超、 1, 0%超、 1.0%超の場合 には鋼の表層部で硬質相が多量に生成し易いので、 本発明の構成要 件である、 ペイナイ トの組織分率を 80%以上を満足することが困難 となる。 Cuは 0.005〜 1.0%、 Niは 0.005〜 1.0%、 Moは 0.02〜1.0% の範囲で鋼中に含有することが出来る。  Cu, Ni, and Mo of the element group [I] that promotes the formation of bainite all improve the hardenability and are effective for the formation of the Painai cocoon structure. The contribution of each element of the [I] group is as indicated by the formula A>. When Cu, Ni, and Mo are less than 0.005%, less than 0.005%, and less than 0.02%, respectively, it is difficult to obtain the bainite formation promoting effect of each element. On the other hand, if Cu, Ni and Mo are more than 1.0%, more than 10% and more than 1.0%, a large amount of hard phase is likely to be formed in the surface layer of steel. It is difficult to satisfy the organization ratio of Paynite above 80%. Cu can be contained in the steel in the range of 0.005 to 1.0%, Ni in the range of 0.005 to 1.0%, and Mo in the range of 0.02 to 1.0%.
前記の元素群 〔II〕 の結晶と粒界炭化物微細化元素群の Nb, Vと Wは、 いずれも本発明の構成要件である微細べイナイ トと微細粒界 炭化物の生成に有効である。 このためには、 Nbは 0.003 %以上、 V は 0.001%以上、 Wは 0.001%以上の含有が望ましい。 また、 Nbが 0. 2%超、 Vが 0.2%超、 Wが 0.1%超では、 鋼中に粗大炭化物が形成 され易く、 曲げ成形時に割れ起点になったり、 粗大炭化物付近に成 形時の加工歪が局在化して素材、 部材ゃ部品の表面品位が低下し、 部材ゃ部品に加工後利用中に疲労損傷の局在化を誘発し、 疲労特性 を低下させる懸念がある。 したがって、 Vは 0.003〜0.2%、 Nbは 0. 001〜0.2%、 Wは 0.001〜0.1%の範囲で鋼中に含有させることが望 ましい。 The crystal of the element group [II] and the Nb, V, and W of the grain boundary carbide refinement element group are the fine bainite and the fine grain boundary, which are constituent elements of the present invention. Effective for the formation of carbides. For this purpose, it is desirable that Nb is 0.003% or more, V is 0.001% or more, and W is 0.001% or more. Also, if Nb exceeds 0.2%, V exceeds 0.2%, and W exceeds 0.1%, coarse carbides are likely to form in the steel, becoming the starting point of cracking during bending, or forming near the coarse carbides. There is a concern that the processing strain is localized and the surface quality of the material and the member is deteriorated, and the fatigue damage is deteriorated by inducing the localization of the fatigue damage during the use of the member and the component after processing. Therefore, it is desirable that V is 0.003 to 0.2%, Nb is 0.001 to 0.2%, and W is 0.001 to 0.1%.
前記の元素群 〔III〕 の介在物形態制御元素群として、 Caは 0.000 1〜0.02%、 Mgは 0.0001〜0.02%、 Zrは 0.0001〜0.02%、 REMは 0.00 01〜0.02%を含有することが可能である。 Ca, Mg, Zr、 と REMはい ずれも硫化物を形態制御して成形性を高める作用がある。 この作用 を利用するには、 Caは 0.0001 %以上、 Mgは 0.0001 %以上、 Zrは 0.00 01%以上、 REMは 0.0001 %以上含有させることが望ましい。 これら 元素を過剰に含有する場合には、 これら元素の粗大硫化物やクラス ター化した酸化物との複合化合物を形成して逆に曲げ成形性と疲労 特性を低下させる場合がある。 このため、 Caは 0.0001〜0.02%、 Mg は 0, 0001〜0.02%、 Zrは 0.0001〜0.02%、 REMは 0.0001〜 0.02 %で 含有させることが望ましい。  As the inclusion form control element group of the element group [III], Ca may contain 0.0001 to 0.02%, Mg may contain 0.0001 to 0.02%, Zr may contain 0.0001 to 0.02%, and REM may contain 0.0001 to 0.02%. Is possible. Ca, Mg, Zr, and REM all have the effect of improving formability by controlling the morphology of sulfides. In order to utilize this action, it is desirable to contain 0.0001% or more of Ca, 0.0001% or more of Mg, 0.0001% or more of Zr, and 0.0001% or more of REM. When these elements are excessively contained, a composite compound with coarse sulfides or clustered oxides of these elements may be formed, and on the contrary, bending formability and fatigue characteristics may be lowered. For this reason, it is desirable to contain Ca at 0.0001 to 0.02%, Mg at 0, 0001 to 0.02%, Zr at 0.0001 to 0.02%, and REM at 0.0001 to 0.02%.
次に、 本発明の部材又は部品の素材となる熱延鋼板の好適な製造 方法について述べる。 質量%で、 C : 0, 05〜0.19%、 Si : 0.05〜 0%、 Mn: 0.3〜2.5%、 P : 0.03%以下、 S : 0.025 %以下、 Ti : 0. 005〜0. 1%、 Cr: 0.03〜 1.0%、 Sol. A1 : 0.005〜 0. 1 %、 N : 0.000 5〜0, 01%、 B : 0.0001〜0.01%を含有し、 かつ <A〉式を満たし 残部 Fe及び不可避不純物からなる鋼スラブを用いる。 鋼組成とく A >式の限定理由は、 前記の本発明熱延鋼板で記載した通りである。 前記の組成の鋼スラブを、 1070°C以上 1300°C以下に加熱した後、 仕上げ圧延温度を 850で以上 1070°C以下とする熱間圧延を施すこと が微細なペイナイ ト組織と微細な平均粒界炭化物粒径を得るのに有 効である。 Next, a preferred method for producing a hot-rolled steel sheet as a material for the member or part of the present invention will be described. In mass%, C: 0, 05 to 0.19%, Si: 0.05 to 0%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.025% or less, Ti: 0.005 to 0.1%, Cr: 0.03 to 1.0%, Sol. A1: 0.005 to 0.1%, N: 0.000 5 to 0, 01%, B: 0.0001 to 0.01%, and satisfies the formula <A>. Remaining Fe and inevitable impurities A steel slab consisting of The reason for limiting the steel composition A> formula is as described in the hot rolled steel sheet of the present invention. The steel slab having the above composition is heated to 1070 ° C or higher and 1300 ° C or lower, and then subjected to hot rolling at a finish rolling temperature of 850 or higher and 1070 ° C or lower. Effective for obtaining grain size of grain boundary carbide.
鋼スラブを 1070で以上に加熱すると、 溶鋼凝固過程で析出した炭 化物、 窒化合物、 炭窒化合物を鋼中で固溶させることにより熱延鋼 板中で微細な粒界炭化物を有利に得ることが出来る。 鋼スラブを 13 00°C超に加熱すると A 1 Nが熱間圧延工程で、 又は圧延後の冷却工程 で粗大に析出したり、 Bの焼入性向上効果を阻害する硼化物 (炭化 硼素、 窒化硼素、 炭窒化硼素) を形成することがあるので望ましく ない。 鋼スラブの熱間圧延の際の加熱は 1070°C以上 1300°C以下が好 ましい。  When steel slabs are heated above 1070, fine grain boundary carbides are advantageously obtained in hot-rolled steel plates by solidifying the carbides, nitrogen compounds, and carbonitride compounds precipitated in the molten steel solidification process in the steel. I can do it. When steel slabs are heated to over 1300 ° C, A 1 N precipitates coarsely in the hot rolling process or in the cooling process after rolling, and borides that inhibit the effect of improving the hardenability of boron (boron carbide, Boron nitride and boron carbonitride) are not desirable. Heating during hot rolling of steel slabs is preferably 1070 ° C or more and 1300 ° C or less.
熱間圧延は、 微細なベイナイ トを多量に生成させるためには、 ほ ぼオーステナイ ト単相でかつ再結晶域である 850°C以上の温度域で 行う ことが望ましい。 一方、 1070°C超では、 ベイナイ トが粗大化し 易く結晶を微細に制御し難いことがある。 よって、 熱間圧延の仕上 圧延温度は、 850°C以上 1070°C以下が好ましい。  In order to produce a large amount of fine bainite, hot rolling is preferably performed in a temperature range of 850 ° C or higher, which is almost an austenite single phase and a recrystallization region. On the other hand, at temperatures above 1070 ° C, bainites tend to be coarse, and crystals may be difficult to control finely. Therefore, the finish rolling temperature of hot rolling is preferably 850 ° C or higher and 1070 ° C or lower.
更に、 熱間圧延後に鋼板の冷却を < B〉式の冷却速度 Vc ( °C Z s ) で 300°C以下まで制御することが微細なペイナイ トと微細な粒界 炭化物を生成させるのに有効である。  Furthermore, controlling the steel sheet cooling after hot rolling to 300 ° C or less with the cooling rate Vc (° CZ s) of the <B> formula is effective for producing fine grain and fine grain boundary carbides. is there.
冷却速度 Vc ( °C / s ) が 1. 8Z C ( Cは Cの質量%を示す) を超 える場合には、 図 10、 図 1 1に示すように、 ベイナイ トより硬質な相 が多量に生成して表層部のペイナイ トの組織面分率が 80 %未満にな り易い。 表層部のマルテンサイ ト面分率が著しく増加して所望のベ ィナイ ト面分率が得られず、 表層硬さ Hvが 300を超えて十分な曲げ 成形性が得られない。 Vcが 1. 2 / C ( Cは Cの質量%を示す) 未満 の場合には、 図 10、 図 1 1に示すように、 ベイナイ トより軟質な相が 多量に生成して表層部のペイナイ ト面分率が 80 %未満になり易い。 表層でフェライ トゃパ一ライ 卜の生成が著しく増加して所望のペイ ナイ 卜の組織面分率が得られず、 表層硬さ Hvが 2 10未満となり疲労 荷重の負荷で表層部から亀裂が発生 · 成長し易く、 十分な疲労特性 が得られない。 なお、 ビッカース硬さ Hvは鋼表層部 (地鉄界面から 深さ 0. 05mmの位置) の値である。 When the cooling rate Vc (° C / s) exceeds 1.8Z C (C represents mass% of C), there are many harder phases than bainite as shown in Fig. 10 and Fig. 11. And the surface area of the surface area is less than 80%. The martensite surface fraction of the surface layer is remarkably increased and the desired vinyl surface fraction cannot be obtained, and the surface layer hardness Hv exceeds 300 and sufficient bending formability cannot be obtained. When Vc is less than 1.2 / C (C is the mass% of C), a softer phase than bainite is obtained as shown in Fig. 10 and Fig. 11. It is generated in large quantities and the surface area fraction of the surface layer tends to be less than 80%. The surface area of ferrite and cocoon is greatly increased and the desired surface area ratio of the ridge is not obtained, and the surface hardness Hv is less than 2 10 and cracks are generated from the surface layer due to fatigue load. It is easy to generate and grow, and sufficient fatigue characteristics cannot be obtained. Note that the Vickers hardness Hv is the value of the steel surface layer (depth 0.05mm from the steel interface).
