WO2009078261A1 - Steel sheets and process for manufacturing the same - Google Patents

Steel sheets and process for manufacturing the same Download PDF

Info

Publication number
WO2009078261A1
WO2009078261A1 PCT/JP2008/071597 JP2008071597W WO2009078261A1 WO 2009078261 A1 WO2009078261 A1 WO 2009078261A1 JP 2008071597 W JP2008071597 W JP 2008071597W WO 2009078261 A1 WO2009078261 A1 WO 2009078261A1
Authority
WO
WIPO (PCT)
Prior art keywords
cementite
graphite
less
ferrite
steel
Prior art date
Application number
PCT/JP2008/071597
Other languages
French (fr)
Japanese (ja)
Inventor
Nobusuke Kariya
Kazuhiro Seto
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007326869A external-priority patent/JP5157417B2/en
Priority claimed from JP2007326868A external-priority patent/JP5157416B2/en
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to KR1020137005432A priority Critical patent/KR20130035276A/en
Priority to CN2008801214570A priority patent/CN101903547B/en
Priority to EP08861016.7A priority patent/EP2246450B1/en
Publication of WO2009078261A1 publication Critical patent/WO2009078261A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/006Graphite

Definitions

  • the present invention relates to a steel plate suitable for applications such as automobile parts, and more particularly to a steel plate excellent in workability and hardenability and a method for producing the same.
  • Patent Document 2 includes, in mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, ⁇ : 0 ⁇ 05 to 0.50%, Nb: 0.005 to 0 ⁇ 1%, ⁇ 1: 0.01 to 10.00%, ⁇ : 0 002 to 0.0103 ⁇ 4, B: 3 to 50ppm, Ca: 0.001 0.01% and Ni: 0 to 2.00%, the balance consists of Fe and impure impurities, in impurities P: 0.012% or less, S: a hot-rolled steel sheet is 0.008% or less, after 0.
  • OX (N-B)% to 5.
  • OX (N_B) % With the balance Fe and unavoidable impurities, P: 0.020% or less and S: 0.010% or less as impurities, ferrite, graphite and cementite
  • P 0.020% or less
  • S 0.010% or less as impurities
  • ferrite, graphite and cementite A high carbon thin steel sheet having a work structure and good workability and a method for producing the same are disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 1-025946
  • Patent Document 2 JP-A-7-258743
  • Patent Document 3 Japanese Patent Laid-Open No. 4-202744 Disclosure of Invention
  • Patent Document 2 is a technique for graphitizing 50% or more of the cementite in copper, and the component composition of copper disclosed in the Example of Patent Document 2 has a large amount of Si, 0. The amount exceeds 20%.
  • the copper plates described in Patent Documents 1 to 3 are soft and have excellent bending workability and elongation properties in tensile tests, but depending on the heating conditions during the quenching of the steel sheet, the graph items may be cemented. May not be sufficiently dissolved, resulting in poor quenching.
  • the steel sheets described in Patent Documents 1 to 3 are soft, they have a problem that they are not necessarily excellent in stretch flangeability, which is an index for hole expansion workability after punching.
  • An object of the present invention is to provide a steel plate that is soft, has excellent workability, has excellent hardenability, has excellent stretch flangeability, and has excellent workability, and a method for producing the same.
  • the present inventors have found that even in a high carbon steel, even when the Si content is very low, specifically 0.1% or less, the graph items and It was found that by controlling the distribution of cementite, good workability could be obtained without necessarily increasing the graphing rate, and good hardenability and stretch flangeability could be secured. That is, as a result of diligent research on the influence of the structure on the strength, hardenability and stretch flangeability of steel sheets containing 0.3 to 0.7 mass 3 ⁇ 4, the following was found. .
  • the organization should include ferrites, graph items, and cementite.
  • the total volume ratio of ferrite, graph items, and cementite in the entire organization should be 95% or more. It is effective to make the volume ratio of the graph items in the entire image 5% or more.
  • the average particle size of graphite and cementite must be 5 / zm or less.
  • Cooling conditions after hot rolling are extremely important for controlling the volume ratio of graphite and cementite present in ferrite grains.
  • the total volume ratio of ferrite, graph item, and cementite is 95% or more, and the volume ratio of graph items (graph rate) in the entire graph item and cementite is 5% or more.
  • Graphite and cementite The copper plate is characterized in that the average particle size of the copper is 5 ⁇ or less.
  • the copper plate of the present invention further contains at least one selected from Ni: 3.0% or less, B: 0.005% or less, and Cu: 0.1% or less by mass%. Is preferred.
  • the steel sheet of the present invention is a hot-rolled sheet obtained by hot rolling a steel having the above composition at a finishing temperature of 800 to 950 ° C, and the hot-rolled sheet after the hot rolling has an average of 50/3 or more. After cooling to a cooling stop temperature of 500 ° C or lower at a cooling rate, cutting is performed at a cutting temperature of 450 ° C or lower, and the hot-rolled sheet after the cutting is manufactured by a method of annealing at an annealing temperature of 720 or lower. it can.
  • the present invention is a.
  • C 0.3 to 0.73 ⁇ 4, Si: 0.1% or less, Mn: less than 0.15%, P: 0.01% or less, S: 0.01% or less, A 1: 0 .05% or less, N: 0.005% or less, a composition comprising the balance Fe and inevitable impurities, having a structure including ferrite, graphite, and cementite, and accounting for the entire structure
  • the total volume ratio of graph and graphite and cementite is 95% or more, the volume ratio of graphitems (graphite ratio) in the entire graphitem and cementite is 53 ⁇ 4 or more,
  • a copper plate characterized in that the total volume ratio of graphite and cementite existing in ferrite grains occupying the whole is 153 ⁇ 4 or less.
  • the steel sheet of the present invention may further contain at least one selected from the following in terms of mass%: Ni: 3.03 ⁇ 4 or less, B: 0.005% or less, Cu: 0.1% or less. preferable.
  • the steel sheet of the present invention is a hot-rolled sheet obtained by hot-rolling steel having the above composition at a finishing temperature of 800 to 950 ° C, and the hot-rolled sheet after the hot-rolling is performed at 50 / s or more. After cooling to a cooling stop temperature of 600 ° C or less at an average cooling rate, cutting at a cutting temperature of 550 ° C or less, and annealing the hot-rolled sheet after the cutting at an annealing temperature of 720 ° C or less Can be manufactured.
  • the steel sheet of the present invention it has become possible to produce a copper plate that is soft and has excellent workability and also has excellent hardenability.
  • the steel sheet of the present invention can be easily manufactured at low cost because it only needs to control the components and the cooling conditions after hot rolling.
  • the steel sheet of the present invention is soft and excellent in workability, so it is suitable for thickening processing of automobile drive system parts. Even if it is applied to parts with complicated shapes, it can process and weld multiple parts. This eliminates the need to improve the productivity of automobile parts and reduce costs.
  • the steel sheet of the present invention does not suffer from quenching failure due to unmelted graph eye and cementite during heating at high frequency or the like.
  • the steel sheet of the present invention it has become possible to produce a steel sheet that is soft and has excellent stretch flangeability and excellent workability.
  • the steel sheet of the present invention can be easily produced at low cost because it is only necessary to control the components and the cooling conditions after hot rolling.
  • the steel sheet of the present invention is soft and excellent in workability such as stretch flangeability, so it is suitable for thickening processing of automobile drive system parts. Even if it is applied to parts with complex shapes, it is not necessary to process or weld multiple parts, improving the productivity of automobile parts and reducing costs.
  • FIG. 1 is a graph showing the relationship between cementite ⁇ , the average particle diameter d of graph items, and ⁇ .
  • FIG. 2 is a graph showing the relationship between the cementite present in the ferrite grains, the volume ratio S of the graph items, and the average.
  • C is an element that forms a graph item. If the amount of C is less than 0.3%, the hardness after quenching cannot be secured, and if it exceeds 0.7%, the copper plate becomes hard even if it is graphitized, and the workability decreases. Therefore, the C content is 0.3-0.7%.
  • the Si content exceeds 0.1%, the ferrite becomes hard and the workability deteriorates. Therefore, the Si content is 0.1% or less, preferably 0.05% or less.
  • Mn is 0.20% or less, preferably 0.10% or less.
  • the P content is 0.01% or less, preferably 0.008% or less.
  • the S content is 0.01% or less, preferably 0.007% or less.
  • Al is an element that binds to solute N to form A1N, detoxifies the adverse effects of solute N, which has the effect of inhibiting graphite formation, and promotes graphite formation using A1N as a nucleus.
  • the amount of A1 is preferably 0.003% or more, but if it exceeds 0.05%, the cleanliness of the steel decreases and the workability deteriorates, so the amount of A1 is 0.05% or less, preferably 0.04% or less. To do.
  • the soot content is 0.0050%, preferably 0.0040% or less.
  • the balance is Fe and inevitable impurities, but it is preferable that at least one selected from Ni: 3.0% or less, B: 0.005% or less, Cu: 0.1% or less is contained for the following reasons. .
  • Ni is an element that promotes the formation of graphite and is also an element effective for improving hardenability. To obtain these effects, Ni is preferably contained in an amount of 0.1% or more, but the Ni content exceeds 3.0%. And the effect is saturated. For this reason, the Ni content is 3.0% or less, preferably 0 ⁇ 1 to 3 ⁇ 03 ⁇ 4, more preferably 0 ⁇ 3 to 1 ⁇ 0%.
  • is a useful element that combines with ⁇ to form ⁇ and acts as a core for graphite formation, and also an effective element for improving hardenability.
  • 0.0005% It is preferable to contain the above, but if the amount of soot exceeds 0.005%, the effect is saturated. For this reason, the soot amount is 0.005% or less, preferably 0.0005 to 0.005%, more preferably 0.0010 to 0.0040%.
  • Cu is an element that promotes the formation of graphite, and is also an element effective for improving hardenability. To obtain these effects, it is preferably contained in an amount of 0.01% or more, more preferably 0.02% or more. However, when the amount of Cu exceeds 0.1%, the effect is saturated. Therefore, the Cu content is 0.1% or less, and more preferably 0.07% or less.
  • the structure should include ferrite, graphite, and cementite.
  • the sum of the volume fractions of cementite must be 95% or more, and the graph item ratio in the graph items and the entire cementite must be 5% or more.
  • the present invention also includes the case where the graph item rate is 100%, that is, when all cementites are converted into graph items, the same effect can be obtained. If the sum of the volume fractions of fillite, graphite, and cementite is less than 95%, that is, if the volume fraction of other phases exceeds 5%, the workability deteriorates. In addition, when the graph item rate is less than 5%, the workability deteriorates.
  • the volume ratio of ferrite, graphite, and cementite was obtained as follows. In other words, after polishing the 1/4 position of the thickness cross section in the rolling direction of the copper plate, it corroded with nital, and with an optical microscope, observed 5 spots per field at a magnification of 400 times, 10 fields (50 places in total), These images are analyzed with Media Cybernetics image analysis software “Image Pro Plus ver. 4.0” to determine the area of ferrite, graphite, and cementite, and the percentage of the total observation area ( The area ratio was defined as the volume fraction of each of ferrite, graphite, and cementite.
  • the ratio (area ratio) of the area (Sgr) of the graph item to the sum of the area (Sgr) of the graph item and the area (Scm) of the cementite (volume ratio of the graph item) ) That is, the graph item rate (3 ⁇ 4) can be expressed by the following equation.
  • the average particle size of cementite and graphite needs to be 5 m or less. More preferably, it is as follows. The present inventors have made various studies in order to obtain excellent hardenability. An example of examination is shown below.
  • the temperature range from finish rolling to the take-off temperature was changed within the range of average cooling rate from air cooling (5 ° C) to 200 ° C / s. Cooled down.
  • the structure and hardenability were investigated as follows. In the same way as above, the thickness 1/4 position of the cross section in the rolling direction is polished.
