JP4509650B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4509650B2
JP4509650B2 JP2004153925A JP2004153925A JP4509650B2 JP 4509650 B2 JP4509650 B2 JP 4509650B2 JP 2004153925 A JP2004153925 A JP 2004153925A JP 2004153925 A JP2004153925 A JP 2004153925A JP 4509650 B2 JP4509650 B2 JP 4509650B2
Authority
JP
Japan
Prior art keywords
shaft
resin
core material
main body
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004153925A
Other languages
Japanese (ja)
Other versions
JP2005337307A (en
Inventor
功 古森
良一 中島
健二 伊藤
健一 三谷
真史 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004153925A priority Critical patent/JP4509650B2/en
Publication of JP2005337307A publication Critical patent/JP2005337307A/en
Application granted granted Critical
Publication of JP4509650B2 publication Critical patent/JP4509650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、動圧軸受装置に関するものである。この軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device. This bearing device is used for spindle motors of information equipment, for example, magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. It is suitable for a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or a small motor such as an electric device such as an axial fan.

動圧軸受は、軸受隙間で生じた流体動圧により軸部材を非接触状態で支持する軸受である。この動圧軸受を使用した軸受装置(動圧軸受装置)は、ラジアル軸受部を動圧軸受で構成するとともに、スラスト軸受部をピボット軸受で構成する接触タイプと、ラジアル軸受部およびスラスト軸受部の双方を動圧軸受で構成する非接触タイプとに大別され、個々の用途に応じて適宜使い分けられている。   A dynamic pressure bearing is a bearing that supports a shaft member in a non-contact state by a fluid dynamic pressure generated in a bearing gap. A bearing device (dynamic pressure bearing device) using this dynamic pressure bearing includes a contact type in which a radial bearing portion is constituted by a dynamic pressure bearing and a thrust bearing portion is constituted by a pivot bearing, and a radial bearing portion and a thrust bearing portion. They are roughly classified into non-contact types in which both are constituted by dynamic pressure bearings, and are properly used according to individual applications.

このうち、非接触タイプの動圧軸受装置の一例として、軸部材を軸部とフランジ部とで構成したものが知られており、例えば、特開2000−291648号公報には、軸部とフランジ部を共に金属材料で形成したものが開示されている(特許文献1参照)。また、特開2003−314537号公報には、軸部を金属材料で、フランジ部を樹脂材料でそれぞれ形成したものが開示されている(特許文献2参照)。
特開2000−291648号公報 特開2003−314537号公報
Among them, as an example of a non-contact type hydrodynamic bearing device, one in which a shaft member is constituted by a shaft portion and a flange portion is known. For example, Japanese Patent Laid-Open No. 2000-291648 discloses a shaft portion and a flange. A device in which both parts are formed of a metal material is disclosed (see Patent Document 1). Japanese Patent Application Laid-Open No. 2003-314537 discloses one in which a shaft portion is formed of a metal material and a flange portion is formed of a resin material (see Patent Document 2).
JP 2000-291648 A JP 2003-314537 A

上記構成の動圧軸受装置のうち、特に軸部を金属材料で、フランジ部を樹脂材料でそれぞれ形成した軸部材を備えた動圧軸受装置によれば、成形精度の向上や、加工コストの低減が図られる。その一方で、金属製の軸部と樹脂製のフランジ部の付け根は他の箇所に比べ強度的に弱くなる。そのため、上記軸部材に軸方向への引張り負荷が作用した場合には、上記軸部材は、主に最弱部となる軸部とフランジ部の付け根部分からせん断破壊を生じるおそれがある。   Among the hydrodynamic bearing devices configured as described above, in particular, according to the hydrodynamic bearing device including the shaft member in which the shaft portion is formed of a metal material and the flange portion is formed of a resin material, molding accuracy is improved and processing cost is reduced. Is planned. On the other hand, the base of the metal shaft portion and the resin flange portion is weaker in strength than other portions. Therefore, when a tensile load in the axial direction is applied to the shaft member, the shaft member may cause shear fracture mainly from the shaft portion that is the weakest portion and the base portion of the flange portion.

そこで、本発明は、この種の動圧軸受装置における軸部材の強度を高めることを目的とする。   Accordingly, an object of the present invention is to increase the strength of a shaft member in this type of hydrodynamic bearing device.

前記課題を解決するため、本発明に係る動圧軸受装置は、軸部材と、ラジアル軸受隙間
に生じる流体の動圧作用で軸部材をラジアル方向に非接触支持するラジアル軸受部と、ス
ラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持するスラス
ト軸受部とを備えた動圧軸受装置において、軸部材が、ラジアル軸受隙間に面した外周面
を有する金属製の軸本体と、軸本体に固定され、軸本体の外径側に突出する芯材と、芯材
を軸本体に固定した状態で射出成形され、芯材を被覆することにより、端面がスラスト軸
受隙間に面する円盤状のフランジ部を形成する樹脂部とを備え、芯材は中央に孔を有する有孔円盤状に形成され、軸本体の一端面に当接させた状態で固定されると共に、芯材に設けた孔を樹脂部で閉塞した状態で軸本体の一端と芯材とが樹脂部で被覆されていることを特徴とする。
In order to solve the above problems, a hydrodynamic bearing device according to the present invention includes a shaft member, a radial bearing portion that non-contact-supports the shaft member in a radial direction by a dynamic pressure action of a fluid generated in the radial bearing gap, and a thrust bearing gap. In a hydrodynamic bearing device having a thrust bearing portion that supports the shaft member in the thrust direction in a non-contact manner by the dynamic pressure action of the fluid generated in the shaft, the shaft member has a metal shaft body having an outer peripheral surface facing the radial bearing gap And a core member fixed to the shaft main body and projecting to the outer diameter side of the shaft main body, and the end surface faces the thrust bearing gap by injection molding with the core member fixed to the shaft main body and covering the core material. and a resin portion forming a disk-shaped flange portion, core material is formed in a perforated disc shape having a hole in the center, it is fixed by being in contact with the end face of the shaft body, the core material A state where the hole provided in is closed by the resin part One end of the shaft body and the core member is characterized in that it is coated with a resin portion.

かかる構成から、本発明によれば、樹脂で形成された円盤状のフランジ部の一部が芯材に置換される。この場合、芯材がフランジ部の補強材として作用するので、フランジ部自体の強度(剛性)が高まる。また、芯材は軸本体の外径側に突出した状態で軸本体に固定されるので、最弱部となる軸部とフランジ部の付け根の強度を向上させることができ、引張り荷重に対するせん断強度向上が図られる。   With this configuration, according to the present invention, a part of the disk-shaped flange portion formed of resin is replaced with the core material. In this case, since the core material acts as a reinforcing material for the flange portion, the strength (rigidity) of the flange portion itself is increased. In addition, since the core material is fixed to the shaft body in a state of projecting to the outer diameter side of the shaft body, the strength of the shaft portion that becomes the weakest portion and the base of the flange portion can be improved, and the shear strength against the tensile load Improvement is achieved.

芯材は軸本体と固定されている限りその形状は任意であるが、スラスト軸受隙間に面する樹脂部の厚さのバラツキによるヒケの発生防止を図るためにも、円周方向で均一厚さを有する円盤状に形成するのが望ましい。軸本体の形状は、ラジアル軸受隙間と面する軸本体外周面が金属で形成される限り任意であり、中実状の軸本体の他、中空円筒状の軸本体も使用可能である。中空円筒状の軸本体を使用する場合、射出成形時に樹脂を軸本体の内周孔に充填することにより、軸部を樹脂と金属の複合構造とすることもできる。   The shape of the core material is arbitrary as long as it is fixed to the shaft body, but the thickness is uniform in the circumferential direction in order to prevent the occurrence of sink marks due to variations in the thickness of the resin part facing the thrust bearing gap. It is desirable to form in the shape of a disk having The shape of the shaft body is arbitrary as long as the outer peripheral surface of the shaft body facing the radial bearing gap is made of metal, and a hollow cylindrical shaft body can be used in addition to a solid shaft body. When a hollow cylindrical shaft main body is used, the shaft portion can be made into a composite structure of resin and metal by filling the inner peripheral hole of the shaft main body with a resin during injection molding.

軸本体と芯材は当初は別部材であり、個別に形成され、個々に仕上げ加工を受ける。従って、当初から軸本体と芯材を一体品として成形し、仕上げ加工を行う場合に比べ、容易に高い仕上げ精度を得ることができる。   The shaft body and the core material are initially separate members that are individually formed and individually finished. Therefore, high finishing accuracy can be easily obtained as compared with the case where the shaft main body and the core material are formed as an integrated product from the beginning and finished.

また、フランジ部は、芯材と軸本体を固定した状態で樹脂を射出することにより成形されるので(インサート成形あるいはアウトサート成形)、フランジ部の成形精度、例えばフランジ部両端面の平面度やフランジ部と軸部の間の直角度は、金型の成形面精度に依存することとなる。したがって、金型精度が確保されている限り、芯材を軸本体に固定する際の固定精度はラフなもので足り、固定工程を簡略化することができる。フランジ部の平面度や直角度が高精度化されることにより、フランジ部の端面と、この端面と対向する面との間に形成されるスラスト軸受隙間を高精度に管理することができる。   Further, since the flange portion is molded by injecting resin with the core material and the shaft body fixed (insert molding or outsert molding), the molding accuracy of the flange portion, for example, the flatness of both end surfaces of the flange portion, The perpendicularity between the flange portion and the shaft portion depends on the molding surface accuracy of the mold. Therefore, as long as the mold accuracy is ensured, the fixing accuracy when fixing the core material to the shaft body is sufficient, and the fixing process can be simplified. By increasing the flatness and perpendicularity of the flange portion, the thrust bearing gap formed between the end surface of the flange portion and the surface facing the end surface can be managed with high accuracy.

芯材の他、軸本体の軸端を樹脂部で被覆すれば、金型内では軸本体の軸端の被覆部分を樹脂の流路として利用することができる。これにより、例えば軸本体の軸心上にゲートを配置することが可能となる。この軸心上のゲートからキャビティに供給された樹脂は、外径側に向けて均一に拡散するので、ウェルドの発生を防止してフランジ部の成形精度を高めることができる。   In addition to the core material, if the shaft end of the shaft body is covered with a resin portion, the covering portion of the shaft end of the shaft body can be used as a resin flow path in the mold. Thereby, for example, the gate can be disposed on the axis of the shaft main body. Since the resin supplied to the cavity from the gate on this axial center diffuses uniformly toward the outer diameter side, it is possible to prevent the occurrence of welds and increase the molding accuracy of the flange portion.