前記の Vcが発明範囲であっても、 図 9 に示す冷却停止温度が 300 超の場合には粒界炭化物の微細化が不十分となるとともに微細な ペイナイ トが十分に得られない。 よって前記の鋼組成からなる熱延 鋼板には、 300°C以下まで本発明の < B >式を満たす Vcで制御冷却 を行う ことが望ましい。 常温〜 250^:以内の温度で本発明の Vcでの 制御冷却を止めて、 熱延鋼板コイルが 300°C以下の温度域で保持 ( 例えば熱延コイルの段積みなど) しても本発明を逸脱するものでは ない。 また表面の手入れや残留応力除去などで、 鋼板表層力 00°C 以下の温度域で温度上昇する簡易熱処理が鋼板又は鋼板からなる鋼 管に付加される場合でも本発明を逸脱するものではない。  Even when the above-mentioned Vc is within the range of the invention, when the cooling stop temperature shown in FIG. 9 is more than 300, the grain boundary carbides are not sufficiently refined, and a fine grain cannot be obtained sufficiently. Therefore, it is desirable that the hot-rolled steel sheet having the above steel composition is controlled to be cooled to Vc satisfying the formula <B> of the present invention up to 300 ° C or less. Even if the controlled cooling with Vc of the present invention is stopped at a temperature within room temperature to 250 ^: and the hot-rolled steel sheet coil is held in a temperature range of 300 ° C or lower (for example, stacking of hot-rolled coils), the present invention It does not deviate from. Further, even when a simple heat treatment that increases the temperature in the temperature range of the steel sheet surface force of 00 ° C. or less is applied to the steel plate or the steel pipe made of the steel plate by surface care or residual stress removal, it does not depart from the present invention.
本発明の熱延鋼板は、 機械構造用鋼管、 例えば自動車構造用鋼管 、 自動車足回り部品鋼管の素鋼板として有効である。  The hot-rolled steel sheet of the present invention is effective as a steel sheet for machine structural steel pipes, for example, automobile structural steel pipes and automobile undercarriage parts steel pipes.
本発明熱延鋼板は、 機械構造用鋼管、 例えば自動車構造用鋼管、 自動車の足回り部品に用いられる鋼管に適用すると効果的であるが 、 他にも疲労特性及び曲げ成形性が共に要求される例えば輸送機械 である航空機や鉄道等の輸送車両の鋼管製部品に適用しても効果的 であることは言うまでもない。 また、 本発明の疲労特性と曲げ成形 性に優れた機械構造鋼管用鋼板は、 本発明の範囲内で成分及び熱延 条件を調節して、 表層部硬さを本発明範囲内の高めとすることによ り、 特に疲労特性が重視される機械構造部材 · 部品に適用可能な鋼 管用熱延鋼板や鋼管とすることが可能であり、 表層部表面硬さを本 発明範囲内の低めとすることにより、 特に曲げ成形性が重視される 機械構造部材 · 部品に適用可能な鋼管用熱延鋼板や鋼管とすること が可能である。 実施例 The hot-rolled steel sheet of the present invention is effective when applied to machine structural steel pipes such as automobile structural steel pipes and steel pipes used for undercarriage parts of automobiles, but also requires both fatigue characteristics and bend formability. For example, it goes without saying that it is effective even when applied to steel pipe parts of transport vehicles such as airplanes and railways that are transport machines. Further, the steel sheet for machine structural steel pipes with excellent fatigue characteristics and bend formability according to the present invention is adjusted within the scope of the present invention by adjusting the components and hot rolling conditions so as to increase the surface layer hardness within the scope of the present invention. Therefore, it is possible to make hot-rolled steel sheets and steel pipes for steel pipes that can be applied to machine structural members and parts where fatigue characteristics are particularly important. By making it lower within the scope of the invention, it is possible to provide a hot-rolled steel sheet for steel pipes and steel pipes that can be applied to machine structural members / parts where bending formability is particularly important. Example
表 1、 表 2 (表 1つづき) に示す成分の鋼を真空溶解炉にて 30kg の鋼塊とした。 その鋼塊を加熱後、 板厚 4龍と 1. 2mに熱間圧延し、 その後冷却を行い熱延鋼板を得た。 冷却の際には板厚 4匪材と 1. 2m m材での冷却速度が同じになるように冷却水量をコントロールした 。 このため、 4 nun材と 1. 2mm材の表層部の組織、 硬さ Hv、 ペイナイ 卜の結晶粒径及び粒界炭化物平均径はほぼ同じであつた。 その際に 板厚 4 nun材で得られた鋼表層部の組織、 ビッカース硬さ Ην、 ベイナ ィ 卜の結晶粒径及び粒界炭化物平均粒径を表 3、 表 4 (表 3つづき ) に示す。 表 1〜表 4で本発明の要件を逸脱するものは下線を付記 した。 尚、 表 1、 表 2で選択元素の空欄は無添加を示す。 Steels with the components shown in Table 1 and Table 2 (Table 1 continued) were made into 30kg steel ingots in a vacuum melting furnace. After heating the steel ingot, it was hot-rolled to a sheet thickness of 4 dragons and 1.2 m, and then cooled to obtain a hot-rolled steel sheet. During cooling, the amount of cooling water was controlled so that the cooling rate was the same for 4 mm thick material and 1.2 mm thick material. For this reason, the surface layer structure of 4 nun material and 1.2 mm material, hardness Hv, grain size and grain boundary carbide average diameter of the Painai steel were almost the same. Table 3 and Table 4 (Table 3 continued) show the steel surface layer structure, Vickers hardness Ην, grain size of grainy carbides and average grain size of grain boundary carbides obtained with 4 nun plate thickness. . Tables 1 to 4 that deviate from the requirements of the present invention are underlined. In Tables 1 and 2, the blank for the selected element indicates no addition.
表 1 table 1
Figure imgf000025_0001
Figure imgf000025_0001
表 2 (表 1つづき) Table 2 (continued from Table 1)
Figure imgf000026_0001
Figure imgf000026_0001
ペイナイ 卜の面分率は、 板厚断面を埋め込み研磨後、 3 %ナイ夕 ール溶液にて腐食し、 光学顕微鏡にて 400倍でミクロ組織を観察し 、 ベイナイ ト部分の面積率を定量化して求めた。 ピツカ一ス硬さは 、 板表面から 0.05M位置の硬さを、 マイクロビッカース測定機 (JI S Z 2244に準拠) で 50gfの荷重 (試験力 0.49N) で測定した。 ペイ ナイ トの長軸長さ平均値は、 EBSP (Electron Back Scattering Pat tern) 法により結晶方位分布像を観察し、 結晶方位の差による色相 差から結晶の粒界を特定して、 その結晶伸延方向 (鋼板の板厚断面 での主たる圧延方向) の長軸長さ方向の粒径を測定し、 その平均値 を算出した。 粒界炭化物平均粒径は、 鋼表面上のスケールを酸で除 去した板厚断面を埋め込み研磨後、 3 %ナイタール溶液にて腐食し 、 鋼表面から深さ 0.05匪以内を走査型電子顕微鏡にて 2000倍で 5視 野のミクロ組織を観察し、 50 mX50 mの範囲で粒界に存在する 炭化物の円相当粒径を測定し、 その平均値を求めた。 The area fraction of Paynai 卜 was eroded by embedding and polishing the thickness of the plate thickness, then corroded with a 3% Nayar solution, observing the microstructure at 400 times with an optical microscope, and quantifying the area ratio of the bainite portion. Asked. The Pitzers hardness was measured with a micro Vickers measuring instrument (based on JI S Z 2244) at a load of 50 gf (test force 0.49N) from the plate surface. For the average long axis length of the paynite, observe the crystal orientation distribution image by the EBSP (Electron Back Scattering Pattern) method, identify the grain boundary of the crystal from the hue difference due to the difference in crystal orientation, and then extend the crystal elongation. The grain size in the major axis length direction in the direction (main rolling direction in the plate thickness section of the steel plate) was measured, and the average value was calculated. The average grain size of the grain boundary carbides is obtained by embedding and polishing a plate thickness cross section obtained by removing the scale on the steel surface with an acid, then corroding with a 3% nital solution, and using a scanning electron microscope within a depth of 0.05 mm from the steel surface. The microstructure of 5 fields was observed at 2000 times, and the circle equivalent particle diameter of the carbide existing at the grain boundary was measured in the range of 50 mX50 m, and the average value was obtained.
得られた板で疲労特性と曲げ成形性を評価するために、 曲げ疲労 試験と、 曲げ成形試験を行った。 曲げ疲労試験は、 t = 4mmの板を 、 板の長手方向中央部に平行部のある試験片で、 周波数 30Hz、 両振 りで、 応力条件を変えて試験を行い、 疲労限を求めた。 また曲げ成 形試験は、 t = 1.2mniの板を、 先端に種々の曲率半径 Rのついた V 字のポンチで押し込み、 割れ発生する限界の Rの大きさを調査し、 その時の最外表面の曲げ歪の大きさを算出して評価した。 目標値は 、 疲労限 400MPa以上の疲労特性と限界曲げ歪 35%以上の曲げ成形性 を両立することとした。 表 2には、 疲労限と限界曲げ歪について、 試験結果の絶対値と評価を示す。 疲労限の評価は、 400MPa以上を〇 、 400MPa未満を Xで示した。 また、 限界曲げ歪の評価は、 35%以上 を〇、 35 %未満を Xで示した。 表 3 In order to evaluate the fatigue characteristics and bend formability of the obtained plate, a bending fatigue test and a bend form test were performed. In the bending fatigue test, a t = 4 mm plate was tested with a test piece having a parallel portion at the center in the longitudinal direction of the plate at a frequency of 30 Hz, with both vibrations, under different stress conditions, and the fatigue limit was obtained. Also, in the bending forming test, a t = 1.2 mni plate was pushed in with a V-shaped punch with various curvature radii R at the tip, and the size of R at which cracking occurred was investigated, and the outermost surface at that time was investigated. The magnitude of the bending strain was calculated and evaluated. The target value is to achieve both fatigue characteristics with a fatigue limit of 400 MPa or more and bending formability with a limit bending strain of 35% or more. Table 2 shows the absolute values and evaluation of the test results for fatigue limit and critical bending strain. The fatigue limit was evaluated as ◯ for 400 MPa or more and X for less than 400 MPa. In addition, the evaluation of the critical bending strain was indicated by ◯ for 35% or more and X for less than 35%. Table 3
Figure imgf000028_0001
Figure imgf000028_0001
表 4 (表 3つづき) Table 4 (Table 3 continued)
Figure imgf000029_0001
Figure imgf000029_0001
試験の結果を表 3、 表 4に示す。 本発明鋼板は、 ほぼべイナイ ト 組織からかなり組織のバラツキが小さく、 また表面硬さが適切であ り、 ベイナイ ト楕円長軸長さ平均値、 平均粒界炭化物粒径が微細で 粒界強度が高い。 そのため、 表 3、 表 4に示すように、 本発明品は 疲労限 400MP a以上の疲労特性と限界曲げ歪 35 %以上の曲げ成形性を 両立できる。 Tables 3 and 4 show the test results. The steel sheet of the present invention has a substantially small variation in structure from the bainitic structure, has an appropriate surface hardness, and has an average bainite ellipse long axis length average value, average grain boundary carbide grain size, and grain boundary strength. Is expensive. Therefore, as shown in Table 3 and Table 4, the product of the present invention can achieve both fatigue characteristics with a fatigue limit of 400 MPa or more and bending formability with a limit bending strain of 35% or more.
これに対し、 ベイナイ トの組織面分率、 ピツカ一ス硬さ、 ベイナ ィ 卜楕円長軸長さ平均値、 平均粒界炭化物粒径、 成分又は熱延一冷 却条件の一部が本発明の範囲から逸脱した比較例では、 疲労特性と 曲げ成形性を両立することができない。 比較例 1 は、 C量が多すぎ るために、 表層部のピツカ一ス硬さ力 300超で硬過ぎ、 粒界炭化物 平均粒径が大き過ぎ、 成形性が不十分である。 比較例 2は、 Bの添 加量が少ない為に焼入性が不十分であり、 ペイナイ トの組織面分率 が過少でフェライ トの組織面分率が高くなり十分な表層部硬さが得 られない。 また、 ベイナイ トの長軸長さ平均値と平均粒界炭化物粒 径も表層部で十分に微細でないために、 疲労特性が不十分である。 比較例 3は、 Mnが少ないために < A >式を満たさないので、 ベイナ ィ トの組織面分率が過少でフェライ トの組織面分率が高くなりかつ 十分な表層部硬さを確保できない。 また、 ベイナイ トの長軸長さ平 均値と粒界炭化物平均粒径も大きく十分に微細化していないので、 疲労特性が不十分である。 比較例 4は、 加熱温度が低いために鋼中 の铸造時析出物の溶体化が十分にできておらず、 添加元素のベイナ ィ 卜結晶 · 粒界炭化物の微細化作用が十分でなく、 ベイナイ トの長 軸長さ平均値と粒界炭化物平均粒径も十分に微細化できなかった。 その結果疲労特性が不十分であった。 比較例 5は、 仕上げ圧延温度 が低いために、 鋼表層部がフェライ ト主体の組織であり、 十分な硬 さを確保できず、 疲労特性が不十分であった。 比較例 6は、 冷却速 度が 1. 2 C未満と遅いために、 ペイナイ トの組織面分率が過少でフ ェライ トの組織面分率が増え、 またべィナイ トの長軸長さ平均値と 粒界炭化物平均粒径が大きく十分に微細化できずに、 疲労特性が不 十分であった。 比較例 7は、 冷却停止温度が高い為に、 高温でペイ ナイ ト変態が起きるので、 粒界炭化物平均粒径が粗大となってしま つた為に、 疲労特性が不十分であった。 On the other hand, the compositional area fraction of Bainite, Pitzka's hardness, Beiny 卜 ellipse major axis length average value, average grain boundary carbide particle size, component or part of hot rolling and cooling conditions are included in the present invention. In the comparative example deviating from the above range, it is impossible to achieve both fatigue characteristics and bend formability. In Comparative Example 1, since the amount of C is too large, the surface hardness of the surface layer portion is over 300, too hard, the grain boundary carbide average particle size is too large, and the moldability is insufficient. In Comparative Example 2, the hardenability is inadequate due to the small amount of B added, and the surface area fraction of the ferrite is too low, and the surface area fraction of the ferrite is high, so that the surface layer hardness is sufficient. It cannot be obtained. In addition, the average long axis length of bainite and the average grain boundary carbide particle size are not sufficiently fine at the surface layer, so that the fatigue characteristics are insufficient. In Comparative Example 3, since <M> is not satisfied because Mn is small, the structure area fraction of the bainite is too low, the structure area fraction of the ferrite is high, and sufficient surface layer hardness cannot be secured. . In addition, the average long axis length of the bainite and the average grain size of grain boundary carbide are large and not sufficiently refined, so that the fatigue characteristics are insufficient. In Comparative Example 4, since the heating temperature is low, the precipitates in the steel are not sufficiently solutioned, and the additive elements are not sufficiently refined in the vain 卜 crystals and grain boundary carbides. The average long axis length and average grain size of grain boundary carbide could not be sufficiently refined. As a result, the fatigue characteristics were insufficient. In Comparative Example 5, since the finish rolling temperature was low, the steel surface layer part was a structure mainly composed of ferrite, so that sufficient hardness could not be secured and fatigue characteristics were insufficient. Comparative Example 6 shows the cooling rate Since the degree is low at less than 1.2 C, the structure ratio of the ferrite is too low and the structure ratio of the ferrite increases, and the average length of the long axis of the vein and the average grain boundary carbide grain The diameter was too large to be sufficiently miniaturized, and the fatigue characteristics were insufficient. In Comparative Example 7, because the cooling stop temperature is high, bainite transformation occurs at a high temperature, and the average grain size of grain boundary carbides becomes coarse, so that the fatigue characteristics are insufficient.

Claims

WO 2009/133965 PCT/JP2009/058732f ΰ " 請求項 1 鋼の表層部において、 ミクロ組織の面分率の 80%以上がペイナイ トであり、 ピツカ一ス硬さ Hvが 210以上 300以下であり、 ベイナイ ト の長軸長さの平均値が 5 m以下であり、 更に粒界炭化物平均粒径 が 0.5 m以下であることを特徴とする疲労特性と曲げ成形性に優 れた機械構造鋼管用熱延鋼板。 請求項 2 請求項 1 に記載の鋼が、 質量%で、範 C : 0.05〜0.19%、 Si : 0.05 〜 1.0%、 Mn: 0.3〜2.5%、 P : 0.03%以下、 S : 0.025 %以下、 Ti : 0.005〜0.1%、 Cr: 0.03〜 1.0%、 So 1. A1 : 0.005〜 0.1 %、 N : 0 .0005〜0.01%、 B : 0.0001〜0.01%を含有し、 かつ <A〉式を満 たし、 残部 Fe及び不可避不純物からなる鋼であることを特徴とする 請求項 1 に記載の疲労特性と曲げ成形性に優れた機械構造鋼管用熱 延鋼板。 3C≤0.27Mn+0.2Cr + 0.05Cu + 0. llNi + 0.25Mo≤ 3C + 0.3…く A > 但し、 <A>式の C , Mn, Cr, Cu, Ni, Moの値は質量%。 請求項 3 請求項 2に記載の鋼が、 更に、 質量%で、 ペイナイ ト生成促進元素群として、 Cu: 0.005〜 1.0%、 Ni : 0.005〜 1.0%、 Mo: 0.02〜 1.0 %、 結晶と粒界炭化物の微細化元素群として、 Nb: 0.003〜0.2%、 V : 0.001〜0.2%、 W : 0.001〜 0.1 %、 介在物形態制御元素群として、 Ca: 0.0001〜0.02%、 Mg: 0.0001〜 0.02 %、 Zr: 0.0001〜 0.02 % 、 REM: 0.0001〜0.02%の中の、 1つまたは 2つ以上の元素群から ηΛΤ / tn n n r ' n C Q ^WO 2009/133965 PCT/JP2009/0587323 ΰ " 選択され、 各選択された元素群内の元素 1種または 2種以上を含有 し、 かつ <Α>式を満たす鋼であることを特徴とする疲労特性と曲 げ成形性に優れた機械構造鋼管用熱延鋼板。 3C≤0.27Mn+ 0.2Cr+ 0.05Cu+0. UNi + O.25Mo≤3C + 0.3…く A> 但し、 <A〉式の C, Mn, Cr, Cu, Ni, Moの値は質量%。 請求項 4 請求項 1 または請求項 2または請求項 3 において、 機械構造鋼管 が自動車構造鋼管であることを特徴とする疲労特性と曲げ成形性に 優れた機械構造鋼管用熱延鋼板。 請求項 5 請求項 4において自動車構造鋼管が自動車足回り部品であること を特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼 板。 請求項 6 質量%で、 C : 0.05〜0.19%、 Si: 0.05〜 1.0%、 Mn: 0.3〜2.5 %、 P : 0.03%以下、 S : 0.025 %以下、 Ti: 0.005〜0.1%、 Cr: 0 .03〜 1· 0%、 Sol. A1: 0.005〜0, 1%、 N : 0.0005〜 0.01 %、 B : 0. 0001〜0.01%を含有し、 かつ <A>式を満たし、 残部 Fe及び不可避 不純物からなる鋼スラブを 1070°C以上 1300°C以下に加熱した後、 仕 上げ圧延温度を 850°C以上 1070°C以下とする熱間圧延を施し、 仕上 げ圧延後く B>式に示す冷却速度 Vc C/sec) で 300°C以下まで冷 却することを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼 管用熱延鋼板の製造方法。 3C≤0.27Mn+0.2Cr + 0.05Cu+0. UNi + O.25Mo≤3C + 0.3〜< A〉 WO 2009/133965 PCT / JP2009 / 058732f 請求 "Claim 1 In the surface layer of steel, 80% or more of the area fraction of the microstructure is Paynite, and the pickers hardness Hv is 210 or more and 300 or less, The average value of the long axis length of bainite is 5 m or less, and the average grain size of grain boundary carbides is 0.5 m or less. Steel sheet according to claim 1 in mass%, C: 0.05 to 0.19%, Si: 0.05 to 1.0%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.025 %: Ti: 0.005-0.1%, Cr: 0.03-1.0%, So 1.A1: 0.005-0.1%, N: 0.0005-0.01%, B: 0.0001-0.01%, and <A> The hot-rolled steel sheet for machined structure steel pipes with excellent fatigue characteristics and bending formability according to claim 1, characterized by satisfying the formula and comprising the balance Fe and inevitable impurities 3C≤0.27Mn + 0.2 Cr + 0.05Cu + 0. llNi + 0.25Mo ≤ 3C + 0.3 ... A> where C, Mn, Cr, Cu, Ni, and Mo in the formula <A> are mass%. In addition, by mass%, as a group of elements for promoting the formation of painite, Cu: 0.005 to 1.0%, Ni: 0.005 to 1.0%, Mo: 0.02 to 1.0%, as a group of refined elements of crystals and grain boundary carbides, Nb: 0.003 to 0.2%, V: 0.001 to 0.2%, W: 0.001 to 0.1%, Inclusion form control element group, Ca: 0.0001 to 0.02%, Mg: 0.0001 to 0.02%, Zr: 0.0001 to 0.02%, REM: From one or more elements in 0.0001 to 0.02% ηΛΤ / tn nnr 'n CQ ^ WO 2009/133965 PCT / JP2009 / 0587323 ΰ "Selected elements in each selected element group 1 A hot-rolled steel sheet for machined structural steel pipes with excellent fatigue characteristics and bendability, characterized by being a steel containing two or more seeds and satisfying the formula <Α>. 3C≤0.27Mn + 0.2Cr + 0.05Cu + 0. UNi + O.25Mo≤3C + 0.3 ... A> However, the value of C, Mn, Cr, Cu, Ni, Mo in the <A> formula is mass%. 4. The hot-rolled steel sheet for machine structural steel pipes according to claim 1 or claim 2 or claim 3, wherein the mechanical structural steel pipe is an automobile structural steel pipe and has excellent fatigue characteristics and bending formability. 5. A hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and bending formability, wherein the automotive structural steel pipe is an automobile underbody part according to claim 4. Claim 6: By mass%, C: 0.05 to 0.19%, Si: 0.05 to 1.0%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.025% or less, Ti: 0.005 to 0.1%, Cr: 0 .03 ~ 1 · 0%, Sol. A1 : 0.005 ~ 0, 1%, N : 0.0005 ~ 0.01%, B : 0.0001 ~ 0.01% and satisfy the formula <A>, the balance Fe and inevitable After the steel slab made of impurities is heated to 1070 ° C or higher and 1300 ° C or lower, it is hot-rolled to a finish rolling temperature of 850 ° C or higher and 1070 ° C or lower. A method for producing hot-rolled steel sheets for machine structural steel pipes with excellent fatigue properties and bendability, characterized by cooling to 300 ° C or lower at a cooling rate of Vc C / sec. 3C≤0.27Mn + 0.2Cr + 0.05Cu + 0.UNi + O.25Mo≤3C + 0.3〜 <A>
1.2/C≤Vc≤ 1.8/C…く B > 1.2 / C≤Vc≤1.8 / C ... B>
伹し、 く A〉式、 <B>式の C, Mn, Cr, Cu, Ni, Moの値は質量% rui/\jr*iuu'3/U5)8/di 請求項 7 The values for C, Mn, Cr, Cu, Ni, and Mo in the formula <A> and <B> are mass%. rui / \ jr * iuu'3 / U5) 8 / di Claim 7
請求項 6に記載の鋼スラブが、 質量%で更に  The steel slab according to claim 6, wherein
ペイナイ ト生成促進元素群として、  As a group of elements for promoting the formation of paynite,
Cu: 0.005〜 1.0%、 Ni : 0.005〜 1.0%、 Mo: 0.02〜 1.0 %、  Cu: 0.005-1.0%, Ni: 0.005-1.0%, Mo: 0.02-1.0%,
結晶と粒界炭化物の微細化元素群として、  As refinement element group of crystal and grain boundary carbide,
Nb: 0.003〜0.2%、 V : 0.001〜0.2%、 W : 0.001〜 0.1 %、  Nb: 0.003-0.2%, V: 0.001-0.2%, W: 0.001-0.1%,
介在物形態制御元素群として、  As inclusion group control element group,
Ca: 0.0001〜0.02%、 Mg: 0.0001〜 0.02%、 Zr: 0.0001〜 0.02 %  Ca: 0.0001 to 0.02%, Mg: 0.0001 to 0.02%, Zr: 0.0001 to 0.02%
、 REM: 0.0001〜0.02%の中の、 1つまたは 2つ以上の元素群から REM: From one or more elements in 0.0001 to 0.02%
選択され、 各選択された元素群内の元素 1種または 2種以上を含有 Contains one or more elements selected and within each selected element group
することを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管 Machine structure steel pipe with excellent fatigue characteristics and bending formability
用熱延鋼板の製造方法。 For producing hot-rolled steel sheets for use.
請求項 8 Claim 8
請求項 6または請求項 7 において、 機械構造鋼管が自動車構造鋼  The machine structural steel pipe according to claim 6 or 7, wherein the machine structural steel pipe is an automotive structural steel.
管であることを特徴とする疲労特性と曲げ成形性に優れた機械構造 Mechanical structure with excellent fatigue characteristics and bending formability, characterized by being a tube
鋼管用熱延鋼板の製造方法。 Manufacturing method of hot-rolled steel sheet for steel pipes.
請求項 9 Claim 9
請求項 8において、 自動車構造が自動車足回り部品であることを  In claim 8, the automobile structure is an automobile undercarriage part.
特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板 Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability
の製造方法。 Manufacturing method.
PCT/JP2009/058732 2008-05-02 2009-04-28 Hot-rolled steel plate for steel tubes for machine structural purposes which is excellent in fatigue characteristics and bending formability and process for production of the plate WO2009133965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-120139 2008-05-02
JP2008120139A JP4436419B2 (en) 2008-05-02 2008-05-02 Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2009133965A1 true WO2009133965A1 (en) 2009-11-05

Family

ID=41255173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058732 WO2009133965A1 (en) 2008-05-02 2009-04-28 Hot-rolled steel plate for steel tubes for machine structural purposes which is excellent in fatigue characteristics and bending formability and process for production of the plate

Country Status (2)

Country Link
JP (1) JP4436419B2 (en)
WO (1) WO2009133965A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560284A (en) * 2012-02-21 2012-07-11 宝山钢铁股份有限公司 High-strength high-toughness X100 pipeline steel hot-rolled steel strip and manufacturing method thereof
CN103108971A (en) * 2010-09-17 2013-05-15 杰富意钢铁株式会社 High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
WO2014148001A1 (en) * 2013-03-19 2014-09-25 Jfeスチール株式会社 HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE
EP3040436A4 (en) * 2013-08-26 2017-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thick steel sheet having excellent fatigue properties, and method for producing same
CN107541659A (en) * 2017-08-30 2018-01-05 宁波亿润汽车零部件有限公司 A kind of air admission fork pipe holder
CN108495945A (en) * 2016-01-27 2018-09-04 杰富意钢铁株式会社 Electric-resistance-welded steel pipe high tensile hot rolled steel sheet and its manufacturing method
KR20190026856A (en) 2016-10-03 2019-03-13 신닛테츠스미킨 카부시키카이샤 Torsion beam steel rod
US11739866B2 (en) 2018-10-12 2023-08-29 Nippon Steel Corporation Electric resistance welded steel pipe for torsion beam

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006781A (en) * 2009-05-25 2011-01-13 Nippon Steel Corp Automobile undercarriage component having excellent low cycle fatigue property and method for producing the same
JP5724267B2 (en) * 2010-09-17 2015-05-27 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
WO2014147829A1 (en) * 2013-03-22 2014-09-25 中国電力株式会社 Prediction method for residual creep life in products degraded by heat and pressure and method for creating standard curve used in prediction method
KR20150119363A (en) 2013-04-15 2015-10-23 제이에프이 스틸 가부시키가이샤 High strength hot rolled steel sheet and method for producing same
JP6136547B2 (en) * 2013-05-07 2017-05-31 新日鐵住金株式会社 High yield ratio high strength hot-rolled steel sheet and method for producing the same
CN116018417A (en) * 2020-10-22 2023-04-25 日本制铁株式会社 Electric welded steel pipe for machine structural member and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101748A (en) * 1996-06-10 1998-01-06 Kobe Steel Ltd High strength hot rolled steel plate excellent in chemical conversion treating property and workability
JPH10195591A (en) * 1996-12-27 1998-07-28 Kobe Steel Ltd High strength hot rolled steel sheet for thermal hardening excellent in stretch-flanging property and its production
JP2000336455A (en) * 1999-05-27 2000-12-05 Kawasaki Steel Corp High ductility hot rolled steel sheet and its production
JP2005105340A (en) * 2003-09-30 2005-04-21 Jfe Steel Kk Thick hot rolled steel plate having excellent workability and ductility, and its production method
JP2005298956A (en) * 2004-04-16 2005-10-27 Sumitomo Metal Ind Ltd Hot rolled steel sheet and its production method
JP2007270197A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Ind Ltd Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101748A (en) * 1996-06-10 1998-01-06 Kobe Steel Ltd High strength hot rolled steel plate excellent in chemical conversion treating property and workability
JPH10195591A (en) * 1996-12-27 1998-07-28 Kobe Steel Ltd High strength hot rolled steel sheet for thermal hardening excellent in stretch-flanging property and its production
JP2000336455A (en) * 1999-05-27 2000-12-05 Kawasaki Steel Corp High ductility hot rolled steel sheet and its production
JP2005105340A (en) * 2003-09-30 2005-04-21 Jfe Steel Kk Thick hot rolled steel plate having excellent workability and ductility, and its production method
JP2005298956A (en) * 2004-04-16 2005-10-27 Sumitomo Metal Ind Ltd Hot rolled steel sheet and its production method
JP2007270197A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Ind Ltd Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108971A (en) * 2010-09-17 2013-05-15 杰富意钢铁株式会社 High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
CN102560284A (en) * 2012-02-21 2012-07-11 宝山钢铁股份有限公司 High-strength high-toughness X100 pipeline steel hot-rolled steel strip and manufacturing method thereof
WO2014148001A1 (en) * 2013-03-19 2014-09-25 Jfeスチール株式会社 HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE
US10400316B2 (en) 2013-03-19 2019-09-03 Jfe Steel Corporation High strength hot rolled steel sheet having tensile strength of 780 MPa or more
EP3040436A4 (en) * 2013-08-26 2017-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thick steel sheet having excellent fatigue properties, and method for producing same
CN108495945A (en) * 2016-01-27 2018-09-04 杰富意钢铁株式会社 Electric-resistance-welded steel pipe high tensile hot rolled steel sheet and its manufacturing method
KR20190026856A (en) 2016-10-03 2019-03-13 신닛테츠스미킨 카부시키카이샤 Torsion beam steel rod
US11028456B2 (en) 2016-10-03 2021-06-08 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe for torsion beam
CN107541659A (en) * 2017-08-30 2018-01-05 宁波亿润汽车零部件有限公司 A kind of air admission fork pipe holder
CN107541659B (en) * 2017-08-30 2019-05-24 宁波亿润汽车零部件有限公司 A kind of air admission fork pipe holder
US11739866B2 (en) 2018-10-12 2023-08-29 Nippon Steel Corporation Electric resistance welded steel pipe for torsion beam

Also Published As

Publication number Publication date
JP4436419B2 (en) 2010-03-24
JP2009270142A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4436419B2 (en) Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method
JP5088631B2 (en) Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method
JP4978741B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
TWI450982B (en) High strength galvanized steel sheet having excellent formability, weldability and fatigue property and method for manufacturing the same
JP4824145B1 (en) Automotive undercarriage parts excellent in low cycle fatigue characteristics and manufacturing method thereof
JP5070149B2 (en) Spring wire and method for manufacturing the same
JP5672421B1 (en) High strength hot rolled steel sheet and method for producing the same
JP5124866B2 (en) Electroformed pipe for hydroforming, its steel plate, and manufacturing method thereof
JP2012062561A (en) High-strength hot-rolled steel sheet excellent in fatigue resistance and method for producing the same
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
JP2007302974A (en) High strength steel plate having excellent delayed fracture resistance and method for producing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
KR20150105476A (en) High-strength cold-rolled steel sheet having excellent bendability
JP2009242841A (en) High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
JP2017057449A (en) Steel sheet excellent in sour resistance and production method therefor
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2013139591A (en) High-strength hot-rolled steel sheet with excellent workability and method for producing the same
JP6197767B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
WO2009078261A1 (en) Steel sheets and process for manufacturing the same
JP5157416B2 (en) Steel sheet and manufacturing method thereof
JP3887158B2 (en) Hot-rolled steel sheet for processing excellent in low cycle fatigue strength and method for producing the same
JP5126790B2 (en) Steel material excellent in fatigue crack growth resistance and method for producing the same
KR101505278B1 (en) Steel for cargo oil tank and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738902

Country of ref document: EP

Kind code of ref document: A1