  • Figure 1 shows the relationship between the average particle diameter d of cementite and graphite and ⁇ ⁇ . It can be seen that when the average particle size d of cementite and graphite is less than ⁇ is less than 8, and excellent hardenability can be obtained.
  • the inventors need to make the average particle size of cementite slag and graphite below to ensure excellent hardenability. It has been found that it is necessary to make it preferably 3 ⁇ or less.
  • excellent hardenability can be obtained by specifying yarn and weave in this way is considered as follows. In other words, when the cementite or graphite average particle size is below, the cementite and graphite are almost completely dissolved during high-frequency heating, and the hardness after quenching can be made uniform.
  • the manufacturing method of the steel plate of this invention is not limited to the following.
  • Finishing temperature during hot rolling 800 ⁇ 950
  • the temperature should be 800 to 950 ° C.
  • Average cooling rate after hot rolling 50 ° C / s or more
  • the steel sheet after hot rolling is immediately cooled at an average cooling rate of 50 / s or more to the cooling stop temperature described later.
  • average cooling rate is less than 50 ° C / s
  • ferrite grains tend to grow during cooling, and large ferrite grains are formed.
  • graphite cementite is thought to be formed with ferrite grain boundaries and inclusions as nuclei, so if ferrite grains are large, graphite formed with grain boundaries as nuclei. And cementite becomes coarse and hardenability decreases.
  • the average cooling rate is 50 ° C / s or more, the rolling strain introduced into the austenite by hot rolling tends to remain in the structure after the transformation, resulting in an increase in the dislocation density.
  • the average cooling rate is 50 ° C / s or higher, preferably 80 ° C / s or higher.
  • the upper limit of the average cooling rate is not particularly required, but is preferably 200 ° C./s or less in order to suppress the deterioration of the shape of the steel sheet and ensure the shape of the steel sheet.
  • Cooling stop temperature for cooling after hot rolling 500 ° C or less
  • the cooling stop temperature When the minimum temperature that needs to be cooled at the cooling rate as described above, that is, the cooling stop temperature, exceeds 500 ° C, proeutectoid ferrite is generated during cooling until scraping, and coarse parlite is generated. When it is generated and annealed after scraping, the cementite becomes coarse and the hardenability deteriorates, so the temperature is set to 500 ° C or lower, preferably 470 ° C or lower.
  • the lower limit of the cooling stop temperature does not need to be specified, but is preferably 200 ° C. or higher in order to secure the shape of the steel sheet.
  • the hot-rolled sheet is cooled immediately after cooling, but at that time, if the milling temperature exceeds 450 ° C, coarse pearlite is generated, and the cementite and graphite become coarse during annealing, resulting in hardenability. Decreases. Therefore, the coiling temperature should be 450 ° C or less. In order to sufficiently obtain the cooling effect after! ⁇ -Rolling as described above, it is preferable that the cutting temperature is lower than the cooling stop temperature. Also, since the shape of the hot-rolled sheet is likely to deteriorate, the cutting temperature is preferably 200 ° C or higher.
  • Annealing temperature 720 ° C or less After removing scales by pickling, etc., the hot rolled sheet of cocoon removal is annealed in order to promote spheroidization and graphiteization of cementite and to make it softer. At that time, if the annealing temperature exceeds 720, coarse pearlite is generated during cooling, resulting in a decrease in hardenability. Further, if the annealing temperature is less than 600 ° C, the annealing time becomes extremely long, so the annealing temperature is preferably 600 ° C or higher.
  • the annealing time is not particularly limited. However, the annealing time should be 8 hours or longer in order to form graphite, and the ferrite grains may be excessively coarsened, resulting in reduced ductility. It is preferable to set it to lOOhr or less.
  • a converter or an electric furnace can be used to melt the steel of the present invention.
  • the steel melted in this way is made into slabs by ingot-bundling or continuous forging.
  • Stebs are usually hot-rolled (reheated) and then hot-rolled.
  • direct feed rolling in which heat is maintained for the purpose of suppressing the temperature drop may be applied as it is.
  • the slab heating temperature is preferably 1280 ° C or lower in order to avoid deterioration of the surface state due to scale. Hot rolling can be performed only by finish rolling, omitting rough rolling.
  • the material to be rolled may be heated by a heating means such as a sheet heater during hot rolling.
  • the thickness of the hot-rolled sheet is not particularly limited as long as the production conditions of the present invention can be maintained, but 1.0 to 10.0 mm is preferable.
  • the annealed steel sheet can be temper-rolled as necessary. Examples are given in Example 1.
  • the total volume ratio of cementite and glassite present in the ferrite particles must be 15% or less. More preferably, it is 10% or less.
  • the present inventors conducted various studies in order to obtain excellent stretch flangeability. An example of the study is shown below. C: 0.55%, Si: 0.01%, Mn: 0.13, P: 0.003%, S: 0.0006%, A1: 0.005%, ⁇ : 00018%, Ni: 0.
  • the structure and stretch flangeability were investigated as follows.
  • the thickness 1/4 position of the cross section in the rolling direction is polished.
  • the cross-section is observed at 5 locations, with 10 magnifications at a magnification of 400 at each location (total 50 views) with an optical microscope.
  • the cementite ⁇ and graphite existing on the ferrite grain boundary and the cementite and graph item existing in the ferrite grain are identified, and the cementite existing on the ferrite grain boundary is identified. And the area occupied by the graph item.
  • the area of the single cementite grain or the entire graphite grain is determined by Measured as the area occupied by cementite grains or graphite grains existing on the grain boundaries, and the area of cementite grains or graphite grains that do not have a portion present on the ferrite grain boundaries The area occupied by cementite grains or graphite grains present in the grains was measured.
  • Stretch flangeability Specimen for hole expansion test (100 X 100 was sampled and punched using a punching tool with a punch diameter of 10 mm and a die diameter of 11.6 (clearance: 20% thickness) at the center of the specimen. After that, the punched hole was pushed up with a cylindrical flat bottom punch (diameter 50 1) and shoulder R 8mm) to expand the hole, and the hole diameter d was measured when a through-thickness crack occurred at the hole edge. Then, the hole expansion rate 1 (%) was calculated from the following formula, and the same test was performed 6 times to obtain the average (%).
  • Figure 2 shows the relationship between the cementite and graphite volume fraction S present in the ferrite grains and the average ⁇ . It can be seen that when the volume fraction S of cementite and graphite present in the ferrite grains is 15% or less, an average of 603 ⁇ 4 or more is obtained, and excellent stretch flangeability is obtained.
  • the inventors have found that the total body of cementite and graphite present in the ferrite grains is necessary to secure excellent stretch flangeability. It has been found that the volume fraction needs to be 15% or less, more preferably 10% or less.
  • the reason why good stretch flangeability can be obtained by defining the structure in this way is considered as follows. In other words, if there is a large amount of cementite or graphite in the ferrite grains, fine cracks are likely to occur at the interface between the cementite and graphite during the punching process. From Propagation 'Combination, easy to lead to cracks through the plate thickness.
  • the manufacturing method of the steel plate of this invention is not limited to the following.
  • Finishing temperature during hot rolling 800-950 ° C
  • finishing temperature during hot rolling is less than 800, the rolling load increases remarkably, and if it exceeds 950 ° C, the scale to be produced becomes thick and the pickling property decreases, and a decarburized layer is formed on the surface of the copper plate. Since it may occur, it should be 800-950.
  • Average cooling rate after hot rolling 50 ° C / s or more
  • the average cooling rate should be 50 ° C / s or higher, preferably 80 ⁇ or higher.
  • the upper limit of the average cooling rate need not be specified, but is preferably set to 200 ° C./s or less in order to suppress the deterioration of the shape of the steel plate and ensure the shape of the steel plate.
  • Cooling stop temperature for cooling after hot rolling 600 ° C or less
  • the cooling stop temperature When the minimum temperature that needs to be cooled by the cooling rate as described above, that is, the cooling stop temperature, exceeds 600 ° C, proeutectoid light is generated during cooling up to the removal, and pallet light is generated.
  • the temperature should be 600 ° C or lower, preferably 550 ° C or lower.
  • the lower limit of the cooling stop temperature does not need to be specified, but is preferably 200 or more in order to ensure the shape of the steel sheet.
  • the hot-rolled sheet is cooled immediately after cooling, but if the coiling temperature exceeds 550 ° C, no. One line is formed, and the cementite present in the ferrite grains increases during annealing, and the stretch flangeability decreases. Therefore, the trapping temperature is 550 and below.
  • the winding temperature is preferably lower than the cooling stop temperature.
  • the securing temperature is preferably 200 ° C. or higher, and more preferably 450 ° C. or higher, in securing the shape of the steel plate.
  • Annealing temperature 720 ° C or less
  • the hot-rolled sheet after scraping is subjected to annealing to remove the scale by pickling, etc., and to promote spheroidization and graphiteization of cementite and softening.
  • annealing temperature exceeds 720 ° C, pearlite is generated during cooling and the stretch flangeability is deteriorated.
  • the annealing temperature is less than 600 ° C, the cementite and graphite present in the ferrite grains increase and the stretch flangeability tends to deteriorate, so the annealing temperature should be 600 ° C or higher. It is preferable.
  • the annealing time does not need to be particularly limited, but it can be 8 hours or longer in order to form graphite and reduce cementite in the ferrite grains to reduce graphite. Since the grains may become excessively coarse and the ductility may be lowered, it is preferable to set it to lOOhr or less.
  • a converter or an electric furnace can be used to melt the steel of the present invention.
  • the steel melted in this way is made into slabs by ingot-bundling or continuous forging.
  • Slabs are usually heated (reheated) and then hot rolled.
  • the rolling is carried out as it is or for the purpose of suppressing the temperature drop. Good.
  • the slab heating temperature is preferably 1280 ° C or lower in order to avoid deterioration of the surface state due to scale. Hot rolling can be performed only by finish rolling, omitting rough rolling.
  • the material to be rolled may be heated by a heating means such as a sheet bar heater during hot rolling.
  • the thickness of the hot-rolled sheet is not particularly limited as long as the production conditions of the present invention can be maintained, but 1.0 to 10.0 mm is preferable. Hot-rolled sheet is pickled
  • Example 2 After removing the surface scale by shot blasting, etc., it is annealed by hot rolling.
  • the annealed steel sheet can be temper-rolled as necessary. Examples are given in Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are steel sheets which are soft and have excellent workability and excellent hardenability and a process for manufacturing the same. A steel sheet characterized by having a composition which contains by mass C: 0.3 to 0.7%, Si: 0.1% or below, Mn: 0.20% or below, P: 0.01% or below, S: 0.01% or below, Al: 0.05% or below, and N: 0.0050% or below with the balance being Fe and unavoidable impurities and a structure which comprises ferrite, graphite and cementite and in which the total volume fraction of ferrite, graphite and cementite accounts for at least 95% of the whole structure and the ratio of the volume of graphite to the total volume of graphite and cementite (degree of graphitization) is 5% or above, wherein the mean particle diameter of graphite and cementite is 5μm or below; and a steel sheet characterized by having the above composition and the above structure, wherein the sum of the volume fractions of graphite and cementite present in ferrite grains accounts for 15% or below of the total of graphite and cementite.

Description

明細書 鋼板およびその製造方法 技術分野  Technical field
本発明は、 自動車部品などの用途に好適な鋼板、 特に、 加工性および焼入れ性に優れ た鋼板およびその製造方法に関する。 背景技術  The present invention relates to a steel plate suitable for applications such as automobile parts, and more particularly to a steel plate excellent in workability and hardenability and a method for producing the same. Background art
工具あるいは自動車部品(ギア、 ミッション)などに使用される鋼板は、 所望の形状に 加工された後、 焼入れ焼戻しなどの熱処理が施されて使用されることが多い。 このよう な銅板には、 種々の複雑な形状に加工されるため優れた加工性が要求される。 最近では、 こうした部品に対する製造コスト低減の要求が強くなり、 加工工程の省略や加工方法の 変更を目的とした加工技術、 例えば、 高炭素鋼板を用いた自動車駆動系部品の増肉加工 を可能にして、 大幅な工程短縮を実現した複動加工技術などが開発され、 一部実用化さ れている。 それにともない上記自動車部品などに使用される鋼板には、 加工性に対する 要求が益々厳しくなつており、 より軟質で高延性であることが求められている。 例えば、 冷間鍛造で加工する場合には、 より低い降伏応力が求められている。 さらに、 打抜き加 ェ後に穴拡げ加工 (パーリング)する場合には、 優れた伸びフランジ性が望まれている。 こうした要求に応えるべく、 鋼中の Cをグラフアイ ト化させて加工性の向上を図る技 術が検討されている。 例えば、 特許文献 1には、 質量%で、 C:0.40〜0.80%、 Si:0.20〜2. 00%、 Mn:0.20〜1.50%、 Al: 0· 001〜0· 150¾、 Ρ:0.018%以下、 S:0.010¾以下、 Ν:0.0050% 以下で、 残部 Feおよび不可避的不純物からなり、 フェライ ト相とグラフアイ ト相を主 体とした組織を有し、 TS≤60kgf/讓 2の軟質な材質を有する加工性、 靭性、 焼入れ性の 良好な耕耘機爪部品用として好適な鋼板おょぴその製造方法が開示されている。 また、 特許文献 2には、 質量%で、 C:0.10〜0.45%、 Si:0.05〜1· 00%、 Μη:0· 05〜0.50%、 Nb:0. 005〜0· 1%、 Α1:0.01〜1· 00%、 Ν:0· 002〜0.010¾、 B:3〜50ppm、 Ca:0.001 0.01%およぴ Ni:0〜2.00%を含み、 残部が Feおよび不可^的不純物からなり、 不純物中の P:0.012% 以下、 S:0.008%以下である熱延鋼板を、 ACl〜Ac3点の温度範囲で 0. l〜10hr保持した後、 20〜100°C/hrの冷却速度で常温まで冷却し、 次いで 650〜750 の温度範囲で箱焼鈍す ることにより、 鋼中のセメンタイ トの 50面積 ¾以上をグラフアイ ト化することを特徴と する加工性に優れた中炭素鋼板の製造方法が開示されている。 さらに、 特許文献 3には、 質量%で、 C: 0. 20〜1. 00%、 Si : 0. 20%超え 1. 20%以下、 Μη: 0· 05〜0. 50%、 Ν: 0. 005〜0. 01 5%、 Β : 0· 2 ΧΝ%〜0. 8 Χ Ν¾、 および Al : 0. 05%未満で、 かつ 1. O X (N- B) %〜5. O X (N_B) %を 満足する量含有し、 残部 Feおよび不可避的不純物からなり、 不純物として P: 0. 020%以 下、 S : 0. 010%以下である化学組成と、 フェライ トとグラフアイ トおよびセメンタイ ト力 らなる組織を有する加工性の良好な高炭素薄鋼板およびその製造方法が開示されている。 Steel plates used for tools or automobile parts (gears, missions) are often used after being processed into a desired shape and then subjected to heat treatment such as quenching and tempering. Such copper plates are required to have excellent workability because they are processed into various complicated shapes. Recently, there has been a strong demand for reduction in manufacturing costs for these parts, enabling processing technologies aimed at eliminating processing steps and changing processing methods, for example, increasing the thickness of automobile drive system parts using high-carbon steel sheets. As a result, double-acting machining technology has been developed and realized in part. As a result, the demands on workability for steel sheets used in the above-mentioned automobile parts and the like are becoming increasingly severe, and they are required to be softer and have higher ductility. For example, when processing by cold forging, lower yield stress is required. In addition, excellent stretch flangeability is desired when hole expansion (parling) is performed after punching. In order to meet these demands, techniques for improving the workability by graphing C in steel are being studied. For example, in Patent Document 1, in mass%, C: 0.40 to 0.80%, Si: 0.20 to 2.00%, Mn: 0.20 to 1.50%, Al: 0 · 001 to 0 · 150¾, Ρ: 0.018% or less , S: 0.010¾ or less, Ν: 0.0050% or less, with balance Fe and inevitable impurities, mainly composed of ferrite phase and graphite phase, TS≤60kgf / 讓2 A method of manufacturing a steel plate suitable for a tiller claw component having good workability, toughness, and hardenability is disclosed. Further, Patent Document 2 includes, in mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Μη: 0 · 05 to 0.50%, Nb: 0.005 to 0 · 1%, Α1: 0.01 to 10.00%, Ν: 0 002 to 0.010¾, B: 3 to 50ppm, Ca: 0.001 0.01% and Ni: 0 to 2.00%, the balance consists of Fe and impure impurities, in impurities P: 0.012% or less, S: a hot-rolled steel sheet is 0.008% or less, after 0. L~10hr maintained at a temperature in the range of a Cl to Ac 3 point, the cooling rate of 20 to 100 ° C / hr At room temperature, and then box anneal in the temperature range of 650-750 Thus, a method for producing a medium carbon steel sheet excellent in workability is disclosed, characterized by graphitizing 50 or more area areas of cementite in steel. Further, in Patent Document 3, in mass%, C: 0.20 to 1.00%, Si: more than 0.20%, 1. 20% or less,: η: 0 · 05 to 0.50%, Ν: 0 005 to 0.01 5%, Β: 0 · 2 ΧΝ% to 0.8 Χ Ν¾, and Al: less than 0.05%, and 1. OX (N-B)% to 5. OX (N_B) %, With the balance Fe and unavoidable impurities, P: 0.020% or less and S: 0.010% or less as impurities, ferrite, graphite and cementite A high carbon thin steel sheet having a work structure and good workability and a method for producing the same are disclosed.
特許文献 1 :特開平 1-025946号公報  Patent Document 1: Japanese Patent Laid-Open No. 1-025946
特許文献 2 :特開平 7-258743号公報  Patent Document 2: JP-A-7-258743
特許文献 3 :特開平 4- 202744号公報 発明の開示  Patent Document 3: Japanese Patent Laid-Open No. 4-202744 Disclosure of Invention
従来、 銅中の Cをグラフアイ ト化して加工性を向上するためには、 特許文献 1や 3な どにも記载のように、 Siの多量の添加が必須とされていた。 しかしながら、 Siを添加 することにより、 フェライ ト自体が硬質化し、 良好な加工性を得ることが困難となる。 また、 特許文献 2のように、 Bおよび Nbを添加した成分系とし、 所定の条件で 2回の 焼鈍を行うことで、 Si添加量を必ずしも多量としなくても、 グラフアイ ト化と高延性 化を達成しようとする技術も開発されているが、 2回の焼鈍を行うことはコストアップ につながる。 ここで特許文献 2は、 銅中のセメンタイ トの 50%以上をグラフアイ ト化し ようとする技術であり、 特許文献 2の実施例で開示される銅の成分組成としては、 Si 量は多く、 0. 20%を超える量となっている。 また、 特許文献 1〜3に記載の銅板は、 軟質 ではあり、 曲げ加工性や引張試験における伸び特性には優れているが、 鋼板の焼入れ処 理時に、 加熱条件によってはグラフアイ トゃセメンタイ トが十分に溶解せず、 焼入れ不 良が生じる場合もある。 また、 特許文献 1〜3に記載の鋼板は、 軟質ではあるが、 打ち 抜き加工後の穴拡げ加工性に対する指標である伸ぴフランジ性には必ずしも優れないと いう問題があった。  Conventionally, in order to improve the workability by graphitizing C in copper, it has been essential to add a large amount of Si, as described in Patent Documents 1 and 3. However, the addition of Si hardens the ferrite itself and makes it difficult to obtain good processability. In addition, as shown in Patent Document 2, by using a component system containing B and Nb and performing annealing twice under predetermined conditions, graph addition and high ductility can be achieved without necessarily adding a large amount of Si. Technology to achieve this has been developed, but performing annealing twice will increase costs. Here, Patent Document 2 is a technique for graphitizing 50% or more of the cementite in copper, and the component composition of copper disclosed in the Example of Patent Document 2 has a large amount of Si, 0. The amount exceeds 20%. In addition, the copper plates described in Patent Documents 1 to 3 are soft and have excellent bending workability and elongation properties in tensile tests, but depending on the heating conditions during the quenching of the steel sheet, the graph items may be cemented. May not be sufficiently dissolved, resulting in poor quenching. Moreover, although the steel sheets described in Patent Documents 1 to 3 are soft, they have a problem that they are not necessarily excellent in stretch flangeability, which is an index for hole expansion workability after punching.
本発明は、 軟質で、 優れた加工性を有するとともに、 優れた焼入れ性を有する鋼板優 れた伸びフランジ性を有する加工性に優れた鋼板およびその製造方法を提供することを 目的とする。 本発明者らは、 上記従来技術の課題について検討を重ねた結果、 高炭素鋼において、 Siの含有量を非常に低く、 具体的には 0. 1%以下とした場合でも、 グラフアイ トおよび セメンタイ トの分布を制御することにより、 必ずしもグラフアイ ト化率を高く しなくて も、 良好な加工性が得られ、 さらに良好な焼入れ性と伸びフランジ性を確保できること を知見した。 すなわち、 じ:0. 3〜0. 7質量¾を含む鋼板の強度ぉょび焼入れ性と伸ぴフラ ンジ性に及ぼす組織の影響について鋭意研究を進めた結果、 以下のことを見出したので ある。 An object of the present invention is to provide a steel plate that is soft, has excellent workability, has excellent hardenability, has excellent stretch flangeability, and has excellent workability, and a method for producing the same. As a result of repeated investigations on the above-mentioned problems of the prior art, the present inventors have found that even in a high carbon steel, even when the Si content is very low, specifically 0.1% or less, the graph items and It was found that by controlling the distribution of cementite, good workability could be obtained without necessarily increasing the graphing rate, and good hardenability and stretch flangeability could be secured. That is, as a result of diligent research on the influence of the structure on the strength, hardenability and stretch flangeability of steel sheets containing 0.3 to 0.7 mass ¾, the following was found. .
(1)軟質化には、 フェライ トとグラフアイ トとセメンタイ トを含む組織とし、 組織全体 に占めるフェライ トとグラフアイ トとセメンタイ トの体積率の合計を 95%以上、 グラフ アイ トとセメンタイ ト全体に占めるグラフアイ トの体積率を 5%以上にすることが効果 的である。  (1) For softening, the organization should include ferrites, graph items, and cementite.The total volume ratio of ferrite, graph items, and cementite in the entire organization should be 95% or more. It is effective to make the volume ratio of the graph items in the entire image 5% or more.
(2)焼入れ性の向上には、 さらにグラフアイ トとセメンタイ トの平均粒径を 5 /z m以下に する必要がある。  (2) In order to improve hardenability, the average particle size of graphite and cementite must be 5 / zm or less.
(3)グラフアイ トとセメンタイ トの粒径の制御には、 熱間圧延後の冷却条件が極めて重 要である。  (3) Cooling conditions after hot rolling are extremely important for controlling the grain size of graphite and cementite.
(4)伸びフランジ性の向上には、 さらにグラフアイ トとセメンタイ ト全体に占めるフヱ ライ ト粒内に存在するグラフアイ トとセメンタイ トの体積率の合計を 15%以下にする必 要がある。  (4) In order to improve stretch flangeability, the total volume ratio of graphite and cementite in the ferrite particles that occupy the entire graphite and cementite must be 15% or less. is there.
(5)フェライ ト粒内に存在するグラフアイ トとセメンタイ トの体積率の制御には、 熱間 圧延後の冷却条件が極めて重要である。  (5) Cooling conditions after hot rolling are extremely important for controlling the volume ratio of graphite and cementite present in ferrite grains.
本発明は、 このような知見に基づいてなされたものであり、  The present invention has been made based on such knowledge,
質量%で、 C: 0. 3〜0. 7¾、 Si : 0. 1%以下、 Mn : 0. 20%以下、 P : 0. 01%以下、 S : 0. 01%以下、 A 1 : 0. 05%以下、 N: 0. 0050%以下を含み、 残部 Feおよび不可避的不純物からなる組成を有 し、 フヱライ トとグラフアイ トとセメンタイ トを含む組織を有し、 かつ組織全体に占め るフェライ トとグラフアイ トとセメンタイ トの体積率の合計が 95%以上、 グラフアイ ト とセメンタイ ト全体に占めるグラフアイ トの体積率(グラフ イ ト率)が 5%以上、 グラ ファイ トとセメンタイ トの平均粒径が 5 μ πι 下であることを特徴とする銅板を提供す る。 % By mass: C: 0.3 to 0.7¾, Si: 0.1% or less, Mn: 0.20% or less, P: 0.01% or less, S: 0.01% or less, A1: 0 .05% or less, N: 0.0050% or less, with the balance consisting of Fe and unavoidable impurities, having a structure including flylite, graphite, and cementite, and occupying the entire structure The total volume ratio of ferrite, graph item, and cementite is 95% or more, and the volume ratio of graph items (graph rate) in the entire graph item and cementite is 5% or more. Graphite and cementite The copper plate is characterized in that the average particle size of the copper is 5 μπι or less.
本発明の銅板には、 さらに、 質量%で、 Ni : 3. 0%以下、 B : 0. 005%以下、 Cu : 0. 1%以下の うちから選ばれた少なくとも 1種が含有されることが好ましい。 本発明の鋼板は、 上記の組成を有する鋼を、 800〜950°Cの仕上温度で熱間圧延して熱 延板とし、 前記熱間圧延後の熱延板を、 50 /3以上の平均冷却速度で 500°C以下の冷却 停止温度まで冷却後、 450°C以下の卷取温度で卷取り、 前記卷取り後の熱延板を、 720で 以下,の焼鈍温度で焼鈍する方法により製造できる。 The copper plate of the present invention further contains at least one selected from Ni: 3.0% or less, B: 0.005% or less, and Cu: 0.1% or less by mass%. Is preferred. The steel sheet of the present invention is a hot-rolled sheet obtained by hot rolling a steel having the above composition at a finishing temperature of 800 to 950 ° C, and the hot-rolled sheet after the hot rolling has an average of 50/3 or more. After cooling to a cooling stop temperature of 500 ° C or lower at a cooling rate, cutting is performed at a cutting temperature of 450 ° C or lower, and the hot-rolled sheet after the cutting is manufactured by a method of annealing at an annealing temperature of 720 or lower. it can.
本発明は、  The present invention
質量%で、 C: 0. 3〜0. 7¾、 Si : 0. 1%以下、 Mn: 0. 15%未満、 P: 0. 01%以下、 S : 0. 01%以下、 A 1 : 0. 05%以下、 N: 0. 0050%以下を含み、 残部 Feおよび不可避的不純物からなる組成を有 し、 フェライ トとグラフアイトとセメンタイ トを含む組織を有し、 かつ組織全体に占め るフェライ トとグラフアイトとセメンタイ トの体積率の合計が 95%以上、 グラフアイ ト とセメンタ.ィ ト全体に占めるグラフアイ トの体積率(グラフアイ ト率)が 5¾以上、 ダラ フアイ トとセメンタイ ト全体に占めるフェライ ト粒内に存在するグラフアイ トとセメン タイ トの体積率の合計が 15¾以下であることを特徴とする銅板を提供する。 In mass%, C: 0.3 to 0.7¾, Si: 0.1% or less, Mn: less than 0.15%, P: 0.01% or less, S: 0.01% or less, A 1: 0 .05% or less, N: 0.005% or less, a composition comprising the balance Fe and inevitable impurities, having a structure including ferrite, graphite, and cementite, and accounting for the entire structure The total volume ratio of graph and graphite and cementite is 95% or more, the volume ratio of graphitems (graphite ratio) in the entire graphitem and cementite is 5¾ or more, Provided is a copper plate characterized in that the total volume ratio of graphite and cementite existing in ferrite grains occupying the whole is 15¾ or less.
本発明の鋼板には、 さらに、 質量%で、 Ni : 3. 0¾以下、 B : 0. 005%以下、 Cu : 0. 1%以下の うちから選ばれた少なくとも 1種が含有されることが好ましい。  The steel sheet of the present invention may further contain at least one selected from the following in terms of mass%: Ni: 3.0¾ or less, B: 0.005% or less, Cu: 0.1% or less. preferable.
本発明の鋼板は、 上記の組成を有する鋼を、 800〜950°Cの仕上温度で熱間圧延して熱 延板とし、 前記熱間圧延後の熱延板を、 50で /s以上の平均冷却速度で 600°C以下の冷却 停止温度まで冷却後、 550°C以下の卷取温度で卷取り、 前記卷取り後の熱延板を、 720°C 以下の焼鈍温度で焼鈍する方法により製造できる。  The steel sheet of the present invention is a hot-rolled sheet obtained by hot-rolling steel having the above composition at a finishing temperature of 800 to 950 ° C, and the hot-rolled sheet after the hot-rolling is performed at 50 / s or more. After cooling to a cooling stop temperature of 600 ° C or less at an average cooling rate, cutting at a cutting temperature of 550 ° C or less, and annealing the hot-rolled sheet after the cutting at an annealing temperature of 720 ° C or less Can be manufactured.
本発明により、 軟質で、 優れた加工性を有するとともに、 優れた焼入れ性を有する銅 板を製造できるようになった。 特に、 本発明の鋼板は、 成分と熱間圧延後の冷却条件を 制御するだけでよいので、 安価で容易に製造可能である。 また、 本発明の鋼板は、 軟質 で、 加工性に優れているので、 自動車駆動系部品の増肉加工に適しており、 複雑な形状 の部品に適用しても、 複数部品の加工や溶接が不要となり、 自動車部品の生産性向上や コスト削減が図れることになる。 さらに、 本発明の鋼板では、 高周波などでの加熱時に グラフアイ 卜とセメンタイ トの未溶解に起因する焼入れ不良が起こることもない。 本発明により、 軟質で、 優れた伸びフランジ性を有する加工性に優れた鋼板を製造で きるようになった。 特に、 本発明の鋼板は、 成分と熱間圧延後の冷却条件を制御するだ けでよいので、 安価で容易に製造可能である。 また、 本発明の鋼板は、 軟質で、 伸びフ ランジ性などの加工性に優れているので、 自動車駆動系部品の増肉加工に適しており、 複雑な形状の部品に適用しても、 複数部品の加工や溶接が不要となり、 自動車部品の生 産性向上やコスト削減が図れることになる。 図面の簡単な説明 According to the present invention, it has become possible to produce a copper plate that is soft and has excellent workability and also has excellent hardenability. In particular, the steel sheet of the present invention can be easily manufactured at low cost because it only needs to control the components and the cooling conditions after hot rolling. In addition, the steel sheet of the present invention is soft and excellent in workability, so it is suitable for thickening processing of automobile drive system parts. Even if it is applied to parts with complicated shapes, it can process and weld multiple parts. This eliminates the need to improve the productivity of automobile parts and reduce costs. Furthermore, the steel sheet of the present invention does not suffer from quenching failure due to unmelted graph eye and cementite during heating at high frequency or the like. According to the present invention, it has become possible to produce a steel sheet that is soft and has excellent stretch flangeability and excellent workability. In particular, the steel sheet of the present invention can be easily produced at low cost because it is only necessary to control the components and the cooling conditions after hot rolling. In addition, the steel sheet of the present invention is soft and excellent in workability such as stretch flangeability, so it is suitable for thickening processing of automobile drive system parts. Even if it is applied to parts with complex shapes, it is not necessary to process or weld multiple parts, improving the productivity of automobile parts and reducing costs. Brief Description of Drawings
図 1は、 セメンタイ 卜とグラフアイ トの平均粒径 dと ΔΗνとの関係を示す図である。 図 2は、 フェライト粒内に存在するセメンタイ トとグラフアイ トの体積率 Sと平均えと の関係を示す図である。 発明を実施するための最良の形態 Fig. 1 is a graph showing the relationship between cementite 卜, the average particle diameter d of graph items, and ΔΗν. FIG. 2 is a graph showing the relationship between the cementite present in the ferrite grains, the volume ratio S of the graph items, and the average. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明である加工性に優れた鋼板おょぴその製造方法について詳細に説明す る。 なお、 成分の量を表す 「%」 は、 特に断らない限り 「質量 ¾」 を意味する。  Below, the manufacturing method of the steel plate excellent in workability which is this invention is demonstrated in detail. “%” Representing the amount of a component means “mass ¾” unless otherwise specified.
1)組成  1) Composition
C:0.3〜0· 7%  C: 0.3 ~ 7
Cは、 グラフアイ トを形成する元素である。 C量が 0.3%未満では、 焼入れ後の硬さが 確保できず、 0.7%を超えると、 たとえグラフアイ ト化しても銅板が硬質化し、 加工性が 低下する。 このため、 C量は 0.3〜0.7%とする。  C is an element that forms a graph item. If the amount of C is less than 0.3%, the hardness after quenching cannot be secured, and if it exceeds 0.7%, the copper plate becomes hard even if it is graphitized, and the workability decreases. Therefore, the C content is 0.3-0.7%.
Si:0.1%以下  Si: 0.1% or less
Si量が 0.1%を超えると、 フェライ トが硬質化し、 加工性が低下する。 このため、 Si 量は 0.1%以下、 好ましくは 0.05%以下とする。  When the Si content exceeds 0.1%, the ferrite becomes hard and the workability deteriorates. Therefore, the Si content is 0.1% or less, preferably 0.05% or less.
Mn:0.20%以下  Mn: 0.20% or less
Mn量が 0.20%を超えると、 グラフアイ ト形成を阻害するため、 Mnは 0.20%以下、 好ま しくは 0.10%以下とする。  If the amount of Mn exceeds 0.20%, graphite formation is inhibited, so Mn is 0.20% or less, preferably 0.10% or less.
P:0.01%以下  P: 0.01% or less
Pは、 粒界などに偏析し加工性を低下させるため、 また、 セメンタイ トを安定化させ てグラフアイ ト形成を阻害する作用を有しているため、 極力低減することが望ましい。 このため、 P量は 0.01%以下、 好ましくは 0.008%以下とする。  P is segregated at grain boundaries and lowers workability, and has the effect of stabilizing cementite and inhibiting graphite formation, so it is desirable to reduce it as much as possible. Therefore, the P content is 0.01% or less, preferably 0.008% or less.
S: 0.01%以下  S: 0.01% or less
Sは、 MnSなどの硫化物を形成して加工性を低下させるため、 また、 セメンタイ トを 安定化させてグラフアイ ト形成を阻害する作用を有しているため、 極力低減することが 望ましい。 このため、 S量は 0.01%以下、 好ましくは 0.007%以下とする。 A1:0.05¾以下 It is desirable to reduce S as much as possible because S forms sulfides such as MnS and lowers workability, and stabilizes cementite and inhibits the formation of graphite. Therefore, the S content is 0.01% or less, preferably 0.007% or less. A1: Less than 0.05¾
Alは、 固溶 Nと結合して A1Nを形成し、 グラフアイト形成を阻害する作用のある固 溶 Nの悪影響を無害化するとともに、 A1Nを核としてグラフアイト形成を促進する元素 である。  Al is an element that binds to solute N to form A1N, detoxifies the adverse effects of solute N, which has the effect of inhibiting graphite formation, and promotes graphite formation using A1N as a nucleus.
このため、 A1量は 0.003%以上とすることが好ましいが、 0.05%を超えると、 鋼の清浄度 が低下し、 加工性を劣化させるので、 A1量は 0.05%以下、 好ましくは 0.04%以下とする。 For this reason, the amount of A1 is preferably 0.003% or more, but if it exceeds 0.05%, the cleanliness of the steel decreases and the workability deteriorates, so the amount of A1 is 0.05% or less, preferably 0.04% or less. To do.
Ν:0· 0050%以下  Ν: 0 0050% or less
Ν量が 0.0050%を超えると、 固溶 Νのセメンタイトを安定化させる作用が顕著となり、 グラフアイト形成が阻害される。 このため、 Ν量は 0.0050%、 好ましくは 0.0040%以下 とする。  When the amount of soot exceeds 0.0050%, the action of stabilizing the cementite of solid solution soot becomes remarkable and the formation of graphite is inhibited. Therefore, the soot content is 0.0050%, preferably 0.0040% or less.
残部は Feおよび不可避的不純物であるが、 以下の理由で、 Ni:3.0%以下、 B: 0.005%以 下、 Cu:0.1%以下のうちから選ばれた少なくとも 1種が含有されることが好ましい。  The balance is Fe and inevitable impurities, but it is preferable that at least one selected from Ni: 3.0% or less, B: 0.005% or less, Cu: 0.1% or less is contained for the following reasons. .
Ni:3.0¾以下  Ni: 3.0¾ or less
Niは、 グラフアイト形成を促進させる元素であるとともに、 焼入れ性の向上にも有 効な元素であり、 こうした効果を得るため 0.1%以上含有されることが好ましいが、 Ni 量が 3.0%を超えると、 その効果は飽和する。 このため、 Ni量は 3.0%以下、 好ましくは 0· 1〜3·0¾、 より好ましくは 0·3〜1·0%とする。  Ni is an element that promotes the formation of graphite and is also an element effective for improving hardenability. To obtain these effects, Ni is preferably contained in an amount of 0.1% or more, but the Ni content exceeds 3.0%. And the effect is saturated. For this reason, the Ni content is 3.0% or less, preferably 0 · 1 to 3 · 0¾, more preferably 0 · 3 to 1 · 0%.
Β:0.005%以下  Β: 0.005% or less
Βは、 Νと結合して ΒΝを形成して、 グラフアイト形成の核として作用する有用な元素 であるとともに、 焼入れ性の向上にも有効に作用する元素であり、 こうした効果を得る ため 0.0005%以上含有されることが好ましいが、 Β量が 0.005%を超えると、 その効果 は飽和する。 このため、 Β量は 0.005%以下、 好ましくは 0.0005〜0.005%、 より好まし くは 0.0010〜0.0040%とする。  Β is a useful element that combines with Ν to form ΒΝ and acts as a core for graphite formation, and also an effective element for improving hardenability. To obtain these effects, 0.0005% It is preferable to contain the above, but if the amount of soot exceeds 0.005%, the effect is saturated. For this reason, the soot amount is 0.005% or less, preferably 0.0005 to 0.005%, more preferably 0.0010 to 0.0040%.
Cu:0.1%以下  Cu: 0.1% or less
Cuは、 グラフアイト形成を促進させる元素であるとともに、 焼入れ性の向上にも有 効な元素であり、 こうした効果を得るため 0.01%以上含有されることが好ましく、 より 好ましくは 0.02%以上であるが、 Cu量が 0.1%を超えると、 その効果は飽和する。 この ため、 Cu量は 0.1%以下とし、 より好ましくは 0.07%以下とする。  Cu is an element that promotes the formation of graphite, and is also an element effective for improving hardenability. To obtain these effects, it is preferably contained in an amount of 0.01% or more, more preferably 0.02% or more. However, when the amount of Cu exceeds 0.1%, the effect is saturated. Therefore, the Cu content is 0.1% or less, and more preferably 0.07% or less.
2)組織 鋼板の軟質化を図り、 曲げ力卩ェ性や引張試験における伸び特性を向上させるには、 フ ェライ トとグラフアイ トとセメンタイ トを含む組織とし、 組織全体に占めるフェライ ト とグラフアイ トとセメンタイ トの体積率の合計を 95%以上とし、 かつグラフアイ トとセ メンタイ ト全体に占めるグラフアイ ト率を 5%以上にする必要がある。 このとき、 本発 明では、 グラフアイ ト率が 100%、 すなわちセメンタイ トが全てグラフアイ ト化した場 合も、 同様な効果が得られるので、 含むものとする。 フヱライ ト、 グラフアイ ト、 セメ ンタイ トの体積率の合計が 95%未満、 すなわちこれら以外の相の体積率が 5%を超えると、 加工性が低下する。 また、 グラフアイ ト率が 5 %未満では、 加工性が低下する。 2) Organization In order to soften the steel sheet and improve the bending strength and elongation properties in tensile tests, the structure should include ferrite, graphite, and cementite. The sum of the volume fractions of cementite must be 95% or more, and the graph item ratio in the graph items and the entire cementite must be 5% or more. At this time, the present invention also includes the case where the graph item rate is 100%, that is, when all cementites are converted into graph items, the same effect can be obtained. If the sum of the volume fractions of fillite, graphite, and cementite is less than 95%, that is, if the volume fraction of other phases exceeds 5%, the workability deteriorates. In addition, when the graph item rate is less than 5%, the workability deteriorates.
ここで、 フェライ ト、 グラフアイ ト、 セメンタイ トの体積率は、 次のようにして求め た。 すなわち、 銅板の圧延方向の板厚断面の板厚 1/4位置を研磨後、 ナイタール腐食し、 光学顕微鏡により、 倍率 400倍で 1視野あたり 5箇所、 10視野 (合計 50箇所)を観察し、 これら画像を Media Cybernetics社製の画像解析ソフト "Image Pro Plus ver. 4. 0" で画像解析処理して、 フェライ ト、 グラフアイ ト、 セメンタイ 卜の面積を求め、 その全 観察面積に占める割合(面積率)をフェライ ト、 グラフアイ ト、 セメンタイ トの各々の体 積率とした。 また、 グラフアイ トの面積 (Sgr)の、 グラフアイ トの面積 (Sgr)とセメンタ ィ トの面積(Scm)の和に占める割合(面積率)をグラフアイ トの体積率(グラフアイ ト率) とした。 すなわち、 グラフアイ ト率 (¾)は下記の式で表せる。  Here, the volume ratio of ferrite, graphite, and cementite was obtained as follows. In other words, after polishing the 1/4 position of the thickness cross section in the rolling direction of the copper plate, it corroded with nital, and with an optical microscope, observed 5 spots per field at a magnification of 400 times, 10 fields (50 places in total), These images are analyzed with Media Cybernetics image analysis software “Image Pro Plus ver. 4.0” to determine the area of ferrite, graphite, and cementite, and the percentage of the total observation area ( The area ratio was defined as the volume fraction of each of ferrite, graphite, and cementite. In addition, the ratio (area ratio) of the area (Sgr) of the graph item to the sum of the area (Sgr) of the graph item and the area (Scm) of the cementite (volume ratio of the graph item) ) That is, the graph item rate (¾) can be expressed by the following equation.
グラフアイ ト率 = {Sgr/ (Sgr+Scm) } X 100 Graph item rate = {Sgr / (Sgr + Scm)} X 100
フェライ トとグラフアイ トとセメンタイ トの体積率の合計やグラフアイ ト率を制御し ただけでは、 必ずしも優れた焼入れ性、 特に高周波焼入れを行う際の焼入れ性が得られ ない。 すなわち、 本発明では、 優れた焼入れ性を確保するため、 セメンタイ トとグラフ アイ トの平均粒径を 5 m以下とする必要がある。 より好ましくは 以下とする。 本発明者らは、 優れた焼入れ性を得るため、 種々検討を行った。 以下に検討の一例を 示す。 すなわち、 C : 0. 55%、 Si : 0. 01%、 Mn : 0. 10%、 P : 0. 003%、 S : 0. 0006%、 A1 : 0. 005%、 N: 0. 0018%、 Ni : 0. 50%、 Β : 0· 0013%、 残部 Feおよび不可避的不純物からなる鋼スラブを 1150°Cに加熱後、 5パスの粗圧延を行い、 7パスの仕上圧延を仕上温度 880°Cで行って 板厚 4. 0隨の熱延板とし、 卷取温度 430°Cで卷取った後、 酸洗し、 720°Cで 40hrのバッ チ焼鈍を施した。 このとき、 セメンタイ トとグラフアイ トの粒径を変える目的で、 仕上 圧延後卷取温度までの温度域を、 平均冷却速度を空冷(5°C )〜 200°C/sの範囲で変え て.冷却した。 そして、 以下のようにして組織および焼入れ性を調査した。 また、 上記と同様に圧延方向平行断面の板厚 1/4位置を研磨 ·ナイタール腐食後、 断 面 5箇所、 各箇所で 1500倍の倍率で 10視野 (合計 50視野)にわたり走查型電子顕微鏡 で観察し、 上記した画像解析ソフトを用い、 セメンタイ トあるいはグラフアイ トの外周 上の 2点とセメンタイ トあるいはグラフアイ トの相当楕円(セメンタイ トおよびグラフ アイ トと同面積で、 かつ一次および二次モーメントが等しい楕円)の重心を通る径を 2 度刻みに測定して平均して、 各々の粒径を求めた。 そして 50視野観察して求めたセメ ンタイ トおよびグラフアイ トの粒径を平均して、 セメンタイ トとグラフアイ トの平均粒 径とした。 Only by controlling the sum of the volume ratios of ferrite, graphite, and cementite, and the ratio of graphite, it is not always possible to obtain excellent hardenability, especially when induction hardening is performed. That is, in the present invention, in order to ensure excellent hardenability, the average particle size of cementite and graphite needs to be 5 m or less. More preferably, it is as follows. The present inventors have made various studies in order to obtain excellent hardenability. An example of examination is shown below. C: 0.55%, Si: 0.01%, Mn: 0.10%, P: 0.003%, S: 0.0006%, A1: 0.005%, N: 0.0019% , Ni: 0.50%, Β: 0-0013%, steel slab composed of the balance Fe and inevitable impurities is heated to 1150 ° C, then rough-rolled for 5 passes, and finished for 7 passes. A hot rolled sheet having a thickness of 4.0 mm was obtained at ° C, picked at a cutting temperature of 430 ° C, pickled, and batch-annealed at 720 ° C for 40 hours. At this time, in order to change the grain size of cementite and graphite, the temperature range from finish rolling to the take-off temperature was changed within the range of average cooling rate from air cooling (5 ° C) to 200 ° C / s. Cooled down. The structure and hardenability were investigated as follows. In the same way as above, the thickness 1/4 position of the cross section in the rolling direction is polished. ・ After nital corrosion, 5 sections, 10 magnifications at 1500 magnifications in each area (50 fields in total), a scanning electron microscope Using the image analysis software described above, two points on the circumference of the cementite or graph item and the equivalent ellipse of the cementite or graph item (the same area as the cementite and graph item, and primary and secondary) The diameter passing through the center of gravity of the ellipse with the same second moment) was measured in increments of 2 degrees and averaged to obtain each particle size. The average particle size of cementite and graphite was obtained by averaging the particle sizes of cementite and graphite obtained by observing 50 fields of view.
焼入れ性:直径 100瞧の円板試験片を採取し、 高周波熱処理装置を用いて、 円板試験 片の外周端を周波数 100kHzで 1000°Cに加熱後、 直ちに水冷した。 そして、 熱処理後の 円板試験片の円周方向に沿った 8箇所の位置において、 外周端より 1. 5讓内側の表裏面 のヴィッカース硬度 Hv [荷重: 49N (=5kgf) ]を測定し、 最大 Hvと最小 Ηνの差 Δ Ηνを求め た。 この Δ Ηνが 8以下であれば、 焼みれ性に優れているといえる。  Hardenability: A disk specimen having a diameter of 100 mm was collected, and the outer peripheral edge of the disk specimen was heated to 1000 ° C at a frequency of 100 kHz using a high-frequency heat treatment apparatus, and then immediately cooled with water. And at 8 positions along the circumferential direction of the disk specimen after the heat treatment, measure the Vickers hardness Hv [load: 49N (= 5kgf)] of the front and back surfaces 1.5mm inside from the outer edge, The difference Δ Ην between the maximum Hv and the minimum Ην was obtained. If this ΔΗν is 8 or less, it can be said that it is excellent in burn-in.
図 1に、 セメンタイ トとグラフアイトの平均粒径 dと Δ Ηνとの関係を示す。 セメン タイ トとグラフアイ トの平均粒径 dが 以下になると、 Δ Ηνが 8以下となり、 優れ た焼入れ性が得られることがわかる。  Figure 1 shows the relationship between the average particle diameter d of cementite and graphite and Δ Ην. It can be seen that when the average particle size d of cementite and graphite is less than ΔΔν is less than 8, and excellent hardenability can be obtained.
上記のような検討をもとに種々検討した結果、 発明者らは、 優れた焼入れ性を確保す るためには、 セメンタイ 卜とグラフアイ トの平均粒径を 以下とする必要があり、 より好ましくは 3 μ πι以下とする必要があることを見出したのである。 このように糸且織 を規定することにより、 優れた焼入れ性が得られる理由としては、 以下のように考えら れる。 すなわち、 セメンタイ トやグラフアイ ト平均粒径が 以下になると、 高周波 加熱時にセメンタイ トゃグラフアイ トがほぼ完全に溶解し、 焼入れ後の硬度の均一化が 図れるためと考えられる。  As a result of various studies based on the above-mentioned studies, the inventors need to make the average particle size of cementite slag and graphite below to ensure excellent hardenability. It has been found that it is necessary to make it preferably 3 μππι or less. The reason why excellent hardenability can be obtained by specifying yarn and weave in this way is considered as follows. In other words, when the cementite or graphite average particle size is below, the cementite and graphite are almost completely dissolved during high-frequency heating, and the hardness after quenching can be made uniform.
3)製造条件  3) Manufacturing conditions
以下に、 本発明の鋼板の好ましい製造条件を示す。 なお、 本発明の鋼板の製造方法は 下記に限定されるものではない。  Below, the preferable manufacturing conditions of the steel plate of this invention are shown. In addition, the manufacturing method of the steel plate of this invention is not limited to the following.
熱間圧延時の仕上温度: 800〜950で  Finishing temperature during hot rolling: 800 ~ 950
熱間圧延時の仕上温度は、 800°C未満では、 圧延負荷の増大が著しくなり、 950°Cを超 えると、 生成するスケールが厚くなり酸洗性が低下するとともに、 鋼板表層に脱炭層が 生じる場合があるので、 800〜950°Cとする。 熱間圧延後の平均冷却速度: 50°C/s以上 If the finishing temperature during hot rolling is less than 800 ° C, the rolling load will increase significantly, and if it exceeds 950 ° C, the resulting scale will become thicker and the pickling property will decrease, and the surface of the steel plate will be decarburized. Since this may occur, the temperature should be 800 to 950 ° C. Average cooling rate after hot rolling: 50 ° C / s or more
熱間圧延後の鋼板は、 直ちに後述する冷却停止温度まで 50 /s以上の平均冷却速度 で冷却される。 平均冷却速度が 50°C/s未満だと、 冷却中にフェライ ト粒の成長が起こ りやすく、 大きなフユライ ト粒が形成される。 その後に行われる焼鈍時には、 グラファ ィ トゃセメンタイ トはフェライ ト粒界や介在物などを核として形成されると考えられる ので、 フェライト粒が大きいと、 粒界を核として形成されるグラフアイ トやセメンタイ トは粗大となり、 焼入れ性が低下する。 また、 平均冷却速度が遅いと、 粗大なパーライ トが生成し、 パーライ トの分断、 凝集、 粗大化を経てグラフアイ トゃセメンタイ トは形 成されるので、 グラフアイ トやセメンタイ トが粗大となり、 焼入れ性が低下する。 なお、 平均冷却速度を 50°C/s以上にすると、 熱間圧延でオーステナイ ト中に導入された圧延 歪が、 変態後の組織中に残存しやすくなり転位密度の増加をもたらし、 焼鈍時にこうし た転位を核としてグラフアイ ト形成を促進させるというメリットもある。 以上のことか ら、 平均冷却速度は 50°C/s以上、 好ましくは 80°C/s以上とする。 平均冷却速度の上限 は、 特に規定する必要はないが、 鋼板の形状の劣化を抑制して鋼板の形状を確保するた め、 200°C/s以下とすることが好ましい。  The steel sheet after hot rolling is immediately cooled at an average cooling rate of 50 / s or more to the cooling stop temperature described later. When the average cooling rate is less than 50 ° C / s, ferrite grains tend to grow during cooling, and large ferrite grains are formed. During subsequent annealing, graphite cementite is thought to be formed with ferrite grain boundaries and inclusions as nuclei, so if ferrite grains are large, graphite formed with grain boundaries as nuclei. And cementite becomes coarse and hardenability decreases. In addition, if the average cooling rate is slow, coarse perlites are generated, and graphite and cementite are formed through the splitting, agglomeration, and coarsening of the parrites, so the graphite and cementite become coarser. , Hardenability decreases. When the average cooling rate is set to 50 ° C / s or more, the rolling strain introduced into the austenite by hot rolling tends to remain in the structure after the transformation, resulting in an increase in the dislocation density. There is also the merit of promoting the formation of graphite using the dislocations as the core. Based on the above, the average cooling rate is 50 ° C / s or higher, preferably 80 ° C / s or higher. The upper limit of the average cooling rate is not particularly required, but is preferably 200 ° C./s or less in order to suppress the deterioration of the shape of the steel sheet and ensure the shape of the steel sheet.
熱間圧延後の冷却における冷却停止温度: 500°C以下  Cooling stop temperature for cooling after hot rolling: 500 ° C or less
上記のような冷却速度によって冷却する必要のある最低温度、 すなわち冷却停止温度 は、 500°Cを超えると、 卷取りまでの冷却中に初析フェライ トが生成するとともに、 粗 大なパーライ トが生成し、 卷取り後の焼鈍時にセメンタイ トゃグラフアイ トが粗大とな り、 焼入れ性の低下を招くので、 500°C以下、 好ましくは 470°C以下とする。 冷却停止 温度の下限は、 特に規定する必要はないが、 鋼板の形状を確保するため、 200°C以上と することが好ましい。  When the minimum temperature that needs to be cooled at the cooling rate as described above, that is, the cooling stop temperature, exceeds 500 ° C, proeutectoid ferrite is generated during cooling until scraping, and coarse parlite is generated. When it is generated and annealed after scraping, the cementite becomes coarse and the hardenability deteriorates, so the temperature is set to 500 ° C or lower, preferably 470 ° C or lower. The lower limit of the cooling stop temperature does not need to be specified, but is preferably 200 ° C. or higher in order to secure the shape of the steel sheet.
卷取温度: 450°C以下  Cutting temperature: 450 ° C or less
冷却後の熱延板は直ちに卷取られるが、 そのとき、 卷取温度が 450°Cを超えると、 粗 大なパーライ トが生成し、 焼鈍時にセメンタイ トゃグラフアイ トが粗大となり、 焼入れ 性が低下する。 そのため、 巻取温度は 450°C以下とする。 なお、 上記した!^間圧延後の 冷却の効果を十分に得るには、 卷取温度は冷却停止温度よりも低温とすることが好まし い。 また、 熱延板の形状が劣化しやすいため、 卷取温度は 200°C以上とすることが好ま しい。  The hot-rolled sheet is cooled immediately after cooling, but at that time, if the milling temperature exceeds 450 ° C, coarse pearlite is generated, and the cementite and graphite become coarse during annealing, resulting in hardenability. Decreases. Therefore, the coiling temperature should be 450 ° C or less. In order to sufficiently obtain the cooling effect after! ^-Rolling as described above, it is preferable that the cutting temperature is lower than the cooling stop temperature. Also, since the shape of the hot-rolled sheet is likely to deteriorate, the cutting temperature is preferably 200 ° C or higher.
焼鈍温度: 720°C以下 卷取り伊の熱延板には、 酸洗などでスケール除去後、 セメンタイ トの球状化やグラフ アイ ト化を促進して、 軟質化を図るために焼鈍が施される。 そのとき、 焼鈍温度は、 72 0でを超えると、 冷却中に粗大なパーライ トが生成し、 焼入れ性の低下を招くので、 72 0°C以下とする。 また、 焼鈍温度が 600°C未満では、 焼鈍時間が極端に長くなるので、 焼鈍温度は 600°C以上とすることが好ましい。 Annealing temperature: 720 ° C or less After removing scales by pickling, etc., the hot rolled sheet of cocoon removal is annealed in order to promote spheroidization and graphiteization of cementite and to make it softer. At that time, if the annealing temperature exceeds 720, coarse pearlite is generated during cooling, resulting in a decrease in hardenability. Further, if the annealing temperature is less than 600 ° C, the annealing time becomes extremely long, so the annealing temperature is preferably 600 ° C or higher.
なお、 焼鈍時間は、 特に限定する必要はないが、 グラフアイ トを形成させるため 8hr 以上とすることが、 また、 フェライ ト粒が過度に粗大化して、 延性低下を招く恐れがあ るため、 lOOhr以下とすることが好ましい。  The annealing time is not particularly limited. However, the annealing time should be 8 hours or longer in order to form graphite, and the ferrite grains may be excessively coarsened, resulting in reduced ductility. It is preferable to set it to lOOhr or less.
本発明の鋼を溶製するには、 転炉、 電気炉どちらも使用可能である。 こうして溶製さ れた鋼は、 造塊-分塊 延または連続铸造によりスラブとされる。 ステブは、 通常、 カロ 熱 (再加熱)された後、 熱間圧延される。 なお、 連続铸造で製造されたスラブの場合は、 そのままあるいは温度低下を抑制する目的で保熱しつつ圧延する直送圧延を適用しても よい。 スラブを再加熱して熱間圧延する場合は、 スケールによる表面状態の劣化を避け るためにスラブ加熱温度を 1280°C以下とすることが好ましい。 熱間圧延は、 粗圧延を 省略して仕上圧延だけで行うこともできる。 仕上温度を確保するため、 熱間圧延中にシ 一トパーヒータ等の加熱手段により被圧延材の加熱を行ってもよい。 熱延板の板厚は、 本発明の製造条件が維持できる限りにおいて特に制限はないが、 1. 0〜10. 0mmが好適で ある。 焼鈍後の鋼板は、 必要に応じて調質圧延を行うことができる。 実施例は実施例 1 に示す。  To melt the steel of the present invention, either a converter or an electric furnace can be used. The steel melted in this way is made into slabs by ingot-bundling or continuous forging. Stebs are usually hot-rolled (reheated) and then hot-rolled. In the case of a slab produced by continuous forging, direct feed rolling in which heat is maintained for the purpose of suppressing the temperature drop may be applied as it is. When the slab is reheated and hot rolled, the slab heating temperature is preferably 1280 ° C or lower in order to avoid deterioration of the surface state due to scale. Hot rolling can be performed only by finish rolling, omitting rough rolling. In order to ensure the finishing temperature, the material to be rolled may be heated by a heating means such as a sheet heater during hot rolling. The thickness of the hot-rolled sheet is not particularly limited as long as the production conditions of the present invention can be maintained, but 1.0 to 10.0 mm is preferable. The annealed steel sheet can be temper-rolled as necessary. Examples are given in Example 1.
フェライ トとグラフアイ トとセメンタイ トの体積率の合計やグラフアイ ト率を制御し ただけでは、 必ずしも優れた伸びフランジ性が得られない。 すなわち、 本発明では、 優 れた伸びフランジ性を確保するため、 フェライ ト粒内に存在するセメンタイ トとグラス アイ トの合計の体積率を 15%以下とする必要がある。 より好ましくは 10%以下とする。 本発明者らは、 優れた伸びフランジ性を得るため、 種々検討を行った。 以下に検討の 一例を示す。 C : 0. 55%、 Si : 0. 01%、 Mn : 0. 10¾、 P : 0. 003%、 S : 0. 0006%、 A1 : 0. 005%、 Ν : 0· 0018%、 Ni : 0. 50%、 B : 0. 0013%、 残部 Feおよび不可避的不純物からなる鋼スラブを 115 0°Cに加熱後、 5パスの粗圧延を行い、 7パスの仕上圧延を仕上温度 870°Cで行って板厚 4. 0mmの熱延板とし、 卷取温度 520°Cで卷取つた後、 酸洗し、 720°Cで 40hrのパッチ焼 鈍を施した。 このとき、 セメンタイ トとグラフアイ トの量や分布状態を変える目的で、 仕上圧延後卷取温度までの温度域を、 平均冷却速度を空冷(5°C/s;)〜 200°C/sの範囲で 変えて冷却した。 そして、 以下のようにして組織および伸びフランジ性を調査した。 また、 上記と同様に圧延方向平行断面の板厚 1/4位置を研磨 ·ナイタール腐食後、 断 面 5箇所、 各箇所で 400倍の倍率で 10視野 (合計 50視野)にわたり光学顕微鏡で観察し、 上記した画像解析ソフトを用い、 フェライ ト粒界上に存在するセメンタイ 卜とグラファ ィトおよびフェライ ト粒内に存在するセメンタイ トとグラフアイ トを識別し、 フェライ ト粒界上に存在するセメンタイ トとグラフアイ トの占有面積 S。n、 およびフェライ ト粒 内に存在するセメンタイ トとグラフアイ トの占有面積 Sinを測定し、 次式からフェライ ト粒内に存在するセメンタイ トとグラフアイ トの面積率を求め、 それをセメンタイ トと グラフアイ ト全体に占めるフェライ ト粒内に存在するセメンダイ トとグラフアイ トの体 積率 S (¾)とした。 すなわち、 S (%)は下記の式で表せる。 Only by controlling the sum of the volume ratios of the ferrite, graphite, and cementite and the graphite ratio, excellent stretch flangeability cannot always be obtained. That is, in the present invention, in order to ensure excellent stretch flangeability, the total volume ratio of cementite and glassite present in the ferrite particles must be 15% or less. More preferably, it is 10% or less. The present inventors conducted various studies in order to obtain excellent stretch flangeability. An example of the study is shown below. C: 0.55%, Si: 0.01%, Mn: 0.13, P: 0.003%, S: 0.0006%, A1: 0.005%, Ν: 00018%, Ni: 0. 50%, B: 0.001%, steel slab composed of the balance Fe and inevitable impurities is heated to 115 0 ° C, followed by rough rolling for 5 passes and finish rolling for 7 passes at a finishing temperature of 870 ° C. In this way, a hot-rolled sheet having a thickness of 4.0 mm was obtained, picked at a cutting temperature of 520 ° C, pickled, and subjected to patch annealing at 720 ° C for 40 hours. At this time, in order to change the amount and distribution state of cementite and graph items, The temperature range from finish rolling to the take-off temperature was changed by changing the average cooling rate in the range of air cooling (5 ° C / s;) to 200 ° C / s. Then, the structure and stretch flangeability were investigated as follows. In the same way as above, the thickness 1/4 position of the cross section in the rolling direction is polished. After the nital corrosion, the cross-section is observed at 5 locations, with 10 magnifications at a magnification of 400 at each location (total 50 views) with an optical microscope. Using the above-mentioned image analysis software, the cementite 卜 and graphite existing on the ferrite grain boundary and the cementite and graph item existing in the ferrite grain are identified, and the cementite existing on the ferrite grain boundary is identified. And the area occupied by the graph item. n , and the occupied area S in of cementite and graph items existing in ferrite grains are measured, and the area ratio of cementite and graph items existing in ferrite grains is calculated from The volume fraction S (¾) of cementite and graph items existing in the ferrite grains occupying the entire graph and graph items. That is, S (%) can be expressed by the following formula.
S= {Sin/ (Son+Sin) } X 100 S = {S in / (S on + S in )} X 100
なお、 ここで、 一部でもフェライ ト粒界上に存在する部分を有するセメンタイ ト粒あ るいはグラフアイ ト粒は、 その一つのセメンタイ ト粒あるいはグラフアイ ト粒全体の面 積を、 フェライ ト粒界上に存在するセメンタイ ト粒あるいはグラフアイ ト粒の占有面積 として測定し、 また、 フェライ ト粒界上に存在する部分を有しないセメンタイ トあるい はグラフアイ ト粒の面積を、 フェライ ト粒内に存在するセメンタイ ト粒あるいはグラフ アイ ト粒の占有面積として測定した。  Here, for cementite grains or graphite grains that have at least a portion existing on the ferrite grain boundary, the area of the single cementite grain or the entire graphite grain is determined by Measured as the area occupied by cementite grains or graphite grains existing on the grain boundaries, and the area of cementite grains or graphite grains that do not have a portion present on the ferrite grain boundaries The area occupied by cementite grains or graphite grains present in the grains was measured.
伸びフランジ性:穴拡げ試験用の試験片(100 X 100 を採取し、 試験片の中心にボン チ径 10mm、 ダイス径 11. 6 (クリアランス:板厚 20%)の打抜き工具を用いて打抜いた。 その後、 打抜いた穴を円筒平底ポンチ(径 50 1)、 肩 R 8mm)により押し上げて穴拡げ加 ェし、 穴縁に板厚貫通クラックが発生した時点での穴径 d を測定して、 次式から穴 拡げ率 1 (%)を計算し、 同様の試験を 6回実施して平均え (%)を求めた。  Stretch flangeability: Specimen for hole expansion test (100 X 100 was sampled and punched using a punching tool with a punch diameter of 10 mm and a die diameter of 11.6 (clearance: 20% thickness) at the center of the specimen. After that, the punched hole was pushed up with a cylindrical flat bottom punch (diameter 50 1) and shoulder R 8mm) to expand the hole, and the hole diameter d was measured when a through-thickness crack occurred at the hole edge. Then, the hole expansion rate 1 (%) was calculated from the following formula, and the same test was performed 6 times to obtain the average (%).
λ =100 Χ (d-10) /10 λ = 100 Χ (d-10) / 10
図 2に、 フェライ ト粒内に存在するセメンタイ トとグラフアイ トの体積率 Sと平均 λ との関係を示す。 フェライ ト粒内に存在するセメンタイ トとグラフアイ トの体積率 Sが 15%以下になると、 60¾以上の平均えが得られ、 優れた伸ぴフランジ性が得られることが わかる。  Figure 2 shows the relationship between the cementite and graphite volume fraction S present in the ferrite grains and the average λ. It can be seen that when the volume fraction S of cementite and graphite present in the ferrite grains is 15% or less, an average of 60¾ or more is obtained, and excellent stretch flangeability is obtained.
上記のような検討をもとに種々検討した結果、 発明者らは、 優れた伸びフランジ性を 確保するためには、 フェライ ト粒内に存在するセメンタイ トとグラフアイ トの合計の体 積率を 15%以下とする必要があり、 より好ましくは 10%以下とする必要があることを見 出したのである。 このように組織を規定することにより、 良好な伸びフランジ性が得ら れる理由としては、 以下のように考えられる。 すなわち、 セメンタイ トやグラフアイ ト がフェライ ト粒内に多量に存在すると、 打抜き加工時にセメンタイ トゃグラフアイ トと フェライ トとの界面において微細な亀裂が発生しやすくなり、 穴拡げ試験中の初期から 伝播 '結合し、 板厚貫通の割れにつながりやすい。 一方、 フェライ ト粒界では炭素の拡 散速度が速いため、 凝集度粗大化がフェライ ト粒内よりも促進され、 フェライ ト粒界上 のセメンタイ トゃグラフアイ トは、 フェライ ト粒内のそれらよりも粗大化しやすく、 各 セメンタイ ト粒、 グラフアイ ト粒の間隔が広くなりやすい。 このため、 フェライ ト粒界 上のセメンタイ トゃグラフアイ トは、 フェライ ト粒内のセメンタイ トやグラフアイ トに 比べ、 亀裂伝播を遅くする。 As a result of various studies based on the above studies, the inventors have found that the total body of cementite and graphite present in the ferrite grains is necessary to secure excellent stretch flangeability. It has been found that the volume fraction needs to be 15% or less, more preferably 10% or less. The reason why good stretch flangeability can be obtained by defining the structure in this way is considered as follows. In other words, if there is a large amount of cementite or graphite in the ferrite grains, fine cracks are likely to occur at the interface between the cementite and graphite during the punching process. From Propagation 'Combination, easy to lead to cracks through the plate thickness. On the other hand, since the diffusion rate of carbon is fast at the ferrite grain boundary, coarsening of the cohesion is promoted more than in the ferrite grain, and the cementite graphite on the ferrite grain boundary is those in the ferrite grain. It is easier to coarsen, and the interval between each cementite grain and graphite grain tends to be wide. For this reason, cementite on the ferrite grain boundary slows crack propagation compared to cementite and graphite in the ferrite grain.
3)製造条件  3) Manufacturing conditions
以下に、 本発明の鋼板の好ましい製造条件を示す。 なお、 本発明の鋼板の製造方法は 下記に限定されるものではない。  Below, the preferable manufacturing conditions of the steel plate of this invention are shown. In addition, the manufacturing method of the steel plate of this invention is not limited to the following.
熱間圧延時の仕上温度: 800〜950°C  Finishing temperature during hot rolling: 800-950 ° C
熱間圧延時の仕上温度は、 800で未満では、 圧延負荷の増大が著しくなり、 950°Cを超 えると、 生成するスケールが厚くなり酸洗性が低下するとともに、 銅板表層に脱炭層が 生じる場合があるので、 800〜950 とする。  If the finishing temperature during hot rolling is less than 800, the rolling load increases remarkably, and if it exceeds 950 ° C, the scale to be produced becomes thick and the pickling property decreases, and a decarburized layer is formed on the surface of the copper plate. Since it may occur, it should be 800-950.
熱間圧延後の平均冷却速度: 50°C/s以上  Average cooling rate after hot rolling: 50 ° C / s or more
熱間圧延後の鋼板を、 直ちに後述する冷却停止温度まで 50°C/s以上の平均冷却速度 で冷却すれば、 初析フェライ トの生成が抑制されてフェライ トとセメンタイ トが微細に 析出する。 そのため、 卷取り後に行われる焼鈍時にフェライ ト粒界に Cが拡散しやすく なり、 フェライ ト粒界上にあるセメンタイ トの凝集 ·粗大化さらにはグラフアイ ト化が 促進され、 フェライ ト粒内のセメンタイ トゃグラフアイ トが減少して伸びフランジ性が 向上する。 また、 熱間圧延でオーステナイ ト中に導入された圧延歪が、 変態後の組織中 に残存しやすくなり転位密度の増加をもたらす。 その結果、 焼鈍時に転位を核としたグ ラフアイ ト形成が容易となり軟質化が進み、 加工性が向上する。 以上のことから、 平均 冷却速度は 50°C/s以上、 好ましくは 80^ 以上とする。 平均冷却速度の上限は、 特に 規定する必要はないが、 鋼板の形状の劣化を抑制して鋼板の形状を確保するため、 20 0°C/s以下とすることが好ましい。 熱間圧延後の冷却における冷却停止温度: 600°C以下 If the steel sheet after hot rolling is immediately cooled to the cooling stop temperature described later at an average cooling rate of 50 ° C / s or more, the formation of proeutectoid ferrite is suppressed and ferrite and cementite precipitate finely. . For this reason, C is likely to diffuse into the ferrite grain boundaries during annealing performed after milling, and the cementite on the ferrite grain boundaries is agglomerated, coarsened, and promotes graphiteization. If cementite is reduced, the graph item is reduced and stretch flangeability is improved. In addition, the rolling strain introduced into the austenite by hot rolling tends to remain in the structure after transformation, resulting in an increase in dislocation density. As a result, graphite formation with dislocations as the core during annealing is facilitated, softening proceeds, and workability is improved. Therefore, the average cooling rate should be 50 ° C / s or higher, preferably 80 ^ or higher. The upper limit of the average cooling rate need not be specified, but is preferably set to 200 ° C./s or less in order to suppress the deterioration of the shape of the steel plate and ensure the shape of the steel plate. Cooling stop temperature for cooling after hot rolling: 600 ° C or less
上記のような冷却速度によって冷却する必要のある最低温度、 すなわち冷却停止温度 は、 600°Cを超えると、 卷取りまでの冷却中に初析フヱライ トが生成するとともに、 パ 一ライ トが生成し、 卷取り後の焼鈍時にフェライ ト粒内に存在するセメンタイ トゃダラ ファイ トが増加して、 伸びフランジ性の低下を招くので、 600°C以下、 好ましくは 55 0°C以下とする。 冷却停止温度の下限は、 特に規定する必要はないが、 鋼板の形状を確 保するため、 200で以上とすることが好ましい。  When the minimum temperature that needs to be cooled by the cooling rate as described above, that is, the cooling stop temperature, exceeds 600 ° C, proeutectoid light is generated during cooling up to the removal, and pallet light is generated. However, the cementite / dalaite present in the ferrite grains increases during annealing after milling, leading to a decrease in stretch flangeability. Therefore, the temperature should be 600 ° C or lower, preferably 550 ° C or lower. The lower limit of the cooling stop temperature does not need to be specified, but is preferably 200 or more in order to ensure the shape of the steel sheet.
卷取温度: 550°C以下  Cutting temperature: 550 ° C or less
冷却後の熱延板は直ちに卷取られるが、 そのとき、 巻取温度が 550°Cを超えると、 ノ、。 一ライ 卜が生成し、 焼鈍時にフェライ ト粒内に存在するセメンタイ トゃグラフアイ トが 増加して、 伸びフランジ性が低下する。 そのため、 卷取温度は 550で以下とする。 なお、 上記した熱間圧延後の冷却の効果を十分に得るには、 巻取温度は冷却停止温度よりも低 温とすることが好ましい。 また、 熱延板の形状が劣化しやすいため、 鋼板の形状を確保 する上では卷取温度は 200°C以上とすることが好ましく、 より好ましくは 450°C超えで ある。  The hot-rolled sheet is cooled immediately after cooling, but if the coiling temperature exceeds 550 ° C, no. One line is formed, and the cementite present in the ferrite grains increases during annealing, and the stretch flangeability decreases. Therefore, the trapping temperature is 550 and below. In order to sufficiently obtain the cooling effect after the hot rolling described above, the winding temperature is preferably lower than the cooling stop temperature. Further, since the shape of the hot-rolled sheet is likely to deteriorate, the securing temperature is preferably 200 ° C. or higher, and more preferably 450 ° C. or higher, in securing the shape of the steel plate.
焼鈍温度: 720°C以下  Annealing temperature: 720 ° C or less
卷取り後の熱延板には、 酸洗などでスケール除去後、 セメンタイ トの球状化やグラフ アイ ト化を促進して、 軟質化を図るために焼鈍が施される。 そのとき、 焼鈍温度は、 72 0°Cを超えると、 冷却中にパーライ トが生成し、 伸びフランジ性の低下を招くので、 72 以下とする。 また、 焼鈍温度が 600°C未満では、 フェライ ト粒内に存在するセメン タイ トやグラフアイ トが多くなり、 伸びフランジ性が劣化する傾向にあるので、 焼鈍温 度は 600°C以上とすることが好ましい。  The hot-rolled sheet after scraping is subjected to annealing to remove the scale by pickling, etc., and to promote spheroidization and graphiteization of cementite and softening. At that time, if the annealing temperature exceeds 720 ° C, pearlite is generated during cooling and the stretch flangeability is deteriorated. Also, if the annealing temperature is less than 600 ° C, the cementite and graphite present in the ferrite grains increase and the stretch flangeability tends to deteriorate, so the annealing temperature should be 600 ° C or higher. It is preferable.
なお、 焼鈍時間は、 特に限定する必要はないが、 グラフアイ トを形成させ、 フェライ ト粒内のセメンタイ トゃグラフアイ トを少なくするためには 8hr以上とすることが、 ま た、 フエライ ト粒が過度に粗大化して、 延性低下を招く恐れがあるため、 lOOhr以下と することが好ましい。  The annealing time does not need to be particularly limited, but it can be 8 hours or longer in order to form graphite and reduce cementite in the ferrite grains to reduce graphite. Since the grains may become excessively coarse and the ductility may be lowered, it is preferable to set it to lOOhr or less.
本発明の鋼を溶製するには、 転炉、 電気炉どちらも使用可能である。 こうして溶製さ れた鋼は、 造塊 -分塊圧延または連続铸造によりスラブとされる。 スラブは、 通常、 加 熱 (再加熱)された後、 熱間圧延される。 なお、 連続铸造で製造されたスラブの場合は、 そのままあるいは温度低下を抑制する目的で保熱しつつ圧延する直送圧延を適用しても よい。 スラブを再加熱して熱間圧延する場合は、 スケールによる表面状態の劣化を避け るためにスラブ加熱温度を 1280°C以下とすることが好ましい。 熱間圧延は、 粗圧延を 省略して仕上圧延だけで行うこともできる。 仕上温度を確保するため、 熱間圧延中にシ 一トバーヒータ等の加熱手段により被圧延材の加熱を行ってもよい。 熱延板の板厚は、 本発明の製造条件が維持できる限りにおいて特に制限はないが、 1. 0〜10. 0讓が好適で ある。 熱延板は、 酸洗 To melt the steel of the present invention, either a converter or an electric furnace can be used. The steel melted in this way is made into slabs by ingot-bundling or continuous forging. Slabs are usually heated (reheated) and then hot rolled. In the case of a slab manufactured by continuous forging, even if direct feed rolling is used, the rolling is carried out as it is or for the purpose of suppressing the temperature drop. Good. When the slab is reheated and hot rolled, the slab heating temperature is preferably 1280 ° C or lower in order to avoid deterioration of the surface state due to scale. Hot rolling can be performed only by finish rolling, omitting rough rolling. In order to ensure the finishing temperature, the material to be rolled may be heated by a heating means such as a sheet bar heater during hot rolling. The thickness of the hot-rolled sheet is not particularly limited as long as the production conditions of the present invention can be maintained, but 1.0 to 10.0 mm is preferable. Hot-rolled sheet is pickled
またはショットブラス ト等により表面のスケールを除去後、 熱延板焼鈍される。 焼鈍後 の鋼板は、 必要に応じて調質圧延を行うことができる。 実施例は実施例 2に示す。 実施例 Or after removing the surface scale by shot blasting, etc., it is annealed by hot rolling. The annealed steel sheet can be temper-rolled as necessary. Examples are given in Example 2. Example
実施例 1 Example 1
表 1に示す組成の銅 No. A〜Sのスラブを 1250°Cに加熱し、 表 2に示す条件にて熱間 圧延し、 酸洗後、 同じく表 2に示す条件にて焼鈍を行い、 板厚4. (½!11の鋼板1½. 1〜22 を作製した。 そして、 上記の方法により、 グラフアイ ト率、 セメンタイ トとグラフアイ トの平均粒径、 および焼入れ性を評価する Δ Ηνを求めた。 また、 圧延方向に沿って JIS 5号引張試験片を採取し、 引張試験を実施し、 降伏応力 ΥΡ、 引張強度 TS、 伸び Elを 求めた。  Slabs of copper Nos. A to S having the composition shown in Table 1 were heated to 1250 ° C, hot-rolled under the conditions shown in Table 2, and pickled, and then annealed under the conditions shown in Table 2, Plate thickness 4. (½! 11 steel plates 1½. 1 to 22 were prepared. Then, the above method was used to evaluate the graphite rate, the average grain size of cementite and graphite, and the hardenability. Δ Ην In addition, JIS No. 5 tensile test specimens were collected along the rolling direction and subjected to a tensile test to determine yield stress ΥΡ, tensile strength TS, and elongation El.
結果を表 3に示す。 本発明例の鋼板はいずれも、 低 YP、 低 TS、 高 El、 低 Δ Ηνであり、 軟質で、 加工性に優れ、 さらに焼入れ性にも優れていることがわかる。 なお、 本発明例 の鋼板の,袓織は、 表 3に示すように、 ほぼフェライ ト、 セメンタイ トおよびグラフアイ トからなり、 これらの合計の体積率が 95%以上であることを確認レた。 The results are shown in Table 3. It can be seen that the steel sheets of the examples of the present invention all have low YP, low TS, high El, and low ΔΗν, are soft, excellent in workability, and excellent in hardenability. In addition, as shown in Table 3, the weave of the steel sheet of the example of the present invention was almost composed of ferrite, cementite, and graph items, and it was confirmed that the total volume ratio of these was 95% or more. .
表 1 table 1
(質量%)
Figure imgf000017_0001
(mass%)
Figure imgf000017_0001
表 2 Table 2
Figure imgf000018_0001
表 3
Figure imgf000018_0001
Table 3
Figure imgf000019_0001
Figure imgf000019_0001
* : Fフェライ ト、 Gグラフアイ ト、 Cセメンタイ ト 細例 2 *: F ferrite, G graph eye, C cementite Example 2
表 4 }3¾^滅の鋼 No. M—ASのスラブを に力瞧し、 表 5に ^" 牛にて熱間圧延し、 酸 洗後、 同じく表 5に^ 1"^ί牛にて «を行レ \ ¾i? 4 Qmiの赚 No. 101〜122を ί樓し そして、 上記の^により、 グラフアイト率、 セメンタイトとグラフアイト全体に占めるフェライト粒内に するセメンタイトとグラフアイトの ft¾率 S、 伸びフランジ性の ί|¾である平均えを求め また、 圧 »向に沿って JIS 5号引 ¾g^ を聽し、 引? S ^を! USし、 力 YP、 引? TS、 伸び Elを求め なお、 同様な難を各^ Wこにつき 2回魏して平雌を求め、 この平均 値をそ の特 14値とし;^  Table 4} 3¾ ^ Destructed Steel No. M—AS slab was squeezed into Table 5 and hot rolled in a “^” cow and pickled, then in Table 5 also in a “^ 1” ^ ί cow. «to ί Lou the 赚 No. 101~122 of row-\ ¾i? 4 Qmi the and, by the above ^, graphite rate, ft¾ rate of cementite and graphite to ferrite grains to the total cementite and graphite S, Find the average length of stretch flangeability ί | ¾ Also, along the pressure »direction, enter JIS No. 5 ¾g ^ and pull? S ^! US, calculate force YP, pull TS, elongation El. Also, decimate the same difficulty twice for each w to obtain a flat female, and use this average value as its special 14 value; ^
結果を表 6に 。 本発明例の はいずれも、 低 YP、 低 TS、 高 El、 高; であり、 軟質で、 伸 びフランジ性も含め []ェ性に優れていることがわかる。 なお、 本発明例 の糸職は、 表 6に ように、 ほぼフェライトとセメンタイトおよびグラフアイトからなり、 これら (^計の 率 が 9¾¾上であることを ¾^、し The results are shown in Table 6. All of the examples of the present invention are low YP, low TS, high El, and high; it can be seen that they are soft and have excellent [] properties including stretch flangeability. In addition, as shown in Table 6, the yarn job of the example of the present invention is almost composed of ferrite, cementite, and graphite, and these (^ is that the ratio of the total is 9¾¾.
表 4 Table 4
Figure imgf000021_0001
Figure imgf000021_0001
表 5 Table 5
Figure imgf000022_0001
表 6
Figure imgf000022_0001
Table 6
Figure imgf000023_0001
Figure imgf000023_0001
*: F:フェライト、 G:グラフアイト、 C:セメンタイト  *: F: Ferrite, G: Graphite, C: Cementite

Claims

請求の範囲 The scope of the claims
1 . 質 *%で、 C:0. 3-0.71 Si:0. 1%KTf、 Mh:0.20%¾下、 P:0.01¾¾下、 S:0.01%¾下、 A1:0.0¾¾ 下、 N:0.005(¾¾下を含み、 ¾¾ Feおよひ不可 不純物からなる §J¾を有し、 フェライトとダラ フアイトとセメンタイト^ を有し、 力つ a織全体に占めるフェライ卜とグラフアイトとセ メンタイトの体精率の合計が 99¾¾上、 グラフアイトとセメンタイト全体に占めるグラフアイトの 鍾率 (グラフアイト率)が 5¾(¾上、 グラフアイトとセメンタイトの平 ^が 5;zm以下であるこ とを «とする !Plfc 1.Quality *%, C: 0.3-0.71 Si: 0. 1% KTf, Mh: 0.20% ¾ lower, P: 0.01¾¾ lower, S: 0.01% ¾ lower, A1: 0.0¾¾ lower, N: 0.005 (including ¾¾ lower, ¾¾ Fe and §J¾ consisting of impure impurities, ferrite, dalafite, and cementite ^, a strong body of ferri cocoon, grafite, and cementite occupying the entire weave The total precision is 99¾¾, and the ratio of graphite and cementite in the entire graphite and cementite (graphite ratio) is 5¾ (¾, the average of graphite and cementite ^ is 5; zm or less. ! Plfc
2. さらに、 質 。で、 Ni:3.0½¾下、 B:0.00S%¾下、 Cu:0. 1似下のうちから選〖¾τた少なくとも 1種^^有する糸滅を有することを難とする請求項 1に言凍の «fc 2. In addition, quality. Therefore, it is difficult to have at least one kind selected from Ni: 3.0½¾, B: 0.00S% ¾, Cu: 0. Frozen «fc
3. 請求項 1または 2に記載の組成を有する鋼を、 800~950°Cの itJL で熟間圧延して熱^ ¾ とし、 間圧延後の熱應を、 50°C/s以上の平均 ί^¾ で 500°C以下の i^Pff止 まで冷 «、 450°C以下の卷取 で卷取り、 tflfe 取り後 を、 720°C以下の « で する ことを赚とする赚の^ 3. Steel having the composition according to claim 1 or 2 is hot rolled at itJL at 800 to 950 ° C to obtain heat and the heat stress after the rolling is an average of 50 ° C / s or more Cool down to i ^ Pff at 500 ° C or less with ί ^ ¾, remove with 450 ° C or less, and take tflfe with «less than 720 ° C.
4. 質 S%で、 C:0.3~O.7 Si :0. 1似下、 Mn:0. 15^満、 P:0.01似下、 S:0.01似下、 Α1:0.09¾¾ 下、 Ν:0· 0050¾¾下を含み、 ¾¾ Feおよひ不可鹏不純物からなる糸诚を有し、 フェライトとグラ ファイトとセメンタイト ?^且锇を有し、 力 糸 A熾全体に占めるフェライトとグラフアイトとセ メンタイトの体積率の合計が 9E%¾上、 グラフアイトとセメンタイト全体に占めるグラフアイ卜の fl¾率 (グラフアイト率)が 5%¾上、 グラフアイトとセメンタイト全体に占めるフェライト粒内に するグラフアイトとセメンタイトの 率 (7 g +が 15½¾下であることを «とする ^fe 4. At S%, C: 0.3 ~ O.7 Si: 0. 1 lower, Mn: 0. 15 ^, P: 0.01 lower, S: 0.01 lower, Α1: 0.09¾¾ lower, Ν: 0 · 0050¾¾ including, ¾¾ Fe and yarns composed of inevitable impurities, ferrite, graphite and cementite, and ferrite. The total volume fraction of menthite is 9E% ¾, the fl¾ ratio of graphite occupying the entire graphite and cementite (graphite ratio) is 5% ¾, and the graphite in the ferrite grains occupying the entire graphite and cementite And the ratio of cementite (7 g + is under 15½¾ «^ fe
5. さらに、 質 S%で、 Ni:3.0¾¾下、 B:0.005½¾下、 Cu:0. 1似下のうちから選 f¾ た少なくとも 1種?:^有する糸城を有することを難とする請求項 4に言凍の 5. Furthermore, it is difficult to have at least one kind selected from the following: S:%, Ni: 3.0¾¾, B: 0.005½¾, Cu: 0. Claim 4
6. 請求項 4または 5に の糸城を有する鋼を、 800~950°Cの tt± で^^圧延して とし、 嫌^ W圧延後の熱^ ¾を、 50°C/s以上の平均御¾で 600°C以下の まで冷 纏、 550で以下の卷取 で卷取り、 tiJ|B 取り後 を、 720°C以下の鎮 で鎮する ことを赚とする赚の 6. The steel having the thread castle of claim 4 or 5 is rolled at tt ± of 800 to 950 ° C, and the heat after rolling is ≥ 50 ° C / s. The average value is chilled to 600 ° C or below, 550 is taken with the following take-up, and after taking tiJ | B, it is supposed to be taken down with 720 ° C or less.
PCT/JP2008/071597 2007-12-19 2008-11-20 Steel sheets and process for manufacturing the same WO2009078261A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137005432A KR20130035276A (en) 2007-12-19 2008-11-20 Steel sheets and process for manufacturing the same
CN2008801214570A CN101903547B (en) 2007-12-19 2008-11-20 Steel sheets and process for manufacturing the same
EP08861016.7A EP2246450B1 (en) 2007-12-19 2008-11-20 Steel sheets and process for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007326869A JP5157417B2 (en) 2007-12-19 2007-12-19 Steel sheet and manufacturing method thereof
JP2007-326868 2007-12-19
JP2007-326869 2007-12-19
JP2007326868A JP5157416B2 (en) 2007-12-19 2007-12-19 Steel sheet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2009078261A1 true WO2009078261A1 (en) 2009-06-25

Family

ID=40795380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071597 WO2009078261A1 (en) 2007-12-19 2008-11-20 Steel sheets and process for manufacturing the same

Country Status (4)

Country Link
EP (1) EP2246450B1 (en)
KR (2) KR20100076073A (en)
CN (1) CN101903547B (en)
WO (1) WO2009078261A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906597A (en) * 2010-08-14 2010-12-08 武汉钢铁(集团)公司 Environment-friendly high-performance graphitized free cutting steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594226B2 (en) * 2011-05-18 2014-09-24 Jfeスチール株式会社 High carbon steel sheet and method for producing the same
JP5338873B2 (en) * 2011-08-05 2013-11-13 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more and its production method
IN2014KN01254A (en) 2012-01-05 2015-10-16 Jfe Steel Corp
JP6479538B2 (en) * 2015-03-31 2019-03-06 株式会社神戸製鋼所 Steel wire for machine structural parts
CN106048179B (en) * 2016-07-15 2017-09-15 北京科技大学 A kind of preparation method of graphitization hot rolled steel plate
CN113862609B (en) * 2021-09-03 2022-05-27 北京科技大学 Method for improving wear resistance and friction reduction of medium-low carbon steel workpiece by utilizing carburization and surface graphitization

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425946A (en) 1987-07-20 1989-01-27 Kawasaki Steel Co Steel plate having excellent workability and toughness as well as having good hardenability and its production
JPH02107742A (en) * 1988-10-14 1990-04-19 Kawasaki Steel Corp Steel stock excellent in workability and hardenability
JPH04124216A (en) * 1990-09-12 1992-04-24 Sumitomo Metal Ind Ltd Production of high carbon steel sheet having superior formability
JPH04202744A (en) 1990-11-30 1992-07-23 Sumitomo Metal Ind Ltd High carbon thin steel sheet good in formability and its manufacture
JPH04311546A (en) * 1991-04-11 1992-11-04 Kawasaki Steel Corp Steel excellent in workability and hardenability and its production
JPH07258743A (en) 1994-03-18 1995-10-09 Sumitomo Metal Ind Ltd Production of medium carbon steel sheet excellent in workability
JPH0913142A (en) * 1991-01-17 1997-01-14 Kawasaki Steel Corp Graphite precipitated hot rolled steel sheet excellent in bending workability and heat treatability and its production
JP2007039796A (en) * 2005-06-29 2007-02-15 Jfe Steel Kk High-carbon hot-rolled steel sheet and process for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323399A (en) * 1992-06-30 1994-11-25 Sumitomo Metal Ind Ltd Automobile gear and manufacture thereof
JPH08246051A (en) * 1995-03-07 1996-09-24 Sumitomo Metal Ind Ltd Production of medium carbon steel sheet excellent in workability
JPH08291362A (en) * 1995-04-21 1996-11-05 Sumitomo Metal Ind Ltd Steel material excellent in cold workability
JP3848444B2 (en) * 1997-09-08 2006-11-22 日新製鋼株式会社 Medium and high carbon steel plates with excellent local ductility and hardenability
JP3879459B2 (en) * 2001-08-31 2007-02-14 Jfeスチール株式会社 Manufacturing method of high hardenability high carbon hot rolled steel sheet
US20090126836A1 (en) * 2005-05-29 2009-05-21 Nobusuke Kariya High Carbon Hot Rolled Steel Sheet and method for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425946A (en) 1987-07-20 1989-01-27 Kawasaki Steel Co Steel plate having excellent workability and toughness as well as having good hardenability and its production
JPH02107742A (en) * 1988-10-14 1990-04-19 Kawasaki Steel Corp Steel stock excellent in workability and hardenability
JPH04124216A (en) * 1990-09-12 1992-04-24 Sumitomo Metal Ind Ltd Production of high carbon steel sheet having superior formability
JPH04202744A (en) 1990-11-30 1992-07-23 Sumitomo Metal Ind Ltd High carbon thin steel sheet good in formability and its manufacture
JPH0913142A (en) * 1991-01-17 1997-01-14 Kawasaki Steel Corp Graphite precipitated hot rolled steel sheet excellent in bending workability and heat treatability and its production
JPH04311546A (en) * 1991-04-11 1992-11-04 Kawasaki Steel Corp Steel excellent in workability and hardenability and its production
JPH07258743A (en) 1994-03-18 1995-10-09 Sumitomo Metal Ind Ltd Production of medium carbon steel sheet excellent in workability
JP2007039796A (en) * 2005-06-29 2007-02-15 Jfe Steel Kk High-carbon hot-rolled steel sheet and process for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246450A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906597A (en) * 2010-08-14 2010-12-08 武汉钢铁(集团)公司 Environment-friendly high-performance graphitized free cutting steel

Also Published As

Publication number Publication date
EP2246450A4 (en) 2012-01-25
EP2246450A1 (en) 2010-11-03
EP2246450B1 (en) 2013-09-04
KR20130035276A (en) 2013-04-08
CN101903547B (en) 2012-05-23
CN101903547A (en) 2010-12-01
KR20100076073A (en) 2010-07-05

Similar Documents

Publication Publication Date Title
JP6477570B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
WO2013065346A1 (en) High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
WO2014041801A1 (en) Hot-rolled steel sheet and method for manufacturing same
KR20170107057A (en) High-strength cold-rolled steel plate and method for producing same
TWI499676B (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
CN104011245A (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
WO2007088985A1 (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
WO2001055466A1 (en) High carbon steel sheet and method for production thereof
WO2009078261A1 (en) Steel sheets and process for manufacturing the same
JP6152782B2 (en) Hot rolled steel sheet
US20140332123A1 (en) High-strength steel sheet and method for producing the same
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP4736441B2 (en) High-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, and method for producing the same
JP5070824B2 (en) Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same
TWI427162B (en) Cold rolled steel sheet having excellent formability and shape fixability and method for manufacturing the same
WO2015198582A1 (en) High-strength steel sheet
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP6066023B1 (en) Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method
CN114729426B (en) Hot-rolled steel sheet for resistance-welded steel pipe, method for producing same, line pipe, and building structure
JP5157417B2 (en) Steel sheet and manufacturing method thereof
JP5125081B2 (en) Cold-rolled steel sheet with excellent flatness after punching and method for producing the same
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP5157416B2 (en) Steel sheet and manufacturing method thereof
JP7323056B2 (en) Steel sheet pile and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121457.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08861016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008861016

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107013257

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE