JP2005098773A - Surface inspection apparatus for inspecting presence or absence of cracks in semiconductor substrate - Google Patents

Surface inspection apparatus for inspecting presence or absence of cracks in semiconductor substrate Download PDF

Info

Publication number
JP2005098773A
JP2005098773A JP2003330987A JP2003330987A JP2005098773A JP 2005098773 A JP2005098773 A JP 2005098773A JP 2003330987 A JP2003330987 A JP 2003330987A JP 2003330987 A JP2003330987 A JP 2003330987A JP 2005098773 A JP2005098773 A JP 2005098773A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
image
substrate
lens
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003330987A
Other languages
Japanese (ja)
Other versions
JP4392213B2 (en
Inventor
Saburo Sekida
三郎 関田
Masato Kikuchi
正人 菊地
Hiroaki Kida
浩章 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2003330987A priority Critical patent/JP4392213B2/en
Publication of JP2005098773A publication Critical patent/JP2005098773A/en
Application granted granted Critical
Publication of JP4392213B2 publication Critical patent/JP4392213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspection apparatus for substrates, capable of detecting processors which processor have troubles in composite semiconductor manufacturing equipment, consisting of a plurality of substrate processors made in-line. <P>SOLUTION: The schlieren-method surface inspection apparatus 1 is provided with a temporary placement table 2 for mounting a semiconductor substrate; a detection part 19 for detecting the presence or absence of discontinuous parts, when grayscale distribution data on images acquired be a photographing part 15 is differentiated; an image-classifying part 18 for determining whether the detected discontinuous parts are cracks or stains on the basis of their size; and a data processing part 16 for outputting photographed images on a display 20. In the photographing part 15, a light irradiated from a light source 3 is diffused in parallel by a collimator 4 and refracted by a beam splitter 7, to direct parallel beams towar the side of the back surface of the semiconductor substrate; the parallel beams are condensed onto the surface of the semiconductor substrate via a schlieren microscope 11 provided with both a varifocal lens and a silicon lens; and light reflected at the surface of the semiconductor substrate is passed through the beam splitter 7 to form an image in a camera 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面にプリント配線が施され、裏面が平坦な半導体基板の半導体基板を仮置台上に裏面側を上向きにして載置し、シュリ−レン撮像(Schlieren Photograph)方法により撮像した画像よりこの半導体基板にクラックが存在するか否か検査する表面検査装置に関する。   The present invention is based on an image obtained by placing a semiconductor substrate having a printed wiring on the front surface and a flat back surface on a temporary mounting table with the back surface facing upward, and picked up by a Schlieren imaging method. The present invention relates to a surface inspection apparatus for inspecting whether or not a crack exists in the semiconductor substrate.

半導体製造装置においては、基板の前工程および後工程において複数の処理が行なわれる。例えば、表面にプリント配線が施され、裏面が平坦な半導体基板の裏面を研削する工程、半導体基板の裏面研削された面を研磨して鏡面とする工程、裏面研削された半導体基板をフレ−ムに粘着テ−プを用いてマウントする工程、ダイシングテ−プを引き剥がす工程、ダイシング工程等である。従来、これらの各処理はバッチ処理されていたが、これら処理をする複数のチャンバをインラインで接続したマルチチャンバ方式の半導体製造装置を半導体基板製造メ−カ−が要求し、実用化されている。例えば、半導体基板の裏面を研削する工程、半導体基板の裏面研削された面を研磨して鏡面とする工程、裏面研削された半導体基板をフレ−ムに粘着テ−プを用いてマウントする工程を行うチャンバをインライン化した前処理工程の装置である(例えば、特許文献1参照。)。   In the semiconductor manufacturing apparatus, a plurality of processes are performed in the pre-process and post-process of the substrate. For example, a process of grinding a back surface of a semiconductor substrate having a printed wiring on the front surface and a flat back surface, a step of polishing the back ground surface of the semiconductor substrate to make a mirror surface, and a frame of the back ground semiconductor substrate And the like, a step of mounting using an adhesive tape, a step of peeling off the dicing tape, a dicing step, and the like. Conventionally, each of these processes has been batch-processed, but a semiconductor substrate manufacturing manufacturer requires a multi-chamber type semiconductor manufacturing apparatus in which a plurality of chambers for performing these processes are connected in-line, and has been put into practical use. . For example, a step of grinding the back surface of the semiconductor substrate, a step of polishing the back-ground surface of the semiconductor substrate to make a mirror surface, and a step of mounting the back-ground semiconductor substrate on the frame using an adhesive tape This is an apparatus for a pretreatment process in which a chamber to be performed is in-line (for example, see Patent Document 1).

マルチチャンバ方式の半導体製造装置においては、半導体基板の一部に生じた傷(クラック)や割れを確実に検知し、その傷や割れに起因する半導体製造装置の被害を最小に留めるために各チャンバで処理された半導体基板を次ぎの処理のチャンバ−に移動する前に半導体基板全体の画像を撮影し、画像を謙称して正常か異常か判別することが好ましい。   In a multi-chamber type semiconductor manufacturing apparatus, each chamber is used to reliably detect damage (cracks) and cracks generated in a part of a semiconductor substrate and to minimize damage to the semiconductor manufacturing apparatus due to the scratches and cracks. It is preferable to take an image of the entire semiconductor substrate before moving the processed semiconductor substrate to the chamber for the next processing and humbly identify the image to determine whether it is normal or abnormal.

従来のバッチ式製造装置では、処理された半導体基板の目視では判別できない傷の有無を光学顕微鏡で基板面を拡大して作業者が検証していたが、基板が鏡面であるため作業者の目が疲れ易いので、最近では、半導体基板の検査面に所定のパタ−ンを投影し、前記パタ−ンが投影された前記検査面の画像を取得し、少なくとも取得された前記画像の濃淡分布デ−タを用いて半導体基板のクラックを検出することが提案されている(例えば、特許文献2参照。)。   In conventional batch-type manufacturing equipment, the operator verified the presence or absence of scratches that could not be visually determined on the processed semiconductor substrate by enlarging the substrate surface with an optical microscope. Recently, a predetermined pattern is projected onto an inspection surface of a semiconductor substrate, an image of the inspection surface on which the pattern is projected is acquired, and at least a gray-scale distribution pattern of the acquired image is acquired. -It has been proposed to detect cracks in a semiconductor substrate using a mask (see, for example, Patent Document 2).

また、異なる焦点位置で同一箇所の撮像が可能な光学系と、この光学系より得られた画像を撮像する画像入力部と、該入力画像を所定量だけ移動しかつ濃淡に関して関して基準を適用した参照画像を生成し、画像入力部より出力された画像デ−タをメモリ−に格納することなくデ−タフロ−型プロセッサを用いたパイプライン処理により演算処理し、ダスト、異物、形状欠陥の検出を行う画像処理部とから構成される検査装置も提案されている(例えば、特許文献3参照。)。   In addition, an optical system capable of imaging the same location at different focal positions, an image input unit that captures an image obtained from the optical system, and a standard applied to the input image by moving the input image by a predetermined amount The reference image is generated, and the image data output from the image input unit is processed by pipeline processing using a data flow type processor without being stored in the memory, and dust, foreign matter, and shape defects are detected. An inspection apparatus including an image processing unit that performs detection has also been proposed (see, for example, Patent Document 3).

さらに、レザ−ビ−ムより照射された光を第1コリメ−タレンズで平行に拡散し、半導体基板を通過させた光を第2コリメ−タレンズで集光して結象させ、これをCCDカメラで撮像するシュリ−レン撮像方法も提案されている。このシュリ−レン撮像方法では、レザ−ビ−ムより照射された光と、第2コリメ−タレンズで集光された光の半分はそれぞれナイフエッジで遮光される。(特許文献4参照。)。シュリ−レン撮像方法は、シリコン基板のような鏡面を有する基板のクラック検査に適している。
特開2002−151450号公報 特開2003−185590号公報 特開2000−180377号公報 米国特許第6181416号公報
Further, the light irradiated from the laser beam is diffused in parallel by the first collimator lens, and the light that has passed through the semiconductor substrate is condensed by the second collimator lens and formed into an image, which is then converted into a CCD camera. A schlieren imaging method has also been proposed. In this Schlieren imaging method, half of the light emitted from the laser beam and the light collected by the second collimator lens are shielded by the knife edge. (See Patent Document 4). The schlieren imaging method is suitable for crack inspection of a substrate having a mirror surface such as a silicon substrate.
JP 2002-151450 A JP 2003-185590 A JP 2000-180377 A US Pat. No. 6,181,416

本発明が解決しようとする問題点は、処理された半導体基板を一々、チャンバ外へ取り出し、チャンバ外に設置されている検査台に載置して基板のクラックの有無を検査するのではなく、インライン化された半導体製造装置のライン内で表面検査を行える表面検査装置を提供することにある。前記米国特許に記載されるシュリ−レン撮影法を用いるには、半導体製造装置に使用されているチャンバ内の仮置台やライン間に設けられた仮置台は基板を載せるステ−ジ部が不透明部材で形成されているため、ステ−ジ部を透明部材で製造したものに置き換え、ステ−ジ部の下面にカメラを設ける構造とする必要がある。本発明は、ステ−ジの上方にシュリ−レン撮像機を設置できるようになすものである。   The problem to be solved by the present invention is not to take out the processed semiconductor substrate one by one out of the chamber and place it on an inspection table installed outside the chamber to inspect for cracks in the substrate, An object of the present invention is to provide a surface inspection apparatus capable of performing a surface inspection within a line of an in-line semiconductor manufacturing apparatus. In order to use the schlieren photographing method described in the above-mentioned US Patent, a temporary placement table in a chamber used in a semiconductor manufacturing apparatus or a temporary placement table provided between lines has a stage portion on which a substrate is placed as an opaque member. Therefore, it is necessary to replace the stage portion with one made of a transparent member and to provide a camera on the lower surface of the stage portion. In the present invention, a schlieren imager can be installed above a stage.

請求項1の発明は、表面にプリントがなされ、裏面が平坦な半導体基板を裏面を上向きにして載置する仮置台、赤外線照射光源より照射された光をコリメ−タレンズで平行に拡散し、ビ−ムスプリッタで屈折させて前記半導体基板の裏面側に平行光線を向け、この平行光線を可変焦点レンズとシリコンレンズとを備えるシュリ−レン顕微鏡介して半導体基板面上に集光させ、半導体基板面を反射した光を前記ビ−ムスプリッタを通過させてカメラに結像させる撮影部であって、前記コリメ−タレンズの半分とカメラのレンズの半分を通過する光はナイフエッジで遮られる構造の撮像部、該撮影部に取得された画像の濃淡分布デ−タを微分したときの不連続部分の有無を検出する検出部、検出された不連続部分をその大きさからクラックか汚れかを判別する画像分類部、撮像した画像を表示器に出力するデ−タ処理部とを備えるシュリ−レン法表面検査装置を提供するものである。   According to the first aspect of the present invention, there is provided a temporary mounting table on which a semiconductor substrate having a printed back surface and a flat back surface is placed with the back surface facing upward, and light irradiated from an infrared irradiation light source is diffused in parallel by a collimator lens. Refracting by a beam splitter and directing parallel rays toward the back side of the semiconductor substrate, condensing the parallel rays on a semiconductor substrate surface through a Schlieren microscope having a variable focus lens and a silicon lens, An imaging unit that passes the beam splitter through the beam splitter and forms an image on the camera, and the light that passes through half of the collimator lens and half of the camera lens is blocked by a knife edge. , A detection unit for detecting the presence or absence of a discontinuous portion when differentiating the grayscale distribution data of the image acquired by the photographing unit, and the detected discontinuous portion is cracked or dirty from its size Image classification unit to determine, de outputs the captured image on the display - and provides a lens process surface inspection apparatus - Sri and a data processing unit.

本発明のシュリ−レン法を利用する表面検査装置では、仮置台の上方側に光源とカメラを含む撮像部を設置できるので、既存の半導体装置の構造を大幅に変える必要はない。   In the surface inspection apparatus using the schlieren method of the present invention, an imaging unit including a light source and a camera can be installed on the upper side of the temporary table, so that there is no need to significantly change the structure of an existing semiconductor device.

(実施例1)
図1は本発明の表面検査装置の側面図、図2はシュリ−レン撮像法により表示器画面上に映し出された基板の画像、図3は複数のチャンバがインライン化された半導体製造装置の一例を示す平面図、図4は別の態様を示す複数のチャンバがインライン化された半導体製造装置の一例を示す平面図である。
(Example 1)
FIG. 1 is a side view of a surface inspection apparatus of the present invention, FIG. 2 is an image of a substrate projected on a display screen by a schlieren imaging method, and FIG. 3 is an example of a semiconductor manufacturing apparatus in which a plurality of chambers are inlined. FIG. 4 is a plan view showing an example of a semiconductor manufacturing apparatus in which a plurality of chambers showing another embodiment are inlined.

図1に示されるシュリ−レン撮像法を利用する表面検査装置1において、wは半導体基板でその表面側aにはプリントがなされ、保護テ−プcで被覆され、裏面bが平坦な半導体基板である。2は半導体基板の裏面を上向きにして基板を載置する仮置台、3は赤外線照射光源、4は第1コリメ−タレンズ、5はナイフエッジでこれらで光源照射機構6を構成する。7はビ−ムスプリッタ、8は複合レンズ、9は可変集光レンズ、10はシリコンレンズで、これらでシュリ−レン顕微鏡11を構成する。12はカメラで前記シュリ−レン顕微鏡11に接続されている。カメラのレンズ前にはナイフエッジ13が置かれる。14はシュリ−レン顕微鏡の外筒である。これら光源照射機構6、シュリ−レン顕微鏡11、ナイフエッジ13およびカメラ12で撮影部15構成する。16はデ−タ処理部、17は画像記憶部、18は画像分類部、19は入出力部、20は表示器(CRT)、21はマウス、22はキ−ボ−ドである。   In the surface inspection apparatus 1 using the schlieren imaging method shown in FIG. 1, w is a semiconductor substrate, the front surface side a is printed, covered with a protective tape c, and the back surface b is flat. It is. Reference numeral 2 denotes a temporary mounting table on which the substrate is placed with the back surface facing upward, 3 denotes an infrared irradiation light source, 4 denotes a first collimator lens, and 5 denotes a knife edge, which constitute a light source irradiation mechanism 6. Reference numeral 7 denotes a beam splitter, 8 denotes a compound lens, 9 denotes a variable condenser lens, and 10 denotes a silicon lens, which constitute a Schlieren microscope 11. A camera 12 is connected to the Schlieren microscope 11. A knife edge 13 is placed in front of the camera lens. Reference numeral 14 denotes an outer cylinder of a Schlieren microscope. The light source irradiation mechanism 6, the Schlieren microscope 11, the knife edge 13, and the camera 12 constitute an imaging unit 15. Reference numeral 16 denotes a data processing unit, 17 denotes an image storage unit, 18 denotes an image classification unit, 19 denotes an input / output unit, 20 denotes a display (CRT), 21 denotes a mouse, and 22 denotes a keyboard.

表面検査装置1の外筒14は支持部材23に固定され、支持部材23の前面に上下に設けられたレ−ル24上をスライダ25が左右方向(x方向)に移動するように構成される。言いかえるとスライダ25の左右方向の移動により、表面検査装置1のシュリ−レン顕微鏡11も左右方向に移動可能である。前記支持部材23は、サ−ボモ−タ27の回転駆動を受けて回転するボ−ルネジ(図示されていない)に裏面を螺合された上下方向摺動板26の前面に固定されている。即ち、サ−ボモ−タ27の回転駆動を受けて上下方向摺動板26が固定板28の前面に設けられた案内レ−ル(図示されていない)上を移動することによりシュリ−レン顕微鏡11も上下方向(y方向)に移動可能である。   The outer cylinder 14 of the surface inspection apparatus 1 is fixed to a support member 23, and is configured such that a slider 25 moves in the left-right direction (x direction) on a rail 24 provided vertically on the front surface of the support member 23. . In other words, the Schlieren microscope 11 of the surface inspection apparatus 1 can also be moved in the left-right direction by moving the slider 25 in the left-right direction. The support member 23 is fixed to the front surface of a vertical sliding plate 26 whose back surface is screwed to a ball screw (not shown) that rotates upon receiving the rotational drive of a servo motor 27. That is, when the servo motor 27 is driven to rotate, the vertical sliding plate 26 moves on a guide rail (not shown) provided on the front surface of the fixed plate 28, thereby causing a Shrelen microscope. 11 is also movable in the vertical direction (y direction).

前記固定板28はコラム29前面に固定され、コラム29は水平方向に張り巡りされた案内レ−ル31,31を滑る滑走体30の下部に固定される。この滑走体30は図示されていないサ−ボモ−タとボ−ルネジおよび螺合体の駆動により前後方向(z方向)に移動できる。言いかえると、滑走体30の前後方向の移動により表面検査装置1のシュリ−レン顕微鏡11も前後方向に移動可能である。   The fixed plate 28 is fixed to the front surface of the column 29, and the column 29 is fixed to the lower part of the sliding body 30 that slides on the guide rails 31 and 31 stretched in the horizontal direction. The sliding body 30 can be moved in the front-rear direction (z direction) by driving a servo motor, a ball screw and a screwed body (not shown). In other words, the Schlieren microscope 11 of the surface inspection apparatus 1 can also be moved in the front-rear direction by the movement of the sliding body 30 in the front-rear direction.

基板w裏面の撮像は、半導体基板wの裏面を上向きにして仮置台2上に載置し、赤外線照射光源3より照射された光の半分をナイフエッジ5で遮光し、第1コリメ−タレンズ4で平行に拡散し、ビ−ムスプリッタ7で屈折させて前記半導体基板wの裏面側に平行光線を向け、シュリ−レン顕微鏡11を介してこの平行光線を半導体基板面上に集光させ、半導体基板面を反射した光は前記ビ−ムスプリッタ7を通過し、その通過光の半分をナイフエッジ13て遮光された後、カメラ12に結像させる。   For imaging the back surface of the substrate w, the semiconductor substrate w is placed on the temporary table 2 with the back surface facing upward, half of the light emitted from the infrared irradiation light source 3 is shielded by the knife edge 5, and the first collimator lens 4. Diffracted in parallel, refracted by the beam splitter 7, directed parallel light rays to the back side of the semiconductor substrate w, and condensed through the Schlieren microscope 11 on the semiconductor substrate surface. The light reflected from the substrate surface passes through the beam splitter 7, and half of the light passing therethrough is shielded by the knife edge 13 and then imaged on the camera 12.

画像記憶部17は、撮影部15のカメラ12より送信されてきた画像信号を受け、検出部19で画像信号の濃淡分布デ−タを微分し、不連続部分の有無を検出する。画像分類部18は検出部19で検出された不連続部分の出力信号をその大きさ(長さを含む)からクラックか汚れかを判別する。撮像部15で撮像した画像は、デ−タ処理部16より発信される出力信号により表示器20に半導体基板wの画像を表示する(図3参照)。必要によりこの表示器20にクラック、汚れの有無を表示する信号を出力部19より発信し、表示器20画面上に基板の画像と一緒に表示させてもよい。   The image storage unit 17 receives the image signal transmitted from the camera 12 of the photographing unit 15, and the detection unit 19 differentiates the density distribution data of the image signal to detect the presence or absence of the discontinuous portion. The image classification unit 18 determines whether the output signal of the discontinuous portion detected by the detection unit 19 is a crack or a dirt from the size (including the length). The image picked up by the image pickup unit 15 is displayed on the display 20 by an output signal transmitted from the data processing unit 16 (see FIG. 3). If necessary, a signal for displaying the presence or absence of cracks and dirt on the display 20 may be transmitted from the output unit 19 and displayed on the display 20 together with the image of the substrate.

図2に示す表示器に映し出された基板表面の画像において、半導体基板の平坦面は濃度が明るい灰色に、クラック500、研磨屑600は濃度が濃い黒色となって表示される。クラックと研磨屑の区別は、研磨屑はミクロ的なもので、その大きさが数ミクロンから数十ミクロンの大きさで、不連続なドット状であり、クラックはマクロ的なもので、長さがmm単位で、連続した直線もしくは曲線状のものであることからデ−タ処理部で区別される。   In the image of the substrate surface displayed on the display shown in FIG. 2, the flat surface of the semiconductor substrate is displayed in a light gray color, and the crack 500 and polishing dust 600 are displayed in a dark black color. The distinction between cracks and polishing debris is that the debris is microscopic, the size is several microns to several tens of microns, is a discontinuous dot, the crack is macroscopic, and length Is in the unit of mm and is a continuous straight line or curved line, so that it is distinguished by the data processing unit.

この基板表面検査装置1は、複数の基板加工処理装置を室内に備えた複数のチャンバをインラインで接続したマルチ(複合)チャンバ方式の半導体製造装置において、各チャンバで加工処理された半導体基板の外観を各チャンバ内で検査あるいは、次ぎの工程への受け渡しの仮置台上で半導体基板の外観を検査するのに使用される。   This substrate surface inspection apparatus 1 is an appearance of a semiconductor substrate processed in each chamber in a multi-chamber type semiconductor manufacturing apparatus in which a plurality of chambers provided with a plurality of substrate processing apparatuses are connected in-line. Is used for inspecting the appearance of the semiconductor substrate in each chamber or on a temporary table for delivery to the next process.

図3に示すインライン化された基板加工装置100は、特許文献1(特開2002−151450号公報)に開示された半導体基板の裏面を研削する研削装置101、半導体基板の裏面研削された面をエッチング処理して鏡面とするエッチング処理機120、および裏面研削・エッチング処理された半導体基板をフレ−ムに粘着テ−プを用いてマウントする工程を行うマウンタ装置200の各チャンバをインライン化した前処理工程の装置を示す。   An in-line substrate processing apparatus 100 shown in FIG. 3 includes a grinding apparatus 101 for grinding a back surface of a semiconductor substrate disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2002-151450), and a back-ground surface of the semiconductor substrate. Before each chamber of the mounter apparatus 200 for performing the process of mounting the semiconductor substrate subjected to the etching process to a mirror surface and mounting the semiconductor substrate subjected to the back grinding / etching process on the frame using the adhesive tape is inlined. The apparatus of a process process is shown.

図3に示す裏面研削装置とエッチング装置とマウンタ装置をインライン化した基板加工装置100において、101は裏面研削装置、120はエッチング装置、200はマウンタ装置、300はインライン化ウエハ搬送装置である。
裏面研削装置101は、左右にカセット117を対として前列に配置し、基台の上に左側のカセットの後部に基板用仮置台106を、右側のカセットの後部に洗浄機構113を対として次列に配置し、仮置台106と洗浄機構113後部の基台の中央部を刳り抜いた箇所にインデックスタ−ンテ−ブル108を設け、かつ、このインデックスタ−ンテ−ブルに該テ−ブルの軸心を中心に3基の基板チャック機構107を等間隔に回転自在に設けるとともに基板ロ−ディング/基板アンロ−ディングゾ−ン、粗研削ゾ−ンおよび仕上研削ゾ−ンにテ−ブルを区分けし、インデックスタ−ンテ−ブル108の後列には基台より起立させた枠体111に各研削ゾ−ンに適した砥石をスピンドル軸111a、111cに軸承させた研削機構を各研削ゾ−ンに位置する基板チャック機構に対応して設けている。
In the substrate processing apparatus 100 in which the back surface grinding apparatus, the etching apparatus, and the mounter apparatus shown in FIG. 3 are inlined, reference numeral 101 denotes a back surface grinding apparatus, 120 denotes an etching apparatus, 200 denotes a mounter apparatus, and 300 denotes an inline wafer transfer apparatus.
The back grinding apparatus 101 is arranged in a front row with a pair of cassettes 117 on the left and right, a substrate temporary table 106 at the rear of the left cassette on the base, and a cleaning mechanism 113 at the rear of the right cassette. And an index turntable 108 is provided at a position where the central portion of the temporary table 106 and the base of the rear part of the cleaning mechanism 113 is cut out, and the index turntable is provided with the shaft of the table. Three substrate chuck mechanisms 107 are rotatably provided at equal intervals around the center, and the table is divided into substrate loading / substrate unloading zone, rough grinding zone and finish grinding zone. In the rear row of the index turn table 108, a grinding mechanism in which a grinding wheel suitable for each grinding zone is supported on the spindle shafts 111a and 111c on a frame body 111 standing upright from a base is provided for each grinding zone. It is provided corresponding to the substrate chuck mechanism located down.

前記1対のカセット117の列と前記仮置台106と洗浄機構113の列の間の基台略中央に多関節型搬送ロボット115を立設し、前記仮置台106上のデバイスウエハをインデックスタ−ンテ−ブルの基板ロ−ディング/基板アンロ−ディングゾ−ンのチャック機構に移送可能としている。   An articulated transfer robot 115 is erected substantially at the center between the pair of cassettes 117 and the temporary placement table 106 and the cleaning mechanism 113, and the device wafer on the temporary placement table 106 is indexed. It can be transferred to the chuck mechanism of the table substrate loading / substrate unloading zone.

インデックスタ−ンテ−ブルを設けた基台の略中央部の左右に設けた1対の軸に回転可能に取り付けられた柄に設けられた吸着パッド112は、それぞれ仮置台のデバイスウエハを基板ロ−ディング/基板アンロ−ディングゾ−ンのチャック機構117上に、また、基板ロ−ディング/基板アンロ−ディングゾ−ンのチャック機構上の裏面研削されたデバイスウエハを洗浄機構113のスピナ上に搬送する。   The suction pads 112 provided on the handle rotatably attached to a pair of shafts provided on the left and right of the substantially central portion of the base on which the index turn table is provided respectively support the device wafer of the temporary placement base. -The back-ground device wafer on the chucking mechanism 117 of the loading / substrate unloading zone and on the chuck mechanism of the substrate loading / substrate unloading zone is transferred onto the spinner of the cleaning mechanism 113. .

エッチング装置120は側壁121で囲まれ、エッチャ−126は更に内仕切壁122により囲繞されている。125は搬送ロボット、133はシャッタ−機構である。   The etching apparatus 120 is surrounded by a side wall 121, and the etcher 126 is further surrounded by an inner partition wall 122. Reference numeral 125 denotes a transfer robot, and 133 denotes a shutter mechanism.

該研削装置101において、ロ−ディング用カセット117より多関節型ロボット115により仮置台106上に搬送された基板wは搬送パッド112に吸着され、搬送パッドを回動させてインデックステ−ブル118のロ−ディング/アンロ−ディングゾ−ンのチャック機構107に載せられ、インデックステ−ブルを120度時計廻り方向に回転させ、チャック機構107は第1研削ゾ−ンに移動する。   In the grinding apparatus 101, the substrate w transported onto the temporary table 106 by the articulated robot 115 from the loading cassette 117 is attracted to the transport pad 112, and the transport pad is rotated to rotate the index table 118. The loading / unloading zone chuck mechanism 107 is mounted, the index table is rotated 120 degrees clockwise, and the chuck mechanism 107 moves to the first grinding zone.

そこで、第1スピンドル軸111aに軸承された粗研削砥石でウエハwは粗研削され、ついで粗研削されたウエハはインデックステ−ブル118を120度回動させることにより仕上研削ゾ−ンに送られる。そこで、第2スピンドル軸111cに軸承された仕上研削砥石で仕上げ研削され、ついで、インデックステ−ブル118を120度回動させることにより仕上研削された基板はロ−ディング/アンロ−ディングゾ−ンに移送される。   Therefore, the wafer w is roughly ground with a rough grinding wheel supported by the first spindle shaft 111a, and then the roughly ground wafer is sent to the finish grinding zone by rotating the index table 118 by 120 degrees. . Therefore, the substrate that has been finish-ground by the finish grinding wheel supported by the second spindle shaft 111c and then finished by turning the index table 118 by 120 degrees is loaded into the loading / unloading zone. Be transported.

仕上研削された基板は、右側の搬送パッド112により吸着され、洗浄機構113に移送され、洗浄機構で洗浄、スピン乾燥された後、エッチング装置120内の搬送ロボット125により仕切壁の開口部を経て、エッチャ−126に移送され、そこで基板はエッチング、洗浄、スピン乾燥され、仮置台301上に多関節型ロボット125により移送される。   The finish-ground substrate is adsorbed by the transfer pad 112 on the right side, transferred to the cleaning mechanism 113, cleaned and spin-dried by the cleaning mechanism, and then passed through the opening of the partition wall by the transfer robot 125 in the etching apparatus 120. Then, the substrate is transferred to the etcher 126, where the substrate is etched, washed, spin-dried, and transferred to the temporary table 301 by the articulated robot 125.

なお、第2スピンドル軸に軸承された仕上研削砥石で基板が仕上げ研削されている間に、新たな基板が、ロ−ディング用カセット117より多関節型ロボット115により仮置台106上に搬送され、そこで基板は搬送パッド112に吸着され、インデックステ−ブル118を120度回動させて粗研削用チャック機構107に載せられ、第1スピンドル軸に軸承された粗研削砥石で基板は粗研削される。このようにウエハの粗研削と仕上研削が同時に行われるのでウエハの研削装置のスル−プット時間を短縮することができる。   While the substrate is finish-ground by the finish grinding wheel supported by the second spindle shaft, a new substrate is transferred from the loading cassette 117 to the temporary table 106 by the articulated robot 115, Therefore, the substrate is adsorbed by the transport pad 112, the index table 118 is rotated 120 degrees and placed on the rough grinding chuck mechanism 107, and the substrate is roughly ground by a rough grinding wheel supported by the first spindle shaft. . In this way, since rough grinding and finish grinding of the wafer are performed simultaneously, the throughput time of the wafer grinding apparatus can be shortened.

エッチング装置120の正面壁にはインライン化ウエハ搬送装置300が設けられる。インラインウエハ搬送装置300は、仮置台301、仮置台の回転機構、仮置台の左右方向往復移動機構および透明なド−ムよりなる。仮置台301は回転機構により仮置台の支持ア−ム302が90度回転され仮想線に示す位置に仮置台301を移動する。仮想線で示された仮置台301は、ベルト315駆動で、マウンタ装置200の正面壁201a側(右方向)へ移動され、センサ313が仮置台を構成するロ−タリ−テ−ブル支持台の存在をキャッチ(仮置台は図1で仮想線に示す位置)すると制御装置に信号が伝達され、制御装置より減速機付きモ−タ−に駆動停止の指令がなされ、減速機付きモ−タ−の駆動が停止し、ベルトの移動も停止する。   An inline wafer transfer apparatus 300 is provided on the front wall of the etching apparatus 120. The inline wafer transfer apparatus 300 includes a temporary placement table 301, a temporary placement table rotation mechanism, a temporary placement table reciprocating mechanism in the horizontal direction, and a transparent dome. The temporary placement table 301 moves the temporary placement table 301 to the position indicated by the phantom line by rotating the support arm 302 of the temporary placement table by 90 degrees by the rotation mechanism. The temporary table 301 indicated by the phantom lines is moved to the front wall 201a side (right direction) of the mounter device 200 by driving the belt 315, and the sensor 313 is a rotary table support table constituting the temporary table. When the presence is caught (the temporary table is at the position indicated by the phantom line in FIG. 1), a signal is transmitted to the control device, and a drive stop command is issued from the control device to the motor with a reduction gear. Is stopped, and the movement of the belt is also stopped.

マウンタ装置200は、周囲を側壁201a,201b,201c,201dで囲まれ、正面壁201aにはインライン化ウエハ搬送装置300の仮置台301が出入り可能な開口部202を有する。上面は天井203で覆われて側壁と天井で部室204を形成する。
部室204内には、ア−ム205がベ−ス206上に支持軸207で支えられ、ア−ム205の側面には下方にウエハ吸着板210を長尺状竿211で固定し、長尺状竿211をシリンダ212で昇降可能とし、シリンダ212をレ−ル213上を左右方向に移動可能に設置し、レ−ル213をスライダ−214で受け、スライダ−214は溝215を前後に往復移動できる。スライダ−214の往復駆動機構は図面からは省略されている。
The mounter apparatus 200 is surrounded by side walls 201a, 201b, 201c, and 201d, and the front wall 201a has an opening 202 through which the temporary placement table 301 of the inlined wafer transfer apparatus 300 can enter and exit. The upper surface is covered with a ceiling 203 to form a chamber 204 with side walls and a ceiling.
An arm 205 is supported on a base 206 by a support shaft 207 in the section chamber 204, and a wafer suction plate 210 is fixed to a side surface of the arm 205 with a long bowl 211. The rod 211 can be moved up and down by a cylinder 212, the cylinder 212 is installed so as to be movable in the horizontal direction on the rail 213, the rail 213 is received by the slider -214, and the slider -214 reciprocates the groove 215 back and forth. I can move. The reciprocating drive mechanism of the slider-214 is omitted from the drawing.

吸着板210の中空部は、図示されていない真空ポンプに連結されており、該中空部を減圧することにより基板吸着板210はデバイスウエハwの保護テ−プで被覆されたデバイス面を吸着できる。   The hollow portion of the suction plate 210 is connected to a vacuum pump (not shown), and the substrate suction plate 210 can suck the device surface covered with the protection tape of the device wafer w by reducing the pressure of the hollow portion. .

基板吸着板210の上方には基板位置合わせ確認用の認識カメラが設けられており、仮置台301に載せられ移送されてきたデバイスウエハwのセンタリング調整に寄与する。即ち、仮置台301の中心点とデバイスウエハwの中心点が鉛直方向で一致しているか認識カメラで確認する。中心点の一致は、デバイスウエハwの中心点が仮置台301の中心点と一致するようにシリンダ212をレ−ル213上で左右方向に移動およびレ−ル213を受けるスライダ−214を溝215で前後移動して決める。なお、仮置台301の中心点とチャンバ−部219のフレ−ム中心点は同一線m上にあるように後述するインラインウエハ搬送装置300のセンサ据え付け位置により決められる。   A recognition camera for confirming the alignment of the substrate is provided above the substrate suction plate 210 and contributes to the centering adjustment of the device wafer w that has been placed on the temporary table 301 and transferred. That is, the recognition camera checks whether the center point of the temporary placement table 301 and the center point of the device wafer w coincide with each other in the vertical direction. The center points coincide with each other by moving the cylinder 212 on the rail 213 in the left-right direction so that the center point of the device wafer w coincides with the center point of the temporary placement table 301 and the slider-214 receiving the rail 213 in the groove 215. Move back and forth to decide. The center point of the temporary placement table 301 and the frame center point of the chamber portion 219 are determined by the sensor installation position of the in-line wafer transfer apparatus 300 described later so as to be on the same line m.

216はフレ−ムホルダ−で、下面に粘着テ−プTを貼着したフレ−ムFを多段積みし、下方よりシリンダにより底板をフレ−ム1枚分の高さづつ上昇できるようになっている。217はフレ−ムホルダ−216より送り出された最上段の下面に粘着テ−プを貼着したフレ−ムM1枚を左右方向に往復移動可能な軸218に取り付けられた吸引治具218aで吸引し、左方向に移動させベルト218b上でセンタリング終了後、吸引治具の減圧を止めてフレ−ムMを開放し、ついで、ベルト218bを間歇的に回転駆動させて左方向に位置するチャンバ−機構219へ移送するアライメント兼用移送機構である。   Reference numeral 216 denotes a frame holder, which is constructed by stacking frames F each having an adhesive tape T adhered to the lower surface thereof, so that the bottom plate can be raised by the height of one frame by a cylinder from below. Yes. Reference numeral 217 denotes a suction jig 218a attached to a shaft 218 that can reciprocate in the left-right direction, with a frame M1 having an adhesive tape attached to the lower surface of the uppermost stage sent out from the frame holder 216. After the centering on the belt 218b is completed by moving it to the left, the vacuum of the suction jig is stopped to open the frame M, and then the belt 218b is rotationally driven intermittently to move to the left. 219 is an alignment and transfer mechanism for transferring to 219.

ついで、前述の基板吸着板210に吸着されたデバイスウエハwを後方向に前進させ、シリンダを下降させ、チャンバ−機構219上のフレ−ムに貼付された粘着テ−プ面に粘着させ、ついで、ウエハ吸着板210の減圧を止め、ウエハ吸着板210を上昇させ、前方向に後退させることによりフレ−ムに貼付された粘着テ−プ上にデバイスウエハがマウントされる。   Next, the device wafer w adsorbed on the substrate adsorbing plate 210 is advanced backward, the cylinder is lowered, and is adhered to the adhesive tape surface affixed to the frame on the chamber mechanism 219. The device wafer is mounted on the adhesive tape affixed to the frame by stopping the pressure reduction of the wafer suction plate 210, raising the wafer suction plate 210, and retracting it in the forward direction.

チャンバ−機構219の後部にはフレ−ム搬送・回転機構220が備え付けられている。フレ−ム搬送・回転機構220は、治具221に係合しているア−ム222をモ−タ223で回転軸224を180度回転させることによりチャンバ−機構219からフレ−ムを反転して搬送ア−ム225側端にフレ−ム一端を接触させ、図示されていない搬送機構でフレ−ムMを矢印で示す後方向に前進させて収納搬送路226に移動させ、そこでフレ−ムを90度回転させたカセット227へフレ−ムMを移動させて収納する。   A frame transport / rotation mechanism 220 is provided at the rear of the chamber mechanism 219. The frame transport / rotation mechanism 220 reverses the frame from the chamber mechanism 219 by rotating the rotation shaft 224 by 180 degrees with the motor 223 of the arm 222 engaged with the jig 221. Then, one end of the frame is brought into contact with the side end of the transport arm 225, and the frame M is moved in the backward direction indicated by the arrow by a transport mechanism (not shown) to move to the storage transport path 226, where the frame is moved. The frame M is moved and stored in the cassette 227 rotated 90 degrees.

本発明の表面検査装置1は、このインライン化された基板加工装置100のエッチング装置120の仮置台301上に離間して設ける。   The surface inspection apparatus 1 according to the present invention is provided on the temporary mounting table 301 of the etching apparatus 120 of the substrate processing apparatus 100 inlined.

図4は、別の態様を示すインライン化された基板加工装置100で、裏面研削装置101、エッチング装置に代えてポリッシング装置120’、UV照射/DAF貼り機(マウンタ装置)200およびダイシングテ−プ貼り機/グラインダテ−プ剥がし機400をインライン化したものである。本発明の表面検査装置1は、このインライン化された基板加工装置100のUV照射/DAF貼り機(マウンタ装置)200の仮置台301上およびマウントされた基板の搬送機構226上に離間して設ける。図4ではクラック検出と仮想矢印で示された円内の位置に表面検査装置1設けられる。   FIG. 4 shows an in-line substrate processing apparatus 100 showing another embodiment, in which instead of the back surface grinding apparatus 101 and the etching apparatus, a polishing apparatus 120 ′, a UV irradiation / DAF bonding machine (mounter apparatus) 200, and a dicing tape application. Machine / grind tape remover 400 inline. The surface inspection apparatus 1 of the present invention is provided on the temporary placement table 301 of the UV irradiation / DAF pasting machine (mounter apparatus) 200 of the inlined substrate processing apparatus 100 and on the mounted substrate transport mechanism 226. . In FIG. 4, the surface inspection apparatus 1 is provided at a position within a circle indicated by a crack detection and a virtual arrow.

複数の基板加工処理装置をインライン化した半導体製造装置において、基板にクラックやゴミの付着が検出されたらどの加工処理チャンバで基板の加工処理が不充分であったか判別できる。   In a semiconductor manufacturing apparatus in which a plurality of substrate processing apparatuses are inlined, it is possible to determine in which processing chamber the substrate processing is insufficient when cracks or dust adhere to the substrate is detected.

表面検査装置の側面図である。(実施例1)It is a side view of a surface inspection apparatus. (Example 1) シュリ−レン撮像法により表示器画面上に映し出された基板の画像である。It is the image of the board | substrate projected on the display screen by the schlieren imaging method. 複数のチャンバがインライン化された半導体製造装置の平面図である。(公知)It is a top view of the semiconductor manufacturing apparatus with which the some chamber was made in-line. (Known) 別の態様を示す複数のチャンバがインライン化された半導体製造装置の一例を示す平面図である。It is a top view which shows an example of the semiconductor manufacturing apparatus with which the some chamber which shows another aspect was made in-line.

符号の説明Explanation of symbols

1 表面検査装置
w 半導体基板
2 仮置台
3 光源
4 第1コリメ−タレンズ
5 ナイフエッジ
6 光源照射機構
7 ビ−ムスプリッタ
8 複合レンズ
9 可変集光レンズ
10 シリコンレンズ
11 シュリ−レン顕微鏡
12 カメラ(検出器)
13 ナイフエッジ
15 撮影部
16 デ−タ処理部
DESCRIPTION OF SYMBOLS 1 Surface inspection apparatus w Semiconductor substrate 2 Temporary table 3 Light source 4 1st collimator lens 5 Knife edge 6 Light source irradiation mechanism 7 Beam splitter 8 Compound lens 9 Variable condensing lens 10 Silicon lens 11 Shrelen microscope 12 Camera (detection) vessel)
13 Knife edge 15 Imaging unit 16 Data processing unit

Claims (1)

表面にプリントがなされ、裏面が平坦な半導体基板を裏面を上向きにして載置する仮置台、赤外線照射光源より照射された光をコリメ−タレンズで平行に拡散し、ビ−ムスプリッタで屈折させて前記半導体基板の裏面側に平行光線を向け、この平行光線を可変焦点レンズとシリコンレンズとを備えるシュリ−レン顕微鏡介して半導体基板面上に集光させ、半導体基板面を反射した光を前記ビ−ムスプリッタを通過させてカメラに結像させる撮影部であって、前記コリメ−タレンズの半分とカメラのレンズの半分を通過する光はナイフエッジで遮られる構造の撮像部、該撮影部に取得された画像の濃淡分布デ−タを微分したときの不連続部分の有無を検出する検出部、検出された不連続部分をその大きさからクラックか汚れかを判別する画像分類部、撮像した画像を表示器に出力するデ−タ処理部とを備えるシュリ−レン法表面検査装置。   Temporary mounting table on which a semiconductor substrate with a printed back surface and a flat back surface is placed with the back surface facing up, light irradiated from an infrared irradiation light source is diffused in parallel by a collimator lens, and refracted by a beam splitter A parallel light beam is directed to the back side of the semiconductor substrate, and the parallel light beam is condensed on the surface of the semiconductor substrate through a Schlieren microscope equipped with a variable focus lens and a silicon lens, and the light reflected on the semiconductor substrate surface is reflected on the bi-directional surface. An imaging unit that passes through a half-splitter and forms an image on the camera, and the light passing through half of the collimator lens and half of the lens of the camera is acquired by the imaging unit having a structure that is blocked by a knife edge; A detection unit for detecting the presence or absence of a discontinuous portion when differentiating the gray-scale distribution data of the detected image, and an image portion for determining whether the detected discontinuous portion is a crack or a dirt from its size Ren method surface inspection apparatus - Sri and a data processing unit - part, de outputting the captured image to the display unit.
JP2003330987A 2003-09-24 2003-09-24 Surface inspection device for inspecting for cracks in semiconductor substrates Expired - Fee Related JP4392213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330987A JP4392213B2 (en) 2003-09-24 2003-09-24 Surface inspection device for inspecting for cracks in semiconductor substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330987A JP4392213B2 (en) 2003-09-24 2003-09-24 Surface inspection device for inspecting for cracks in semiconductor substrates

Publications (2)

Publication Number Publication Date
JP2005098773A true JP2005098773A (en) 2005-04-14
JP4392213B2 JP4392213B2 (en) 2009-12-24

Family

ID=34459762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330987A Expired - Fee Related JP4392213B2 (en) 2003-09-24 2003-09-24 Surface inspection device for inspecting for cracks in semiconductor substrates

Country Status (1)

Country Link
JP (1) JP4392213B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238087B1 (en) 2006-03-29 2007-07-03 Okamoto Machine Tool Works, Ltd. Planarizing device and a planarization method for semiconductor substrates
JP2008221416A (en) * 2007-03-14 2008-09-25 Okamoto Machine Tool Works Ltd Monitoring equipment and method of semiconductor substrate in polishing stage
KR20110081024A (en) 2010-01-07 2011-07-13 가부시키가이샤 오카모도 코사쿠 기카이 세이사쿠쇼 Planarization apparatus and method for semiconductor substrate
JP2014044094A (en) * 2012-08-24 2014-03-13 Hitachi High-Technologies Corp Substrate inspection method and device
JP2018031634A (en) * 2016-08-24 2018-03-01 株式会社ディスコ Method for detecting inner cracks
KR20180103716A (en) * 2017-03-09 2018-09-19 배트 홀딩 아게 Vacuum valve with optical sensor
JP2021193744A (en) * 2017-05-18 2021-12-23 ファスフォードテクノロジ株式会社 Semiconductor manufacturing equipment and method for manufacturing semiconductor device
CN115976490A (en) * 2022-12-06 2023-04-18 上海铂世光半导体科技有限公司 CVD diamond growth on-line measuring device
KR102534667B1 (en) * 2022-10-20 2023-05-26 세미랩코리아 주식회사 Device for in-chamber type thin film analysis

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238087B1 (en) 2006-03-29 2007-07-03 Okamoto Machine Tool Works, Ltd. Planarizing device and a planarization method for semiconductor substrates
JP2007260850A (en) * 2006-03-29 2007-10-11 Okamoto Machine Tool Works Ltd Flattening device of semiconductor substrate and flattening method
JP2008221416A (en) * 2007-03-14 2008-09-25 Okamoto Machine Tool Works Ltd Monitoring equipment and method of semiconductor substrate in polishing stage
KR20110081024A (en) 2010-01-07 2011-07-13 가부시키가이샤 오카모도 코사쿠 기카이 세이사쿠쇼 Planarization apparatus and method for semiconductor substrate
US8366514B2 (en) 2010-01-07 2013-02-05 Okamoto Machine Tool Works, Ltd. Semiconductor substrate planarization apparatus and planarization method
JP2014044094A (en) * 2012-08-24 2014-03-13 Hitachi High-Technologies Corp Substrate inspection method and device
JP2018031634A (en) * 2016-08-24 2018-03-01 株式会社ディスコ Method for detecting inner cracks
KR20180103716A (en) * 2017-03-09 2018-09-19 배트 홀딩 아게 Vacuum valve with optical sensor
KR102389821B1 (en) 2017-03-09 2022-04-22 배트 홀딩 아게 Vacuum valve with optical sensor
JP2021193744A (en) * 2017-05-18 2021-12-23 ファスフォードテクノロジ株式会社 Semiconductor manufacturing equipment and method for manufacturing semiconductor device
JP7225337B2 (en) 2017-05-18 2023-02-20 ファスフォードテクノロジ株式会社 Semiconductor manufacturing equipment and semiconductor device manufacturing method
KR102534667B1 (en) * 2022-10-20 2023-05-26 세미랩코리아 주식회사 Device for in-chamber type thin film analysis
CN115976490A (en) * 2022-12-06 2023-04-18 上海铂世光半导体科技有限公司 CVD diamond growth on-line measuring device
CN115976490B (en) * 2022-12-06 2023-12-19 上海铂世光半导体科技有限公司 Online CVD diamond growth detection device

Also Published As

Publication number Publication date
JP4392213B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US5909276A (en) Optical inspection module and method for detecting particles and defects on substrates in integrated process tools
CN1260800C (en) Semiconductor wafer inspection apparatus
JP4916890B2 (en) Substrate processing apparatus and substrate processing method
EP0935747B1 (en) Automated inspection system with bright field and dark field illumination
KR100361962B1 (en) Apparatus for inspecting the defects on the wafer periphery and method of inspection
US20130044316A1 (en) Device and method for inspecting moving semicondutor wafers
TWI638426B (en) Stripping device, stripping system, stripping method and information memory medium
JP2001082926A (en) Mechanism and method for controlling focal position and apparatus and method for inspecting semiconductor wafer
JP4392213B2 (en) Surface inspection device for inspecting for cracks in semiconductor substrates
KR20190111764A (en) Grinding apparatus
TW201834051A (en) Workpiece inspection method, workpiece inspection device and processing device more appropriately and easily detecting a grinding trace of a workpiece
KR20170062516A (en) Wafer edge inspectoin with trajectory following edge profile
JP4876744B2 (en) Inspection device
JP2008021884A (en) Inspection apparatus
JPH09252035A (en) Visual inspection method and device of semiconductor wafer
CN115295458A (en) Wafer detection system and method
CN115372375A (en) Wafer detection device and detection method
JP6101481B2 (en) Internal inspection device for workpieces with laminated structure
JP5825268B2 (en) Board inspection equipment
KR200188365Y1 (en) Apparatus for inspecting the defects on the wafer periphery
JPH05160234A (en) Bonding wire inspecting apparatus
TWI715662B (en) Check device
WO2006019446A2 (en) Double inspection of reticle or wafer
JP7370265B2 (en) Processing method and processing equipment
JP4172124B2 (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees