JP2008298236A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2008298236A
JP2008298236A JP2007147133A JP2007147133A JP2008298236A JP 2008298236 A JP2008298236 A JP 2008298236A JP 2007147133 A JP2007147133 A JP 2007147133A JP 2007147133 A JP2007147133 A JP 2007147133A JP 2008298236 A JP2008298236 A JP 2008298236A
Authority
JP
Japan
Prior art keywords
shaft
shaft portion
flange portion
bearing
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007147133A
Other languages
Japanese (ja)
Inventor
Atsushi Hiraide
淳 平出
Yoshihiko Bito
仁彦 尾藤
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007147133A priority Critical patent/JP2008298236A/en
Publication of JP2008298236A publication Critical patent/JP2008298236A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance fixing strength of a shaft part of a shaft member and a flange part at low costs. <P>SOLUTION: A shaft member 2 has: a shaft part 21 having a radial bearing face A; and a flange part 23 extending toward an outside diameter at one end of the shaft part 21. The flange part 23 is fixed to a bottom end of the shaft part 21 by friction press-fitting. An end face of the flange part 23 is coated with a coating layer 24 having thrust bearing faces B, C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸受隙間に形成される油膜で軸部材を回転自在に支持するものである。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device supports a shaft member rotatably with an oil film formed in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, magnetic disk devices such as HDDs, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, spindle motors such as magneto-optical disk devices such as MD and MO, laser beams, etc. It is preferably used as a motor bearing device such as a polygon scanner motor of a printer (LBP), a color wheel motor of a projector, and a fan motor.

例えば、スピンドルモータ用の流体軸受装置は、軸受スリーブと、軸受スリーブの内周に挿入され、軸受スリーブに対して相対回転する軸部材とを備える。軸部材としては、ラジアル軸受面を有する軸部と、軸部の一端外径側に張り出したフランジ部とを有するものが使用される場合が多い。このフランジ付軸部材としては、軸部およびフランジ部を切削や鍛造等で一体に形成した一体タイプと、個別に製作した軸部およびフランジ部を適宜の手段で一体化した別体タイプとがある。   For example, a hydrodynamic bearing device for a spindle motor includes a bearing sleeve and a shaft member that is inserted into the inner periphery of the bearing sleeve and rotates relative to the bearing sleeve. As the shaft member, a member having a shaft portion having a radial bearing surface and a flange portion projecting to one end outer diameter side of the shaft portion is often used. As the shaft member with flange, there are an integral type in which the shaft portion and the flange portion are integrally formed by cutting, forging, and the like, and a separate type in which the shaft portion and the flange portion manufactured individually are integrated by appropriate means. .

一体タイプのフランジ付軸部材は、軸部とフランジ部との間に高い締結強度を確保し得る反面、その製作に際しては専用の加工設備が必要でコスト高が著しいものとなる。そのため、近時においては、フランジ付軸部材を別体タイプとする場合がある。別体タイプのフランジ付軸部材としては種々のものが提案されているが、軸部材に要求される耐衝撃性を満足するだけの固定強度を有するものとして、例えば、(1)フランジ部を軸部の一端にねじ止め固定したもの(例えば、特許文献1を参照)、(2)軸部の一端を環状のフランジ部内周に嵌合し、嵌合部の一端にレーザを照射して軸部とフランジ部とを溶接(レーザ溶接)したもの(特許文献2を参照)、(3)相互に対向する軸部およびフランジ部の端面のうち、少なくとも一方の端面に突起を設け、該突起を他方の端面に抵抗溶接したもの(例えば、特許文献3を参照)などが公知である。
特開2004−84864号公報 特開2000−324753号公報 特開2004−340368号公報
The integral-type flanged shaft member can secure a high fastening strength between the shaft portion and the flange portion, but on the other hand, a dedicated processing facility is required for the production thereof, and the cost is extremely high. Therefore, recently, the flanged shaft member may be a separate type. Various types of shaft members with flanges have been proposed. For example, (1) the flange portion is a shaft that has a fixing strength sufficient to satisfy the impact resistance required for the shaft member. Screwed and fixed to one end of the part (see, for example, Patent Document 1), (2) One end of the shaft part is fitted to the inner periphery of the annular flange part, and laser is irradiated to one end of the fitting part to produce the shaft part (See Patent Document 2), (3) Protrusion is provided on at least one end surface of the mutually opposing shaft portion and flange portion, and the protrusion is attached to the other end. Known is one that is resistance-welded to the end face (see, for example, Patent Document 3).
JP 2004-84864 A JP 2000-324753 A JP 2004-340368 A

ところで、情報機器の低価格化が目覚しく進展している昨今、流体軸受装置を一層低コスト化することが求められており、従って、流体軸受装置の一構成部材である軸部材を一層低コスト化する必要が生じている。しかしながら、(1)の手段では、軸部にねじ溝を設けることによる加工コスト増、および部品点数の増加による部品コスト増が避けられない。(2)の手段では、部品点数を増加させることなくフランジ部を軸部の一端に強固に固定することができるが、高額投資が必要なため、量産に用いるには難がある。さらに(3)の手段では、(2)と同様にフランジ部を軸部の一端に強固に固定することができるが、ステンレス鋼等の難加工材で形成される場合が多い軸部又はフランジ部の端面に、突起を精度良くかつ安価に形成するのは容易ではない。   By the way, in recent years when the price of information equipment has been remarkably progressing, it is required to further reduce the cost of the hydrodynamic bearing device. Therefore, the cost of the shaft member, which is a constituent member of the hydrodynamic bearing device, is further reduced. There is a need to do that. However, with the means (1), an increase in processing cost due to the provision of screw grooves in the shaft portion and an increase in component cost due to an increase in the number of components are inevitable. With the means (2), the flange portion can be firmly fixed to one end of the shaft portion without increasing the number of parts, but it is difficult to use for mass production because a high investment is required. Further, in the method (3), the flange portion can be firmly fixed to one end of the shaft portion as in (2), but the shaft portion or the flange portion is often formed of a difficult-to-work material such as stainless steel. It is not easy to form the projections on the end face of the metal plate with high accuracy and at low cost.

本発明の課題は、軸部に対するフランジ部の固定強度を低コストに高め、これにより高い回転精度を誇り、信頼性に富む流体軸受装置を低コストに提供可能とすることにある。   An object of the present invention is to increase the fixing strength of the flange portion with respect to the shaft portion at a low cost, thereby making it possible to provide a fluid bearing device having high rotational accuracy and high reliability at a low cost.

上記課題を解決するため、本発明では、軸受スリーブと、軸受スリーブの内周に挿入され、軸受スリーブに対して相対回転する軸部材とを備え、軸部材が、ラジアル軸受面を有する軸部と、軸部の一端外径側に張り出したフランジ部とを有する流体軸受装置において、軸部材の軸部とフランジ部とを摩擦圧接したことを特徴とする流体軸受装置を提供する。なお、ここでいうラジアル軸受面は、軸受スリーブの内周面との間にラジアル軸受隙間を形成する面を意図したものであり、この面に動圧溝等の動圧発生部が形成されているか否かは問わない。   In order to solve the above-described problems, the present invention includes a bearing sleeve and a shaft member that is inserted into the inner periphery of the bearing sleeve and rotates relative to the bearing sleeve, and the shaft member has a shaft portion having a radial bearing surface; A hydrodynamic bearing device having a flange portion projecting to one end outer diameter side of the shaft portion, wherein the shaft portion of the shaft member and the flange portion are friction-welded. The radial bearing surface here is intended to form a radial bearing gap with the inner peripheral surface of the bearing sleeve, and a dynamic pressure generating portion such as a dynamic pressure groove is formed on this surface. It does not matter whether or not.

上記のように、軸部材の軸部とフランジ部とを摩擦圧接すれば、軸部の一端にフランジ部を設けるに際して、ねじ、レーザ、電流等の他媒体を用いる必要がない。しかも、軸部の一端にねじ溝を設ける必要や、相互に対向する軸部又はフランジ部の端面に突起を設ける必要がなく、相互に対向する軸部およびフランジ状素材の端面形状を単純化することができるので、軸部材の低コスト化が図られる。その一方で、相互に対向する軸部およびフランジ部の端面全面を接合させることができるので、接合面積の拡大を通じて、軸部に対するフランジ部の固定強度を高めることができる。   As described above, if the shaft portion and the flange portion of the shaft member are friction-welded, it is not necessary to use other media such as a screw, a laser, or an electric current when providing the flange portion at one end of the shaft portion. In addition, there is no need to provide a thread groove at one end of the shaft portion, and no protrusion on the end surface of the shaft portion or the flange portion facing each other, simplifying the end surface shape of the shaft portion and the flange-shaped material facing each other. Therefore, the cost of the shaft member can be reduced. On the other hand, since the shaft part and the whole end surface of a flange part which mutually oppose can be joined, the fixation strength of the flange part with respect to a shaft part can be raised through expansion of a joining area.

また、特に抵抗溶接では、接合すべき二部材の形成材料が導電性金属に限定されるが、摩擦圧接であれば、導電性の強弱あるいは有無を考慮する必要がなく、さらには異種金属同士でも強固に接合することができる。従って、軸部およびフランジ部の形成材料の選択肢を広げることが、すなわち、要求品質に応じた最適材料を選択使用することが可能となり、この点からも軸部材の低コスト化を図ることが可能となる。   In particular, in resistance welding, the forming material of the two members to be joined is limited to conductive metal. However, if friction welding is used, it is not necessary to consider the strength or non-existence of conductivity. It can be firmly joined. Therefore, it is possible to widen the choice of the material for forming the shaft and flange, that is, it is possible to select and use the optimum material according to the required quality. From this point also, the cost of the shaft member can be reduced. It becomes.

ところで、フランジ部の端面には、対向する部材(例えば、軸受スリーブや蓋部材)の端面との間にスラスト軸受隙間を形成するスラスト軸受面が設けられるのが通例である。上記のように軸部とフランジ部とを摩擦圧接した場合、特にフランジ部の軸部側一端には、「返り」と称される肉の盛り上がりが形成される。そして、上記のスラスト軸受面は、「返り」が過大である場合には、これを切削加工で除去することによって形成することも可能であるが、洗浄工程を設け、当該洗浄工程で切削加工に伴って生じる切削粉を入念に除去する必要が生じる。切削粉が軸受隙間を満たす流体(例えば、潤滑油)に混入してコンタミとなり、軸受性能が低下するのを防止するためである。また、軸部とフランジ部とを摩擦圧接した場合、圧接時の加圧力によってフランジ部が変形等し、矯正工程をさらに設ける必要が生じる場合もある。ところが、これでは加工工程が煩雑になり、製造コストの増大が避けられないものとなる。   By the way, it is usual that the end face of the flange portion is provided with a thrust bearing surface that forms a thrust bearing gap with an end face of an opposing member (for example, a bearing sleeve or a lid member). When the shaft portion and the flange portion are friction-welded as described above, a bulge of meat called “return” is formed particularly at one end of the flange portion on the shaft portion side. The above thrust bearing surface can be formed by removing the “return” by cutting when it is excessive. However, a cleaning process is provided, and the cleaning process is performed in the cleaning process. The accompanying cutting powder must be carefully removed. This is because the cutting powder is mixed with a fluid (for example, lubricating oil) that fills the bearing gap and becomes contaminated to prevent deterioration of the bearing performance. In addition, when the shaft portion and the flange portion are friction-welded, the flange portion may be deformed by the pressure applied during the pressure-welding, and it may be necessary to further provide a correction process. However, this complicates the processing steps and inevitably increases the manufacturing cost.

そこで本発明では、フランジ部の端面を型成形された被覆層で被覆し、被覆層の表面にスラスト軸受面を形成する構成を提供する。かかる構成とすることにより、摩擦圧接に伴って形成される「返り」が過大である場合にも、また摩擦圧接に伴ってフランジ部が変形等した場合でも、被覆層を設ける一工程を経るだけでスラスト軸受面を形成することができ、製造コスト増の問題は効果的に解消することができる。また、この場合、スラスト軸受面に要求される各種精度(例えば、軸部のラジアル軸受面に対する直角度)は、被覆層でもって確保することができるので、摩擦圧接時の加工条件を緩和することができる。   Therefore, the present invention provides a configuration in which the end face of the flange portion is covered with a molded coating layer, and a thrust bearing surface is formed on the surface of the coating layer. By adopting such a configuration, even when the “return” formed with friction welding is excessive, or when the flange portion is deformed with friction welding, only one step of providing a coating layer is performed. Thus, the thrust bearing surface can be formed, and the problem of an increase in manufacturing cost can be effectively solved. In this case, various precisions required for the thrust bearing surface (for example, the perpendicularity of the shaft portion with respect to the radial bearing surface) can be ensured by the coating layer, so that the processing conditions during friction welding are relaxed. Can do.

上記の被覆層は、軸部の一端にフランジ部を摩擦圧接した後、軸部およびフランジ部をインサートして射出成形することができる。かかる構成とすれば、金型精度を高めておくだけで軸部のラジアル軸受面に対するスラスト軸受面の直角度等を簡易に高精度化することができ、望ましい。   The coating layer can be injection-molded by inserting the shaft portion and the flange portion after the flange portion is friction-welded to one end of the shaft portion. With such a configuration, it is desirable that the perpendicularity of the thrust bearing surface with respect to the radial bearing surface of the shaft portion can be easily increased in accuracy simply by improving the mold accuracy.

被覆層のスラスト軸受面には、スラスト軸受隙間に流体動圧を発生させるスラスト動圧発生部を設けることができる。スラスト動圧発生部は、被覆層を射出成形するのと同時に型成形することができ、別途この種の動圧発生部を設ける手間を省き、製造コストを抑制することができる。   A thrust dynamic pressure generating portion that generates fluid dynamic pressure in the thrust bearing gap can be provided on the thrust bearing surface of the coating layer. The thrust dynamic pressure generating portion can be molded at the same time as the injection molding of the coating layer, and it is possible to save the labor of providing this type of dynamic pressure generating portion separately and to suppress the manufacturing cost.

被覆層は任意形状に形成することが可能であり、例えば、被覆層の外周面と、これに対向する他部材との間にシール空間を形成することができる。なお、ここでいう他部材には、例えば、軸受スリーブを内周に収容するハウジングが挙げられる。   The coating layer can be formed in an arbitrary shape. For example, a sealing space can be formed between the outer peripheral surface of the coating layer and another member facing the coating layer. In addition, the other member referred to here includes, for example, a housing that houses a bearing sleeve on the inner periphery.

上述した被覆層は、樹脂あるいは金属で型成形することができ、樹脂又は金属の何れを用いるかは求められる特性に応じて任意に選択可能である。   The above-mentioned coating layer can be molded with resin or metal, and it can be arbitrarily selected depending on the required characteristics whether resin or metal is used.