上述のように、芯材と軸本体を固定する際の固定精度はさほど要求されないので、芯材と軸本体の固定手段としては、必要な強度が確保される限り、溶接や溶着、あるいは接着などの既存の固定手段を広く採用することができる。特に芯材が金属製である場合には、強度面とコスト面を考慮し、溶接によって固定するのが望ましい。   As described above, since the fixing accuracy between the core material and the shaft main body is not so required, as a fixing means for the core material and the shaft main body, welding, welding, adhesion, or the like, as long as necessary strength is ensured. The existing fixing means can be widely adopted. In particular, when the core is made of metal, it is desirable to fix it by welding in consideration of strength and cost.

芯材と軸本体との固定部分は樹脂部で被覆するのが好ましく、これによれば、溶接部分や溶着部分等が外部に露出しないので、コンタミネーションの発生を未然に防止できる。   The fixing portion between the core material and the shaft main body is preferably covered with a resin portion. According to this, since the welded portion, the welded portion, and the like are not exposed to the outside, the occurrence of contamination can be prevented.

樹脂部のスラスト軸受隙間と面する部分には、スラスト軸受隙間に動圧を発生させるための溝(動圧溝)を、予め樹脂部の金型成形面に、対応する溝形状を形成しておくことで、樹脂部の射出成形(フランジ部の成形)と同時に成形することができる。この場合、樹脂部のスラスト軸受隙間に面する部分の肉厚がばらついていると、固化時のヒケの発生や熱膨脹量のばらつきが問題となるので、これを避けるためにも、樹脂部のスラスト軸受隙間に面する部分は均一厚さに形成するのが望ましい。   A groove (dynamic pressure groove) for generating dynamic pressure in the thrust bearing gap is formed in a portion facing the thrust bearing gap of the resin portion, and a corresponding groove shape is formed in advance on the mold surface of the resin portion. By setting, it can be molded simultaneously with the injection molding of the resin part (molding of the flange part). In this case, if the thickness of the portion of the resin portion that faces the thrust bearing gap varies, the occurrence of sink marks during solidification and variations in the amount of thermal expansion become a problem. The portion facing the bearing gap is preferably formed with a uniform thickness.

樹脂部のスラスト軸受隙間に面する部分の肉厚は、0.2mmから1.0mmの範囲内に定めるのが好ましい。下限値は、これを下回ると樹脂の流動性の低下が問題となり、上限値は、これを上回るとヒケや熱膨脹による寸法変化が無視できない程度となるために定めたものである。なお、上限については、0.5mm以下とするのがより好ましい。   The thickness of the portion of the resin portion facing the thrust bearing gap is preferably determined within the range of 0.2 mm to 1.0 mm. If the lower limit value is less than this, a decrease in the fluidity of the resin becomes a problem, and if the upper limit value is exceeded, the dimensional change due to sink marks or thermal expansion is not negligible. The upper limit is more preferably 0.5 mm or less.

以上のように、本発明によれば、樹脂部で形成されたフランジ部が軸本体と固定した芯材により補強されるので、軸部材の強度、特にフランジ部の引き抜き強度を高めることができる。また、フランジ部の剛性が高まるので、フランジ部の変形によるスラスト軸受隙間の精度低下、さらには軸受性能の低下を回避できる。   As described above, according to the present invention, since the flange portion formed of the resin portion is reinforced by the core material fixed to the shaft body, the strength of the shaft member, particularly the pull-out strength of the flange portion can be increased. Further, since the rigidity of the flange portion is increased, it is possible to avoid a decrease in accuracy of the thrust bearing gap due to deformation of the flange portion, and further a decrease in bearing performance.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に取り付けられたディスクハブ3と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ケーシング6とを備えている。ステータコイル4はケーシング6の外周に取り付けられ、ロータマグネット5はディスクハブ3の内周に取り付けられている。動圧軸受装置1の一構成要素であるハウジング7はケーシング6の内周に固定される。ディスクハブ3には、磁気ディスク等のディスク状情報記録媒体Dが一又は複数枚保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する磁力でロータマグネット5が回転し、それによってディスクハブ3および軸部材2が一体となって回転する。   FIG. 2 conceptually shows a configuration example of a spindle motor for information equipment incorporating the fluid dynamic bearing device 1 according to one embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 attached to the shaft member 2, A stator coil 4 and a rotor magnet 5 which are opposed to each other via a gap in the radial direction, and a casing 6 are provided. The stator coil 4 is attached to the outer periphery of the casing 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. A housing 7 that is one component of the hydrodynamic bearing device 1 is fixed to the inner periphery of the casing 6. The disk hub 3 holds one or more disk-shaped information recording media D such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the magnetic force generated between the stator coil 4 and the rotor magnet 5, thereby rotating the disk hub 3 and the shaft member 2 together.

動圧軸受装置1は、例えば図3に示すように、一端に開口部7a、他端に底部7cを有するハウジング7と、ハウジング7の内周面7dに固定された円筒状の軸受スリーブ8と、軸部21およびフランジ部22からなる軸部材2と、ハウジング7の開口部7aに固定されたシール部材9とを主要な部材として構成される。なお、説明の便宜上、ハウジング7の開口部7a側を上方向、ハウジング7の底部7c側を下方向として以下説明する。   For example, as shown in FIG. 3, the hydrodynamic bearing device 1 includes a housing 7 having an opening 7 a at one end and a bottom 7 c at the other end, and a cylindrical bearing sleeve 8 fixed to an inner peripheral surface 7 d of the housing 7. The shaft member 2 including the shaft portion 21 and the flange portion 22 and the seal member 9 fixed to the opening 7a of the housing 7 are configured as main members. For convenience of explanation, the following description will be made with the opening 7a side of the housing 7 as the upward direction and the bottom 7c side of the housing 7 as the downward direction.

ハウジング7は、例えば真ちゅう等の軟質金属あるいは樹脂で形成され、円筒状の側部7bと円板状の底部7cとを別体構造として備えている。ハウジング7の内周面7dの下端には、他所よりも大径に形成した大径部7eが形成され、この大径部7eに底部7cとなる蓋状部材が例えば加締め、接着、あるいは圧入等の手段で固定されている。なお、ハウジング7の側部7bと底部7cは、金属材料あるいは樹脂材料で一体に形成することもできる。あるいは、シール部材9とハウジング7を一体に形成することもできる。   The housing 7 is formed of, for example, a soft metal such as brass or resin, and includes a cylindrical side portion 7b and a disc-shaped bottom portion 7c as separate structures. At the lower end of the inner peripheral surface 7d of the housing 7, a large-diameter portion 7e having a larger diameter than other portions is formed, and a lid-like member that becomes the bottom portion 7c is, for example, caulked, bonded, or press-fitted to the large-diameter portion 7e. It is fixed by means such as. In addition, the side part 7b and the bottom part 7c of the housing 7 can also be integrally formed with a metal material or a resin material. Alternatively, the seal member 9 and the housing 7 can be integrally formed.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成される。軸受スリーブ8の内周面8aには、図3に示すように、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられている。   The bearing sleeve 8 is formed in a cylindrical shape, for example, with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper. As shown in FIG. 3, the inner peripheral surface 8a of the bearing sleeve 8 is provided with two upper and lower regions which are the radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2, spaced apart in the axial direction. ing.

上記2つの領域には、例えば、図4に示すようなへリングボーン形状の動圧溝8a1、8a2がそれぞれ形成されている。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。上方のラジアル軸受面の軸方向長さ(動圧溝8a1上端から下端までの距離)は、下方のラジアル軸受面の軸方向長さ(動圧溝8a2上端から下端までの距離)よりも大きい。なお、ラジアル軸受面は、これ以外に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが連続した形状とすることもでき、内径断面円弧状やステップ状とすることもできる。   For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 4 are formed in the two regions. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. The axial length of the upper radial bearing surface (distance from the upper end to the lower end of the dynamic pressure groove 8a1) is larger than the axial length (distance from the upper end to the lower end of the dynamic pressure groove 8a2) of the lower radial bearing surface. In addition to this, the radial bearing surface may have a shape in which the first radial bearing portion R1 and the second radial bearing portion R2 are continuous, or may have an inner diameter cross-section arc shape or a step shape.

図3に示すように、シール手段としてのシール部材9は環状を成しており、ハウジング7の開口部7aの内周面に圧入、接着等の手段で固定される。この実施形態において、シール部材9の内周面9aは円筒状に形成され、シール部材9の下側端面9bは軸受スリーブ8の上側端面8bと当接している。   As shown in FIG. 3, the sealing member 9 as a sealing means has an annular shape and is fixed to the inner peripheral surface of the opening 7 a of the housing 7 by means such as press-fitting and bonding. In this embodiment, the inner peripheral surface 9 a of the seal member 9 is formed in a cylindrical shape, and the lower end surface 9 b of the seal member 9 is in contact with the upper end surface 8 b of the bearing sleeve 8.

シール部材9の内周面9aに対向する軸部21の外周面21aにはテーパ面が形成されており、このテーパ面とシール部材9の内周面9aとの間には、ハウジング7の底部7c側から開口部7a側に向けて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。シール部材9で密封されたハウジング7の内部空間には、潤滑油が注油され、ハウジング7内が潤滑油で満たされる。この状態では、潤滑油の油面はシール空間Sの範囲内に維持される。   A tapered surface is formed on the outer peripheral surface 21 a of the shaft portion 21 that faces the inner peripheral surface 9 a of the seal member 9, and a bottom portion of the housing 7 is provided between the tapered surface and the inner peripheral surface 9 a of the seal member 9. An annular seal space S in which the radial dimension gradually increases from the 7c side toward the opening 7a side is formed. Lubricating oil is injected into the internal space of the housing 7 sealed with the seal member 9, and the inside of the housing 7 is filled with the lubricating oil. In this state, the oil level of the lubricating oil is maintained within the range of the seal space S.

図1(a)に示すように、軸部材2は、形状的な面から見れば、軸部21と軸部21の外径側に突出したフランジ部22とからなる。その一方で、軸部材2は、構造的な面から見れば、樹脂と金属の複合構造を成す。すなわち軸部材2は、ラジアル軸受隙間に面した外周面23aを有する金属製の軸本体23と、軸本体23に固定され、軸本体23の外径側に突出した円盤状の芯材24と、芯材24を被覆した状態で、端面(上側端面22aおよび下側端面22b)がスラスト軸受隙間に面するフランジ部22を形成する樹脂部25を有する。なお、外周面23aは軸部21の外周面21aを形成する。   As shown in FIG. 1A, the shaft member 2 includes a shaft portion 21 and a flange portion 22 that protrudes to the outer diameter side of the shaft portion 21 when viewed from the shape. On the other hand, the shaft member 2 forms a composite structure of resin and metal from the structural aspect. That is, the shaft member 2 includes a metal shaft main body 23 having an outer peripheral surface 23a facing the radial bearing gap, a disk-shaped core member 24 fixed to the shaft main body 23 and protruding toward the outer diameter side of the shaft main body 23, In a state where the core material 24 is covered, the end surfaces (the upper end surface 22a and the lower end surface 22b) have a resin portion 25 that forms a flange portion 22 that faces the thrust bearing gap. The outer peripheral surface 23 a forms the outer peripheral surface 21 a of the shaft portion 21.

軸本体23は、この実施形態では外周面を円筒状とした中実形状に形成される。軸本体23の下端には、その端面外周部を環状に切欠いて嵌合部23bが設けられており、この嵌合部23bの内径部の円筒面に芯材24の内周面24aを嵌め合わせることで、芯材24が内外径方向に位置決めされる。この場合、後の射出成形工程では、芯材24と軸本体23とが位置決めされた状態で成形金型に搬入され、この位置決めにより金型内でも両者の組付け精度が保持されるので、射出成形品の品質安定性が高まる。   In this embodiment, the shaft body 23 is formed in a solid shape having a cylindrical outer peripheral surface. A fitting portion 23b is provided at the lower end of the shaft body 23 by annularly cutting the outer peripheral portion of the end surface, and the inner peripheral surface 24a of the core member 24 is fitted to the cylindrical surface of the inner diameter portion of the fitting portion 23b. Thus, the core member 24 is positioned in the inner and outer diameter directions. In this case, in the subsequent injection molding process, the core material 24 and the shaft main body 23 are positioned and are carried into the molding die, and the assembly accuracy of both is maintained even within the die by this positioning. Increased product quality stability.

芯材24は、金属材料やセラミック、あるいは樹脂部25を形成する樹脂よりも強度面で優れた樹脂で形成される。芯材24は、この実施形態では、防錆効果を有するステンレス鋼で形成され、例えばプレス加工等の塑性加工により有孔円盤状に形成される。   The core material 24 is formed of a metal material, ceramic, or a resin that is superior in strength to the resin that forms the resin portion 25. In this embodiment, the core member 24 is made of stainless steel having a rust prevention effect, and is formed into a perforated disk shape by plastic working such as press working.

芯材24は、例えば溶接や溶着、あるいは接着等の手段により、内周面24aを軸本体23の嵌合部23bに固定することで、軸本体23に一体的に固定される。溶接としては、例えばアーク溶接やレーザー溶接等の手段が、溶着としては超音波溶着やレーザー溶着などの手段が用いられるが、この実施形態では、強度面やコスト面を考慮して、アーク溶接が用いられる。また、例えば図1(b)に示すように、芯材24の内周面24a上に溶接用の突起部24bを予め設けておき、この突起部24bを溶かすことによって、芯材24を軸本体23に一体的に固定することもできる。この突起部24bは、芯材24を例えばプレス加工等の塑性加工で形成する際、同時に加工される。この場合には、軸本体23に嵌合部23bをわざわざ形成する必要が無くなるため、加工をより容易にすることができる。また、芯材24は、図1(b)に示すような中空のワッシャ形状でもよいし、円盤形状であってもよい。   The core member 24 is integrally fixed to the shaft main body 23 by fixing the inner peripheral surface 24a to the fitting portion 23b of the shaft main body 23 by means such as welding, welding, or adhesion. For example, means such as arc welding or laser welding are used as welding, and means such as ultrasonic welding or laser welding are used as welding. In this embodiment, arc welding is performed in consideration of strength and cost. Used. Further, for example, as shown in FIG. 1B, a welding projection 24b is provided in advance on the inner peripheral surface 24a of the core member 24, and the core member 24 is fixed to the shaft main body by melting the projection 24b. 23 can be integrally fixed. The protrusion 24b is processed at the same time when the core member 24 is formed by plastic processing such as press processing. In this case, since it is not necessary to bother to form the fitting portion 23b in the shaft body 23, the processing can be made easier. The core member 24 may have a hollow washer shape as shown in FIG. 1B or a disk shape.

樹脂部25は、軸本体23に固定された芯材24をインサート部品として、射出成形される。これにより、樹脂部25は、芯材24および芯材24と軸本体23との固定部分を被覆し、かつ軸本体23の下端を被覆した状態で、フランジ部22を形成する。この状態では、芯材24を被覆し、フランジ部22の上側端面22aおよび下側端面22bを形成する樹脂部25の軸方向の肉厚は均一であり、成形時の収縮による逃げやヒケが発生しにくいようになっている。この肉厚は、具体的には、0.2mm〜1.0mmの範囲内に定めるのが好ましく、このうち上限値は0.5mm以下とするのがより好ましい。これは、肉厚が0.2mmを下回ると成形時における樹脂の金型内での流動性が悪化し、0.5mmを超えると、特に1.0mmを超えると樹脂成形部の固化時の収縮あるいは成形後の温度変化に伴う寸法変化が顕著になるためである。なお、図1(a)では、フランジ部22の外周面を形成する樹脂部25も、上下の端面22a、22bを形成する樹脂部25と同一の肉厚としているが、この部分で発生する逃げやヒケが軸受性能に与える影響は小さいので、これらと異なる肉厚としても構わない。   The resin part 25 is injection-molded using the core member 24 fixed to the shaft body 23 as an insert part. Thereby, the resin part 25 forms the flange part 22 in the state which coat | covered the fixing | fixed part of the core material 24 and the core material 24, and the shaft main body 23, and coat | covered the lower end of the shaft main body 23. In this state, the axial thickness of the resin portion 25 that covers the core member 24 and forms the upper end surface 22a and the lower end surface 22b of the flange portion 22 is uniform, and escapes and sink marks due to shrinkage during molding occur. It has become difficult to do. Specifically, the thickness is preferably set within a range of 0.2 mm to 1.0 mm, and the upper limit is more preferably 0.5 mm or less. This is because if the wall thickness is less than 0.2 mm, the fluidity of the resin in the mold during molding deteriorates. If it exceeds 0.5 mm, especially if it exceeds 1.0 mm, the resin molded part shrinks when solidified. Or it is because the dimensional change accompanying the temperature change after shaping | molding becomes remarkable. In FIG. 1A, the resin portion 25 that forms the outer peripheral surface of the flange portion 22 has the same thickness as the resin portion 25 that forms the upper and lower end surfaces 22a and 22b. Since the influence of bearings and sink marks on the bearing performance is small, the wall thickness may be different from these.

また、この実施形態では、軸本体23の下端を樹脂部25で被覆しているので、例えば成形金型の軸本体23の軸心上に対応する位置に、溶融樹脂を充填するゲートを設けることができる。これによれば、ゲートから成形金型のキャビティに供給された溶融樹脂は外径側に向けて均一に拡散するので、ウェルドの発生が抑えられフランジ部の成形精度が高められる。なお、フランジ部22の樹脂としては、LCP、PPS等を用いることができ、これら樹脂には、ガラス繊維、カーボン繊維等の充填材が用途に応じて適当量配合される。   In this embodiment, since the lower end of the shaft body 23 is covered with the resin portion 25, for example, a gate for filling the molten resin is provided at a position corresponding to the axis of the shaft body 23 of the molding die. Can do. According to this, since the molten resin supplied from the gate to the cavity of the molding die is uniformly diffused toward the outer diameter side, the generation of welds is suppressed and the molding accuracy of the flange portion is increased. In addition, LCP, PPS, etc. can be used as resin of the flange part 22, and fillers, such as glass fiber and carbon fiber, are mix | blended with these resin in a suitable quantity according to a use.

このように、本発明では、芯材24を、軸本体23の外径側に突出させた状態で軸本体23に固定しているので、フランジ部22に作用するせん断荷重を、フランジ部22を形成する樹脂部25ではなく、主に芯材24に受け持たせることができる。これにより、軸部材2の引張り時に最弱部となる軸部21とフランジ部22との間のエッジ部26を起点とする軸部材2の破断を抑制することができ、フランジ部22の引き抜き強度向上が図られる。また、軸本体23の外径側に突出させた芯材24をフランジ部22内に配設することによって、フランジ部22の曲げ変形に対する耐力(曲げ剛性)が向上する。この結果、フランジ部22の曲げ変形が抑制され、フランジ部22の上側端面22aあるいは下側端面22bとそれぞれ対向するスラスト軸受隙間の精度低下を防ぐことができる。また、フランジ部22の成形精度、例えばフランジ部両端面22a、22bの平面度やフランジ部22と軸部21の間の直角度は、成形金型の成形面精度に依存する。よって、金型精度が充分に確保されていれば、芯材24を軸本体23に固定する際、特に高い固定精度は必要とされず、両者間の固定工程を簡略化することができる。   Thus, in the present invention, since the core member 24 is fixed to the shaft main body 23 in a state of projecting to the outer diameter side of the shaft main body 23, the shear load acting on the flange portion 22 is applied to the flange portion 22. Instead of the resin portion 25 to be formed, the core material 24 can be mainly used. Thereby, the fracture | rupture of the shaft member 2 which makes the origin the edge part 26 between the shaft part 21 and the flange part 22 used as the weakest part at the time of the tension | pulling of the shaft member 2 can be suppressed, and the drawing strength of the flange part 22 is suppressed. Improvement is achieved. Further, by disposing the core member 24 protruding to the outer diameter side of the shaft main body 23 in the flange portion 22, the proof stress (bending rigidity) against bending deformation of the flange portion 22 is improved. As a result, the bending deformation of the flange portion 22 is suppressed, and it is possible to prevent the accuracy of the thrust bearing gaps respectively facing the upper end surface 22a or the lower end surface 22b of the flange portion 22 from being lowered. Further, the molding accuracy of the flange portion 22, for example, the flatness of the flange portion end faces 22 a and 22 b and the perpendicularity between the flange portion 22 and the shaft portion 21 depend on the molding surface accuracy of the molding die. Therefore, if the mold accuracy is sufficiently ensured, when fixing the core member 24 to the shaft body 23, a particularly high fixing accuracy is not required, and the fixing process between them can be simplified.

フランジ部22の両端面(樹脂部25の軸方向端面)22a、22bには、それぞれ動圧を発生するためのスラスト軸受面となる動圧溝領域が形成される。このスラスト軸受面には、例えば図示は省略するが、スパイラル形状やヘリングボーン形状を成す複数の動圧溝が形成され、この動圧溝領域はフランジ部22(樹脂部25)のインサート成形と同時に型形成される。   Dynamic pressure groove regions serving as thrust bearing surfaces for generating dynamic pressure are formed on both end faces (axial end faces of the resin part 25) 22a and 22b of the flange part 22, respectively. Although not shown, for example, a plurality of dynamic pressure grooves having a spiral shape or a herringbone shape are formed on the thrust bearing surface, and this dynamic pressure groove region is formed simultaneously with the insert molding of the flange portion 22 (resin portion 25). Molded.

軸部材2の軸部21は軸受スリーブ8の内周に挿入され、フランジ部22は軸受スリーブ8の下側端面8cとハウジング7の内底面7c1との間に収容される。軸受スリーブ8の内周面8aの上下2箇所のラジアル軸受面は、それぞれ軸部21の外周面21a(軸本体23の外周面23a)とラジアル軸受隙間を介して対向し、ラジアル軸受部R1およびラジアル軸受部R2を構成する。フランジ部22の上側端面22aに形成したスラスト軸受面は、軸受スリーブ8の下側端面8cとスラスト軸受隙間を介して対向し、これによってスラスト軸受部T1が構成される。また、フランジ部22の下側端面22bに形成したスラスト軸受面は、ハウジング7の底部7cの内底面7c1とスラスト軸受隙間を介して対向し、これによってスラスト軸受部T2が構成される。   The shaft portion 21 of the shaft member 2 is inserted into the inner periphery of the bearing sleeve 8, and the flange portion 22 is accommodated between the lower end surface 8 c of the bearing sleeve 8 and the inner bottom surface 7 c 1 of the housing 7. Two radial bearing surfaces on the upper and lower sides of the inner peripheral surface 8a of the bearing sleeve 8 are opposed to the outer peripheral surface 21a of the shaft portion 21 (the outer peripheral surface 23a of the shaft main body 23) via a radial bearing gap, respectively, and the radial bearing portion R1 and A radial bearing portion R2 is configured. The thrust bearing surface formed on the upper end surface 22a of the flange portion 22 is opposed to the lower end surface 8c of the bearing sleeve 8 via a thrust bearing gap, thereby forming a thrust bearing portion T1. The thrust bearing surface formed on the lower end surface 22b of the flange portion 22 is opposed to the inner bottom surface 7c1 of the bottom portion 7c of the housing 7 through a thrust bearing gap, thereby forming the thrust bearing portion T2.

以上の構成から、軸部材2の回転時には、上述のように動圧溝8a1、8a2の作用によってラジアル軸受部R1,R2の各ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部21が各ラジアル軸受隙間に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。同時に、フランジ部22の両端面22a、22bに形成された動圧溝の作用によってスラスト軸受部T1,T2の各スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2のフランジ部22が各スラスト軸受隙間に形成される潤滑油の油膜によって両スラスト方向に回転自在に非接触支持される。   From the above configuration, when the shaft member 2 rotates, the dynamic pressure of the lubricating oil is generated in the radial bearing gaps of the radial bearing portions R1 and R2 by the action of the dynamic pressure grooves 8a1 and 8a2 as described above. The shaft portion 21 is supported in a non-contact manner rotatably in the radial direction by an oil film of lubricating oil formed in each radial bearing gap. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gaps of the thrust bearing portions T1 and T2 by the action of the dynamic pressure grooves formed on both end faces 22a and 22b of the flange portion 22, and the flange portion 22 of the shaft member 2 is It is supported in a non-contact manner so as to be rotatable in both thrust directions by an oil film of lubricating oil formed in each thrust bearing gap.

以上、本発明の一実施形態を説明したが、本発明は、この実施形態に限定されるものではない。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment.

この実施形態では、金属製の軸本体23を中実形状としたが、軸本体23を中空形状とし、射出成形時に樹脂を軸本体の内周に充填して、図1(a)に示す樹脂部25と一体化させてもよい。   In this embodiment, the metal shaft main body 23 has a solid shape. However, the shaft main body 23 has a hollow shape, and the resin shown in FIG. The unit 25 may be integrated.

本発明は、軸部21とフランジ部22を有する軸部材2を備えた全ての動圧軸受装置に適用可能である。すなわち、上記実施形態では、フランジ部の両端面22a、22bに動圧溝を形成した例を説明したが、これに限ることなく、両端面22a、22bと対向する面(例えば軸受スリーブ8の下側端面8cやハウジング7の底部7cの内底面7c1等)に動圧溝を形成したものであってもよい。   The present invention is applicable to all the hydrodynamic bearing devices including the shaft member 2 having the shaft portion 21 and the flange portion 22. That is, in the above embodiment, the example in which the dynamic pressure grooves are formed in the both end faces 22a and 22b of the flange portion has been described. However, the present invention is not limited to this, and the face facing the both end faces 22a and 22b (for example, the bottom of the bearing sleeve 8). A dynamic pressure groove may be formed on the side end face 8 c or the inner bottom face 7 c 1 of the bottom 7 c of the housing 7.

(a)は本発明の一実施形態に係る軸部材の断面図、(b)は軸部材の一端に設けられる他例の芯材の断面図である。(A) is sectional drawing of the shaft member which concerns on one Embodiment of this invention, (b) is sectional drawing of the core material of the other example provided in the end of a shaft member. 軸部材を備えた動圧軸受装置を組込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the dynamic pressure bearing apparatus provided with the shaft member. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
6 ケーシング
7 ハウジング
7a 開口部
7c 底部
8 軸受スリーブ
8a1、8a2 動圧溝
9 シール部材
21 軸部
22 フランジ部
22a 上側端面
22b 下側端面
23 軸本体
24 芯材
25 樹脂部
26 エッジ部
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 6 Casing 7 Housing 7a Opening part 7c Bottom part 8 Bearing sleeve 8a1, 8a2 Dynamic pressure groove 9 Seal member 21 Shaft part 22 Flange part 22a Upper side end surface 22b Lower side End surface 23 Shaft body 24 Core material 25 Resin portion 26 Edge portions R1, R2 Radial bearing portions T1, T2 Thrust bearing portions

Claims (4)

軸部材と、ラジアル軸受隙間に生じる流体の動圧作用で軸部材をラジアル方向にに非接触支持するラジアル軸受部と、スラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持するスラスト軸受部とを備えた動圧軸受装置において、
軸部材が、ラジアル軸受隙間に面した外周面を有する金属製の軸本体と、軸本体に固定され、軸本体の外径側に突出する芯材と、芯材を軸本体に固定した状態で射出成形され、芯材を被覆することにより、端面がスラスト軸受隙間に面する円盤状のフランジ部を形成する樹脂部とを備え、
芯材は中央に孔を有する有孔円盤状に形成され、軸本体の一端面に当接させた状態で固定されると共に、芯材に設けた孔を樹脂部で閉塞した状態で軸本体の一端と芯材とが樹脂部で被覆されていることを特徴とする動圧軸受装置。
A shaft member, a radial bearing that supports the shaft member in the radial direction in a non-contact manner by the dynamic pressure action of the fluid generated in the radial bearing gap, and a shaft member in the thrust direction in a non-contact manner by the fluid pressure action of the fluid generated in the thrust bearing gap. In the hydrodynamic bearing device having a thrust bearing portion to support,
In a state where the shaft member is made of a metal shaft main body having an outer peripheral surface facing the radial bearing gap, a core member fixed to the shaft main body and protruding to the outer diameter side of the shaft main body, and the core member fixed to the shaft main body. A resin part that is injection-molded and covers the core material to form a disc-shaped flange part whose end face faces the thrust bearing gap;
The core material is formed in a perforated disk shape having a hole in the center, and is fixed in a state where it is in contact with one end surface of the shaft body, and the hole provided in the core material is closed with a resin portion . One end and a core material are coat | covered with the resin part, The dynamic pressure bearing apparatus characterized by the above-mentioned.
芯材が金属製で、かつ溶接により軸本体に固定されることを特徴とする請求項1記載の
動圧軸受装置。
2. The hydrodynamic bearing device according to claim 1, wherein the core material is made of metal and is fixed to the shaft body by welding.
樹脂部のスラスト軸受隙間に面する部分が均一厚さであることを特徴とする請求項1記
載の動圧軸受装置。
2. The hydrodynamic bearing device according to claim 1, wherein a portion of the resin portion facing the thrust bearing gap has a uniform thickness.
樹脂部のスラスト軸受隙間に面する部分の肉厚が、0.2mm以上1.0mm以下であ
ることを特徴とする請求項3記載の動圧軸受装置。
4. The hydrodynamic bearing device according to claim 3, wherein a thickness of a portion of the resin portion facing the thrust bearing gap is 0.2 mm or more and 1.0 mm or less.
JP2004153925A 2004-05-24 2004-05-24 Hydrodynamic bearing device Expired - Fee Related JP4509650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153925A JP4509650B2 (en) 2004-05-24 2004-05-24 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153925A JP4509650B2 (en) 2004-05-24 2004-05-24 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2005337307A JP2005337307A (en) 2005-12-08
JP4509650B2 true JP4509650B2 (en) 2010-07-21

Family

ID=35491107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153925A Expired - Fee Related JP4509650B2 (en) 2004-05-24 2004-05-24 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4509650B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415716B (en) * 2011-03-09 2016-06-08 Ntn株式会社 Fluid dynamic-pressure bearing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179541A (en) * 1998-12-16 2000-06-27 Seiko Instruments Inc Liquid dynamic pressure bearing, and spindle motor
JP2001041246A (en) * 1999-07-27 2001-02-13 Victor Co Of Japan Ltd Manufacture for thrust bearing of shaft for hydrodynamic bearing motor
JP2001107946A (en) * 1999-10-07 2001-04-17 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device and its manufacturing method and manufacturing method of molding die to be used for this manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179541A (en) * 1998-12-16 2000-06-27 Seiko Instruments Inc Liquid dynamic pressure bearing, and spindle motor
JP2001041246A (en) * 1999-07-27 2001-02-13 Victor Co Of Japan Ltd Manufacture for thrust bearing of shaft for hydrodynamic bearing motor
JP2001107946A (en) * 1999-10-07 2001-04-17 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device and its manufacturing method and manufacturing method of molding die to be used for this manufacturing method

Also Published As

Publication number Publication date
JP2005337307A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
KR101098791B1 (en) Dynamic pressure bearing device and motor using the same
US6834996B2 (en) Motor with dynamic pressure bearing
US8107190B2 (en) Fluid bearing device, method of manufacturing the same, and disk drive device
JP2007024146A (en) Dynamic pressure bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP4672379B2 (en) Hydrodynamic bearing device
JP4619691B2 (en) Hydrodynamic bearing device and motor using the same
JP2005337490A (en) Dynamic pressure bearing device
JP4509650B2 (en) Hydrodynamic bearing device
JP4657734B2 (en) Hydrodynamic bearing device
JP2005098315A (en) Hydrodynamic bearing apparatus
JP2007082339A (en) Fluid bearing device and manufacturing method therefor
JP2010043666A (en) Dynamic pressure bearing device
JP4330961B2 (en) Hydrodynamic bearing device
JP2004190786A (en) Dynamic-pressure bearing device and manufacturing method therefor
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP2005337341A (en) Dynamic pressure bearing device and motor using the same
JP4732262B2 (en) Method for manufacturing hydrodynamic bearing device
JP4554324B2 (en) Hydrodynamic bearing device
JP2008298236A (en) Fluid bearing device
JP2007263165A (en) Fluid bearing device
JP2007192316A (en) Dynamic pressure bearing device
JP2007263225A (en) Fluid bearing device
JP2007278325A (en) Fluid bearing device
JP2007100904A (en) Fluid bearing device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees