JP2014044094A - Substrate inspection method and device - Google Patents

Substrate inspection method and device Download PDF

Info

Publication number
JP2014044094A
JP2014044094A JP2012185881A JP2012185881A JP2014044094A JP 2014044094 A JP2014044094 A JP 2014044094A JP 2012185881 A JP2012185881 A JP 2012185881A JP 2012185881 A JP2012185881 A JP 2012185881A JP 2014044094 A JP2014044094 A JP 2014044094A
Authority
JP
Japan
Prior art keywords
substrate
light
inspection
light receiving
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012185881A
Other languages
Japanese (ja)
Inventor
Taketo Horinouchi
健人 堀之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012185881A priority Critical patent/JP2014044094A/en
Publication of JP2014044094A publication Critical patent/JP2014044094A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct inspection in positions on the front face and rear face of a substrate without causing mutual interference.SOLUTION: A substrate inspection device includes a space filter 15 so configured as to intercept reception of scattered light by a light receiving area occupying about a half of the side irradiated with inspection light 10a. Even if a foreign matter 1c on the rear face side of the substrate 1 is irradiated with the inspection light 10a having proceeded within a substrate 1 and being emitted from the rear face side, scattered light from the foreign matter 1c is removed by the space filter 15 and is not received by the optical system. The scattered light from the rear face side foreign matter 1c is thereby removed, and inspection in the positions on the front face and rear face sides of the substrate 1 are conducted without causing mutual interference. The space filter 15 is configured of a shield plate in which an opening is provided for receiving the scattered light on the reverse side to the side irradiated with the inspection light 10a, namely the light receiving area occupying about a half of the side in the proceeding direction of the inspection light 10a.

Description

本発明は、表示用パネル等の製造に用いられるガラス基板やプラスチック基板等の基板を検査する基板検査方法及び装置に係り、特に基板の表裏両面の異物の分離精度を向上することのできる基板検査方法及び装置に関するものである。   The present invention relates to a substrate inspection method and apparatus for inspecting a substrate such as a glass substrate or a plastic substrate used for manufacturing a display panel or the like, and more particularly, a substrate inspection capable of improving the separation accuracy of foreign matters on both the front and back surfaces of a substrate. It relates to a method and a device.

表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electro Luminescence)表示パネル用基板等の製造は、フォトリソグラフィー技術により、ガラス基板やプラスチック基板等の上にパターンを形成して行われる。その際、基板表面や内部に傷や異物等の欠陥が存在すると、パターンが良好に形成されず、不良の原因となる。このため、基板検査装置を用いて、基板表面及び内部の傷や異物等の欠陥の検査を行なっている。   Manufacture of TFT (Thin Film Transistor) substrates, color filter substrates, plasma display panel substrates, organic EL (Electro Luminescence) display panel substrates, etc. for liquid crystal display devices used as display panels is a glass substrate by photolithography technology. Or by forming a pattern on a plastic substrate or the like. At that time, if a defect such as a scratch or a foreign substance exists on the surface or inside of the substrate, the pattern is not formed well, which causes a defect. For this reason, a substrate inspection apparatus is used to inspect defects such as scratches and foreign matters on the substrate surface and inside.

基板検査装置は、レーザ光等の検査光を基板へ照射し、基板からの反射光又は散乱光又は透過光を受光して、基板表面、裏面及び内部の傷や異物等の欠陥を検出するものである。このような基板検査装置としては、特許文献1に記載されたものが知られている。特許文献1に記載された基板検査装置は、ガラス基板の表面、裏面、または内部に存在する3種の欠陥を検出して、これらの種別を判定するものである。   A substrate inspection device irradiates a substrate with inspection light such as laser light and receives reflected light, scattered light or transmitted light from the substrate, and detects defects such as scratches and foreign matter on the front surface, back surface, and inside the substrate. It is. As such a substrate inspection apparatus, one described in Patent Document 1 is known. The substrate inspection apparatus described in Patent Document 1 detects three types of defects existing on the front surface, the back surface, or the inside of a glass substrate, and determines these types.

特開平9−257642号公報Japanese Patent Laid-Open No. 9-257642

図1は、従来の基板検査装置の概要を示す図である。図1では、基板1に照射された検査光であって、基板1の表面からの散乱光を受光する受光光学系を示している。図1に示すように、検査光10aは、基板1の表面に所定の入射角θで照射される。基板1の表面、裏面及び内部に傷や異物等の欠陥が存在しない場合は、基板1に斜めに照射された検査光10aの一部は基板1の表面で反射し、残りの検査光は基板1の内部を透過して基板1の裏面から射出する。基板1の表面又は裏面に傷や異物等の欠陥がある場合は、基板1に照射された検査光10aの中で基板1の表面又は裏面の傷や異物等の欠陥に照射された光は散乱して散乱光となり、それ以外の箇所に照射した光は前述と同様に、その一部は表面で反射し、残りは透過する。   FIG. 1 is a diagram showing an outline of a conventional substrate inspection apparatus. FIG. 1 shows a light receiving optical system that receives inspection light irradiated on the substrate 1 and scattered light from the surface of the substrate 1. As shown in FIG. 1, the inspection light 10a is irradiated on the surface of the substrate 1 at a predetermined incident angle θ. When there is no defect such as a scratch or a foreign substance on the front surface, back surface, and inside of the substrate 1, a part of the inspection light 10a irradiated obliquely to the substrate 1 is reflected by the surface of the substrate 1, and the remaining inspection light is the substrate. 1 is transmitted through the inside of the substrate 1 and emitted from the back surface of the substrate 1. When there is a defect such as a scratch or a foreign substance on the front or back surface of the substrate 1, the light irradiated to the defect such as a scratch or a foreign substance on the front or back surface of the substrate 1 is scattered in the inspection light 10a irradiated to the substrate 1. In the same manner as described above, a part of the light irradiated to other portions is reflected by the surface and the rest is transmitted.

図1において、受光光学系は、集光レンズ28、結像レンズ29、及びCCDラインセンサ30を含んで構成される。集光レンズ28は、基板1の表面又は裏面の傷や異物等の欠陥に照射された光のうち、基板1の表面又は裏面の傷や異物等の欠陥によって散乱した光(散乱光)を集光する。結像レンズ29は、基板1の表面にて散乱した散乱光であって、集光レンズ28で集光された散乱光をCCDラインセンサ30の受光面に結像させる。CCDラインセンサ30は、受光面に受光した散乱光の強度に応じた検出信号をディジタル信号に変換して、図示していない信号処理回路へ出力する。   In FIG. 1, the light receiving optical system includes a condenser lens 28, an imaging lens 29, and a CCD line sensor 30. The condensing lens 28 collects light (scattered light) scattered by defects such as scratches on the front surface or back surface of the substrate 1 and defects such as foreign matter out of the light irradiated on the scratches or foreign matters on the front or back surface of the substrate 1. Shine. The imaging lens 29 is scattered light scattered on the surface of the substrate 1 and forms an image of the scattered light collected by the condenser lens 28 on the light receiving surface of the CCD line sensor 30. The CCD line sensor 30 converts a detection signal corresponding to the intensity of scattered light received by the light receiving surface into a digital signal and outputs it to a signal processing circuit (not shown).

図1に示した基板検査装置の受光光学系は、基板1の表面に焦点が合致しているため、CCDラインセンサ30には、基板1の表面からの散乱光の情報に混じって、基板1の内部及び裏面からの散乱光の情報も検出されることがある。すなわち、図1に示すように、検査光10aの通過範囲であって、基板1の表面に異物1aが存在する場合、その異物1aに検査光10aが照射され、そこからの散乱光がCCDラインセンサ30に取り込まれることになる。一方、基板1の裏面に異物1bが存在する場合、その異物1bには検査光10aが照射されないので、そこからの散乱光はCCDラインセンサ30に取り込まれることはない。これは、基板1の板厚t1が約0.7[mm]以上の厚みの場合である。一方、基板1の板厚t2が図1の点線で示すように、板厚t1の約半分程度の厚みの場合、基板1の裏面であって、受光光学系の焦点位置よりも若干−X方向に離間した位置に、点線で示す異物1cが存在すると、それに検査光10aの一部が照射することになる。すると、異物1cからの散乱光がCCDラインセンサ30の視野範囲に取り込まれることとなり、基板検査装置の受光光学系では、基板1の表面の異物検出と、基板1の裏面の異物検出が互いに干渉する場合があり、問題であった。   Since the light receiving optical system of the substrate inspection apparatus shown in FIG. 1 is in focus on the surface of the substrate 1, the CCD line sensor 30 is mixed with information on scattered light from the surface of the substrate 1 and the substrate 1. Information on scattered light from the inside and the back surface may also be detected. That is, as shown in FIG. 1, when the foreign substance 1a is present on the surface of the substrate 1 in the passage range of the inspection light 10a, the foreign substance 1a is irradiated with the inspection light 10a, and the scattered light therefrom is converted into the CCD line. The sensor 30 is taken in. On the other hand, when the foreign matter 1 b exists on the back surface of the substrate 1, the inspection light 10 a is not irradiated on the foreign matter 1 b, so that scattered light from the foreign matter 1 b is not taken into the CCD line sensor 30. This is a case where the thickness t1 of the substrate 1 is about 0.7 [mm] or more. On the other hand, when the plate thickness t2 of the substrate 1 is about half the plate thickness t1, as shown by the dotted line in FIG. 1, it is the back surface of the substrate 1 and slightly in the −X direction from the focal position of the light receiving optical system. If a foreign object 1c indicated by a dotted line is present at a position apart from each other, a part of the inspection light 10a is irradiated thereto. Then, scattered light from the foreign matter 1c is taken into the visual field range of the CCD line sensor 30, and in the light receiving optical system of the substrate inspection apparatus, foreign matter detection on the surface of the substrate 1 and foreign matter detection on the back surface of the substrate 1 interfere with each other. There was a problem.

この発明は、上述の点に鑑みなされたものであり、基板の表面及び裏面のそれぞれの位置における検査を、互いに干渉させることなく行なうことのできる基板検査方法及び装置を提供することを目的とする。   This invention is made in view of the above-mentioned point, and it aims at providing the board | substrate inspection method and apparatus which can perform the test | inspection in each position of the surface of a board | substrate, and each back surface, without mutually interfering. .

本発明に係る基板検査方法の第1の特徴は、相対的に移動する基板に対して、前記移動方向と直交する方向が長手方向となるような長尺状の検査光を、投光系から前記移動方向に沿って斜めに照射し、前記基板から散乱される散乱光を受光系にて受光することによって、前記基板を検査する基板検査方法であって、前記受光系の受光側であって前記検査光の照射側の約半分の受光領域に前記散乱光の受光を遮るための空間フィルタ手段を設けたことにある。この発明では、検査光を照射する側の約半分の受光領域に散乱光の受光を遮るように構成された空間フィルタ手段を設けている。従って、検査光が基板内を進行して裏面から出射する時に、基板裏面の異物に照射したとしてもその異物からの散乱光は空間フィルタ手段によって除去され、光学系に受光されなくなる。これによって、裏面異物からの散乱光を除去し、基板の表面及び裏面のそれぞれの位置における検査を、互いに干渉させることなく実行することができる。   A first feature of the substrate inspection method according to the present invention is that a long inspection light whose longitudinal direction is perpendicular to the moving direction is emitted from a light projecting system with respect to a relatively moving substrate. A substrate inspection method for inspecting the substrate by irradiating obliquely along the moving direction and receiving the scattered light scattered from the substrate by a light receiving system, on the light receiving side of the light receiving system, Spatial filter means for blocking the reception of the scattered light is provided in a light receiving region about half of the inspection light irradiation side. In the present invention, the spatial filter means configured to block the reception of scattered light is provided in about half of the light receiving region on the side irradiated with the inspection light. Therefore, even when the inspection light travels through the substrate and is emitted from the back surface, even if the foreign material on the back surface of the substrate is irradiated, the scattered light from the foreign material is removed by the spatial filter means and is not received by the optical system. Thereby, the scattered light from the back surface foreign matter can be removed, and the inspection at the respective positions on the front surface and the back surface of the substrate can be executed without causing interference.

本発明に係る基板検査方法の第2の特徴は、前記第1の特徴に記載の基板検査方法において、前記空間フィルタ手段を、前記受光系の前面に、前記検査光の照射側と反対側の約半分の受光領域に前記散乱光を通過させるための開口を備えた遮蔽板で構成したことにある。この発明は、空間フィルタ手段の構成を具体的にしたものである。検査光を照射する側とは反対側、すなわち検査光の進行方向側の約半分の受光領域に散乱光を受光するための開口を設けることによって空間フィルタ手段を形成している。   A second feature of the substrate inspection method according to the present invention is the substrate inspection method according to the first feature, wherein the spatial filter means is disposed on the front surface of the light receiving system on the opposite side of the inspection light irradiation side. That is, the shield plate is provided with an opening for allowing the scattered light to pass through about half of the light receiving region. The present invention is a specific configuration of the spatial filter means. Spatial filter means is formed by providing an opening for receiving scattered light in a light receiving region on the opposite side to the side on which the inspection light is irradiated, that is, on the side in which the inspection light travels.

本発明に係る基板検査装置の第1の特徴は、相対的に移動する基板に対して、前記移動方向と直交する方向が長手方向となるような長尺状の検査光を、前記移動方向に沿って斜めに照射する投光系手段と、前記基板から散乱される散乱光を受光する受光系手段と、前記受光系手段の受光側であって前記検査光の照射側の約半分の受光領域に前記散乱光の受光を遮るように設けられた空間フィルタ手段と、前記受光系手段からの信号に基づいて前記基板を検査する検査手段とを備えたことにある。これは、前記基板検査方法の第1の特徴に記載のものを実現した基板検査装置の発明である。   A first feature of the substrate inspection apparatus according to the present invention is that, with respect to a relatively moving substrate, a long inspection light whose longitudinal direction is a direction perpendicular to the moving direction is the moving direction. A light projecting system that irradiates obliquely along the light receiving unit, a light receiving system that receives scattered light scattered from the substrate, and a light receiving area that is approximately half the light receiving side of the light receiving system and the irradiation side of the inspection light. And a spatial filter means provided so as to block the reception of the scattered light, and an inspection means for inspecting the substrate based on a signal from the light receiving system means. This is an invention of a substrate inspection apparatus which realizes the one described in the first feature of the substrate inspection method.

本発明に係る基板検査装置の第2の特徴は、前記第1の特徴に記載の基板検査装置において、前記空間フィルタ手段は、前記受光系手段の前面に、前記検査光の照射側と反対側の約半分の受光領域に前記散乱光を通過させるための開口を備えた遮蔽板で構成されることにある。これは、前記基板検査方法の第2の特徴に記載のものを実現した基板検査装置の発明である。   A second feature of the substrate inspection apparatus according to the present invention is the substrate inspection device according to the first feature, wherein the spatial filter means is disposed on the front surface of the light receiving system means on the side opposite to the irradiation side of the inspection light. The light receiving area is formed of a shielding plate having an opening for allowing the scattered light to pass therethrough. This is an invention of a substrate inspection apparatus that realizes the second feature of the substrate inspection method.

本発明によれば、基板の表面及び裏面のそれぞれの位置における検査を、互いに干渉させることなく行なうことができるという効果がある。   According to the present invention, there is an effect that inspections at respective positions on the front surface and the back surface of the substrate can be performed without causing interference.

従来の基板検査装置の概要を示す図である。It is a figure which shows the outline | summary of the conventional board | substrate inspection apparatus. 本発明に係る基板検査装置を上側から見た上面図である。It is the top view which looked at the board | substrate inspection apparatus which concerns on this invention from the upper side. 図2の基板検査装置を紙面手前方向から見た側面図である。It is the side view which looked at the board | substrate inspection apparatus of FIG. 2 from the paper front side direction. 本発明の一実施の形態に係る基板検査装置の光学系及び制御系の概略構成を示す図である。It is a figure which shows schematic structure of the optical system and control system of the board | substrate inspection apparatus which concerns on one embodiment of this invention. 図4の受光光学系の概要を示す図である。It is a figure which shows the outline | summary of the light reception optical system of FIG. この実施の形態に係る基板検査装置の受光系の概要を示す図である。It is a figure which shows the outline | summary of the light-receiving system of the board | substrate inspection apparatus which concerns on this embodiment. この実施の形態に係る基板検査装置の効果を説明する図である。It is a figure explaining the effect of the board | substrate inspection apparatus which concerns on this embodiment.

以下、図面に基づいて本発明の実施の形態を説明する。図2は、本発明に係る基板検査装置を上側から見た上面図であり、図3は、図2の基板検査装置を紙面手前方向から見た側面図である。ガラス基板検査装置100は、大別して、基台フレーム2、検査ステージ2a、光学部3、リフトピン9で構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 2 is a top view of the substrate inspection apparatus according to the present invention as viewed from above, and FIG. 3 is a side view of the substrate inspection apparatus of FIG. 2 as viewed from the front side of the drawing. The glass substrate inspection apparatus 100 is roughly composed of a base frame 2, an inspection stage 2 a, an optical unit 3, and lift pins 9.

基台フレーム2は、複数の角パイプの溶接構造体から構成され、下部に脚を持つことで床上に設置される。検査ステージ2aは、基台フレーム2の上部の基板投入口側に寄って固定されている。光学部3は、門型のガントリ構造をしており、基台フレーム2の上部であって、基板1の投入方向に沿って並列設置されているリニアガイド7a、7b上に移動可能に搭載されている。光学部3は、基台フレーム2の側面に設けられた光学部X駆動部5によって、ガラス基板投入方向であるX方向へ往復動作を行う。光学系ユニット4a,4bは、基板1表面の欠陥や異物の検査を行うものであり、光学部3の側面Y方向に沿って設けられたガイド8a,8bに従って、光学部Y駆動部(図示せず)によるX方向の動作1回につきX方向と直角方向であるY方向へシフト動作を行うようになっている。   The base frame 2 is composed of a welded structure of a plurality of square pipes, and is installed on the floor by having legs at the bottom. The inspection stage 2a is fixed near the substrate insertion port side of the upper part of the base frame 2. The optical unit 3 has a gate-type gantry structure, and is movably mounted on the linear guides 7a and 7b that are arranged in parallel along the loading direction of the substrate 1 at the top of the base frame 2. ing. The optical unit 3 reciprocates in the X direction, which is the glass substrate loading direction, by the optical unit X driving unit 5 provided on the side surface of the base frame 2. The optical system units 4a and 4b are for inspecting defects and foreign matters on the surface of the substrate 1, and according to guides 8a and 8b provided along the side surface Y direction of the optical unit 3, an optical unit Y driving unit (not shown). 1), the shift operation is performed in the Y direction, which is perpendicular to the X direction.

ガラス基板検査装置100による検査は、検査光を基板1の表面又は内部に照射し、散乱された散乱光を受光することによって行われる。このとき光学系ユニット4a,4bが基板1の表面や内部を検査できるのは、検査ステージ2aの載置バー間の凹み部分のみである。そのために、一度走査を完了したら基板1をY方向にずらして、残りの部分を検査している。光学部3のX方向往復動作及びY方向シフト動作、リフトピン9によるガラス基板Y方向のシフト動作により、基板1全面の検査を可能とする。   The inspection by the glass substrate inspection apparatus 100 is performed by irradiating the surface or inside of the substrate 1 with inspection light and receiving the scattered light. At this time, the optical system units 4a and 4b can inspect the surface and the inside of the substrate 1 only in the recessed portion between the mounting bars of the inspection stage 2a. Therefore, once the scanning is completed, the substrate 1 is shifted in the Y direction and the remaining portion is inspected. The entire surface of the substrate 1 can be inspected by the reciprocating operation in the X direction and the Y direction shifting operation of the optical unit 3 and the shifting operation in the Y direction of the glass substrate by the lift pins 9.

図2に示すように基台フレーム2の内部には、リニアガイド12a,12bがY方向並列に設置され、その上にピンY駆動部11及びピン上下駆動部10を搭載した第1リフタ上下基台13が設置されている。検査ステージ2aには、基板1を持ち上げるための複数のリフトピン9を通過させるための複数の穴が設けられている。リフトピン9は、ピン上下駆動部10上に搭載されたリフタユニット基台14の上面側に複数本設置されている。リフトピン9は、基板1の受け取り時に上昇し、受け取り後下降することで検査ステージ2aへ基板1の受け渡しを行う。また、リフトピン9が上昇し、基板1を持ち上げ、Y方向へシフト動作を行う。   As shown in FIG. 2, linear guides 12a and 12b are installed inside the base frame 2 in parallel in the Y direction, and a first lifter upper and lower base on which a pin Y drive unit 11 and a pin vertical drive unit 10 are mounted. A table 13 is installed. The inspection stage 2a is provided with a plurality of holes for allowing a plurality of lift pins 9 for lifting the substrate 1 to pass therethrough. A plurality of lift pins 9 are installed on the upper surface side of the lifter unit base 14 mounted on the pin vertical drive unit 10. The lift pins 9 are raised when the substrate 1 is received, and lowered after being received, thereby delivering the substrate 1 to the inspection stage 2a. Further, the lift pins 9 are raised to lift the substrate 1 and perform a shift operation in the Y direction.

リフタユニット基台14は、第2リフタ上下基台15上のボールベアリング16上に乗っており、X方向及びY方向に自由に移動可能になっている。X方向及びY方向の移動は、図示していないリフタ上下基台15上に取り付けられたX方向アライメントモータ、Y方向ライメントモータの駆動により行われる。リフタ上下基台15は、ピン上下駆動部10の駆動によって上下方向に移動される。リフタ上下基台15を上昇させることで、リフタユニット基台14とリフトピン9も上昇し、検査ステージ2a上の基板1を、検査ステージ2aを構成する載置バーから離反するように持ち上げ、アライメント及び検査動作時における基板1のシフト動作を行うことができるようになっている。   The lifter unit base 14 rides on a ball bearing 16 on the second lifter upper and lower base 15 and is freely movable in the X direction and the Y direction. The movement in the X direction and the Y direction is performed by driving an X direction alignment motor and a Y direction alignment motor mounted on the lifter upper and lower base 15 (not shown). The lifter vertical base 15 is moved in the vertical direction by driving the pin vertical drive unit 10. By raising the lifter upper / lower base 15, the lifter unit base 14 and the lift pins 9 are also raised, and the substrate 1 on the inspection stage 2 a is lifted away from the mounting bar constituting the inspection stage 2 a, and alignment and The shift operation of the substrate 1 during the inspection operation can be performed.

図4は、本発明の一実施の形態に係る基板検査装置の光学系及び制御系の概略構成を示す図である。光学系ユニット4aは、検査光10aを基板1へ照射する投光系、基板1の表面からの表面反射光11を検出する反射光検出系、及び基板1からの散乱光を受光する受光系を含んで構成される。光学系ユニット4bは、光学系ユニット4aと同じ構成をしているので、説明を省略する。制御系は、焦点調節制御回路40、信号処理回路50、検査開始センサ51、区間速度計測センサ52、光学系移動制御回路60、メモリ70、通報装置80、入出力装置90及びCPU95を含んで構成される。   FIG. 4 is a diagram showing a schematic configuration of the optical system and the control system of the substrate inspection apparatus according to the embodiment of the present invention. The optical system unit 4a includes a light projecting system that irradiates the substrate 1 with the inspection light 10a, a reflected light detection system that detects the surface reflected light 11 from the surface of the substrate 1, and a light receiving system that receives the scattered light from the substrate 1. Consists of including. Since the optical system unit 4b has the same configuration as the optical system unit 4a, description thereof is omitted. The control system includes a focus adjustment control circuit 40, a signal processing circuit 50, an inspection start sensor 51, a section speed measurement sensor 52, an optical system movement control circuit 60, a memory 70, a notification device 80, an input / output device 90, and a CPU 95. Is done.

図4において、検査光10aを基板1へ照射する投光系は、レーザ光源21、レンズ群22及びミラー23を含んで構成される。レーザ光源21は、検査光10aとなるレーザ光を発生する。レンズ群22は、レーザ光源21から発生された検査光10aを集光し、集光した検査光10aを基板移動方向(X方向)と直交する方向(Y方向)へ広げ、広げた検査光10aを基板移動方向(X方向)に集束させる。ミラー23は、レンズ群22によって集光された検査光10aを、基板1の表面に所定の入射角θで照射する。基板1の表面に照射された検査光10aは、基板1の表面上において、基板移動方向(X方向)と直交する方向(Y方向)が長手方向となるような長尺状(帯状)の検査光10aとなる。   In FIG. 4, the light projecting system for irradiating the substrate 1 with inspection light 10 a includes a laser light source 21, a lens group 22, and a mirror 23. The laser light source 21 generates laser light that becomes the inspection light 10a. The lens group 22 condenses the inspection light 10a generated from the laser light source 21, spreads the collected inspection light 10a in a direction (Y direction) orthogonal to the substrate movement direction (X direction), and spreads the inspection light 10a. Are converged in the substrate movement direction (X direction). The mirror 23 irradiates the surface of the substrate 1 with the inspection light 10a collected by the lens group 22 at a predetermined incident angle θ. The inspection light 10a irradiated on the surface of the substrate 1 is a long (band-shaped) inspection on the surface of the substrate 1 such that the direction perpendicular to the substrate movement direction (X direction) (Y direction) is the longitudinal direction. It becomes light 10a.

基板1が基板移動方向(X方向)へ移動することにより、投光系から照射された検査光10aは、所定の幅で基板1を走査する。基板検査装置は、この走査領域における基板1の表裏両面の欠陥を検査する。すなわち、基板検査装置は、相対的に移動する基板1に対して、移動方向(X方向)と直交する方向(Y方向)が長手方向となるような長尺状の検査光10aを、移動方向(X方向)に沿って所定の入射角θで斜めに照射し、基板1から散乱される散乱光を受光することによって、基板を検査している。基板1の表面に傷や異物等の欠陥が存在しない場合は、基板1の表面に斜めに照射された検査光10aの一部は基板1の表面で反射し、表面反射光11となり、残りの検査光10aは基板1の内部を透過して基板1の裏面から射出する。   As the substrate 1 moves in the substrate moving direction (X direction), the inspection light 10a irradiated from the light projecting system scans the substrate 1 with a predetermined width. The substrate inspection apparatus inspects the front and back defects of the substrate 1 in this scanning region. In other words, the substrate inspection apparatus emits a long inspection light 10a such that the direction perpendicular to the movement direction (X direction) (Y direction) is the longitudinal direction with respect to the relatively moving substrate 1 in the movement direction. The substrate is inspected by irradiating obliquely at a predetermined incident angle θ along (X direction) and receiving scattered light scattered from the substrate 1. When there is no defect such as a scratch or a foreign substance on the surface of the substrate 1, a part of the inspection light 10a irradiated obliquely on the surface of the substrate 1 is reflected by the surface of the substrate 1 to become surface reflected light 11, and the remaining The inspection light 10 a passes through the inside of the substrate 1 and is emitted from the back surface of the substrate 1.

図4において、反射光検出系は、ミラー25、レンズ26、及び反射光用CCDラインセンサ27を含んで構成される。基板1の表面からの表面反射光11は、ミラー25を介してレンズ26に入射する。レンズ26は、基板1からの表面反射光11を集束させ、反射光用CCDラインセンサ27の受光面に結像させる。このとき、反射光用CCDラインセンサ27の受光面に結像される表面反射光11の位置は、光学系ユニット4aと基板1の表面との間の相対的な高さによって変化する。このような変化は、基板1の大型化に伴った反りや板厚の不均一性によって発生する。   In FIG. 4, the reflected light detection system includes a mirror 25, a lens 26, and a reflected light CCD line sensor 27. The surface reflected light 11 from the surface of the substrate 1 enters the lens 26 via the mirror 25. The lens 26 focuses the surface reflected light 11 from the substrate 1 and forms an image on the light receiving surface of the reflected light CCD line sensor 27. At this time, the position of the surface reflected light 11 imaged on the light receiving surface of the reflected light CCD line sensor 27 varies depending on the relative height between the optical system unit 4 a and the surface of the substrate 1. Such a change occurs due to warpage and non-uniformity of the plate thickness accompanying the increase in size of the substrate 1.

反射光用CCDラインセンサ27は、受光面にて受光する表面反射光11の強度に応じた検出信号を、焦点調節制御回路40へ出力する。焦点調節制御回路40は、CPU95からの指令に従って、反射光用CCDラインセンサ27の検出信号に基づき、基板1の表面からの表面反射光11が反射光用CCDラインセンサ27の受光面の同じ位置(基準位置)で受光されるように、焦点調節機構41を駆動して光学系ユニット4aを上下方向に移動する。焦点調節機構41は、パルスモータ42、ボールネジ43、ナット44及びナット取り付け具45を含んで構成される。パルスモータ42の回転軸には、ボールネジ43が取り付けられており、光学系ユニット4aの側面には、ナット取り付け具45を介してナット44が取り付けられている。焦点調節制御回路40からパルスモータ42へ駆動パルスを供給することにより、パルスモータ42が回転駆動されてボールネジ43が回転し、ナット44と共に光学系ユニット4aが上下方向に移動されて、光学系ユニット4aの焦点位置が調節制御される。   The reflected light CCD line sensor 27 outputs a detection signal corresponding to the intensity of the surface reflected light 11 received by the light receiving surface to the focus adjustment control circuit 40. In accordance with a command from the CPU 95, the focus adjustment control circuit 40, based on the detection signal of the reflected light CCD line sensor 27, the surface reflected light 11 from the surface of the substrate 1 is the same position on the light receiving surface of the reflected light CCD line sensor 27. The focus adjustment mechanism 41 is driven to move the optical system unit 4a in the vertical direction so that the light is received at (reference position). The focus adjustment mechanism 41 includes a pulse motor 42, a ball screw 43, a nut 44, and a nut attachment 45. A ball screw 43 is attached to the rotation shaft of the pulse motor 42, and a nut 44 is attached to the side surface of the optical system unit 4a via a nut attachment 45. By supplying a driving pulse from the focus adjustment control circuit 40 to the pulse motor 42, the pulse motor 42 is rotationally driven to rotate the ball screw 43, and the optical system unit 4a is moved in the vertical direction together with the nut 44. The focal position 4a is adjusted and controlled.

図5は、図4の受光光学系の概要を示す図である。図4では、検査光10aが基板1に照射され、基板1の表面における照射領域に存在する欠陥(異物等)によって散乱した散乱光を受光する受光光学系を示している。図4において、受光光学系は、空間フィルタ15、集光レンズ28、結像レンズ29、及びCCDラインセンサ30を含んで構成される。集光レンズ28は、基板1の表面又は裏面の傷や異物等の欠陥に照射された光の散乱光を集光する。結像レンズ29は、基板1の表面にて散乱した散乱光であって、集光レンズ28で集光された散乱光をCCDラインセンサ30の受光面にそれぞれ結像させる。CCDラインセンサ30は、受光面に受光した散乱光の強度に応じた検出信号をディジタル信号に変換して、信号処理回路50へ出力する。空間フィルタ15は、集光レンズ28に集光される散乱光であって、検査光10aの照射側の約半分を遮光するものである。空間フィルタ15は、図5に示すように、集光レンズ28の円形の半円に対応した半円状の開口を備えた遮光板で構成される。すなわち、空間フィルタ15は、集光レンズ28の受光領域を半円状の開口で形成されている。このような空間フィルタ15を集光レンズ28の受光面側に設けることによって、裏面の異物による散乱光を有効に除去することができる。   FIG. 5 is a diagram showing an outline of the light receiving optical system of FIG. FIG. 4 shows a light-receiving optical system that receives the scattered light that is irradiated with the inspection light 10 a on the substrate 1 and scattered by defects (foreign matter or the like) that exist in the irradiation region on the surface of the substrate 1. In FIG. 4, the light receiving optical system includes a spatial filter 15, a condenser lens 28, an imaging lens 29, and a CCD line sensor 30. The condensing lens 28 condenses the scattered light of the light irradiated on the surface 1 or the back surface of the substrate 1 and defects such as foreign matter. The imaging lens 29 is scattered light scattered on the surface of the substrate 1 and forms an image of the scattered light collected by the condenser lens 28 on the light receiving surface of the CCD line sensor 30. The CCD line sensor 30 converts a detection signal corresponding to the intensity of scattered light received by the light receiving surface into a digital signal and outputs it to the signal processing circuit 50. The spatial filter 15 is scattered light collected by the condenser lens 28 and shields about half of the irradiation side of the inspection light 10a. As shown in FIG. 5, the spatial filter 15 includes a light shielding plate having a semicircular opening corresponding to the circular semicircle of the condenser lens 28. That is, in the spatial filter 15, the light receiving region of the condenser lens 28 is formed with a semicircular opening. By providing such a spatial filter 15 on the light receiving surface side of the condenser lens 28, scattered light due to foreign matter on the back surface can be effectively removed.

図6は、この実施の形態に係る基板検査装置の受光系の概要を示す図である。この実施の形態に係る基板検査装置の受光系が図1のものと異なる点は、図4及び図5にも示したように、検査光10aの照射側の集光レンズ28の約半分の受光面に、基板1の表面からの散乱光を遮るための空間フィルタ(遮光板)15を設けた点にある。すなわち、空間フィルタ15は、検査光10aの照射側(+X方向)と反対側(−X方向)の約半分の受光領域に散乱光を通過させるための半円状の開口を備えた遮蔽板である。なお、図4及び図6では、説明の便宜上、受光系の受光側(集光レンズ28の前面)であって検査光10aの照射側(+X方向)の約半分の受光領域に散乱光の受光を遮るための遮蔽板15のみを示し、開口部及びその周囲の遮蔽板については図示を省略してある。   FIG. 6 is a diagram showing an outline of the light receiving system of the substrate inspection apparatus according to this embodiment. The light receiving system of the substrate inspection apparatus according to this embodiment is different from that of FIG. 1 as shown in FIGS. 4 and 5 and receives about half of the light received by the condenser lens 28 on the irradiation side of the inspection light 10a. This is in that a spatial filter (light shielding plate) 15 for shielding scattered light from the surface of the substrate 1 is provided on the surface. That is, the spatial filter 15 is a shielding plate having a semicircular opening for allowing scattered light to pass through approximately half of the light receiving region on the side opposite to the irradiation side (+ X direction) of the inspection light 10a (−X direction). is there. 4 and 6, for convenience of explanation, scattered light is received in the light receiving region of the light receiving system (front surface of the condensing lens 28) and about half the light receiving region on the irradiation side of the inspection light 10a (+ X direction). Only the shielding plate 15 for shielding the light is shown, and the illustration of the opening and the surrounding shielding plate is omitted.

図6に示すように、基板1の同じ走査位置の表面及び裏面に異物1a,1bが存在する場合、検査光10aは、基板1の表面の異物1aには照射されるが、基板1の裏面の異物1bには照射されない。すなわち、図6に示すように、検査光10aの通過範囲であって、基板1の表面に異物1aが存在する場合、その異物1aに検査光10aが照射され、そこからの散乱光がCCDラインセンサ30の視野範囲に取り込まれることになる。一方、基板1の裏面に異物1bが存在する場合、その異物1bには検査光10aが照射されないので、そこからの散乱光はCCDラインセンサ30に取り込まれることはない。   As shown in FIG. 6, when foreign matters 1 a and 1 b exist on the front and back surfaces of the same scanning position of the substrate 1, the inspection light 10 a is irradiated to the foreign matter 1 a on the front surface of the substrate 1, but the back surface of the substrate 1. The foreign matter 1b is not irradiated. That is, as shown in FIG. 6, when the foreign matter 1a is present on the surface of the substrate 1 in the passage range of the inspection light 10a, the foreign matter 1a is irradiated with the inspection light 10a, and the scattered light therefrom is converted into the CCD line. It is captured in the visual field range of the sensor 30. On the other hand, when the foreign matter 1 b exists on the back surface of the substrate 1, the inspection light 10 a is not irradiated on the foreign matter 1 b, so that scattered light from the foreign matter 1 b is not taken into the CCD line sensor 30.

また、基板1の裏面であって、検査光10aの通過範囲に、受光光学系の焦点位置よりも若干−X方向に離間した位置に、点線で示す異物1cが存在すると、それに検査光10aの一部が照射することになる。ところが、この実施の形態では、CCDラインセンサ30の視野範囲が空間フィルタ15によって遮られているため、異物1cからの散乱光はCCDラインセンサ30に取り込まれることはない。従って、この実施の形態の受光光学系によれば、基板1の表面の異物1aの検出と、基板1の裏面の異物1cの検出とを分離することができる。また、これらの異物1a,1cからの散乱光が同時に発生すること(基板の表裏両面における異物検出が互いに干渉すること)もなくなり、高精度の検査を行なうことができるようになる。   Further, if the foreign matter 1c indicated by the dotted line is present on the back surface of the substrate 1 and at a position slightly spaced in the −X direction from the focal position of the light receiving optical system in the passing range of the inspection light 10a, the inspection light 10a A part will be irradiated. However, in this embodiment, since the visual field range of the CCD line sensor 30 is blocked by the spatial filter 15, the scattered light from the foreign matter 1 c is not taken into the CCD line sensor 30. Therefore, according to the light receiving optical system of this embodiment, detection of the foreign matter 1a on the surface of the substrate 1 and detection of the foreign matter 1c on the back surface of the substrate 1 can be separated. Further, the scattered light from these foreign substances 1a and 1c is not generated at the same time (foreign substance detection on both the front and back surfaces of the substrate does not interfere with each other), and high-precision inspection can be performed.

図4において、光学系移動制御回路60は、CPU95からの指令に従って、図示しない駆動系に電力を供給し、光学系ユニット4aを基板移動方向(X方向)と直交する方向(Y方向)へ移動して、光学系ユニット4aの投光系からの所定の幅の検査光により走査される基板1の走査領域を基板毎に変更する。   In FIG. 4, the optical system movement control circuit 60 supplies power to a drive system (not shown) according to a command from the CPU 95, and moves the optical system unit 4a in a direction (Y direction) orthogonal to the substrate movement direction (X direction). Then, the scanning area of the substrate 1 scanned with the inspection light having a predetermined width from the light projecting system of the optical system unit 4a is changed for each substrate.

図4において、検査開始センサ51及び区間速度計測センサ52は、基板1の基板移動方向側の縁を検出し、その検出信号を信号処理回路50へ出力する。一方、図5において、信号処理回路50は、CCDラインセンサ30からのディジタル信号を処理して、走査領域の基板1の欠陥を、予め定めた大きさのランク別に検出し、検出した欠陥の走査領域内での基板移動方向(X方向)と直交する方向(Y方向)の位置を検出する。信号処理回路50は、また、検査開始センサ51及び区間速度計測センサ52からの検出信号を入力し、それぞれのセンサ間の検出経過時間に基づき、基板の搬送速度(移動速度)を検出し、それに基づいて欠陥の基板移動方向(X方向)の位置を補正して検出する。信号処理回路50は、検出した欠陥データを、CPU95へ出力する。   In FIG. 4, the inspection start sensor 51 and the section speed measurement sensor 52 detect the edge of the substrate 1 on the substrate moving direction side, and output the detection signal to the signal processing circuit 50. On the other hand, in FIG. 5, the signal processing circuit 50 processes the digital signal from the CCD line sensor 30 to detect defects of the substrate 1 in the scanning region for each rank of a predetermined size, and scans the detected defects. A position in a direction (Y direction) orthogonal to the substrate movement direction (X direction) in the region is detected. The signal processing circuit 50 also receives detection signals from the inspection start sensor 51 and the section speed measurement sensor 52, detects the substrate transport speed (movement speed) based on the detection elapsed time between the sensors, Based on this, the position of the defect in the substrate movement direction (X direction) is corrected and detected. The signal processing circuit 50 outputs the detected defect data to the CPU 95.

図4において、メモリ70は、CPU95の制御により、信号処理回路50が検出した走査領域の基板1の欠陥データを、走査領域毎に記憶する。通報装置80は、CPU95の制御により、各種通報を行う。入出力装置90は、ライン停止命令等を入力し、また、CPU95の制御により、欠陥データ及び判定結果等の出力等を行う。   In FIG. 4, the memory 70 stores defect data of the substrate 1 in the scanning region detected by the signal processing circuit 50 for each scanning region under the control of the CPU 95. The reporting device 80 makes various reports under the control of the CPU 95. The input / output device 90 inputs a line stop command and the like, and outputs defect data and determination results under the control of the CPU 95.

図7は、この実施の形態に係る基板検査装置の効果を説明する図である。図7は、標準粒子を裏面に塗布した基準サンプル基板を用いて裏面の異物を検出した場合の検査領域における検出レベル値のヒストグラムを示す図である。図7(A)は、図1に示すように空間フィルタのない状態において検出された基板1の裏面の異物のヒストグラムを示し、図7(B)は、図4〜図6に示すように、集光レンズ28の受光面側に空間フィルタ15を設けた状態において検出された基板1の裏面の異物のヒストグラムを示す。空間フィルタ15を集光レンズ18の受光面直前に設けることによって、基板1の裏面の異物による散乱光を効率的に除去することができるという効果を確認することができる。   FIG. 7 is a diagram for explaining the effect of the substrate inspection apparatus according to this embodiment. FIG. 7 is a diagram showing a histogram of detection level values in the inspection region when foreign matter on the back surface is detected using a reference sample substrate coated with standard particles on the back surface. FIG. 7A shows a histogram of foreign matter on the back surface of the substrate 1 detected without a spatial filter as shown in FIG. 1, and FIG. 7B shows a histogram of FIGS. The histogram of the foreign material of the back surface of the board | substrate 1 detected in the state which provided the spatial filter 15 in the light-receiving surface side of the condensing lens 28 is shown. By providing the spatial filter 15 immediately before the light receiving surface of the condenser lens 18, it is possible to confirm the effect that the scattered light due to the foreign matter on the back surface of the substrate 1 can be efficiently removed.

上述の実施の形態では、基板1の表面について検査する場合について説明したが、CCDラインセンサ30を用いて、基板1の表面を検査して後に、光学系ユニット4aの基板1からの高さを調節して基板1の裏面についても検査を行なうようにしてもよい。また、基板1の表裏両面に限らず、基板1の内部すなわち表裏両面の中間部分についても欠陥を検査するようにしてもよい。
また、上述の実施の形態では、空間フィルタ(遮蔽板)15を、集光レンズ28の前面に設ける場合について示したが、同様の効果を奏するように集光レンズ28と結像レンズ29との間、又は結像レンズ29の後などに空間フィルタ(遮蔽板)設けてもよい。
In the above-described embodiment, the case of inspecting the surface of the substrate 1 has been described. However, after the surface of the substrate 1 is inspected using the CCD line sensor 30, the height of the optical system unit 4a from the substrate 1 is determined. It is also possible to adjust and inspect the back surface of the substrate 1 as well. Further, not only the front and back surfaces of the substrate 1 but also the inside of the substrate 1, that is, the intermediate portion between the front and back surfaces may be inspected for defects.
Further, in the above-described embodiment, the case where the spatial filter (shielding plate) 15 is provided on the front surface of the condenser lens 28 has been described. However, the condensing lens 28 and the imaging lens 29 are provided with the same effect. A spatial filter (shielding plate) may be provided between or after the imaging lens 29.

1…基板、
10…ピン上下駆動部、
100…ガラス基板検査装置、
10a…検査光、
11…ピンY駆動部、
11…表面反射光、
12a,12b…リニアガイド、
13…リフタ上下基台、
14…リフタユニット基台、
15…リフタ上下基台、
15…空間フィルタ(遮蔽板)、
16…ボールベアリング、
18…集光レンズ、
1a,1b,1c…異物、
2…基台フレーム、
21…レーザ光源、
22…レンズ群、
23,25…ミラー、
26…レンズ、
27…反射光用CCDラインセンサ、
28…集光レンズ、
29…結像レンズ、
2A…ハーフミラー、
2a…検査ステージ、
3…光学部、
30…CCDラインセンサ、
40…焦点調節制御回路、
41…焦点調節機構、
42…パルスモータ、
43…ボールネジ、
44…ナット、
45…ナット取り付け具、
4a,4b…光学系ユニット、
5…光学部X駆動部、
50…信号処理回路、
51…検査開始センサ、
52…区間速度計測センサ、
60…光学系移動制御回路、
70…メモリ、
7a,7b…リニアガイド、
80…通報装置、
8a,8b…ガイド、
9…リフトピン、
90…入出力装置、
95…CPU
1 ... substrate,
10: Pin vertical drive unit,
100: Glass substrate inspection device,
10a: Inspection light,
11: Pin Y drive unit,
11 ... surface reflected light,
12a, 12b ... linear guide,
13 ... Lifter top / bottom base,
14 ... Lifter unit base,
15 ... Lifter top / bottom base,
15 ... Spatial filter (shielding plate),
16 ... Ball bearing,
18 ... Condensing lens,
1a, 1b, 1c ... foreign matter,
2 ... Base frame,
21 ... Laser light source,
22 ... Lens group,
23, 25 ... mirror,
26 ... Lens,
27 ... CCD line sensor for reflected light,
28 ... Condensing lens,
29 ... imaging lens,
2A ... half mirror,
2a ... Inspection stage,
3 Optical part,
30 ... CCD line sensor,
40. Focus adjustment control circuit,
41. Focus adjustment mechanism,
42 ... pulse motor,
43 ... Ball screw,
44 ... nuts,
45 ... Nut fitting,
4a, 4b ... optical system unit,
5 ... Optical part X drive part,
50. Signal processing circuit,
51. Inspection start sensor,
52 ... Section speed measurement sensor,
60: Optical system movement control circuit,
70 ... Memory,
7a, 7b ... linear guide,
80 ... Reporting device,
8a, 8b ... guide,
9 ... Lift pin,
90 ... I / O device,
95 ... CPU

Claims (4)

相対的に移動する基板に対して、前記移動方向と直交する方向が長手方向となるような長尺状の検査光を、投光系から前記移動方向に沿って斜めに照射し、前記基板から散乱される散乱光を受光系にて受光することによって、前記基板を検査する基板検査方法であって、前記受光系の受光側であって前記検査光の照射側の約半分の受光領域に前記散乱光の受光を遮るための空間フィルタ手段を設けたことを特徴とする基板検査方法。   A long inspection light whose longitudinal direction is perpendicular to the moving direction is irradiated obliquely from the light projecting system along the moving direction with respect to the relatively moving substrate. A substrate inspection method for inspecting the substrate by receiving scattered light scattered by a light receiving system, wherein the light receiving side of the light receiving system is in a light receiving region that is approximately half of the irradiation side of the inspection light. A substrate inspection method comprising a spatial filter means for blocking scattered light reception. 請求項1に記載の基板検査方法において、前記空間フィルタ手段を、前記受光系の前面に、前記検査光の照射側と反対側の約半分の受光領域に前記散乱光を通過させるための開口を備えた遮蔽板で構成したことを特徴とする基板検査方法。   2. The substrate inspection method according to claim 1, wherein the spatial filter means has an opening for allowing the scattered light to pass through a light receiving region on a front side of the light receiving system opposite to the irradiation side of the inspection light. A substrate inspection method comprising a shielding plate provided. 相対的に移動する基板に対して、前記移動方向と直交する方向が長手方向となるような長尺状の検査光を、前記移動方向に沿って斜めに照射する投光系手段と、
前記基板から散乱される散乱光を受光する受光系手段と、
前記受光系手段の受光側であって前記検査光の照射側の約半分の受光領域に前記散乱光の受光を遮るように設けられた空間フィルタ手段と
前記受光系手段からの信号に基づいて前記基板を検査する検査手段と
を備えたことを特徴とする基板検査装置。
Projection system means for irradiating a long-shaped inspection light obliquely along the moving direction such that a direction perpendicular to the moving direction is a longitudinal direction with respect to a relatively moving substrate;
A light receiving system means for receiving scattered light scattered from the substrate;
Based on a signal from the light receiving system means and a spatial filter means provided on the light receiving side of the light receiving system means so as to block light reception of the scattered light in a light receiving region about half of the irradiation side of the inspection light A substrate inspection apparatus comprising: inspection means for inspecting a substrate.
請求項3に記載の基板検査装置において、前記空間フィルタ手段を、前記受光系手段の前面に、前記検査光の照射側と反対側の約半分の受光領域に前記散乱光を通過させるための開口を備えた遮蔽板で構成したことを特徴とする基板検査装置。   4. The substrate inspection apparatus according to claim 3, wherein the spatial filter means has an opening for allowing the scattered light to pass through a front surface of the light receiving system means to a light receiving region on a side opposite to the irradiation side of the inspection light. A substrate inspection apparatus comprising a shielding plate provided with
JP2012185881A 2012-08-24 2012-08-24 Substrate inspection method and device Pending JP2014044094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185881A JP2014044094A (en) 2012-08-24 2012-08-24 Substrate inspection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185881A JP2014044094A (en) 2012-08-24 2012-08-24 Substrate inspection method and device

Publications (1)

Publication Number Publication Date
JP2014044094A true JP2014044094A (en) 2014-03-13

Family

ID=50395460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185881A Pending JP2014044094A (en) 2012-08-24 2012-08-24 Substrate inspection method and device

Country Status (1)

Country Link
JP (1) JP2014044094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199206A1 (en) * 2019-04-04 2020-10-08 合刃科技(深圳)有限公司 Transparent or semi-transparent material microscopic-defect detection system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04277643A (en) * 1991-03-06 1992-10-02 Nikon Corp Optical inspection apparatus for transparent substrate
JPH0590354U (en) * 1992-05-07 1993-12-10 長瀬産業株式会社 Glass surface inspection machine
JPH10160683A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Foreign object inspection method and device
JP2005098773A (en) * 2003-09-24 2005-04-14 Okamoto Machine Tool Works Ltd Surface inspection apparatus for inspecting presence or absence of cracks in semiconductor substrate
JP2005156416A (en) * 2003-11-27 2005-06-16 Hitachi High-Tech Electronics Engineering Co Ltd Method and apparatus for inspecting glass substrate
JP2010169453A (en) * 2009-01-20 2010-08-05 Yamanashi Gijutsu Kobo:Kk Device and method for inspecting foreign matter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04277643A (en) * 1991-03-06 1992-10-02 Nikon Corp Optical inspection apparatus for transparent substrate
JPH0590354U (en) * 1992-05-07 1993-12-10 長瀬産業株式会社 Glass surface inspection machine
JPH10160683A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Foreign object inspection method and device
JP2005098773A (en) * 2003-09-24 2005-04-14 Okamoto Machine Tool Works Ltd Surface inspection apparatus for inspecting presence or absence of cracks in semiconductor substrate
JP2005156416A (en) * 2003-11-27 2005-06-16 Hitachi High-Tech Electronics Engineering Co Ltd Method and apparatus for inspecting glass substrate
JP2010169453A (en) * 2009-01-20 2010-08-05 Yamanashi Gijutsu Kobo:Kk Device and method for inspecting foreign matter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199206A1 (en) * 2019-04-04 2020-10-08 合刃科技(深圳)有限公司 Transparent or semi-transparent material microscopic-defect detection system and method

Similar Documents

Publication Publication Date Title
JP5190405B2 (en) Glass surface foreign matter inspection apparatus and method
KR100710721B1 (en) An apparatus and method for inspecting mark defects and method for manufacturing a photomask
JP5078583B2 (en) Macro inspection device and macro inspection method
JP2008513742A (en) Optical inspection of planar media using direct image techniques.
JP2007256106A (en) Display panel inspection device and display panel inspection method using the same
JP5322543B2 (en) Substrate inspection apparatus and substrate inspection method
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
KR20090033031A (en) Substrate surface inspection apparatus
JP2012242268A (en) Inspection device and inspection method
JP2012007993A (en) Defect inspection device for plate-like transparent body and method thereof
JP4362335B2 (en) Inspection device
WO2015174114A1 (en) Substrate inspection device
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2013044578A (en) Substrate inspection method and device
JP5178281B2 (en) Substrate inspection apparatus and substrate inspection method
CN212207144U (en) Apparatus for detecting surface defects on glass sheets
JP2014044094A (en) Substrate inspection method and device
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP2012163370A (en) In-line substrate inspection method and device
JP2011226939A (en) Method and device for inspecting substrate
JP2007024733A (en) Substrate inspection device and substrate inspection method
KR101138041B1 (en) Method of correcting in-line substrate inspection apparatus and in-line substrate inspection apparatus
JP2007278784A (en) Defect detection method and device of transparent body
JP2013079902A (en) Method and device for inspecting defect of glass substrate, and defect inspection system of glass substrate
JP2014016325A (en) Method and apparatus for inspecting substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160927