以上に示すように、本発明によれば、軸部材の軸部に対するフランジ部の固定強度を低コストに高めることができる。これに高い回転精度を誇り、信頼性に富む流体軸受装置が低コストに得られる。   As described above, according to the present invention, the fixing strength of the flange portion with respect to the shaft portion of the shaft member can be increased at low cost. A hydrodynamic bearing device with high rotational accuracy and high reliability can be obtained at low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bとを備えている。ステータコイル4aはブラケット5の外周に取付けられ、ロータマグネット4bはディスクハブ3の内周に取付けられる。流体軸受装置1のハウジング7は、ブラケット5の内周に装着される。ディスクハブ3には、磁気ディスク等のディスク6が一又は複数枚保持される。ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間の電磁力でロータマグネット4bが回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device. This spindle motor is used for a disk drive device such as an HDD, and has a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 mounted on the shaft member 2, and a radial gap, for example. And a stator coil 4a and a rotor magnet 4b that are opposed to each other. The stator coil 4 a is attached to the outer periphery of the bracket 5, and the rotor magnet 4 b is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 5. The disk hub 3 holds one or a plurality of disks 6 such as magnetic disks. When the stator coil 4a is energized, the rotor magnet 4b is rotated by the electromagnetic force between the stator coil 4a and the rotor magnet 4b, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、本発明の第1実施形態に係る流体軸受装置1を示している。同図に示す流体軸受装置1は、軸受スリーブ8と、軸受スリーブ8の内周に挿入された軸部材2と、軸受スリーブ8を内周に収容したハウジング7と、ハウジング7の一端開口を封止する蓋部材9と、ハウジング7の他端開口をシールするシール部材10とを備える。なお、説明の便宜上、シール部材10の側を上側、これとは軸方向反対側を下側として、以下説明を進める。   FIG. 2 shows the hydrodynamic bearing device 1 according to the first embodiment of the present invention. The hydrodynamic bearing device 1 shown in FIG. 1 seals a bearing sleeve 8, a shaft member 2 inserted into the inner periphery of the bearing sleeve 8, a housing 7 housing the bearing sleeve 8 in the inner periphery, and one end opening of the housing 7. A lid member 9 for stopping and a seal member 10 for sealing the other end opening of the housing 7 are provided. For convenience of explanation, the following explanation will be given with the side of the seal member 10 as the upper side and the opposite side to the axial direction as the lower side.

ハウジング7は、黄銅等の金属材料あるいは樹脂材料で円筒状に形成される。ハウジング7の内周面7aには軸受スリーブ8が、例えば、接着、圧入、溶着等の適宜の手段で固定される。内周面7aの下端側には、内周面7aよりも大径の蓋部材固定面7bが形成されている。   The housing 7 is formed in a cylindrical shape with a metal material such as brass or a resin material. A bearing sleeve 8 is fixed to the inner peripheral surface 7a of the housing 7 by appropriate means such as adhesion, press-fitting, and welding. A lid member fixing surface 7b having a larger diameter than the inner peripheral surface 7a is formed on the lower end side of the inner peripheral surface 7a.

軸受スリーブ8は、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成される。軸受スリーブ8は、焼結金属以外にも、例えば黄銅等の軟質金属材料や焼結金属ではない他の多孔質体(例えば、多孔質樹脂)で形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body of sintered metal whose main component is copper, for example. Besides the sintered metal, the bearing sleeve 8 can be formed of a soft metal material such as brass or another porous body (for example, a porous resin) that is not a sintered metal.

軸受スリーブ8の内周面8aには、図3に示すように、ラジアル動圧発生部として、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が上下二箇所に離隔して形成される。本実施形態において、上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝8a2は軸方向対称に形成され、その上下領域の軸方向寸法はそれぞれ上記軸方向寸法X2と等しくなっている。動圧溝を上記の態様で形成することにより、軸受運転時には、軸受スリーブ8の内周面8aと軸部21の外周面21aとの間の隙間を満たす流体(例えば、潤滑油)が積極的に下方に流動する。なお、動圧溝は、後述する軸部21のラジアル軸受面Aに形成することもでき、またその形状は、スパイラル形状等公知のその他の形状とすることもできる。   As shown in FIG. 3, a region in which a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape is formed on the inner peripheral surface 8a of the bearing sleeve 8 as shown in FIG. Is done. In the present embodiment, the upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axis in the upper region from the axial center m. The direction dimension X1 is larger than the axial direction dimension X2 of the lower region. On the other hand, the lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are respectively equal to the axial dimension X2. By forming the dynamic pressure groove in the above-described manner, a fluid (for example, lubricating oil) that fills the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 21a of the shaft portion 21 is positive during the bearing operation. Flows downward. The dynamic pressure groove may be formed on a radial bearing surface A of the shaft portion 21 described later, and the shape thereof may be other known shapes such as a spiral shape.

軸受スリーブ8の外周面8cには、両端面に開口した軸方向溝8c1が1又は複数本形成される。この軸方向溝8c1は、軸受内部に充満される潤滑油を流動循環させるために設けられたものであり、軸受運転時には、この軸方向溝8c1とハウジング7の内周面7aとで形成される流体通路を介して潤滑油が軸受内部を流動循環する。これにより、軸受内部における圧力の不均衡状態が解消され、潤滑油の漏れや振動の発生等の問題が生じるのを効果的に回避することができる。   On the outer peripheral surface 8c of the bearing sleeve 8, one or a plurality of axial grooves 8c1 opened at both end surfaces are formed. The axial groove 8c1 is provided to flow and circulate the lubricating oil filled in the bearing, and is formed by the axial groove 8c1 and the inner peripheral surface 7a of the housing 7 during the bearing operation. Lubricating oil flows and circulates inside the bearing through the fluid passage. As a result, the pressure imbalance state inside the bearing is resolved, and problems such as the occurrence of lubricating oil leakage and vibration can be effectively avoided.

蓋部材9は、例えば金属材料や樹脂材料で円盤状に形成され、ハウジング7の蓋部材固定面7bに、接着、圧入等適宜の手段で固定される。   The lid member 9 is formed, for example, in a disk shape from a metal material or a resin material, and is fixed to the lid member fixing surface 7b of the housing 7 by an appropriate means such as adhesion or press fitting.

シール部材10は、例えば、黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料でリング状に形成され、ハウジング7の内周面7aの上端部に接着、圧入等の適宜の手段で固定される。このシール部材10の内周面10aと、軸部21の外周面21aとの間には所定のシール空間Sが形成される。シール空間Sは、流体軸受装置1に充満される潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で、潤滑油の油面は常時シール空間Sの範囲内にある。   The seal member 10 is formed in a ring shape from, for example, a soft metal material such as brass, another metal material, or a resin material, and is fixed to the upper end portion of the inner peripheral surface 7a of the housing 7 by an appropriate means such as adhesion or press fitting. Is done. A predetermined seal space S is formed between the inner peripheral surface 10 a of the seal member 10 and the outer peripheral surface 21 a of the shaft portion 21. The seal space S has a buffer function that absorbs the volume change accompanying the temperature change of the lubricating oil filled in the hydrodynamic bearing device 1, and the oil level of the lubricating oil is always sealed within the assumed temperature change range. It is within the space S.

軸部材2は、軸部21と、軸部21の下端から外径側に張り出したスラスト部材22とからなり、全体として金属と樹脂のハイブリッド構造とされる。詳細には、軸部21が金属材料で形成される一方、スラスト部材22は、軸部21の下端に上端面23aが摩擦圧接された金属製のフランジ部23と、フランジ部23の表面を被覆する樹脂製の被覆層24とで構成される。この軸部材2の製造方法は後に詳述する。   The shaft member 2 includes a shaft portion 21 and a thrust member 22 protruding from the lower end of the shaft portion 21 to the outer diameter side, and has a hybrid structure of metal and resin as a whole. More specifically, the shaft portion 21 is formed of a metal material, while the thrust member 22 covers the flange portion 23 and a metal flange portion 23 whose upper end surface 23 a is friction-welded to the lower end of the shaft portion 21. And a resin-made coating layer 24. The method for manufacturing the shaft member 2 will be described in detail later.

軸部21の外周面21aには、平滑な円筒面状をなし、軸受スリーブ8の内周面8aに設けた動圧溝8a1、8a2形成領域とラジアル方向に対向するラジアル軸受面A,Aが軸方向に離隔して二箇所形成されている。両ラジアル軸受面A,A間には、ラジアル軸受面Aよりも小径のヌスミ部21bが形成されている。   The outer peripheral surface 21a of the shaft portion 21 has a smooth cylindrical surface shape, and radial bearing surfaces A and A that are opposed to the formation regions of the dynamic pressure grooves 8a1 and 8a2 provided on the inner peripheral surface 8a of the bearing sleeve 8 in the radial direction. Two locations are formed apart in the axial direction. Between both the radial bearing surfaces A and A, a sumi portion 21b having a smaller diameter than the radial bearing surface A is formed.

スラスト部材22の上側端面22aには、軸受スリーブ8の下側端面8bとの間にスラスト軸受隙間を形成するスラスト軸受面Bとなる領域が設けられ、該スラスト軸受面Bには、例えば図4に示すように、スラスト動圧発生部として、複数の動圧溝22a1がスパイラル形状に配列されている。また、スラスト部材22の下側端面22bには、蓋部材9の上側端面9aとの間にスラスト軸受隙間を形成するスラスト軸受面Cとなる領域が設けられ、スラスト軸受面Cには、図示は省略するが、スラスト動圧発生部として、複数の動圧溝がスパイラル形状に配列されている。なお、スラスト軸受面B,Cに設けた動圧溝は、ヘリングボーン形状等公知のその他の形状に配列することもできる。また、スラスト軸受面B,Cを平滑平面に形成し、軸受スリーブ8の下側端面8bおよび蓋部材9の上側端面9aに動圧溝を形成しても良い。   The upper end surface 22a of the thrust member 22 is provided with a region serving as a thrust bearing surface B that forms a thrust bearing gap with the lower end surface 8b of the bearing sleeve 8. The thrust bearing surface B includes, for example, FIG. As shown in FIG. 5, a plurality of dynamic pressure grooves 22a1 are arranged in a spiral shape as the thrust dynamic pressure generating portion. Further, the lower end surface 22b of the thrust member 22 is provided with a region serving as a thrust bearing surface C that forms a thrust bearing gap with the upper end surface 9a of the lid member 9, and the thrust bearing surface C is illustrated in the figure. Although omitted, a plurality of dynamic pressure grooves are arranged in a spiral shape as the thrust dynamic pressure generating portion. The dynamic pressure grooves provided on the thrust bearing surfaces B and C can be arranged in other known shapes such as a herringbone shape. The thrust bearing surfaces B and C may be formed on a smooth plane, and dynamic pressure grooves may be formed on the lower end surface 8 b of the bearing sleeve 8 and the upper end surface 9 a of the lid member 9.

流体軸受装置1は主に以上の構成部材からなり、シール部材10でシールされたハウジング7の内部空間には、軸受スリーブ8の内部気孔も含め潤滑油が充満される。   The hydrodynamic bearing device 1 is mainly composed of the above components, and the internal space of the housing 7 sealed with the seal member 10 is filled with lubricating oil including the internal pores of the bearing sleeve 8.

以上の構成からなる流体軸受装置1において、軸部材2が回転すると、軸受スリーブ8の動圧溝8a1,8a2形成領域は、軸部21の上下二箇所に離隔して設けられたラジアル軸受面A,Aとラジアル軸受隙間を介してそれぞれ対向する。そして、軸部材2の回転に伴って、ラジアル軸受隙間に形成される油膜は、動圧溝8a1,8a2の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the dynamic pressure grooves 8a1 and 8a2 formation regions of the bearing sleeve 8 are provided at radial bearing surfaces A which are provided separately at two upper and lower portions of the shaft portion 21. , A and the radial bearing gaps. As the shaft member 2 rotates, the oil film formed in the radial bearing gap is enhanced in its rigidity by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2, and the shaft member 2 rotates in the radial direction by this pressure. It is supported non-contact freely. As a result, radial bearing portions R1 and R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are spaced apart at two locations in the axial direction.

また、軸部材2が回転すると、スラスト部材22のスラスト軸受面B,Cは、軸受スリーブ8の下側端面8bおよび蓋部材9の上側端面9aとスラスト軸受隙間を介してそれぞれ対向する。そして、軸部材2の回転に伴って、両スラスト軸受隙間に形成される油膜は、動圧溝の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   When the shaft member 2 rotates, the thrust bearing surfaces B and C of the thrust member 22 face the lower end surface 8b of the bearing sleeve 8 and the upper end surface 9a of the lid member 9 through a thrust bearing gap. As the shaft member 2 rotates, the oil film formed in the thrust bearing gaps has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves, and the shaft member 2 can rotate in both thrust directions by this pressure. Is supported in a non-contact manner. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in both thrust directions are formed.

次に、上記の流体軸受装置1で使用される軸部材2の構造および製造方法を図面に基づいて詳述する。なお、軸部材2は、(A)摩擦圧接工程と、(B)射出成形工程とを経て製造される。   Next, the structure and manufacturing method of the shaft member 2 used in the hydrodynamic bearing device 1 will be described in detail with reference to the drawings. The shaft member 2 is manufactured through (A) a friction welding process and (B) an injection molding process.

(A)摩擦圧接工程
図5は、摩擦圧接により、軸部21の下端にフランジ部23を固定(接合)する工程を概念的に示す図である。同図に示す製造装置(摩擦圧接装置)は、軸方向に相対移動可能に同軸配置された第1の治具30および第2の治具33を主要な構成として備える。第1の治具30は、軸部21を回転駆動させる軸受31と、軸部21の半径方向に進退可能に設けられ、軸部21の外周面21aを拘束するチャック32とで主要部が構成される。第2の治具33は、フランジ部23の外周面23cおよび下端面23bを拘束するものである。本実施形態では第1の治具30が固定側、第2の治具33が移動側とされる。もちろん、第1の治具30を移動側、第2の治具33を固定側とすることもできる。
(A) Friction Welding Step FIG. 5 is a diagram conceptually showing a step of fixing (joining) the flange portion 23 to the lower end of the shaft portion 21 by friction welding. The manufacturing apparatus (friction welding apparatus) shown in the figure includes a first jig 30 and a second jig 33 arranged coaxially so as to be relatively movable in the axial direction as main components. The first jig 30 includes a bearing 31 that rotationally drives the shaft portion 21 and a chuck 32 that is provided so as to be able to advance and retreat in the radial direction of the shaft portion 21 and restrains the outer peripheral surface 21 a of the shaft portion 21. Is done. The second jig 33 restrains the outer peripheral surface 23 c and the lower end surface 23 b of the flange portion 23. In the present embodiment, the first jig 30 is the fixed side, and the second jig 33 is the moving side. Of course, the first jig 30 can be the moving side and the second jig 33 can be the fixed side.

ところで、この種のフランジ付軸部材では、例えば、ラジアル軸受面に対するスラスト軸受面の直角度が軸部材の回転性能を左右する。本実施形態において、かかる直角度は、後述する射出成形工程で確保されるものの、軸部21に対するフランジ部23の固定精度があまりにも悪いと軸部材2が振れ回るおそれがある。そのため、第1の治具30の内周面に対する第2の治具33の内底面の直角度等は、十分に高めておくのが望ましい。   By the way, in this type of shaft member with flange, for example, the perpendicularity of the thrust bearing surface with respect to the radial bearing surface affects the rotational performance of the shaft member. In the present embodiment, the squareness is ensured in an injection molding process described later, but if the fixing accuracy of the flange portion 23 with respect to the shaft portion 21 is too bad, the shaft member 2 may be swung around. Therefore, it is desirable that the perpendicularity of the inner bottom surface of the second jig 33 with respect to the inner peripheral surface of the first jig 30 is sufficiently increased.

軸部21は、高剛性の金属材料、例えばステンレス鋼で形成され、この段階では、その全長寸法を除いて所定の形状に仕上げられている。詳細には、軸部21のうち、フランジ部23と接合する接合部21c(下側のラジアル軸受面Aを含む軸部21の下端部分)の軸方向寸法が、摩擦圧接によって短縮する分だけ長めに設定されている。一方、フランジ部23は、軸部21と同様のステンレス鋼で凹凸等のない円盤状に形成されている。   The shaft portion 21 is made of a highly rigid metal material such as stainless steel, and at this stage, the shaft portion 21 is finished in a predetermined shape except for the overall length. Specifically, the axial dimension of the joint portion 21c (the lower end portion of the shaft portion 21 including the lower radial bearing surface A) of the shaft portion 21 that is joined to the flange portion 23 is increased by the amount shortened by the friction welding. Is set to On the other hand, the flange portion 23 is formed of a stainless steel similar to the shaft portion 21 and is formed in a disc shape without irregularities.

以上の構成において、軸部21およびフランジ部23を、それぞれ第1および第2の治具30,33で保持した状態で第2の治具33を第1の治具30に接近させ、フランジ部23の上端面23aを軸部21(接合部21c)の下端面21c1に当接させる。次いで、図6(A)に示すように、軸受31を駆動して軸部21を回転させ、両面の接触部に摩擦熱を発生させる。そして、接触部において、軸部21およびフランジ部23の形成材料が融点近傍まで加熱されると、第2の治具33を第1の治具30にさらに接近させ、フランジ部23の上端面23aを軸部21の接合部下端面21c1に押し付ける。   In the above configuration, the second jig 33 is brought close to the first jig 30 in a state where the shaft portion 21 and the flange portion 23 are held by the first and second jigs 30 and 33, respectively. The upper end surface 23a of 23 is brought into contact with the lower end surface 21c1 of the shaft portion 21 (joining portion 21c). Next, as shown in FIG. 6A, the bearing 31 is driven to rotate the shaft portion 21 to generate frictional heat at the contact portions on both sides. In the contact portion, when the forming material of the shaft portion 21 and the flange portion 23 is heated to near the melting point, the second jig 33 is further brought closer to the first jig 30, and the upper end surface 23 a of the flange portion 23. Is pressed against the joint lower end surface 21c1 of the shaft portion 21.

これにより、図6(B)に示すように、軸部21とフランジ部23とが摩擦圧接により相互に接合した接合部Mと、接合部Mの外周に形成された肉の盛り上がり(返り)Nとからなる圧接固定部25が形成される。そして、フランジ部23および軸部21の拘束状態を解除した後、軸部21を軸受31から抜き取ると、軸部21の下端にフランジ部23が接合してなるアセンブリ26が得られる。   As a result, as shown in FIG. 6B, the joint portion M in which the shaft portion 21 and the flange portion 23 are joined to each other by friction welding, and the rise (return) N of the meat formed on the outer periphery of the joint portion M. A pressure contact fixing portion 25 is formed. Then, after releasing the restrained state of the flange portion 23 and the shaft portion 21, when the shaft portion 21 is extracted from the bearing 31, an assembly 26 in which the flange portion 23 is joined to the lower end of the shaft portion 21 is obtained.

(B)射出成形工程
以上のようにして得られたアセンブリ26は射出成形工程に移送される。この工程では、アセンブリ26をインサート部品とし、軸部21のラジアル軸受面Aを基準としてスラスト部材22を構成する被覆層24が溶融材料(ここでは溶融樹脂)で射出成形される。図7(A)は、射出成形工程の一例を概念的に示すものであり、同図に示す金型は、軸方向に相対移動可能に同軸配置された可動側の上型34および固定側の下型35で主要部が構成され、両型34,35で被覆層24(スラスト部材22)形状に対応したキャビティ37が形成される。
(B) Injection molding process The assembly 26 obtained as described above is transferred to the injection molding process. In this step, the assembly 26 is used as an insert part, and the coating layer 24 constituting the thrust member 22 is injection-molded with a molten material (here, a molten resin) using the radial bearing surface A of the shaft portion 21 as a reference. FIG. 7A conceptually shows an example of an injection molding process. The mold shown in FIG. 7 is composed of a movable upper mold 34 and a fixed side coaxially arranged so as to be relatively movable in the axial direction. A main part is constituted by the lower die 35, and a cavity 37 corresponding to the shape of the coating layer 24 (thrust member 22) is formed by both the die 34 and 35.

上型34にはキャビティ37に溶融材料Pを射出・充填するゲート34aが設けられている。上型34の端面のうち、フランジ部23の下端面23bとキャビティ37を介して軸方向に対向する下端面34bには、スラスト部材22のスラスト軸受面Cに設けるべき動圧溝形状に対応した型部39が設けられている。   The upper die 34 is provided with a gate 34 a for injecting and filling the molten material P into the cavity 37. Among the end surfaces of the upper die 34, the lower end surface 34 b that faces the lower end surface 23 b of the flange portion 23 and the cavity 37 in the axial direction corresponds to the dynamic pressure groove shape to be provided on the thrust bearing surface C of the thrust member 22. A mold part 39 is provided.

下型35には収容部35aが設けられ、アセンブリ26はこの収容部35aの内周に軸部21を挿入することにより位置決め配置される。下型35の上端面35bのうち、フランジ部23の上端面23aとキャビティ37を介して軸方向に対向する部位には、スラスト部材22の上側端面22aのスラスト軸受面Bに設けるべき動圧溝22a1形状に対応した型部38が設けられている。下型35の内周には、下型35に対して軸方向に相対移動可能なノックアウトピン36が設けられ、ノックアウトピン36の上端面36aで軸部21の上端面が支持される。なお、図7(A)は、ノックアウトピン36が原点位置にある状態を示すものであり、この状態で、下型35の上端面35bとノックアウトピン36の上端面36aとの軸方向離間距離は軸部21の軸方向寸法よりも所定量短く設定されている。従って、軸部21を収容部35aに挿入した状態で、圧接固定部25は、下型35の上端面35aに非接触とされる。   The lower die 35 is provided with a housing portion 35a, and the assembly 26 is positioned and disposed by inserting the shaft portion 21 into the inner periphery of the housing portion 35a. A dynamic pressure groove to be provided on the thrust bearing surface B of the upper end surface 22a of the thrust member 22 in a portion of the upper end surface 35b of the lower mold 35 that faces the upper end surface 23a of the flange portion 23 in the axial direction via the cavity 37. A mold portion 38 corresponding to the shape of 22a1 is provided. A knockout pin 36 that can move in the axial direction relative to the lower die 35 is provided on the inner circumference of the lower die 35, and the upper end surface 36 a of the knockout pin 36 supports the upper end surface of the shaft portion 21. FIG. 7A shows a state in which the knockout pin 36 is at the origin position. In this state, the axial separation distance between the upper end surface 35b of the lower mold 35 and the upper end surface 36a of the knockout pin 36 is as follows. It is set shorter by a predetermined amount than the axial dimension of the shaft portion 21. Accordingly, the pressure contact fixing portion 25 is not in contact with the upper end surface 35a of the lower die 35 in a state where the shaft portion 21 is inserted into the housing portion 35a.

本実施形態においては、軸部材2に求められる各種精度、例えば、軸部21のラジアル軸受面Aに対するスラスト部材22のスラスト軸受面Bの直角度や両スラスト軸受面B,C間の平行度が、被覆層24の射出成形時に確保される仕様となっている。そのため、収容部35aの内壁面に対する下型35の上端面35bの直角度、および上下型34,35の衝合状態における下型35の上端面35bに対する上型34の下端面34bの平行度は、上記要求精度を満足し得る精度に仕上げられている。なお、被覆層24の肉厚が部分的に異なると、成形収縮量の差に起因して所望形状のスラスト部材22が得られないおそれがある。そのため、キャビティ37の寸法は、その全体に亘って略均一に設定するのが望ましい。   In this embodiment, various accuracies required for the shaft member 2, for example, the perpendicularity of the thrust bearing surface B of the thrust member 22 with respect to the radial bearing surface A of the shaft portion 21 and the parallelism between the thrust bearing surfaces B and C are obtained. The specifications are ensured when the coating layer 24 is injection molded. Therefore, the perpendicularity of the upper end surface 35b of the lower mold 35 with respect to the inner wall surface of the accommodating portion 35a and the parallelism of the lower end surface 34b of the upper mold 34 with respect to the upper end surface 35b of the lower mold 35 in the abutting state of the upper and lower molds 34, 35 are In addition, it is finished to an accuracy that can satisfy the required accuracy. If the thickness of the covering layer 24 is partially different, the thrust member 22 having a desired shape may not be obtained due to a difference in molding shrinkage. For this reason, it is desirable that the dimensions of the cavity 37 be set to be substantially uniform throughout.

上記構成の金型において、軸部21を下型35の収容部35aに挿入して軸部21のラジアル軸受面A,Aを拘束した後、上型34を下型35に接近させて型締めする。型締め完了後、ゲート34aを介してキャビティ37内に溶融材料P(溶融樹脂)を射出・充填し、被覆層24を型成形する。溶融樹脂の固化完了後型開きを行い、ノックアウトピン36を押し上げると、図7(B)に示すように、軸部21の下端に摩擦圧接されたフランジ部23、および圧接固定部25を含んでフランジ部23の全表面を被覆する被覆層24からなるスラスト部材22が形成され、これにより図2に示す軸部材2が得られる。また、スラスト部材22の上下端面22a,22b(被覆層24の表面)には、スラスト軸受面B、C(動圧溝)が被覆層24の成形と同時に型成形される。   In the mold configured as described above, after the shaft portion 21 is inserted into the housing portion 35a of the lower die 35 and the radial bearing surfaces A and A of the shaft portion 21 are constrained, the upper die 34 is brought close to the lower die 35 and clamped. To do. After completing the mold clamping, the molten material P (molten resin) is injected and filled into the cavity 37 through the gate 34a, and the coating layer 24 is molded. When the mold opening is performed after the solidification of the molten resin is completed and the knockout pin 36 is pushed up, as shown in FIG. 7B, the flange portion 23 and the pressure contact fixing portion 25 that are friction-welded to the lower end of the shaft portion 21 are included. A thrust member 22 comprising a coating layer 24 covering the entire surface of the flange portion 23 is formed, whereby the shaft member 2 shown in FIG. 2 is obtained. Further, thrust bearing surfaces B and C (dynamic pressure grooves) are formed on the upper and lower end surfaces 22 a and 22 b (surface of the coating layer 24) of the thrust member 22 simultaneously with the molding of the coating layer 24.

なお、溶融材料Pとしての溶融樹脂は、射出可能であれば非晶性樹脂、結晶性樹脂を問わず使用可能である。使用可能な非晶性樹脂としては、例えば、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等が挙げられ、また使用可能な結晶性樹脂としては、例えば、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等が挙げられる。これらのベース樹脂は、単独で用いる他、二種以上を混合して使用することもできる。また、上記のベース樹脂には、これに種々の特性を付与するための各種充填材を任意の割合で配合することもできる。   The molten resin as the molten material P can be used regardless of whether it is an amorphous resin or a crystalline resin as long as it can be injected. Examples of the amorphous resin that can be used include polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), and polyetherimide (PEI). Examples of the resin include liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), and the like. These base resins can be used alone or in combination of two or more. Moreover, various fillers for imparting various properties to the above base resin can be blended at an arbitrary ratio.

溶融材料Pとしては、上記の樹脂以外にも金属材料、例えばマグネシウム合金等の低融点金属を使用することも可能である。この場合、被覆層24は金属製となり、上記のように被覆層24を樹脂製とする場合に比べ、スラスト部材22の耐摩耗性を高めることが可能となる。なお、金属製の被覆層24は、低融点金属で射出成形する以外にも、金属粉とバインダーの混合物を射出成形した後、脱脂・焼結するいわゆるMIM成形で形成することも可能である。   As the molten material P, it is also possible to use a metal material, for example, a low melting point metal such as a magnesium alloy, in addition to the above resin. In this case, the covering layer 24 is made of metal, and the wear resistance of the thrust member 22 can be improved as compared with the case where the covering layer 24 is made of resin as described above. The metal coating layer 24 can be formed by so-called MIM molding in which a mixture of a metal powder and a binder is injection molded, and then degreased and sintered, in addition to injection molding with a low melting point metal.

以上に示すように、本発明に係る流体軸受装置1では、軸部材2の軸部21とフランジ部23とが、摩擦圧接によって接合されているので、両者の接合に際してねじやレーザ等の他媒体を用いる必要がない。しかも、軸部21の下端にねじ溝を設けたり、相互に対向する軸部21の下端面21c1やフランジ部23の上端面23aに突起を設けたりする必要がなく、軸部21およびフランジ部23の端面形状を単純化することができる。また、相互に対向する軸部21の下端面21c1およびフランジ部23の上端面23aの全体を接合させることができ、接合面積の拡大を通じて、両者間の固定強度を高めることができる。以上より、軸部21に対するフランジ部23の固定強度を低コストに高めることができる。なお、この軸部材2は、軸部21およびフランジ部23を一体形成した場合と同等の固定強度を有する。   As described above, in the hydrodynamic bearing device 1 according to the present invention, since the shaft portion 21 and the flange portion 23 of the shaft member 2 are joined by friction welding, other media such as screws and lasers are used for joining them. Need not be used. In addition, it is not necessary to provide a screw groove at the lower end of the shaft portion 21 or to provide a protrusion on the lower end surface 21c1 of the shaft portion 21 or the upper end surface 23a of the flange portion 23 that face each other. The shape of the end face can be simplified. Moreover, the whole lower end surface 21c1 of the axial part 21 and the upper end surface 23a of the flange part 23 which mutually oppose can be joined, and the fixation strength between both can be raised through expansion of a joining area. As described above, the fixing strength of the flange portion 23 with respect to the shaft portion 21 can be increased at low cost. The shaft member 2 has a fixing strength equivalent to that when the shaft portion 21 and the flange portion 23 are integrally formed.

また、本実施形態に係る軸部材2では、圧接固定部25を含むフランジ部23の両端面23a、23bを型成形された被覆層24で被覆し、この被覆層24の表面にスラスト軸受面B、Cを形成したので、摩擦圧接に伴って形成される返りNを切削等の機械加工で除去する必要がなく、また、摩擦圧接に伴ってフランジ部23が変形したとしても矯正加工を施す必要もない。従って、高精度なスラスト軸受面B、Cが低コストに得られる。   Further, in the shaft member 2 according to the present embodiment, both end surfaces 23a and 23b of the flange portion 23 including the pressure contact fixing portion 25 are covered with a molded coating layer 24, and the surface of this coating layer 24 is a thrust bearing surface B. Since C is formed, it is not necessary to remove the return N formed by friction welding by machining such as cutting, and it is necessary to perform correction processing even if the flange portion 23 is deformed by friction welding. Nor. Therefore, highly accurate thrust bearing surfaces B and C can be obtained at low cost.

また、必要とされるラジアル軸受面Aに対するスラスト軸受面Bの直角度、およびスラスト軸受面B,C間の平行度が、被覆層24の成形時に確保される。従って、軸部21に対するフランジ部23の固定精度、およびフランジ部23の形状精度を、軸部材2の回転精度に悪影響が出ない範囲においてラフにすることができ、摩擦圧接時の加工条件を緩和して製造コストの低廉化を図ることができる。また、被覆層24は、アセンブリ26(軸部21およびフランジ部23)をインサート部品として射出成形されるから、上記各種要求精度を容易に高めることができる。さらに、本実施形態では、スラスト動圧発生部としての動圧溝が被覆層24の成形と同時に型成形されるので、この種の動圧溝を別途設ける手間を省いて、更なる製造コストの低廉化も図られる。   Further, the perpendicularity of the thrust bearing surface B to the required radial bearing surface A and the parallelism between the thrust bearing surfaces B and C are ensured when the coating layer 24 is formed. Accordingly, the fixing accuracy of the flange portion 23 with respect to the shaft portion 21 and the shape accuracy of the flange portion 23 can be made rough within a range where the rotational accuracy of the shaft member 2 is not adversely affected, and the processing conditions during friction welding are eased. Thus, the manufacturing cost can be reduced. Moreover, since the coating layer 24 is injection-molded by using the assembly 26 (the shaft portion 21 and the flange portion 23) as an insert part, the various required accuracy can be easily increased. Furthermore, in the present embodiment, the dynamic pressure groove as the thrust dynamic pressure generating portion is molded at the same time as the coating layer 24 is formed, so that the trouble of separately providing this type of dynamic pressure groove can be saved and the manufacturing cost can be further reduced. Cost reduction is also achieved.

なお、本実施形態では、軸部21およびフランジ部23を同種のステンレス鋼で形成したが、摩擦圧接であれば、レーザ溶接や抵抗溶接では高い接合強度を確保するのが難しい異種金属間においても高い接合強度を確保することができる。そのため、軸部材2に必要とされる強度を確保し得る限りにおいて、軸部21とフランジ部23の形成材料の選択肢を広げることが、すなわち、要求品質に応じた最適材料を選択使用することができ、この点から軸部材2の低コスト化を図ることも可能となる。例えば、軸部21をステンレス鋼で形成する一方、フランジ部23を黄銅等で形成することができる。   In this embodiment, the shaft portion 21 and the flange portion 23 are formed of the same kind of stainless steel. However, in the case of friction welding, even between dissimilar metals where it is difficult to ensure high joint strength by laser welding or resistance welding. High bonding strength can be ensured. Therefore, as long as the strength required for the shaft member 2 can be ensured, the choice of the material for forming the shaft portion 21 and the flange portion 23 can be expanded, that is, the optimum material corresponding to the required quality can be selected and used. In this respect, the cost of the shaft member 2 can be reduced. For example, the shaft portion 21 can be formed of stainless steel, while the flange portion 23 can be formed of brass or the like.

また、本実施形態では、フランジ部23の表面全体を被覆層24で被覆した場合について説明を行なっているが、被覆層24は、スラスト軸受面B,Cを有する面、すなわちフランジ部23の両端面23a,23bを被覆するように設ければ足りる。   In this embodiment, the case where the entire surface of the flange portion 23 is covered with the coating layer 24 is described. The coating layer 24 is a surface having thrust bearing surfaces B and C, that is, both ends of the flange portion 23. It is sufficient to provide the surfaces 23a and 23b so as to cover them.

以上、本発明の一実施形態について説明を行ったが、本発明は、上記構成に限定適用されるものではない。以下、本発明に係る流体軸受装置の他の実施形態を図面に基づいて説明する。なお、以下では、以上で説明したものに準じる構成には共通の参照番号を付して重複説明を省略する。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above configuration. Hereinafter, other embodiments of the hydrodynamic bearing device according to the present invention will be described with reference to the drawings. In the following description, components similar to those described above are denoted by common reference numerals, and redundant description is omitted.

図8は、本発明に係る流体軸受装置の第2実施形態を示すものである。同図に示す流体軸受装置が、図2に示すものと異なる主な点は、軸部材2のスラスト部材22の下側端面22bにスラスト軸受面Cは形成されず、第2スラスト軸受部T2が、軸部21の上端に固定されたディスクハブ3の円盤部3aの下側端面3a1とハウジング7の上側端面7cとの間に設けられた点、およびシール空間Sが、ハウジング7のテーパ状外周面7dとディスクハブ3の円筒部3bの内周面3b1との間に設けられる点にある。なお、図示例では、フランジ部23の表面全体を被覆層24で被覆した構成としているが、被覆層24は、スラスト軸受面Bを有する面、すなわちフランジ部23の上端面23aを被覆するように設ければ足りる。   FIG. 8 shows a fluid dynamic bearing device according to a second embodiment of the present invention. The main difference between the hydrodynamic bearing device shown in FIG. 2 and that shown in FIG. 2 is that the thrust bearing surface C is not formed on the lower end surface 22b of the thrust member 22 of the shaft member 2, and the second thrust bearing portion T2 is formed. The point provided between the lower end surface 3 a 1 of the disk portion 3 a of the disk hub 3 fixed to the upper end of the shaft portion 21 and the upper end surface 7 c of the housing 7, and the seal space S are the tapered outer periphery of the housing 7. It exists in the point provided between the surface 7d and the internal peripheral surface 3b1 of the cylindrical part 3b of the disc hub 3. FIG. In the illustrated example, the entire surface of the flange portion 23 is covered with the covering layer 24. However, the covering layer 24 covers the surface having the thrust bearing surface B, that is, the upper end surface 23a of the flange portion 23. It is enough if it is provided.

図9は、本発明に係る流体軸受装置の第3実施形態を示すものである。同図に示す流体軸受装置では、軸部材2が、軸部21の軸方向略中央部に固定された第2のスラスト部材42をさらに備え、第2スラスト軸受部T2が、第2のスラスト部材42と軸受スリーブ8の上側端面8dとの間に設けられる点、および両スラスト部材22,42の外周面22c,42cが、ハウジング7の内周面7aとの間にシール空間Sを形成する点で、図2および図8に示す実施形態と構成を異にする。このように2つのスラスト部材22,42を軸部21に設けた軸部材2を用いる場合であっても、軸部21と、軸部21の下端に設けたスラスト部材22(フランジ部23)との一体品に関しては、上記本発明の構成を適用することができる。特に、下側のスラスト部材22では、被覆層24にシール面が形成されるから、精度の良いシール空間Sが低コストに得られる。   FIG. 9 shows a third embodiment of the hydrodynamic bearing device according to the present invention. In the hydrodynamic bearing device shown in the figure, the shaft member 2 further includes a second thrust member 42 fixed to a substantially central portion in the axial direction of the shaft portion 21, and the second thrust bearing portion T 2 is a second thrust member. 42 and the upper end surface 8 d of the bearing sleeve 8, and the outer peripheral surfaces 22 c and 42 c of the thrust members 22 and 42 form a seal space S between the inner peripheral surface 7 a of the housing 7. Thus, the configuration is different from that of the embodiment shown in FIGS. Thus, even when the shaft member 2 provided with the two thrust members 22 and 42 on the shaft portion 21 is used, the shaft portion 21 and the thrust member 22 (flange portion 23) provided on the lower end of the shaft portion 21 are used. The above-described configuration of the present invention can be applied to the integrated product. In particular, in the lower thrust member 22, a sealing surface is formed on the covering layer 24, so that a highly accurate sealing space S can be obtained at low cost.

なお、図示例では、以上で説明した実施形態同様に、フランジ部23の表面全体を被覆層24で被覆した構成としているが、被覆層24は、スラスト軸受面Bおよびシール面を有する面、すなわちフランジ部23の上端面23aおよび外周面23cを被覆するように設ければ足りる。   In the illustrated example, as in the embodiment described above, the entire surface of the flange portion 23 is covered with the coating layer 24. However, the coating layer 24 is a surface having a thrust bearing surface B and a seal surface, that is, It is only necessary to provide the upper end surface 23a and the outer peripheral surface 23c of the flange portion 23 so as to cover them.

以上で説明を行った流体軸受装置は、何れも、ハウジング7と軸受スリーブ8とを別体品としたものであるが、両者を一体化した流体軸受装置にも本発明を好適に採用することができる。また、特に図2に示す流体軸受装置にあっては、さらに、蓋部材9又はシール部材10をハウジング7に一体化することも可能である。   Each of the fluid dynamic bearing devices described above has the housing 7 and the bearing sleeve 8 as separate components. However, the present invention is also preferably applied to a fluid dynamic bearing device in which both are integrated. Can do. In particular, in the hydrodynamic bearing device shown in FIG. 2, the lid member 9 or the seal member 10 can be further integrated with the housing 7.

また、以上では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受、多円弧軸受、あるいは非真円軸受を、スラスト軸受部T1、T2として、いわゆるステップ軸受や波形軸受を採用しても良い。また、以上では、ラジアル軸受部を軸方向2箇所に設けた構成を例示しているが、ラジアル軸受部を軸方向の1箇所あるいは3箇所以上に設けることもできる。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. So-called step bearings, multi-arc bearings, or non-circular bearings may be used as the portions R1 and R2, and so-called step bearings and corrugated bearings may be employed as the thrust bearing portions T1 and T2. Moreover, although the structure which provided the radial bearing part in the axial direction two places was illustrated above, a radial bearing part can also be provided in the axial direction one place or three places or more.

また、以上では、ラジアル軸受部R1、R2の双方を動圧軸受で構成した場合について説明を行ったが、ラジアル軸受部R1、R2の一方又は双方をこれ以外の軸受で構成することもできる。例えば図示は省略するが、軸部材2のラジアル軸受面Aを真円状に形成すると共に、対向する軸受スリーブ8の内周面8aを真円状内周面とすることで、いわゆる真円軸受を構成することもできる。   Moreover, although the case where both radial bearing part R1, R2 was comprised with the dynamic pressure bearing was demonstrated above, one or both of radial bearing part R1, R2 can also be comprised with a bearing other than this. For example, although not shown in the drawings, the radial bearing surface A of the shaft member 2 is formed in a perfect circle shape, and the inner peripheral surface 8a of the bearing sleeve 8 that is opposed is a perfect circular inner peripheral surface. Can also be configured.

情報機器用スピンドルモータの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the spindle motor for information devices. 本発明に係る流体軸受装置の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve. フランジ部の上側端面を示す図である。It is a figure which shows the upper end surface of a flange part. 摩擦圧接工程を概念的に示す断面図である。It is sectional drawing which shows a friction welding process notionally. (A)図は摩擦圧接の初期段階、(B)図は摩擦圧接の完了状態を概念的に示す断面図である。(A) is an initial stage of friction welding, and (B) is a sectional view conceptually showing a completed state of friction welding. (A)図は被覆層を射出成形する工程を概念的に示す断面図、(B)図は被覆層を射出成形した後の軸部材の要部拡大断面図である。FIG. 4A is a sectional view conceptually showing a process of injection molding a coating layer, and FIG. 4B is an enlarged sectional view of a main part of the shaft member after the coating layer is injection molded. 本発明に係る流体軸受装置の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
8 軸受スリーブ
21 軸部
22 スラスト部材
23 フランジ部
24 被覆層
25 圧接固定部
26 アセンブリ
A ラジアル軸受面
B、C スラスト軸受面
M 接合部
N 返り
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 8 Bearing sleeve 21 Shaft part 22 Thrust member 23 Flange part 24 Covering layer 25 Pressure contact fixing part 26 Assembly A Radial bearing surface B, C Thrust bearing surface M Joint part N Return R1, R2 Radial bearing part T1 , T2 Thrust bearing

Claims (6)

軸受スリーブと、軸受スリーブの内周に挿入され、軸受スリーブに対して相対回転する軸部材とを備え、軸部材が、ラジアル軸受面を有する軸部と、軸部の一端外径側に張り出したフランジ部とを有する流体軸受装置において、
軸部材の軸部とフランジ部とを摩擦圧接したことを特徴とする流体軸受装置。
A bearing sleeve and a shaft member that is inserted into the inner periphery of the bearing sleeve and rotates relative to the bearing sleeve. The shaft member has a shaft portion having a radial bearing surface, and projects to one end outer diameter side of the shaft portion. In a hydrodynamic bearing device having a flange portion,
A hydrodynamic bearing device characterized in that a shaft portion of a shaft member and a flange portion are friction-welded.
フランジ部の端面を型成形された被覆層で被覆し、被覆層の表面にスラスト軸受面を形成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein an end surface of the flange portion is covered with a coating layer formed by molding, and a thrust bearing surface is formed on the surface of the coating layer. 軸部の一端にフランジ部を摩擦圧接した後、軸部およびフランジ部をインサートして被覆層を射出成形した請求項2記載の流体軸受装置。   3. The hydrodynamic bearing device according to claim 2, wherein after the flange portion is friction-welded to one end of the shaft portion, the shaft portion and the flange portion are inserted and the coating layer is injection molded. 被覆層の外周面と、これに対向する他部材との間にシール空間を形成した請求項2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 2, wherein a sealing space is formed between the outer peripheral surface of the coating layer and another member facing the outer peripheral surface. 被覆層が、樹脂で型成形された請求項2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 2, wherein the coating layer is molded with resin. 被覆層が、金属で型成形された請求項2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 2, wherein the coating layer is formed of a metal.
JP2007147133A 2007-06-01 2007-06-01 Fluid bearing device Withdrawn JP2008298236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147133A JP2008298236A (en) 2007-06-01 2007-06-01 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147133A JP2008298236A (en) 2007-06-01 2007-06-01 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2008298236A true JP2008298236A (en) 2008-12-11

Family

ID=40171934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147133A Withdrawn JP2008298236A (en) 2007-06-01 2007-06-01 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2008298236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336584B1 (en) 2012-05-02 2013-12-05 주식회사 서울금속 Fluid Dynamic Bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336584B1 (en) 2012-05-02 2013-12-05 주식회사 서울금속 Fluid Dynamic Bearing

Similar Documents

Publication Publication Date Title
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
US20030169952A1 (en) Dynamic bearing device and method for making same
US20100226601A1 (en) Fluid dynamic bearing device
US8107190B2 (en) Fluid bearing device, method of manufacturing the same, and disk drive device
JP2007024146A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2010065740A (en) Fluid bearing unit and its manufacturing method
JP4672379B2 (en) Hydrodynamic bearing device
JP5312895B2 (en) Hydrodynamic bearing device
KR20090015099A (en) Fluid bearing device and its manufacturing method
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
JP2009024810A (en) Fluid bearing device and method of producing the same
JP2008298236A (en) Fluid bearing device
JP4738964B2 (en) Hydrodynamic bearing device and motor having the same
JP2008144847A (en) Dynamic pressure bearing device
JP2007211973A (en) Fluid bearing and its manufacturing method
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2004190786A (en) Dynamic-pressure bearing device and manufacturing method therefor
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP2007192316A (en) Dynamic pressure bearing device
JP4509650B2 (en) Hydrodynamic bearing device
JP2007263225A (en) Fluid bearing device
JP4685641B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4732262B2 (en) Method for manufacturing hydrodynamic bearing device
JP2005061486A (en) Dynamic pressure bearing device, its manufacturing method, and recording disk driving device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803