JP2005098486A - Shaft member for hydrodynamic bearing apparatus - Google Patents

Shaft member for hydrodynamic bearing apparatus Download PDF

Info

Publication number
JP2005098486A
JP2005098486A JP2004100258A JP2004100258A JP2005098486A JP 2005098486 A JP2005098486 A JP 2005098486A JP 2004100258 A JP2004100258 A JP 2004100258A JP 2004100258 A JP2004100258 A JP 2004100258A JP 2005098486 A JP2005098486 A JP 2005098486A
Authority
JP
Japan
Prior art keywords
shaft member
bearing
dynamic pressure
flange portion
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004100258A
Other languages
Japanese (ja)
Inventor
Katsuo Shibahara
克夫 柴原
Ryoichi Nakajima
良一 中島
Kenji Ito
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004100258A priority Critical patent/JP2005098486A/en
Publication of JP2005098486A publication Critical patent/JP2005098486A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To furthermore reduce the cost of a shaft member for a hydrodynamic bearing apparatus. <P>SOLUTION: The outside peripheral surface of the journal portion 2a of the shaft member 2 is arranged so as to face to the inside peripheral surface of a bearing sleeve across a radial bearing clearance. In addition, both end faces 2b1, 2b2 of a flange portion 2b face to one end face of the bearing sleeve and the bottom surface of a housing across thrust bearing clearances respectively. The shaft member 2 is supported, in a non-contact state, by the hydrodynamic pressure produced in the respective bearing clearances. The core portion of the journal portion 2a and the flange portion 2b of the shaft member 2 are made of a resinoid material 21. The outside periphery of the shaft member 2 is made of a metallic material 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、動圧軸受装置に用いられる軸部材に関する。ここでの動圧軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えば軸流ファンなどの小型モータ用の軸受装置として好適である。   The present invention relates to a shaft member used in a hydrodynamic bearing device. The hydrodynamic bearing device here is an information device, for example, a magnetic disk device such as HDD or FDD, an optical disk device such as CD-ROM, CD-R / RW, or DVD-ROM / RAM, or a magneto-optical disk such as MD or MO. It is suitable as a bearing device for a spindle motor such as a device, a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or a small motor such as an electric device such as an axial fan.

動圧軸受は、軸受隙間で生じた流体動圧により軸部材を非接触状態で支持する軸受である。この動圧軸受を使用した軸受装置(動圧軸受装置)は、ラジアル軸受部を動圧軸受で構成すると共に、スラスト軸受部をピボット軸受で構成する接触タイプと、ラジアル軸受部およびスラスト軸受部の双方を動圧軸受で構成する非接触タイプとに大別され、個々の用途に応じて適宜使い分けられている。   A dynamic pressure bearing is a bearing that supports a shaft member in a non-contact state by a fluid dynamic pressure generated in a bearing gap. A bearing device (dynamic pressure bearing device) using this dynamic pressure bearing includes a contact type in which a radial bearing portion is constituted by a dynamic pressure bearing and a thrust bearing portion is constituted by a pivot bearing, and a radial bearing portion and a thrust bearing portion. They are broadly classified into non-contact types in which both are constituted by dynamic pressure bearings, and are properly used according to individual applications.

このうち、非接触タイプの動圧軸受装置の一例として、本出願人が提案した特開2000−291648号公報記載のものが知られている。これは、低コスト化および高精度化の観点から、軸部材を構成する軸部とフランジ部とを一体構成したものである。
特開2000−291648号公報
Among these, as an example of a non-contact type hydrodynamic bearing device, one disclosed in Japanese Patent Application Laid-Open No. 2000-291648 proposed by the present applicant is known. In this configuration, the shaft portion and the flange portion constituting the shaft member are integrally configured from the viewpoint of cost reduction and high accuracy.
JP 2000-291648 A

しかしながら、近年の低コスト化要求はさらに厳しさを増す傾向にあり、この要求に応えるためにも、動圧軸受装置の個々の構成部品でさらなる低コスト化が求められる。   However, demands for cost reduction in recent years tend to be more severe, and in order to meet this demand, further cost reduction is required for each component of the hydrodynamic bearing device.

本発明は、かかる実情に鑑み、非接触タイプの動圧軸受装置における軸部材のさらなる低コスト化を図ることを主な目的とする。   In view of such circumstances, the present invention mainly aims to further reduce the cost of a shaft member in a non-contact type hydrodynamic bearing device.

この目的達成手段として、本発明は、軸部と、該軸部の外径側に張り出したフランジ部とを備えた動圧軸受装置用軸部材において、軸部の外周を中空円筒状の金属材で形成すると共に、軸部の芯部およびフランジ部を樹脂材で形成したものである。本発明の軸部材は、動圧軸受装置において、ラジアル軸受部のラジアル軸受隙間に生じる流体の動圧作用でラジアル方向に非接触支持され、かつ、スラスト軸受部のスラスト軸受隙間に生じる流体の動圧作用でスラスト方向に非接触支持される。   As a means for achieving this object, the present invention provides a shaft member for a hydrodynamic bearing device having a shaft portion and a flange portion projecting to the outer diameter side of the shaft portion. And the core part and the flange part of the shaft part are made of a resin material. In the hydrodynamic bearing device, the shaft member of the present invention is supported in a non-contact manner in the radial direction by the hydrodynamic action of the fluid generated in the radial bearing gap of the radial bearing portion, and the fluid dynamics generated in the thrust bearing gap of the thrust bearing portion. Non-contact support in the thrust direction by pressure action.

軸部の外周を金属材で形成することにより、軸部材に求められる強度や剛性を確保できる他、焼結金属等からなる金属製軸受スリーブに対する軸部の耐摩耗性を確保することができる。その一方、軸部材の多くの部分(軸部の芯部およびフランジ部)が樹脂材で形成されているので、軸部材の軽量化を図ることができ、これにより軸部材の慣性が減じられるので、軸部材が他の軸受構成部材(軸受スリーブやハウジング底部等)と衝突する際の衝撃荷重を減じ、衝突による傷の発生や損傷を回避することが可能となる。また、フランジ部が樹脂製であり、摺動摩擦が小さいので、フランジ部と上記他の軸受構成部材との間で摩擦係数を減じることができる。   By forming the outer periphery of the shaft portion with a metal material, the strength and rigidity required for the shaft member can be secured, and the wear resistance of the shaft portion with respect to a metal bearing sleeve made of sintered metal or the like can be secured. On the other hand, since many portions of the shaft member (core portion and flange portion of the shaft portion) are formed of a resin material, the weight of the shaft member can be reduced, thereby reducing the inertia of the shaft member. The impact load when the shaft member collides with other bearing constituent members (bearing sleeve, housing bottom, etc.) can be reduced, and the occurrence of damage and damage due to the collision can be avoided. Further, since the flange portion is made of resin and the sliding friction is small, the friction coefficient can be reduced between the flange portion and the other bearing constituent member.

一般に非接触タイプの動圧軸受では、高温時に流体(油等)の粘度が低下するため、特にスラスト方向での軸受剛性の低下が問題となる。この場合、上述のように、フランジ部が樹脂材で形成されていれば、通常はフランジ部の端面と対向する相手側部材の面(軸受スリーブの端面、ハウジングの内底面等)が金属製であるから、金属よりも大きな線膨張係数(特に軸方向の線膨張係数)を有する樹脂製フランジ部の軸方向の熱膨張によってスラスト軸受隙間が小さくなり、この結果、高温時におけるスラスト方向の軸受剛性の低下を抑制することが可能となる。反対に、低温時には、流体の粘度上昇によりモータトルクが増大するが、フランジ部を樹脂材で形成すれば、軸方向の熱膨張差によってスラスト軸受隙間が大きくなるので、低温時におけるモータトルクの上昇を抑制することが可能となる。   In general, in a non-contact type dynamic pressure bearing, the viscosity of a fluid (oil or the like) decreases at a high temperature, so that a decrease in bearing rigidity particularly in the thrust direction becomes a problem. In this case, as described above, if the flange portion is formed of a resin material, the surface of the mating member (the end surface of the bearing sleeve, the inner bottom surface of the housing, etc.) facing the end surface of the flange portion is usually made of metal. As a result, the axial bearing thermal expansion of the resin flange portion with a larger linear expansion coefficient than that of the metal (particularly the axial linear expansion coefficient) reduces the thrust bearing gap, resulting in a thrust bearing stiffness in the thrust direction at high temperatures. Can be suppressed. On the other hand, at low temperatures, the motor torque increases due to an increase in the viscosity of the fluid. However, if the flange part is made of a resin material, the axial bearing differential increases the thrust bearing gap, so the motor torque increases at low temperatures. Can be suppressed.

この軸部材は、金属材をインサート部品とする樹脂の型成形で形成することができる。このように軸部材をインサート成形(アウトサート成形も含む:以下同じ)すれば、型精度を高め、かつ、型内でインサート部品としての金属材を精度よく位置決めするだけで、高精度の軸部材を低コストに量産可能となる。特に非接触タイプの動圧軸受装置では、軸部とフランジ部の直角度をはじめ、軸部材に高い寸法精度が求められるが、インサート成形であれば、この種の要求にも十分に対応することができる。   The shaft member can be formed by resin molding using a metal material as an insert part. If the shaft member is insert-molded in this way (including outsert molding: the same applies hereinafter), the mold accuracy can be improved and the metal material as the insert part can be positioned accurately within the mold. Can be mass-produced at low cost. In particular, in non-contact type hydrodynamic bearing devices, high dimensional accuracy is required for shaft members, including the perpendicularity of the shaft and flange, but this type of request must be fully met with insert molding. Can do.

軸部材のうち、フランジ部の少なくとも一方の端面に複数の動圧溝を設けるのが望ましい。この場合、動圧溝は、成形型に動圧溝形状に対応した溝型を形成し、この成形型に溶融樹脂を充填して硬化させ、溝型形状を転写することによって成形することが可能となり、精度の良い動圧溝が低コストに成形可能となる。この時、動圧溝は、フランジ部の型成形と同時に成形することができるので、フランジ部の成形と動圧溝の成形とを別工程で行う場合、例えば金属製フランジの鍛造成形後、その両端面に動圧溝をプレス成形する場合に比べ、工程数を削減して低コスト化を図ることができる。   Of the shaft member, it is desirable to provide a plurality of dynamic pressure grooves on at least one end face of the flange portion. In this case, the dynamic pressure groove can be formed by forming a groove mold corresponding to the dynamic pressure groove shape in the mold, filling the mold with a molten resin and curing it, and then transferring the groove mold shape. Thus, a precise dynamic pressure groove can be formed at low cost. At this time, the dynamic pressure groove can be formed simultaneously with the molding of the flange portion. Therefore, when the molding of the flange portion and the shaping of the dynamic pressure groove are performed in separate processes, for example, after forging the metal flange, Compared with the case where dynamic pressure grooves are press-formed on both end faces, the number of steps can be reduced and the cost can be reduced.

以上に述べた軸部材の反フランジ部側の端部に、他部材とねじ締結するためのねじ部を形成することにより、軸部材の一端部に設けられたフランジ部と反対側の端部に、他部材(例えばディスクを押えるキャップ等)を精度良く確実に固定することが可能となる。この場合、ねじ部を、金属材の端部内周に形成すれば、他部材を金属材とねじ締結することができ、締結強度が高まる。   By forming a screw part for screw fastening with other members at the end of the shaft member described above on the side opposite to the flange, the end on the side opposite to the flange provided at one end of the shaft member is formed. It becomes possible to fix other members (for example, a cap for pressing the disc, etc.) accurately and reliably. In this case, if the screw portion is formed on the inner periphery of the end portion of the metal material, the other member can be screw-fastened with the metal material, and the fastening strength is increased.

本発明によれば、軽量の軸部材が提供されるので、輸送時等における軸部材と他部材との衝突による衝撃を緩和し、衝撃荷重による傷の発生等を防止することができる。また、高温時におけるスラスト方向の軸受剛性を確保すると共に、低温時におけるモータトルクの上昇を抑制することもできる。   According to the present invention, since a lightweight shaft member is provided, the impact caused by the collision between the shaft member and another member during transportation or the like can be mitigated, and the occurrence of scratches due to the impact load can be prevented. Further, it is possible to secure the bearing rigidity in the thrust direction at high temperatures and to suppress an increase in motor torque at low temperatures.

以下、本発明の実施形態を図1〜図6に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図3は、この実施形態にかかる動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを備えている。ステータ4はケーシング6の外周に取付けられ、ロータ5はディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ケーシング6の内周に接着または圧入で固定される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータ4とロータ5との間の励磁力でロータ5が回転し、それによってディスクハブ3および軸部材2が一体となって回転する。   FIG. 3 shows a configuration example of a spindle motor for information equipment in which the hydrodynamic bearing device 1 according to this embodiment is incorporated. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction. A motor stator 4 and a motor rotor 5 are provided to face each other through a gap. The stator 4 is attached to the outer periphery of the casing 6, and the rotor 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the casing 6 by adhesion or press fitting. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor 5 is rotated by the exciting force between the stator 4 and the rotor 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図4は、動圧軸受装置1の一実施形態を示している。この動圧軸受装置1は、一端に開口部7a、他端に底部7cを有する有底円筒状のハウジング7と、ハウジング7の内周面に固定された円筒状の軸受スリーブ8と、軸部2aおよびフランジ部2bからなる軸部材2と、ハウジング7の開口部7aに固定されたシール部材10とを主要な部材として構成される。尚、以下では、説明の便宜上、ハウジング7の開口部7a側を上方向、ハウジング7の底部7c側を下方向として説明を進める。   FIG. 4 shows an embodiment of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a bottomed cylindrical housing 7 having an opening 7a at one end and a bottom 7c at the other end, a cylindrical bearing sleeve 8 fixed to the inner peripheral surface of the housing 7, and a shaft portion. The shaft member 2 composed of 2a and the flange portion 2b and the seal member 10 fixed to the opening 7a of the housing 7 are configured as main members. In the following description, for convenience of explanation, the description will proceed with the opening 7a side of the housing 7 as the upward direction and the bottom 7c side of the housing 7 as the downward direction.

ハウジング7は、例えば真ちゅう等の軟質金属材で形成され、円筒状の側部7bと円板状の底部7cとを別体構造として備えている。ハウジング7の内周面7dの下端には、他所よりも大径に形成した大径部7eが形成され、この大径部7eに底部7cとなる蓋状部材が例えば加締め、接着、あるいは圧入等の手段で固定されている。なお、ハウジング7の側部7bと底部7cは一体構造とすることもできる。   The housing 7 is formed of a soft metal material such as brass, for example, and includes a cylindrical side portion 7b and a disc-shaped bottom portion 7c as separate structures. At the lower end of the inner peripheral surface 7d of the housing 7, a large-diameter portion 7e having a larger diameter than other places is formed. It is fixed by means such as. In addition, the side part 7b and the bottom part 7c of the housing 7 can also be made into an integral structure.

軸受スリーブ8は、焼結金属、より具体的には油を含浸させた含油焼結金属で形成される。軸受スリーブ8の内周面8aには、動圧を発生するためのラジアル軸受面となる上下2つの動圧溝領域が軸方向に離隔して設けられている。   The bearing sleeve 8 is formed of a sintered metal, more specifically, an oil-containing sintered metal impregnated with oil. On the inner peripheral surface 8a of the bearing sleeve 8, two upper and lower dynamic pressure groove regions serving as radial bearing surfaces for generating dynamic pressure are provided in the axial direction.

図5に示すように、上方のラジアル軸受面はヘリングボーン形状の複数の動圧溝8a1,8a2を備える。このラジアル軸受面において、図面上方側の動圧溝8a1の軸方向長さは、これと反対方向に傾斜した図面下方側の動圧溝8a2よりも大きく、軸方向非対称形状になっている。下方のラジアル軸受面も、同様にヘリングボーン形状の複数の動圧溝8a3,8a4を備え、軸方向の一方に傾斜した複数の動圧溝8a3と、軸方向の他方に傾斜した複数の動圧溝8a4とが軸方向に離隔して形成されている。但し、この実施形態では、上方のラジアル軸受面の動圧溝8a1,8a2と異なり、両動圧溝8a3,8a4の軸方向長さは等しく、軸方向対称形状になっている。上方のラジアル軸受面の軸方向長さ(動圧溝8a1上端と動圧溝8a2下端との間の距離)は、下方のラジアル軸受面の軸方向長さ(動圧溝8a3上端と動圧溝8a4下端との間の距離)よりも大きい。   As shown in FIG. 5, the upper radial bearing surface includes a plurality of herringbone-shaped dynamic pressure grooves 8a1 and 8a2. In this radial bearing surface, the axial length of the dynamic pressure groove 8a1 on the upper side of the drawing is larger than the dynamic pressure groove 8a2 on the lower side of the drawing inclined in the opposite direction, and has an axially asymmetric shape. Similarly, the lower radial bearing surface also includes a plurality of herringbone-shaped dynamic pressure grooves 8a3 and 8a4, a plurality of dynamic pressure grooves 8a3 inclined in one of the axial directions, and a plurality of dynamic pressures inclined in the other of the axial directions. A groove 8a4 is formed apart in the axial direction. However, in this embodiment, unlike the dynamic pressure grooves 8a1 and 8a2 on the upper radial bearing surface, the axial lengths of both dynamic pressure grooves 8a3 and 8a4 are equal and have an axially symmetrical shape. The axial length of the upper radial bearing surface (the distance between the upper end of the dynamic pressure groove 8a1 and the lower end of the dynamic pressure groove 8a2) is the axial length of the lower radial bearing surface (the upper end of the dynamic pressure groove 8a3 and the dynamic pressure groove). 8a4 lower end distance).

軸受スリーブ8内周の上下のラジアル軸受面と、これに対向する軸部2aの外周面との間にはラジアル軸受隙間9a,9bが形成される。このラジアル軸受隙間9a,9bは、それぞれ上側がシール部材10を介して外気に開放され、下側が外気に対して遮断されている。   Radial bearing gaps 9a and 9b are formed between the upper and lower radial bearing surfaces on the inner periphery of the bearing sleeve 8 and the outer peripheral surface of the shaft portion 2a facing the upper and lower radial bearing surfaces. Each of the radial bearing gaps 9a and 9b has an upper side opened to the outside air through the seal member 10, and a lower side blocked from the outside air.

一般に、へリングボーン形状のように軸方向に対して傾斜した形状の動圧溝では、軸受の運転中に軸方向への油の引き込み作用が生じる。従って、本実施形態においても動圧溝8a1〜8a4は油の引き込み部となり、この引き込み部8a1〜8a4によってラジアル軸受隙間9a,9bに引き込まれた油は、動圧溝8a1と8a2の間、および動圧溝8a3と8a4の間の平滑部n1,n2周辺に集められ、円周方向に連続した油膜を形成する。   In general, in a dynamic pressure groove having a shape inclined with respect to the axial direction, such as a herringbone shape, an oil drawing action in the axial direction occurs during operation of the bearing. Therefore, also in this embodiment, the dynamic pressure grooves 8a1 to 8a4 serve as oil drawing portions, and the oil drawn into the radial bearing gaps 9a and 9b by the drawing portions 8a1 to 8a4 is between the dynamic pressure grooves 8a1 and 8a2. An oil film is formed around the smooth portions n1 and n2 between the dynamic pressure grooves 8a3 and 8a4 and is continuous in the circumferential direction.

この際、上側のラジアル軸受面の非対称性、および上下のラジアル軸受面の軸方向長さの相違から、軸部2aの外周面と軸受スリーブ8の内周面8aとの間の隙間に満たされた油は、全体として下向きに押し込まれる。下向きに押し込まれた油を上方に戻すため、軸受スリーブ8の外周面8dには、その両端面8b,8cに開口した循環溝(図示省略)が形成されている。この循環溝はハウジングの内周面7dに形成することもできる。   At this time, due to the asymmetry of the upper radial bearing surface and the difference in the axial length of the upper and lower radial bearing surfaces, the gap between the outer peripheral surface of the shaft portion 2a and the inner peripheral surface 8a of the bearing sleeve 8 is filled. The oil is pushed downward as a whole. In order to return the oil pushed downward to the upper side, circulation grooves (not shown) are formed in the outer peripheral surface 8d of the bearing sleeve 8 so as to open at both end surfaces 8b and 8c. This circulation groove can also be formed in the inner peripheral surface 7d of the housing.

なお、各動圧溝領域における動圧溝形状は、各動圧溝8a1〜8a4が軸方向に対して傾斜した形状であれば足りる。これに該当する動圧溝形状としては、図示のようなヘリングボーン形の他、スパイラル形に配列したものも考えられる。   In addition, the dynamic pressure groove shape in each dynamic pressure groove region is sufficient if each of the dynamic pressure grooves 8a1 to 8a4 is inclined with respect to the axial direction. As the dynamic pressure groove shape corresponding to this, in addition to a herringbone shape as shown in the figure, a spiral shape may be considered.

図4に示すように、シール手段としてのシール部材10は環状のもので、ハウジング7の開口部7aの内周面に圧入、接着等の手段で固定される。この実施形態において、シール部材10の内周面は円筒状に形成され、シール部材10の下側端面10bは軸受スリーブ8の上側端面8bと当接している。   As shown in FIG. 4, the sealing member 10 as a sealing means is annular, and is fixed to the inner peripheral surface of the opening 7 a of the housing 7 by means such as press fitting and adhesion. In this embodiment, the inner peripheral surface of the seal member 10 is formed in a cylindrical shape, and the lower end surface 10 b of the seal member 10 is in contact with the upper end surface 8 b of the bearing sleeve 8.

シール部材10の内周面に対向する軸部2aの外周面にはテーパ面が形成されており、このテーパ面とシール部材10の内周面との間には、ハウジング7の上方に向かって漸次拡大するテーパ形状のシール空間Sが形成される。シール部材10で密封されたハウジング7の内部空間には、潤滑油が注油されており、ハウジング内の各隙間、すなわち軸部2aの外周面と軸受スリーブ8の内周面8aとの間の隙間(ラジアル軸受隙間9a,9bを含む)、軸受スリーブ8の下側端面8cとフランジ部2bの上側端面2b1との間の隙間、フランジ部の下側端面2b2とハウジング7の内底面7c1(ハウジング底面)との間の隙間は、潤滑油で満たされている。潤滑油の油面はシール空間S内にある。   A tapered surface is formed on the outer peripheral surface of the shaft portion 2 a facing the inner peripheral surface of the seal member 10. The taper surface and the inner peripheral surface of the seal member 10 are directed upward of the housing 7. A taper-shaped seal space S that gradually expands is formed. Lubricating oil is injected into the internal space of the housing 7 sealed by the seal member 10, and each clearance in the housing, that is, a clearance between the outer peripheral surface of the shaft portion 2 a and the inner peripheral surface 8 a of the bearing sleeve 8. (Including radial bearing gaps 9a and 9b), a gap between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, a lower end surface 2b2 of the flange portion and the inner bottom surface 7c1 of the housing 7 (housing bottom surface) ) Is filled with lubricating oil. The oil level of the lubricating oil is in the seal space S.

軸部材2の軸部2aは軸受スリーブ8の内周面8aに挿入され、フランジ部2bは軸受スリーブ8の下側端面8cとハウジング7の内底面7c1との間の空間部に収容される。軸受スリーブ8の内周面8aの上下2箇所のラジアル軸受面は、それぞれ軸部2aの外周面とラジアル軸受隙間9a,9bを介して対向し、第一ラジアル軸受部R1および第二ラジアル軸受部R2を構成する。   The shaft portion 2 a of the shaft member 2 is inserted into the inner peripheral surface 8 a of the bearing sleeve 8, and the flange portion 2 b is accommodated in a space portion between the lower end surface 8 c of the bearing sleeve 8 and the inner bottom surface 7 c 1 of the housing 7. Two radial bearing surfaces on the upper and lower sides of the inner circumferential surface 8a of the bearing sleeve 8 are opposed to the outer circumferential surface of the shaft portion 2a via radial bearing gaps 9a and 9b, respectively, and the first radial bearing portion R1 and the second radial bearing portion. R2 is configured.

図1に示すように、軸部材2は樹脂材21と金属材22の複合構造をなし、そのうち、軸部2aの芯部とフランジ部2bの全体とは樹脂材21で一体に成形され、軸部2aの外周はその全長にわたって中空円筒状の金属材(例えばステンレス鋼)22で被覆されている。樹脂材21としては、66ナイロン、LCP、PES等が使用可能であり、必要に応じてこれら樹脂にガラス繊維等の充填材が配合される。また、金属材22としては、耐摩耗性に優れた例えばステンレス鋼等が使用可能である。   As shown in FIG. 1, the shaft member 2 has a composite structure of a resin material 21 and a metal material 22, of which the core portion of the shaft portion 2 a and the entire flange portion 2 b are integrally formed with the resin material 21. The outer periphery of the portion 2a is covered with a hollow cylindrical metal material (for example, stainless steel) 22 over its entire length. As the resin material 21, 66 nylon, LCP, PES or the like can be used, and a filler such as glass fiber is blended with these resins as necessary. Moreover, as the metal material 22, for example, stainless steel having excellent wear resistance can be used.

樹脂材21と金属材22の分離防止のため、軸部材2の軸部2aの下端(図面左方)では、金属材22の端部がフランジ部2bに埋め込まれ、その上端では、金属材22と樹脂材21とが係合部を介して軸方向で係合状態にある。図示例では、この係合部として、上方側を拡径させたテーパ面22bで互いに係合させた場合を例示している。金属材22の回り止めのため、フランジ部2bに埋め込まれた金属材22の外周あるいは端縁に、ローレット加工等によりフランジ部2bと円周方向で係合可能の凹凸係合部を設けるのが望ましい。   In order to prevent separation of the resin material 21 and the metal material 22, at the lower end (left side of the drawing) of the shaft portion 2a of the shaft member 2, the end portion of the metal material 22 is embedded in the flange portion 2b. And the resin material 21 are in the engaged state in the axial direction via the engaging portion. In the example of illustration, the case where it is mutually engaged by the taper surface 22b which expanded the upper side as this engaging part is illustrated. In order to prevent the metal material 22 from rotating, an uneven engagement portion that can be engaged with the flange portion 2b in the circumferential direction by knurling or the like is provided on the outer periphery or the edge of the metal material 22 embedded in the flange portion 2b. desirable.

この軸部材2は、例えば金属材22をインサート部品とする樹脂の射出成形により(インサート成形により)製作される。軸部材2には、非接触タイプの軸受装置の機能上、軸部2aとフランジ部2bの直角度やフランジ部両端面2b1,2b2の平行度等をはじめ、高い寸法精度が求められるが、インサート成形であれば、型精度を高め、かつ型内でインサート品としての金属材22を精度よく位置決めすることにより、これらの要求精度を確保しつつ低コストに量産可能となる。また、軸部2aとフランジ部2bの組み付けがこれらの成形と同時に完了するので、軸部とフランジ部を金属製の別部品とし、これらを後工程で圧入等により一体化する場合に比べ、工程数を減じてさらなる低コスト化を図るこ
ともできる。
The shaft member 2 is manufactured by resin injection molding (by insert molding) using, for example, a metal material 22 as an insert part. The shaft member 2 is required to have high dimensional accuracy including the perpendicularity of the shaft portion 2a and the flange portion 2b and the parallelism of both end surfaces 2b1 and 2b2 of the flange portion due to the function of the non-contact type bearing device. If it is shaping | molding, it will become possible to mass-produce at low cost, ensuring the required precision by raising the precision of a mold | die and positioning the metal material 22 as an insert goods accurately in a mold. In addition, since the assembly of the shaft portion 2a and the flange portion 2b is completed simultaneously with these moldings, the shaft portion and the flange portion are made of separate parts made of metal, and compared to the case where these are integrated by press-fitting etc. in a subsequent process. The cost can be further reduced by reducing the number.

フランジ部2bの両端面2b1、2b2には、それぞれ動圧を発生するためのスラスト軸受面となる動圧溝領域が形成される。このスラスト軸受面には、図2(a)(b)に示すように、スパイラル形状等をなす複数の動圧溝23,24が形成され、この動圧溝領域はフランジ部2bの射出成形と同時に型形成される。フランジ部2bの上端面2b1に形成したスラスト軸受面は、軸受スリーブ8の下端面8cとスラスト軸受隙間を介して対向し、これによって第一のスラスト軸受部T1が構成される。また、フランジ部2bの下端面2b2に形成したスラスト軸受面は、ハウジング底部7cの内底面7c1とスラスト軸受隙間を介して対向し、これによって第二のスラスト軸受部T2が構成される。   On both end faces 2b1 and 2b2 of the flange portion 2b, dynamic pressure groove regions serving as thrust bearing surfaces for generating dynamic pressure are formed. As shown in FIGS. 2 (a) and 2 (b), a plurality of dynamic pressure grooves 23 and 24 having a spiral shape and the like are formed on the thrust bearing surface. The dynamic pressure groove area is formed by injection molding of the flange portion 2b. Molded at the same time. The thrust bearing surface formed on the upper end surface 2b1 of the flange portion 2b is opposed to the lower end surface 8c of the bearing sleeve 8 via a thrust bearing gap, thereby forming the first thrust bearing portion T1. Further, the thrust bearing surface formed on the lower end surface 2b2 of the flange portion 2b faces the inner bottom surface 7c1 of the housing bottom portion 7c via a thrust bearing gap, thereby forming the second thrust bearing portion T2.

以上の構成から、軸部材2と軸受スリーブ8の相対回転時、本実施形態でいえば軸部材2の回転時には、上述のように動圧溝8a1〜8a4の作用によって両ラジアル軸受部R1,R2のラジアル軸受隙間9a,9bに潤滑油の動圧が発生し、軸部材2の軸部2aが各ラジアル軸受隙間に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。同時に、動圧溝23,24の作用によって両スラスト軸受部T1,T2の各スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2のフランジ部2bが各スラスト軸受隙間に形成される潤滑油の油膜によって両スラスト方向に回転自在に非接触支持される。   From the above configuration, when the shaft member 2 and the bearing sleeve 8 are rotated relative to each other, in this embodiment, when the shaft member 2 is rotated, the radial bearing portions R1 and R2 are operated by the action of the dynamic pressure grooves 8a1 to 8a4 as described above. The dynamic pressure of the lubricating oil is generated in the radial bearing gaps 9a and 9b, and the shaft portion 2a of the shaft member 2 is supported in a non-contact manner in the radial direction by the lubricating oil film formed in each radial bearing gap. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gaps of the thrust bearing portions T1, T2 by the action of the dynamic pressure grooves 23, 24, and the flange portion 2b of the shaft member 2 is lubricated to be formed in the thrust bearing gaps. The oil film is supported in a non-contact manner so as to be rotatable in both thrust directions.

本発明では、上述のように軸部材2が軸部2aの外周のみを金属材22で形成する一方、その他の部分を樹脂材21で形成しており、従来の金属品と比べて軽量化されている。従って、軸部材2と軸受スリーブ8やハウジング底部7cとの衝突時における衝撃が減じられ、衝突部での傷の発生を抑制することが可能となる。また、フランジ部2bが樹脂製であるので、金属製の軸受スリーブ8の下端面8cやハウジング底部7cに対する摺動性も良好であり、トルクを減じることができる。   In the present invention, as described above, the shaft member 2 is formed of the metal material 22 only on the outer periphery of the shaft portion 2a, while the other portion is formed of the resin material 21, which is lighter than conventional metal products. ing. Accordingly, the impact at the time of collision between the shaft member 2 and the bearing sleeve 8 or the housing bottom 7c is reduced, and it becomes possible to suppress the occurrence of scratches at the collision part. Further, since the flange portion 2b is made of resin, the slidability with respect to the lower end surface 8c of the metal bearing sleeve 8 and the housing bottom portion 7c is good, and the torque can be reduced.

さらには、金属製の軸受スリーブ8およびハウジング底部7cに比べ、樹脂製フランジ部2bの方が軸方向の線膨張係数が大きいため、モータ駆動等により軸受が高温化した場合、スラスト軸受隙間の幅が小さくなる。従って、油の粘度低下による油膜剛性の低下を補うことができ、スラスト方向の軸受剛性を確保することができる。また。一般に起動直後等の低温時には油の粘度が高いためにトルク上昇を招くが、本発明では、線膨張係数の差からスラスト軸受隙間が大きくなるため、この種のトルク上昇を回避することができる。   Furthermore, since the linear flange expansion coefficient in the axial direction of the resin flange portion 2b is larger than that of the metal bearing sleeve 8 and the housing bottom portion 7c, the width of the thrust bearing gap when the bearing temperature rises due to motor driving or the like. Becomes smaller. Therefore, a decrease in oil film rigidity due to a decrease in oil viscosity can be compensated, and a bearing rigidity in the thrust direction can be ensured. Also. In general, the viscosity of the oil is high at low temperatures such as immediately after start-up, which causes an increase in torque. However, in the present invention, the thrust bearing gap increases due to the difference in linear expansion coefficient, so this type of torque increase can be avoided.

図6は、軸部材2の他の実施形態を示す断面図である。この実施形態は、軸部材2の上端に他部材をねじ止めできるようにしたもので、図示例は、他部材として、ディスク等を押えるためのキャップ26をねじ27で軸部材2に固定する場合を例示している。軸部2aにおいては、円筒状の金属材22の上端が樹脂材21の上端を越えて軸方向に延びており、この延びた部分の内周にねじ27と螺合する雌ねじ状のねじ部25が形成されている。このねじ部25の下方に樹脂材21の上端があり、さらにその下方で樹脂材21と金属材22がテーパ面22bを介して軸方向で係合している。このように金属材22の内周にねじ部25を形成することにより、樹脂材21にねじ部を形成する場合に比べ、ねじ締結部分の強度や耐久性を向上させることができる。これ以外の構造、製造方法等は図1および図2に示す軸部材2に準じるので、これらの詳細な説明は省略する。   FIG. 6 is a cross-sectional view showing another embodiment of the shaft member 2. In this embodiment, another member can be screwed to the upper end of the shaft member 2. In the illustrated example, a cap 26 for pressing a disk or the like is fixed to the shaft member 2 with a screw 27 as the other member. Is illustrated. In the shaft portion 2 a, the upper end of the cylindrical metal material 22 extends in the axial direction beyond the upper end of the resin material 21, and the internally threaded screw portion 25 that engages with the screw 27 on the inner periphery of the extended portion. Is formed. There is an upper end of the resin material 21 below the screw portion 25, and the resin material 21 and the metal material 22 are engaged with each other in the axial direction via the tapered surface 22b. By forming the screw portion 25 on the inner periphery of the metal material 22 in this way, the strength and durability of the screw fastening portion can be improved as compared with the case where the screw portion is formed on the resin material 21. Since other structures, manufacturing methods, and the like are based on the shaft member 2 shown in FIGS. 1 and 2, a detailed description thereof will be omitted.

以上の説明では軸部材2として、軸部2aの外周に金属材22を配置した場合を例示したが、軸部材2の構成はこれに限らない。例えば、図示例では、フランジ部2bを樹脂のみで形成しているが、その芯部に金属材を配置することもできる。   Although the case where the metal member 22 is disposed on the outer periphery of the shaft portion 2a is illustrated as the shaft member 2 in the above description, the configuration of the shaft member 2 is not limited thereto. For example, in the illustrated example, the flange portion 2b is formed only of resin, but a metal material may be disposed on the core portion.

なお、図示例では、フランジ部1bの両端面に動圧溝23,24を備えたスラスト軸受面を形成しているが、両スラスト軸受面のうちの何れか一方は、フランジ部2bの端面と対向する軸受スリーブ8の端面8c、もしくはハウジング7の内底面7c1に形成することもできる。また、軸部材2を下方向から支持するスラスト軸受部T2の軸受隙間は、ハウジング7の上端面7f(図4参照)と、これに対向するハブ3の下端面との間に形成することもできる。   In the illustrated example, the thrust bearing surfaces having the dynamic pressure grooves 23 and 24 are formed on both end surfaces of the flange portion 1b. However, either one of the thrust bearing surfaces is connected to the end surface of the flange portion 2b. It can also be formed on the end surface 8c of the bearing sleeve 8 or the inner bottom surface 7c1 of the housing 7. Further, the bearing gap of the thrust bearing portion T2 that supports the shaft member 2 from below can be formed between the upper end surface 7f of the housing 7 (see FIG. 4) and the lower end surface of the hub 3 facing the housing 7. it can.

本発明にかかる軸部材の側面図および断面図である。It is the side view and sectional drawing of the shaft member concerning this invention. (a)図はフランジ部の平面図(図1中のa矢視図)、(b)図はフランジ部の底面図(図1中のb矢視図)である。(A) A figure is a top view (a arrow view in FIG. 1) of a flange part, (b) A figure is a bottom view (b arrow view in FIG. 1) of a flange part. 動圧軸受装置を組み込んだHDDスピンドルモータの断面図である。It is sectional drawing of the HDD spindle motor incorporating the dynamic pressure bearing apparatus. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve. 本発明にかかる軸部材の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the shaft member concerning this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
2b1 上端面
2b2 下端面
3 ディスクハブ
4 モータステータ
5 モータロータ
6 ケーシング
8a1〜8a4 動圧溝
7 ハウジング
7a ハウジング開口部
7b 側部
7c 底部
7c1 内底面(ハウジング底面)
8 軸受スリーブ
9a ラジアル軸受隙間
9b ラジアル軸受隙間
10 シール部材
21 樹脂材
22 金属材
23 動圧溝
24 動圧溝
25 ねじ部(雌ねじ部)
26 ねじ
27 他部材(キャップ)
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 2b1 Upper end surface 2b2 Lower end surface 3 Disc hub 4 Motor stator 5 Motor rotor 6 Casing 8a1-8a4 Dynamic pressure groove 7 Housing 7a Housing opening part 7b Side part 7c Bottom part 7c1 Inner bottom face (Housing bottom)
8 Bearing sleeve 9a Radial bearing gap 9b Radial bearing gap 10 Seal member 21 Resin material 22 Metal material 23 Dynamic pressure groove 24 Dynamic pressure groove 25 Thread part (Female thread part)
26 Screw 27 Other member (cap)

Claims (6)

軸部と、該軸部の外径側に張り出したフランジ部とを備えた動圧軸受装置用軸部材において、
前記軸部の外周が中空円筒状の金属材で形成されていると共に、前記軸部の芯部および前記フランジ部が樹脂材で形成されていることを特徴とする動圧軸受装置用軸部材。
In a shaft member for a hydrodynamic bearing device including a shaft portion and a flange portion projecting to the outer diameter side of the shaft portion,
A shaft member for a hydrodynamic bearing device, wherein an outer periphery of the shaft portion is formed of a hollow cylindrical metal material, and a core portion of the shaft portion and the flange portion are formed of a resin material.
前記金属材をインサート部品とする樹脂の型成形で形成した請求項1に記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein the shaft member is formed by resin molding using the metal material as an insert part. 前記フランジ部の少なくとも一方の端面に複数の動圧溝を設けた請求項1又は2に記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein a plurality of hydrodynamic grooves are provided on at least one end face of the flange portion. 前記フランジ部端面の動圧溝が、該フランジ部の型成形と同時に成形されている請求項3に記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 3, wherein the dynamic pressure groove on the end surface of the flange portion is formed simultaneously with the molding of the flange portion. 反フランジ部側の端部に、他部材とねじ締結するためのねじ部を形成した請求項1から4の何れかに記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to any one of claims 1 to 4, wherein a screw portion for screw fastening with another member is formed at an end on the side opposite to the flange portion. 前記ねじ部を、前記金属材の端部内周に形成した請求項5に記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 5, wherein the screw portion is formed on an inner periphery of an end portion of the metal material.
JP2004100258A 2004-03-30 2004-03-30 Shaft member for hydrodynamic bearing apparatus Withdrawn JP2005098486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004100258A JP2005098486A (en) 2004-03-30 2004-03-30 Shaft member for hydrodynamic bearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100258A JP2005098486A (en) 2004-03-30 2004-03-30 Shaft member for hydrodynamic bearing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003329792A Division JP2005098315A (en) 2003-09-22 2003-09-22 Hydrodynamic bearing apparatus

Publications (1)

Publication Number Publication Date
JP2005098486A true JP2005098486A (en) 2005-04-14

Family

ID=34464067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100258A Withdrawn JP2005098486A (en) 2004-03-30 2004-03-30 Shaft member for hydrodynamic bearing apparatus

Country Status (1)

Country Link
JP (1) JP2005098486A (en)

Similar Documents

Publication Publication Date Title
KR101519426B1 (en) Fluid dynamic-pressure bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
JP2007024146A (en) Dynamic pressure bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4583745B2 (en) Hydrodynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
WO2010044327A1 (en) Fluid bearing device
JP2005098315A (en) Hydrodynamic bearing apparatus
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP2009168147A (en) Dynamic pressure bearing device and its manufacturing method
JP4619691B2 (en) Hydrodynamic bearing device and motor using the same
JP2006112614A (en) Dynamic pressure bearing device
JP2009228873A (en) Fluid bearing device
JP2005098486A (en) Shaft member for hydrodynamic bearing apparatus
JP4579013B2 (en) Hydrodynamic bearing device
JP2010043666A (en) Dynamic pressure bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2008298235A (en) Fluid bearing device and its assembling method
JP5335304B2 (en) Fluid dynamic bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP4509650B2 (en) Hydrodynamic bearing device
JP2007113778A (en) Fluid bearing device and motor equipped with the same
JP2007278325A (en) Fluid bearing device
JP2007263165A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205