JP2005093427A - Composition for organic electroluminescent element, and manufacturing method of organic electroluminescent element - Google Patents

Composition for organic electroluminescent element, and manufacturing method of organic electroluminescent element Download PDF

Info

Publication number
JP2005093427A
JP2005093427A JP2004233676A JP2004233676A JP2005093427A JP 2005093427 A JP2005093427 A JP 2005093427A JP 2004233676 A JP2004233676 A JP 2004233676A JP 2004233676 A JP2004233676 A JP 2004233676A JP 2005093427 A JP2005093427 A JP 2005093427A
Authority
JP
Japan
Prior art keywords
group
composition
organic electroluminescent
layer
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004233676A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ogata
朋行 緒方
Minoru Soma
実 相馬
Kouichiro Iida
宏一朗 飯田
Toshimitsu Nakai
敏光 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004233676A priority Critical patent/JP2005093427A/en
Publication of JP2005093427A publication Critical patent/JP2005093427A/en
Priority to US11/278,772 priority patent/US20060182993A1/en
Priority to US12/500,872 priority patent/US20090309070A1/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for organic light emitting element which is suitable for forming a hole injecting/transporting layer by a wet film-forming method without denaturing a hole injecting/transporting material and/or an electron-accepting compound. <P>SOLUTION: The solution composition is composed of a hole injecting/transporting material such as an aromatic diamine compound, an electron accepting compound such as tri(pentafluorophenyl) boron, and an aromatic ester group solvent such as benzoic ester for dissolving the above compounds. The concentration of moisture, alcohol group solvent or halogen group solvent which deactivates these hole injecting/transporting material and electron-accepting compound is reduced to ≤1 wt.%, further, the solution composition is used within 20 hours after preparation at the formation of the hole injection layer or the like by the wet film-forming method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機電界発光素子用組成物等に関し、より詳しくは、湿式製膜法により正孔注入・輸送層を形成する際に用いられる有機電界発光素子用組成物等に関する。   The present invention relates to a composition for an organic electroluminescent element, and more particularly to a composition for an organic electroluminescent element used when forming a hole injection / transport layer by a wet film forming method.

近年、ZnS等の無機材料に代わり、有機材料を用いた電界発光素子(有機電界発光素子)の開発が行われている。特に、芳香族ジアミンからなる正孔輸送層と8−ヒドロキシキノリンのアルミニウム錯体からなる発光層とを設けた有機電界発光素子の発光効率は大幅に改善された。   In recent years, an electroluminescent element (organic electroluminescent element) using an organic material instead of an inorganic material such as ZnS has been developed. In particular, the luminous efficiency of the organic electroluminescence device provided with the hole transport layer made of aromatic diamine and the light emitting layer made of aluminum complex of 8-hydroxyquinoline was greatly improved.

また、有機電界発光素子の駆動電圧が上昇する原因は、陽極と正孔輸送層のコンタクトが不十分であると考えられることから、陽極と正孔輸送層との間に正孔注入層を設けることにより陽極と正孔輸送層のコンタクトを向上させ、駆動電圧を低下させる手段が検討されている。   In addition, the reason why the driving voltage of the organic electroluminescence device is increased is that the contact between the anode and the hole transport layer is considered to be insufficient. Therefore, a hole injection layer is provided between the anode and the hole transport layer. Thus, means for improving the contact between the anode and the hole transport layer and reducing the driving voltage has been studied.

一方、このような有機電界発光素子の正孔注入層や正孔輸送層を湿式製膜法により形成する方法が報告されている。例えば、正孔輸送性材料である芳香族ジアミン含有ポリエーテルと、電子受容性化合物であるトリス(4−ブロモフェニル)アンモニウムヘキサクロロアンチモネート(TBPAH)とをジクロロメタンに溶解した溶液を用いて、スピンコート法により正孔注入・輸送層を形成する方法(特許文献1参照)、芳香族ジアミン含有ポリエーテルを含有する1,2−ジクロロエタン溶液を用いて、スピンコート法により正孔注入層を形成する方法(特許文献2参照)、4,4’−ビス[(N−(m−トリル)−N−フェニルアミノ]ビフェニルと電子受容性化合物である五塩化アンチモンとの混合物の1,2−ジクロロエタン溶液を用いて、スピンコート法により正孔輸送層を形成する方法(特許文献3参照)が挙げられる。   On the other hand, a method for forming a hole injection layer or a hole transport layer of such an organic electroluminescence device by a wet film forming method has been reported. For example, spin coating is performed using a solution in which an aromatic diamine-containing polyether as a hole transporting material and tris (4-bromophenyl) ammonium hexachloroantimonate (TBPAH) as an electron-accepting compound are dissolved in dichloromethane. A method for forming a hole injection / transport layer by a method (see Patent Document 1), a method for forming a hole injection layer by a spin coating method using a 1,2-dichloroethane solution containing an aromatic diamine-containing polyether (Refer to Patent Document 2), a 1,2-dichloroethane solution of a mixture of 4,4′-bis [(N- (m-tolyl) -N-phenylamino] biphenyl and an electron-accepting compound, antimony pentachloride. And a method of forming a hole transport layer by spin coating (see Patent Document 3).

特開平11−283750号公報JP-A-11-283750 特開2000−36390号公報JP 2000-36390 A 特開2002−56985号公報JP 2002-56985 A

ところで、正孔注入層や正孔輸送層は、有機電界発光素子の陽極の上層に設けられ、陽極から注入された正孔を発光層に輸送する役割を果たすものである。正孔注入層や正孔輸送層を形成する正孔注入・輸送性材料としては、陽極から注入された正孔の注入効率が高く、且つ、注入された正孔を発光層に効率よく輸送することができる材料であることが必要である。   By the way, a hole injection layer and a hole transport layer are provided in the upper layer of the anode of an organic electroluminescent element, and play the role which conveys the hole inject | poured from the anode to a light emitting layer. As a hole injecting / transporting material for forming a hole injecting layer and a hole transporting layer, the efficiency of injecting holes injected from the anode is high, and the injected holes are efficiently transported to the light emitting layer. It must be a material that can be used.

有機電界発光素子のこのような正孔注入層や正孔輸送層を形成する材料は、上述したように、4,4’−ビス[(N−(m−トリル)−N−フェニルアミノ]ビフェニルや芳香族ジアミン含有ポリエーテル等のように、正孔注入・輸送性部位としてトリアリールアミン部分構造やカルバゾール部分構造を有するものが多く用いられる。また、正孔注入層は、陽極からの正孔注入障壁が小さいことが求められるため、正孔注入・輸送性材料とともに、五塩化アンチモンやTBPAH等の電子受容性化合物を添加することが多い。   As described above, the material for forming such a hole injection layer or a hole transport layer of the organic electroluminescence device is 4,4′-bis [(N- (m-tolyl) -N-phenylamino] biphenyl. And those having a triarylamine partial structure or a carbazole partial structure as a hole injection / transport site, such as polyether containing aromatic diamine, and the like. Since the injection barrier is required to be small, an electron-accepting compound such as antimony pentachloride and TBPAH is often added together with the hole injecting / transporting material.

しかし、これらの正孔注入・輸送性材料や電子受容性化合物は、有機電界発光素子中に形成された同じ層に含まれる他の化合物との電荷移動により変質する場合が考えられる。正孔注入・輸送性材料や電子受容性化合物が変質すると、これらの材料等により形成された層の正孔注入・輸送性が低下するという問題がある。   However, these hole injection / transport materials and electron-accepting compounds may be altered by charge transfer with other compounds contained in the same layer formed in the organic electroluminescence device. When the hole injecting / transporting material or the electron-accepting compound is altered, there is a problem that the hole injecting / transporting property of a layer formed of these materials or the like is lowered.

また、有機電界発光素子には、陰極として使用されるアルミニウム等、劣化しやすい性質の材料が使用されている。発光素子としての性能が低下しやすいという問題がある。   The organic electroluminescent element uses a material that easily deteriorates, such as aluminum used as a cathode. There exists a problem that the performance as a light emitting element tends to deteriorate.

さらに、前述したように、正孔注入・輸送性材料や電子受容性化合物は、他の化合物との電荷移動により変質する場合が考えられる。このため、湿式製膜法用に調製した塗布液中に不純物が生成しやすい傾向があり、塗布液の保存安定性が低いという問題がある。   Further, as described above, the hole injecting / transporting material and the electron accepting compound may be altered by charge transfer with other compounds. For this reason, there exists a tendency for an impurity to produce | generate easily in the coating liquid prepared for wet film forming methods, and there exists a problem that the storage stability of a coating liquid is low.

このように、本発明は、有機電界発光素子の正孔注入・輸送層を湿式製膜法により形成する際に浮き彫りになった正孔注入・輸送性の低下、湿式製膜法に使用する塗布液の保存安定性が低いという問題を解決すべくなされたものである。
即ち、本発明の目的は、正孔注入・輸送性材料及び/又は電子受容性化合物が変質することなく、湿式製膜法により正孔注入・輸送層を形成するのに好適な有機電界発光素子用組成物を提供することにある。
また、本発明の他の目的は、湿式製膜法用に調製した塗布液の保存安定性を損なわない有機電界発光素子の製造方法を提供することにある。
As described above, the present invention relates to a decrease in hole injection / transport properties that are highlighted when forming a hole injection / transport layer of an organic electroluminescence device by a wet film formation method, and a coating used for the wet film formation method. It was made to solve the problem of low storage stability of the liquid.
That is, an object of the present invention is to provide an organic electroluminescent device suitable for forming a hole injection / transport layer by a wet film forming method without altering the hole injection / transport material and / or electron accepting compound. It is to provide a composition for use.
Another object of the present invention is to provide a method for producing an organic electroluminescent element which does not impair the storage stability of a coating solution prepared for a wet film-forming method.

このような課題を解決すべく、本発明においては、湿式製膜法に使用する塗布液中に含まれる不純物等の量を低減し、正孔注入・輸送性材料の安定化を図っている。即ち、本発明が適用される有機電界発光素子用組成物は、有機電界発光素子の正孔注入層及び正孔注入・輸送層の中、少なくとも1層を形成する正孔注入・輸送性材料及び/又は電子受容性化合物と、このような正孔注入・輸送性材料及び/又は電子受容性化合物を溶解する溶媒と、を含有した組成物において、この組成物中に含まれる、正孔注入・輸送性材料及び/又は電子受容性化合物を失活させる失活物質又は失活物質を発生させる化合物の濃度が1重量%以下であることを特徴とするものである。   In order to solve such problems, in the present invention, the amount of impurities and the like contained in the coating solution used in the wet film-forming method is reduced to stabilize the hole injecting / transporting material. That is, the composition for an organic electroluminescent device to which the present invention is applied includes a hole injection / transport material that forms at least one of the hole injection layer and the hole injection / transport layer of the organic electroluminescence device, and In a composition containing an electron-accepting compound and such a hole-injecting / transporting material and / or a solvent that dissolves the electron-accepting compound, The concentration of the deactivating substance for deactivating the transporting material and / or the electron-accepting compound or the compound for generating the deactivating substance is 1% by weight or less.

本発明が適用される有機電界発光素子用組成物において、組成物中の失活物質又は失活物質を発生させる化合物であるアルコール系溶媒、アルデヒド系溶媒又はケトン系溶媒の濃度を1重量%以下にすることを特徴とすれば、組成物に含有された正孔注入・輸送性材料及び/又は電子受容性化合物の混合から生じる正孔注入・輸送性材料のカチオンラジカルの失活を低減することができる。   In the composition for organic electroluminescent elements to which the present invention is applied, the concentration of the alcohol-based solvent, the aldehyde-based solvent, or the ketone-based solvent that is a compound that generates a deactivated substance or a deactivated substance in the composition is 1% by weight or less. Reducing the deactivation of cation radicals in the hole injecting / transporting material resulting from the mixing of the hole injecting / transporting material and / or the electron accepting compound contained in the composition. Can do.

また、本発明が適用される有機電界発光素子用組成物において、組成物中の失活物質又は失活物質を発生させる化合物であるプロトン酸又はハロゲン系溶媒の濃度を1重量%以下にすることを特徴とすれば、組成物に含有された正孔注入・輸送性材料の正孔注入・輸送性部位が変質することを防止し、湿式製膜法により得られた層の正孔注入・輸送性の低下を低減することができる。   Moreover, in the composition for organic electroluminescent elements to which the present invention is applied, the concentration of the protonic acid or halogen-based solvent that is a deactivating substance or a compound that generates the deactivating substance in the composition is 1% by weight or less. The hole injection / transport portion of the hole injection / transport material contained in the composition is prevented from being altered, and the hole injection / transport of the layer obtained by the wet film formation method is prevented. The fall of property can be reduced.

なお前述したように、アルコール系溶媒、アルデヒド系溶媒およびケトン系溶媒と、プロトン酸およびハロゲン系溶媒は、一方が存在するだけでも好ましくないが、両方が存在すると更に好ましくないので、各々1重量%以下である場合が好ましく、また合計で1重量%以下である場合がより好ましい。   As described above, alcohol solvent, aldehyde solvent and ketone solvent, and proton acid and halogen solvent are not preferred even if only one is present, but if both are present, it is not preferred. Or less, and more preferably 1% by weight or less in total.

本発明が適用される有機電界発光素子用組成物において、正孔注入・輸送性材料として香族アミン化合物を使用し、電子受容性化合物として芳香族ホウ素化合物を使用することが好ましい。   In the composition for organic electroluminescence device to which the present invention is applied, it is preferable to use an aromatic amine compound as the hole injecting / transporting material and an aromatic boron compound as the electron accepting compound.

また、本発明が適用される有機電界発光素子用組成物において、正孔注入・輸送性材料及び/又は電子受容性化合物及びこれらを溶解する溶媒を含有する組成物中の水分量が1重量%以下であることを特徴とすれば、有機電界発光素子を構成する陰極の劣化を防止することができる。   Further, in the composition for organic electroluminescence device to which the present invention is applied, the water content in the composition containing the hole injecting / transporting material and / or the electron accepting compound and the solvent for dissolving them is 1% by weight. If it is characterized by the following, it is possible to prevent the deterioration of the cathode constituting the organic electroluminescent element.

さらに、本発明が適用される有機電界発光素子用組成物は、基板上に、少なくとも陽極、正孔注入・輸送層、発光層及び陰極とを積層した有機電界発光素子において、湿式製膜法により正孔注入・輸送層を形成するための塗布液として用いることができる。   Furthermore, an organic electroluminescent device composition to which the present invention is applied is an organic electroluminescent device in which at least an anode, a hole injection / transport layer, a light emitting layer, and a cathode are laminated on a substrate by a wet film forming method. It can be used as a coating solution for forming a hole injection / transport layer.

また、本発明は、基板上に陽極を形成する陽極形成工程と、形成された陽極の上層に、正孔注入・輸送性材料と電子受容性化合物とを含有する正孔注入層を形成する正孔注入層形成工程と、形成された正孔注入層の上層に、直接又は他の層を介して、発光層を形成する発光層形成工程と、形成された発光層の上層に、直接又は他の層を介して、陰極を形成する陰極形成工程と、を有し、正孔注入層形成工程は、正孔注入・輸送性材料と電子受容性化合物とを含有する組成物を調製した後、24時間以内に組成物を用いた湿式製膜法により正孔注入層を形成することを特徴とする有機電界発光素子の製造方法を特徴とすれば、組成物に含有された正孔注入・輸送性材料及び/又は電子受容性化合物が変質することなく安定した状態で有機電界発光素子を製造することができる。   The present invention also provides an anode forming step for forming an anode on a substrate, and a positive injection layer for forming a hole injection layer containing a hole injection / transport material and an electron accepting compound on the formed anode. A hole injection layer forming step, a light emitting layer forming step of forming a light emitting layer directly or via another layer on the formed hole injection layer, and a layer directly on top of the formed light emitting layer. A cathode forming step of forming a cathode through the layer, and the hole injection layer forming step comprises preparing a composition containing a hole injecting / transporting material and an electron accepting compound, According to a method of manufacturing an organic electroluminescent device, wherein a hole injection layer is formed by a wet film-forming method using the composition within 24 hours, the hole injection / transport contained in the composition is characterized. Organic field generation in a stable state without deterioration of the conductive material and / or electron-accepting compound It is possible to manufacture an element.

また、このような有機電界発光素子の製造方法において、本発明が適用される有機電界発光素子用組成物を塗布液として用い、湿式製膜法により正孔注入・輸送層を形成することにより、正孔注入・輸送性の低下が見られない有機電界発光素子を製造することができる。   Further, in such a method for producing an organic electroluminescent element, by using the composition for organic electroluminescent element to which the present invention is applied as a coating liquid, by forming a hole injection / transport layer by a wet film forming method, An organic electroluminescence device that does not show a decrease in hole injection / transport properties can be produced.

本発明によれば、正孔注入・輸送性材料の溶解性が改善された、湿式製膜法により正孔注入・輸送層を形成するのに好適な有機電界発光素子用組成物が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the composition for organic electroluminescent elements suitable for forming a positive hole injection / transport layer by the wet film forming method with improved solubility of the positive hole injection / transport material is provided. .

以下、本発明を実施するための最良の形態(以下、実施の形態という。)について詳細に説明する。但し、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施の形態が適用される有機電界発光素子用組成物は、陽極と陰極とに挟持された発光層を有する有機電界発光素子において、陽極と発光層との間に設けられる正孔注入層及び/又は正孔輸送層を、湿式製膜法により形成する際の塗布液として用いられる。
Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist.
The organic electroluminescent element composition to which the present embodiment is applied is an organic electroluminescent element having a light emitting layer sandwiched between an anode and a cathode, and a hole injection layer provided between the anode and the light emitting layer, and / Or used as a coating liquid when the hole transport layer is formed by a wet film forming method.

なお、ここでは、有機電界発光素子における陽極−発光層間の層が1つの場合には、これを「正孔注入層」と称し、2つ以上の場合は、陽極に接している層を「正孔注入層」、それ以外の層を総称して「正孔輸送層」と称す。また、陽極−発光層間に設けられた層を総称して「正孔注入・輸送層」と称する場合がある。   Here, when there is one layer between the anode and the light emitting layer in the organic electroluminescent element, this is referred to as a “hole injection layer”, and when there are two or more layers, the layer in contact with the anode is The “hole injection layer” and the other layers are collectively referred to as “hole transport layer”. In addition, layers provided between the anode and the light emitting layer may be collectively referred to as a “hole injection / transport layer”.

本実施の形態が適用される有機電界発光素子用組成物は、有機電界発光素子の正孔注入層及び正孔輸送層の中、少なくとも1層を形成する正孔注入・輸送性材料及び/又は電子受容性化合物と、これらの正孔注入・輸送性材料及び/又は電子受容性化合物を溶解する溶媒と、を含有し、さらに、組成物中に含まれる、正孔注入・輸送性材料及び/又は電子受容性化合物を失活させる失活物質又は失活物質を発生させる化合物の濃度が1重量%以下であることを特徴としている。ここで、正孔注入・輸送性材料及び/又は電子受容性化合物を溶解する溶媒とは、通常、正孔注入・輸送性材料及び/又は電子受容性化合物を0.05重量%以上、好ましくは、0.5重量%以上、さらに好ましくは、1重量%以上溶解する溶媒である。尚、正孔注入・輸送性材料及び/又は電子受容性化合物については後述する。   The composition for an organic electroluminescence device to which this exemplary embodiment is applied is a hole injection / transport material that forms at least one of the hole injection layer and the hole transport layer of the organic electroluminescence device, and / or An electron-accepting compound, and a hole-injecting / transporting material and / or a solvent that dissolves the electron-accepting compound, and further included in the composition; Alternatively, the concentration of the deactivating substance that deactivates the electron-accepting compound or the compound that generates the deactivating substance is 1% by weight or less. Here, the solvent that dissolves the hole injecting / transporting material and / or the electron accepting compound is usually 0.05% by weight or more of the hole injecting / transporting material and / or the electron accepting compound, preferably 0.5% by weight or more, more preferably 1% by weight or more. The hole injecting / transporting material and / or the electron accepting compound will be described later.

このような溶媒としては、正孔注入・輸送性材料及び/又は電子受容性化合物を溶解するものであれば特に限定されないが、例えば、エーテル系溶媒及びエステル系溶媒が好ましい。具体的には、エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル等が挙げられる。エステル系溶媒としては、例えば、酢酸エチル、酢酸n−ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル、酢酸2−フェノキシエチル等の芳香族エステル等が挙げられる。これらの溶媒の組成物中の濃度は、通常、10重量%以上、好ましくは30重量%以上、より好ましくは50%重量以上である。尚、溶媒として、前述した溶媒以外にも、必要に応じて、各種の他の溶媒を含んでいてもよい。このような他の溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等が挙げられる。また、レベリング剤や消泡剤等の各種添加剤を含んでいても良い。   Such a solvent is not particularly limited as long as it can dissolve a hole injecting / transporting material and / or an electron accepting compound, and for example, an ether solvent and an ester solvent are preferable. Specifically, examples of the ether solvent include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1, 3 -Aromatic ethers such as dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole and the like. Examples of the ester solvent include aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl lactate, and n-butyl lactate; phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, ethyl benzoate, benzoic acid And aromatic esters such as propyl, n-butyl benzoate, and 2-phenoxyethyl acetate. The concentration of these solvents in the composition is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more. In addition to the solvents described above, various other solvents may be included as necessary as the solvent. Examples of such other solvents include aromatic hydrocarbons such as benzene, toluene and xylene, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and dimethyl sulfoxide. Moreover, various additives, such as a leveling agent and an antifoamer, may be included.

本実施の形態が適用される有機電界発光組成物中に含まれる、正孔注入・輸送性材料及び/又は電子受容性化合物を失活させる失活物質又はこのような失活物質を発生させる化合物としては、例えば、エチルアルコール等のアルコール系溶媒;ベンズアルデヒド等のアルデヒド系溶媒;メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒が挙げられる。このようなアルコール系溶媒、アルデヒド系溶媒及びケトン系溶媒は、特に、電子受容性化合物と反応しやすい。具体的には、アルコールは、酸化されてアルデヒド、またはカルボン酸になり、アルデヒドは、酸化されて受けカルボン酸になり、ケトンは、溶剤分子間で縮合反応したり、または正孔注入・輸送性材料のカチオンラジカルに付着し不純物を生成する等である。   A deactivating substance that deactivates a hole injecting / transporting material and / or an electron accepting compound, or a compound that generates such deactivating substance, contained in the organic electroluminescent composition to which the present embodiment is applied Examples thereof include alcohol solvents such as ethyl alcohol; aldehyde solvents such as benzaldehyde; ketone solvents such as methyl ethyl ketone, cyclohexanone and acetophenone. Such alcohol-based solvents, aldehyde-based solvents, and ketone-based solvents are particularly easy to react with electron-accepting compounds. Specifically, the alcohol is oxidized to an aldehyde or carboxylic acid, the aldehyde is oxidized to a receiving carboxylic acid, and the ketone undergoes a condensation reaction between solvent molecules, or a hole injection / transport property. For example, it adheres to the cation radical of the material and generates impurities.

従って、正孔注入・輸送性材料及び/又は電子受容性化合物を含有する層を湿式成膜法にて層形成する場合、溶液中にこれらが含まれることにより、酸化を受けやすい溶媒と電子受容性化合物が反応する。また、酸化を受けやすい溶媒は、正孔注入・輸送性材料と電子受容性化合物の混合から生じた正孔注入・輸送性材料のカチオンラジカル(このラジカル生成が正孔注入特性・正孔輸送特性を向上させる)とも反応することがある。これらの酸化を受けやすい溶媒の反応から、塗布液中の電子受容性化合物あるいはカチオンラジカルが消費され、不純物が生成するため、溶液が徐々に失活し、溶液の保存安定性が低下するため、工業的に好ましくない。   Therefore, when a layer containing a hole injecting / transporting material and / or an electron-accepting compound is formed by a wet film-forming method, the inclusion of these in the solution makes it easy to oxidize the solvent and the electron-accepting layer. Reactive compounds react. Solvents that are susceptible to oxidation are cation radicals of the hole-injecting / transporting material generated from the mixture of the hole-injecting / transporting material and the electron-accepting compound. May also react. From the reaction of these oxidizable solvents, the electron-accepting compounds or cation radicals in the coating solution are consumed and impurities are generated, so that the solution is gradually deactivated and the storage stability of the solution is reduced. Industrially unfavorable.

また、正孔注入・輸送性材料及び/又は電子受容性化合物を失活させる失活物質又はこのような失活物質を発生させる化合物として、プロトン酸及びハロゲン系溶媒が挙げられる。具体的には、プロトン酸としては、例えば、塩酸、臭化水素酸等の無機酸;ギ酸、酢酸、乳酸等の有機酸が挙げられる。ハロゲン系溶媒としては、例えば、塩素溶媒、含臭素溶媒、含ヨウ素溶媒等が挙げられる。   Examples of the deactivating substance that deactivates the hole injecting / transporting material and / or the electron accepting compound or the compound that generates such deactivating substance include protonic acids and halogen-based solvents. Specifically, examples of the protonic acid include inorganic acids such as hydrochloric acid and hydrobromic acid; and organic acids such as formic acid, acetic acid, and lactic acid. Examples of the halogen-based solvent include a chlorine solvent, a bromine-containing solvent, and an iodine-containing solvent.

正孔注入・輸送性材料及び/又は電子受容性化合物を含有する溶液を用いて、湿式成膜法にて層を形成する場合、溶液中に有機酸やハロゲン系溶媒が含まれていると、例えば、有機酸は、正孔注入・輸送性部位と反応し、アンモニウム塩に変質させてしまうため、得られた層の正孔注入・輸送性が低下する。また、ハロゲン系溶媒が含まれている場合、これらのハロゲン系溶媒には、これに対応する酸が混入している場合が多く、この酸が上記の有機酸と同様に、正孔注入・輸送性部位を変質させるため、やはり得られた層の正孔注入・輸送性が低下する。また、ハロゲン化物は環境負荷が大きい点でも、混入することは好ましくない。   When a layer is formed by a wet film-forming method using a solution containing a hole injecting / transporting material and / or an electron-accepting compound, when an organic acid or a halogen-based solvent is contained in the solution, For example, an organic acid reacts with a hole injecting / transporting site and transforms into an ammonium salt, so that the hole injecting / transporting property of the obtained layer is lowered. In addition, when a halogen-based solvent is contained, these halogen-based solvents often contain a corresponding acid, and this acid, like the above-mentioned organic acid, is used for hole injection / transport. Since the property site is altered, the hole injection / transport property of the obtained layer also deteriorates. In addition, it is not preferable that halides are mixed even in terms of a large environmental load.

尚、有機電界発光素子は、多数の有機化合物からなる層を積層して形成するため、各層がいずれも均一な層であることが要求される。湿式成膜法で層形成する場合、層形成用の溶液(組成物)に水分が混入することにより、塗膜に水分が混入して膜の均一性が損なわれるため、溶液中の水分含有量はできるだけ少ない方が好ましい。具体的には、有機電界発光素子用組成物中に含まれる水分量は、1重量%以下、好ましくは0.1重量%以下、さらに好ましくは0.05重量%以下である。   In addition, since an organic electroluminescent element is formed by laminating a plurality of layers made of organic compounds, each layer is required to be a uniform layer. When a layer is formed by a wet film forming method, moisture is mixed into the coating solution (composition) for forming the layer, so that moisture is mixed into the coating film and the uniformity of the film is impaired. Is preferably as small as possible. Specifically, the amount of water contained in the composition for organic electroluminescent elements is 1% by weight or less, preferably 0.1% by weight or less, and more preferably 0.05% by weight or less.

また、一般に、有機電界発光素子は、陰極等の水分により著しく劣化する材料が多く使用されているため、素子の劣化の観点からも、水分の存在は好ましくない。溶液中の水分量を低減する方法としては、例えば、窒素ガスシール、乾燥剤の使用、溶媒を予め脱水する、水の溶解度が低い溶媒を使用する等が挙げられる。なかでも、水の溶解度が低い溶媒を使用する場合は、塗布工程中に、溶液塗膜が大気中の水分を吸収して白化する現象を防ぐことができるため好ましい。この様な観点からは、本実施の形態が適用される有機電界発光素子用組成物は、例えば、25℃における水の溶解度が1重量%以下、好ましくは0.1重量%以下、である溶媒を、組成物中10重量%以上含有することが好ましい。なお、溶解度条件を満たす溶媒が30重量%以上であればより好ましく、50重量%以上であれば特に好ましい。   In general, since organic electroluminescent elements use many materials such as cathodes that deteriorate significantly due to moisture, the presence of moisture is not preferable from the viewpoint of element degradation. Examples of the method for reducing the amount of water in the solution include nitrogen gas sealing, use of a desiccant, dehydration of the solvent in advance, use of a solvent with low water solubility, and the like. In particular, it is preferable to use a solvent having low water solubility because the solution coating film can prevent whitening by absorbing moisture in the air during the coating process. From such a point of view, the composition for organic electroluminescence device to which the present embodiment is applied is, for example, a solvent having a water solubility at 25 ° C. of 1% by weight or less, preferably 0.1% by weight or less. It is preferable to contain 10% by weight or more in the composition. The solvent satisfying the solubility condition is more preferably 30% by weight or more, and particularly preferably 50% by weight or more.

次に、本実施の形態が適用される有機電界発光素子用組成物の成分である、正孔注入・輸送性材料及び電子受容性化合物について説明する。正孔注入・輸送性材料としては、例えば、芳香族アミン化合物、フタロシアニン誘導体又はポルフィリン誘導体、ジアリールアミノ基を有する8−ヒドロキシキノリン誘導体の金属錯体、オリゴチオフェン誘導体等が挙げられる。さらに、分子中に正孔輸送部位を有する高分子化合物も使用することができる。また、この正孔注入・輸送性材料を酸化しうる電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。   Next, a hole injecting / transporting material and an electron accepting compound, which are components of the composition for organic electroluminescent elements to which the exemplary embodiment is applied, will be described. Examples of the hole injection / transport material include aromatic amine compounds, phthalocyanine derivatives or porphyrin derivatives, metal complexes of 8-hydroxyquinoline derivatives having a diarylamino group, oligothiophene derivatives, and the like. Furthermore, a polymer compound having a hole transporting site in the molecule can also be used. Examples of the electron-accepting compound capable of oxidizing the hole injecting / transporting material include triaryl boron compounds, metal halides, Lewis acids, organic acids, salts of arylamines and metal halides, arylamines, and the like. And one or two or more compounds selected from the group consisting of salts of bismuth and Lewis acids.

正孔注入・輸送性材料としての芳香族アミン化合物としては、トリアリールアミン構造を含む化合物が挙げられ、従来より有機電界発光素子における正孔注入・輸送性の層形成材料として利用されてきた化合物の中から適宜選択してもよい。芳香族アミン化合物として、例えば、下記一般式(1)で表されるビナフチル系化合物が挙げられる。   Examples of the aromatic amine compound as the hole injection / transport material include compounds having a triarylamine structure, and compounds that have been conventionally used as a layer forming material for hole injection / transport in organic electroluminescence devices. You may select from among these. As an aromatic amine compound, the binaphthyl type compound represented by following General formula (1) is mentioned, for example.

Figure 2005093427
Figure 2005093427

(一般式(1)中、Ar〜Arは各々独立に、置換基を有することがある5又は6員環の芳香族炭化水素環又は芳香族複素環の単環基又は縮合環基であり、ArとAr、ArとArは、各々結合して環を形成していても良い。m、nは各々0〜4の整数を表し、m+n≧1である。X及びXは各々独立に、直接結合又は2価の連結基を表す。また、一般式(1)中のナフタレン環は、−(XNArAr)及び−(XNArAr)に加えて、任意の置換基を有することがある。) (In the general formula (1), Ar 4 to Ar 7 are each independently a monocyclic group or condensed ring group of a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring which may have a substituent. Yes, Ar 4 and Ar 5 , Ar 6 and Ar 7 may be bonded to each other to form a ring, m and n each represents an integer of 0 to 4, and m + n ≧ 1, X 1 and X 2 each independently represents a direct bond or a divalent linking group, and the naphthalene ring in the general formula (1) is represented by — (X 1 NAr 4 Ar 5 ) and — (X 2 NAr 6 Ar 7 ). In addition to the above, it may have an optional substituent.)

一般式(1)中、Ar〜Arは各々独立に、置換基を有することがある5又は6員環の芳香族炭化水素環又は芳香族複素環の単環基又は縮合環基、例えば5又は6員環の単環又は2〜3縮合環であり、具体的には、フェニル基、ナフチル基、アントリル基等の芳香族炭化水素環;ピリジル基、チエニル基等の芳香族複素環が挙げられる。これらはいずれも置換基を有することがある。Ar〜Arの有することがある置換基としては、Ar〜Ar15が有することがある置換基として後述するもの、及び、アリールアミノ基(即ち、後述の−(NArAr),−(NAr10Ar11)に相当する)が挙げられる。 In the general formula (1), Ar 4 to Ar 7 are each independently a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic monocyclic group or condensed ring group which may have a substituent, for example, A 5- or 6-membered monocyclic ring or a 2-3 condensed ring, specifically, an aromatic hydrocarbon ring such as a phenyl group, a naphthyl group or an anthryl group; an aromatic heterocyclic ring such as a pyridyl group or a thienyl group Can be mentioned. Any of these may have a substituent. Examples of the substituent that Ar 4 to Ar 7 may have include those described later as the substituent that Ar 8 to Ar 15 may have, and an arylamino group (that is,-(NAr 8 Ar 9 ) described later, - corresponds to (NAr 10 Ar 11)) and the like.

また、ArとAr及び/又はArとArは各々結合して環を形成していても良い。この場合、形成する環の具体例としては、それぞれ、置換基を有することがあるカルバゾール環、フェノキサジン環、イミノスチルベン環、フェノチアジン環、アクリドン環、アクリジン環、イミノジベンジル環等が挙げられる。中でもカルバゾール環が好ましい。 Ar 4 and Ar 5 and / or Ar 6 and Ar 7 may be bonded to each other to form a ring. In this case, specific examples of the ring to be formed include a carbazole ring, a phenoxazine ring, an iminostilbene ring, a phenothiazine ring, an acridone ring, an acridine ring, an iminodibenzyl ring and the like that may have a substituent. Of these, a carbazole ring is preferred.

一般式(1)において、m及びnは各々0から4までの整数を表し、m+n≧1である。特に好ましいものは、m=1かつn=1である。尚、m及び/又はnが2以上の場合のアリールアミノ基は、各々同一であっても異なっていても良い。   In the general formula (1), m and n each represent an integer from 0 to 4, and m + n ≧ 1. Particularly preferred are m = 1 and n = 1. The arylamino groups when m and / or n is 2 or more may be the same or different.

、Xは各々独立に直接結合又は2価の連結基を表す。2価の連結基としては特に制限はないが、例えば、下記に示すもの等が挙げられる。X及びXとして、直接結合が特に好ましい。 X 1 and X 2 each independently represent a direct bond or a divalent linking group. Although there is no restriction | limiting in particular as a bivalent coupling group, For example, what is shown below etc. are mentioned. A direct bond is particularly preferable as X 1 and X 2 .

Figure 2005093427
Figure 2005093427

一般式(1)におけるナフタレン環は、−(XNArAr)及び−(XNArAr)に加えて、任意の位置に任意の置換基を1個又は2個以上有することがある。このような置換基として好ましいものは、ハロゲン原子、水酸基、置換基を有することがあるアルキル基、置換基を有することがあるアルコキシ基、置換基を有することがあるアルケニル基、置換基を有することがあるアルコキシカルボニル基よりなる群から選ばれる1種又は2種以上の置換基である。これらのうち、アルキル基が特に好ましい。 In addition to — (X 1 NAr 4 Ar 5 ) and — (X 2 NAr 6 Ar 7 ), the naphthalene ring in the general formula (1) has one or more arbitrary substituents at an arbitrary position. There is. Preferred examples of such a substituent include a halogen atom, a hydroxyl group, an alkyl group that may have a substituent, an alkoxy group that may have a substituent, an alkenyl group that may have a substituent, and a substituent. Are one or more substituents selected from the group consisting of an alkoxycarbonyl group. Of these, an alkyl group is particularly preferred.

一般式(1)で表されるビナフチル系化合物として、下記一般式(2)で表されるように、Ar及びArが、更にそれぞれアリールアミノ基で置換されたビナフチル系化合物が好ましい。 The binaphthyl compound represented by the general formula (1) is preferably a binaphthyl compound in which Ar 4 and Ar 6 are each further substituted with an arylamino group as represented by the following general formula (2).

Figure 2005093427
Figure 2005093427

(一般式(2)中、Ar〜Ar15は各々独立に、置換基を有することがある5又は6員環の芳香族炭化水素環又は芳香族複素環の単環基又は縮合環基を表し、ArとAr、Ar10とAr11は各々結合して環を形成していても良い。m及びnは一般式(1)におけるのと同義である。XおよびXは一般式(1)におけるのと同義である。) (In the general formula (2), Ar 8 to Ar 15 each independently represents a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic monocyclic group or condensed ring group which may have a substituent. represents, .X 1 and X 2 may .m and n be Ar 8 and Ar 9, Ar 10 and Ar 11 are each bonded to form a ring is the same as in the general formula (1) is generally (It has the same meaning as in formula (1).)

一般式(2)中のナフタレン環は、ナフタレン環にそれぞれ結合したアリールアミノ基を含む置換基−(XNAr12Ar13NArAr)及び−(XNAr14Ar15NAr10Ar11)に加えて、任意の置換基を有することがある。また、これらの置換基−(XNAr12Ar13NArAr)及び−(XNAr14Ar15NAr10Ar11)は、ナフタレン環のいずれの置換位置に置換していても良い。中でも、一般式(2)におけるナフタレン環の、各々4−位、4’−位に置換したビナフチル系化合物がより好ましい。 Naphthalene ring in the general formula (2), the substituents include respective linked arylamino group to the naphthalene ring - (X 1 NAr 12 Ar 13 NAr 9 Ar 8) and - (X 2 NAr 14 Ar 15 NAr 10 Ar 11 ) And may have an optional substituent. Further, these substituents — (X 1 NAr 12 Ar 13 NAr 9 Ar 8 ) and — (X 2 NAr 14 Ar 15 NAr 10 Ar 11 ) may be substituted at any substitution position of the naphthalene ring. Especially, the binaphthyl type compound each substituted to 4-position and 4'-position of the naphthalene ring in General formula (2) is more preferable.

一般式(1)で表される化合物と同様に、一般式(2)で表される化合物におけるビナフチレン構造も、2,2’−位に置換基を有することが好ましい。2,2’−位に結合する置換基としては、ハロゲン原子、水酸基、置換基を有することがあるアルキル基、置換基を有することがあるアルコキシ基、置換基を有することがあるアルケニル基、置換基を有することがあるアルコキシカルボニル基等が挙げられる。なお、一般式(1)及び(2)で表される化合物において、ビナフチレン構造は2,2’−位以外に任意の置換基を有していてもよく、該置換基としては、例えば、2,2’−位における置換基として前掲した各基等が挙げられる。一般式(1)で表されるビナフチル系化合物の分子量は、通常、2,000未満、好ましくは1,200未満であり、但し、通常、500以上、好ましくは700以上である。   Similarly to the compound represented by the general formula (1), the binaphthylene structure in the compound represented by the general formula (2) preferably has a substituent at the 2,2′-position. Examples of the substituent bonded to the 2,2′-position include a halogen atom, a hydroxyl group, an alkyl group that may have a substituent, an alkoxy group that may have a substituent, an alkenyl group that may have a substituent, and a substituent. And an alkoxycarbonyl group which may have a group. In the compounds represented by the general formulas (1) and (2), the binaphthylene structure may have an optional substituent other than the 2,2′-position. Examples of the substituent include 2 , 2'-position, the above-mentioned groups and the like can be mentioned. The molecular weight of the binaphthyl compound represented by the general formula (1) is usually less than 2,000, preferably less than 1,200, but usually 500 or more, preferably 700 or more.

芳香族アミン化合物としては、下記一般式(3)または一般式(4)で表される化合物も好ましい。これら一般式(3)または一般式(4)で表される化合物の分子量は、一般式(1)と同程度であり、好ましい分子量も同様である。   As an aromatic amine compound, the compound represented by the following general formula (3) or general formula (4) is also preferable. The molecular weight of the compound represented by the general formula (3) or the general formula (4) is approximately the same as that of the general formula (1), and the preferable molecular weight is also the same.

Figure 2005093427
Figure 2005093427

(上記(3)式中、R21およびR22は各々独立に水素原子、水酸基、置換基を有することがあるアルキル基、置換基を有することがあるアルケニル基、置換基を有することがある芳香族炭化水素基、置換基を有することがある芳香族複素環基、置換基を有することがあるアセナフチル基、置換基を有することがあるフルオレニル基を表す。また、R21とR22が結合して置換基を有することがある非芳香族環を形成しても良い。) (In the formula (3), R 21 and R 22 are each independently a hydrogen atom, a hydroxyl group, an alkyl group that may have a substituent, an alkenyl group that may have a substituent, or an aromatic that may have a substituent. An aromatic hydrocarbon group that may have a substituent, an acenaphthyl group that may have a substituent, a fluorenyl group that may have a substituent, and R 21 and R 22 are bonded to each other. A non-aromatic ring which may have a substituent may be formed.)

(R23〜R26は、各々独立に、置換基を有することがある芳香族炭化水素基、置換基を有することがある芳香族複素環基、置換基を有することがあるアセナフチル基、置換基を有することがあるフルオレニル基を表す。あるいは、R23とR24、R23と環aを構成する炭素原子、R24と環aを構成する炭素原子、R25とR26、R25と環bを構成する炭素原子、またはR26と環bを構成する炭素原子が結合して、各々、置換基を有することがある環を形成していても良い。尚、環aおよび環bは置換基を有することがあるベンゼン環を表す。) (R 23 to R 26 are each independently an aromatic hydrocarbon group that may have a substituent, an aromatic heterocyclic group that may have a substituent, an acenaphthyl group that may have a substituent, or a substituent. R 23 and R 24 , R 23 and carbon atom constituting ring a, R 24 and carbon atom constituting ring a, R 25 and R 26 , R 25 and ring The carbon atom constituting b, or the carbon atom constituting R 26 and the ring b may be bonded to each other to form a ring which may have a substituent, wherein ring a and ring b are substituted. Represents a benzene ring which may have a group.)

一般式(3)において、R23〜R26として、具体的にはフェニル基、ナフチル基、アントリル基、ピレニル基、フェナンチル基等の6員環の単環または2〜4縮合環である芳香族炭化水素基;ピリジル基、チエニル基、ピラジル基、チアゾリル基、フェナントリジル基、キノリル基、カルバゾリル基等の5または6員環の単環または2〜4縮合環である芳香族複素環基;フルオレニル基、およびアセナフチル基が挙げられる。 In the general formula (3), R 23 to R 26 are specifically aromatic groups that are 6-membered monocyclic or 2 to 4 condensed rings such as phenyl, naphthyl, anthryl, pyrenyl, and phenanthyl. A hydrocarbon group; an aromatic heterocyclic group which is a 5- or 6-membered monocyclic ring or a 2-4 condensed ring, such as a pyridyl group, a thienyl group, a pyrazyl group, a thiazolyl group, a phenanthridyl group, a quinolyl group or a carbazolyl group; Examples include a fluorenyl group and an acenaphthyl group.

なお、R23とR24、R23と環aを構成する炭素原子、R24と環aを構成する炭素原子、R25とR26、R25と環bを構成する炭素原子、またはR26と環bを構成する炭素原子が結合して、各々、置換基を有することがある環を形成していても良い。 R 23 and R 24 , R 23 and carbon atom constituting ring a, R 24 and carbon atom constituting ring a, R 25 and R 26 , R 25 and carbon atom constituting ring b, or R 26 And the carbon atoms constituting ring b may be bonded to each other to form a ring that may have a substituent.

21およびR22としては、R23〜R26として上記した基の他に、水素原子、水酸基、炭素数1〜10の直鎖・分岐・環状のアルキル基、または炭素数2〜11の直鎖・分岐・環状のアルケニル基であってもよい。また、R21とR22が結合して置換基を有することがある非芳香族環を形成していてもよく、非芳香族環としては、シクロヘキサン環、シクロペンタン環、シクロヘキセン環、シクロペンテン環等の5または6員環が好ましい。 As R 21 and R 22 , in addition to the groups described above as R 23 to R 26 , a hydrogen atom, a hydroxyl group, a linear / branched / cyclic alkyl group having 1 to 10 carbon atoms, or a straight chain having 2 to 11 carbon atoms It may be a chain, branched or cyclic alkenyl group. R 21 and R 22 may be bonded to form a non-aromatic ring that may have a substituent. Examples of the non-aromatic ring include a cyclohexane ring, a cyclopentane ring, a cyclohexene ring, and a cyclopentene ring. The 5- or 6-membered ring is preferred.

21〜R26のアルキル基、アルケニル基、芳香族炭化水素基、芳香族複素環基、アセナフチル基、フルオレニル基、R21とR22が結合して形成する非芳香族環、および、R23〜R26、環a並びに環bを構成する炭素原子から選択された2以上が結合して形成する環、が有することがある置換基としては、特に制限されないが、例えば、ハロゲン原子、アルキル基、アルケニル基、芳香族炭化水素基、アラルキル基、ジアルキルアミノ基、ジアリールアミノ基、等が挙げられる。 An alkyl group of R 21 to R 26 , an alkenyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an acenaphthyl group, a fluorenyl group, a non-aromatic ring formed by combining R 21 and R 22 , and R 23 The substituent that may be possessed by R 26 , a ring formed by combining two or more selected from the carbon atoms constituting ring a and ring b, is not particularly limited, and examples thereof include a halogen atom and an alkyl group. Alkenyl group, aromatic hydrocarbon group, aralkyl group, dialkylamino group, diarylamino group, and the like.

さらに、R21〜R26のうち少なくとも1つが、3環以上の芳香族環(芳香族炭化水素環または芳香族複素環)が縮合してなる縮合環基である場合、化合物のガラス転移温度(Tg)が上昇するため好ましい。特に、R21〜R26のうち少なくとも1つが、置換基を有することがあるフェナントリル基である場合、これを用いて作製された素子の駆動寿命が延びる傾向があるので好ましい。 Furthermore, when at least one of R 21 to R 26 is a condensed ring group formed by condensation of three or more aromatic rings (aromatic hydrocarbon ring or aromatic heterocyclic ring), the glass transition temperature ( Tg) is preferred because it increases. In particular, it is preferable that at least one of R 21 to R 26 is a phenanthryl group which may have a substituent, because the driving life of an element produced using the same tends to be extended.

次に、一般式(4)で表される化合物は以下の通りである。   Next, the compound represented by the general formula (4) is as follows.

Figure 2005093427
Figure 2005093427

(一般式(4)中、Ar31〜Ar34は各々独立に、置換基を有することがある芳香族炭化水素基、または置換基を有することがある芳香族複素環基を表し、Lは、以下のいずれかで表される2価の連結基である。 (In the general formula (4), Ar 31 to Ar 34 each independently represents an aromatic hydrocarbon group that may have a substituent, or an aromatic heterocyclic group that may have a substituent, and L is It is a bivalent coupling group represented by either of the following.

−Ar35−、−Ar36−Ar37−、−Ar38−Ar39−Ar40−、−Ar41−Ar42−Ar43−Ar44 -Ar 35 -, - Ar 36 -Ar 37 -, - Ar 38 -Ar 39 -Ar 40 -, - Ar 41 -Ar 42 -Ar 43 -Ar 44 -

(式中、Ar35〜Ar44は各々独立に、置換されることがある員数5〜6の芳香族炭化水素環、または芳香族複素環の単環、または2〜4縮合環からなる2価の基を表す。)) (In the formula, Ar 35 to Ar 44 are each independently a divalent aromatic hydrocarbon ring having 5 to 6 members that may be substituted, a monocyclic aromatic heterocyclic ring, or a divalent condensed ring having 2 to 4 condensed rings. Represents a group of

一般式(4)において、Ar31〜Ar34は各々独立に、置換基を有することがある芳香族炭化水素基、または置換基を有することがある芳香族複素環基を表し、該芳香族炭化水素基および芳香族複素環基としては、一般式(3)におけるR23〜R26の例として挙げたものと同様の基が挙げられる。Lは、以下のいずれかで表される2価の連結基を表す。 In the general formula (4), Ar 31 to Ar 34 each independently represents an aromatic hydrocarbon group that may have a substituent or an aromatic heterocyclic group that may have a substituent. Examples of the hydrogen group and the aromatic heterocyclic group include the same groups as those exemplified as R 23 to R 26 in the general formula (3). L represents a divalent linking group represented by any of the following.

−Ar35−、−Ar36−Ar37−、−Ar38−Ar39−Ar40−、−Ar41−Ar42−Ar43−Ar44 -Ar 35 -, - Ar 36 -Ar 37 -, - Ar 38 -Ar 39 -Ar 40 -, - Ar 41 -Ar 42 -Ar 43 -Ar 44 -

Ar35〜Ar44は、各々独立に、置換されることがある、員数5〜6の芳香族炭化水素環または芳香族複素環の単環、または2〜4縮合環からなる2価の基を表し、このような基の具体例としては、一般式(3)におけるR23〜R26の例として挙げた基から水素原子を1つ除いてなる2価の基が挙げられる。 Ar 35 to Ar 44 are each independently a divalent group consisting of a monocyclic or 2 to 4 condensed ring having 5 to 6 members of an aromatic hydrocarbon ring or aromatic heterocyclic ring, which may be substituted. Specific examples of such a group include a divalent group obtained by removing one hydrogen atom from the groups exemplified as R 23 to R 26 in the general formula (3).

Ar31〜Ar44が有することがある置換基としては、例えば、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、ジアルキルアミノ基、ジアリールアミノ基、アリールアルキルアミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アリールオキシ基、アルキルスルホニル基、水酸基、アミド基、芳香族炭化水素環基、および芳香族複素環基等が挙げられる。これらのうち、ハロゲン原子、アルキル基、アルコキシ基、芳香族炭化水素環基、芳香族複素環基が好ましい。 Examples of the substituent that Ar 31 to Ar 44 may have include, for example, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, a dialkylamino group, a diarylamino group, an arylalkylamino group, an acyl group, and an alkoxycarbonyl group. Group, carboxyl group, alkoxy group, aryloxy group, alkylsulfonyl group, hydroxyl group, amide group, aromatic hydrocarbon ring group, aromatic heterocyclic group and the like. Among these, a halogen atom, an alkyl group, an alkoxy group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group are preferable.

本実施の形態が適用される有機電界発光素子中に含まれる芳香族アミン化合物は、湿式製膜法による層形成に使用するので、各種溶剤に溶解しやすいものが好ましい。例えば、一般式(1)で表される化合物の場合、2−位および2’−位に置換基を有することにより、2つのナフタレン環がねじれた配置になるため、溶解性が向上すると考えられ、また、一般式(3)で表される化合物の場合、環aと環bを結合する置換基を有することがあるメチレン基部分において、分子構造が非共役構造をとることができるため、溶剤への溶解性が高くなると考えられる。一般式(4)で表される化合物の場合、連結基Lとして、−Ar36−Ar37−、−Ar38−Ar39−Ar40−、−Ar41−Ar42−Ar43−Ar44−、のいずれかの基を選択し、特定位置に置換基を有することにより、ねじれた分子配置となるため溶解性が向上すると考えられる。即ち、例えば、Ar36とAr37が各々、Ar36−Ar37間の結合に対してα−位に置換基を有することにより、Ar36とAr37とが同一平面内に存在せず、ねじれた配置になるため溶解性が向上する。Ar38とAr39、Ar39とAr40、Ar41とAr42、Ar42とAr43、およびAr43とAr44においても同様である。 Since the aromatic amine compound contained in the organic electroluminescent element to which this embodiment is applied is used for layer formation by a wet film-forming method, it is preferable that the compound be easily soluble in various solvents. For example, in the case of the compound represented by the general formula (1), it is considered that by having substituents at the 2-position and the 2′-position, the two naphthalene rings are twisted so that the solubility is improved. In addition, in the case of the compound represented by the general formula (3), the molecular structure can take a non-conjugated structure in the methylene group part that may have a substituent that connects the ring a and the ring b. It is considered that solubility in For the compound represented by the general formula (4), as a linking group L, -Ar 36 -Ar 37 -, - Ar 38 -Ar 39 -Ar 40 -, - Ar 41 -Ar 42 -Ar 43 -Ar 44 - It is considered that the solubility is improved by selecting one of the groups and having a substituent at a specific position, resulting in a twisted molecular arrangement. That is, for example, each Ar 36 and Ar 37 is, by having a substituent at the α- position to the bond between Ar 36 -Ar 37, and the Ar 36 and Ar 37 do not exist in the same plane, twisted Therefore, the solubility is improved. The same applies to Ar 38 and Ar 39 , Ar 39 and Ar 40 , Ar 41 and Ar 42 , Ar 42 and Ar 43 , and Ar 43 and Ar 44 .

正孔注入・輸送性材料としては、一般式(1)、(3)および(4)で表される化合物以外にも、従来公知の化合物が利用可能である。このような従来公知の化合物としては、例えば、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン等の3級芳香族アミンユニットを連結した芳香族ジアミン化合物(特開昭59−194393号公報);4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族アミン(特開平5−234681号公報);トリフェニルベンゼンの誘導体でスターバースト構造を有する芳香族トリアミン(米国特許第4,923,774号);N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)ビフェニル−4,4’−ジアミン等の芳香族ジアミン(米国特許第4,764,625号);α,α,α’,α’−テトラメチル−α,α’−ビス(4−ジ−p−トリルアミノフェニル)−p−キシレン(特開平3−269084号公報);分子全体として立体的に非対称なトリフェニルアミン誘導体(特開平4−129271号公報);ピレニル基に芳香族ジアミノ基が複数個置換した化合物(特開平4−175395号公報);エチレン基で3級芳香族アミンユニットを連結した芳香族ジアミン(特開平4−264189号公報);スチリル構造を有する芳香族ジアミン(特開平4−290851号公報);チオフェン基で芳香族3級アミンユニットを連結したもの(特開平4−304466号公報);スターバースト型芳香族トリアミン(特開平4−308688号公報);ベンジルフェニル化合物(特開平4−364153号公報);フルオレン基で3級アミンを連結したもの(特開平5−25473号公報);トリアミン化合物(特開平5−239455号公報);ビスジピリジルアミノビフェニル(特開平5−320634号公報);N,N,N−トリフェニルアミン誘導体(特開平6−1972号公報);フェノキサジン構造を有する芳香族ジアミン(特開平7−138562号公報);ジアミノフェニルフェナントリジン誘導体(特開平7−252474号公報);ヒドラゾン化合物(特開平2−311591号公報);シラザン化合物(米国特許第4,950,950号公報);シラナミン誘導体(特開平6−49079号公報);ホスファミン誘導体(特開平6−25659号公報);キナクリドン化合物等が挙げられる。これらの化合物は、単独で用いてもよいし、必要に応じて2種以上を混合して用いてもよい。   In addition to the compounds represented by the general formulas (1), (3) and (4), conventionally known compounds can be used as the hole injecting / transporting material. As such a conventionally known compound, for example, an aromatic diamine compound in which a tertiary aromatic amine unit such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane is linked (Japanese Patent Laid-Open No. Sho 59-59). No. 194393); 2,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl represented by two or more tertiary amines and two or more condensed aromatic rings are nitrogen atoms Aromatic amine substituted with (A) (Japanese Patent Laid-Open No. 5-234681); A derivative of triphenylbenzene and an aromatic triamine having a starburst structure (US Pat. No. 4,923,774); N, N′-diphenyl-N , N′-bis (3-methylphenyl) biphenyl-4,4′-diamine and other aromatic diamines (US Pat. No. 4,764,625); α, α, α ′, α′-teto Methyl-α, α′-bis (4-di-p-tolylaminophenyl) -p-xylene (Japanese Patent Laid-Open No. 3-269084); A compound in which a plurality of aromatic diamino groups are substituted on a pyrenyl group (JP-A-4-175395); an aromatic diamine in which a tertiary aromatic amine unit is linked by an ethylene group (JP-A-4-264189). An aromatic diamine having a styryl structure (Japanese Patent Laid-Open No. 4-290851); an aromatic tertiary amine unit linked by a thiophene group (Japanese Patent Laid-Open No. 4-304466); a starburst aromatic triamine ( JP-A-4-308688); benzylphenyl compound (JP-A-4-364153); tertiary with fluorene group Minine-linked (JP-A-5-25473); Triamine compound (JP-A-5-239455); Bisdipyridylaminobiphenyl (JP-A-5-320634); N, N, N-triphenylamine Derivatives (JP-A-6-1972); Aromatic diamines having a phenoxazine structure (JP-A-7-138562); Diaminophenylphenanthridine derivatives (JP-A-7-252474); 2-311591); silazane compounds (US Pat. No. 4,950,950); silanamine derivatives (JP-A-6-49079); phosphamine derivatives (JP-A-6-25659); quinacridone compounds, etc. Can be mentioned. These compounds may be used alone or in combination of two or more as required.

次に、正孔注入・輸送性材料として使用するフタロシアニン誘導体又はポルフィリン誘導体の好ましい具体例としては、以下の化合物が挙げられる。例えば、ポルフィリン、5,10,15,20−テトラフェニル−21H,23H−ポルフィリン、5,10,15,20−テトラフェニル−21H,23H−ポルフィリンコバルト(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィリン銅(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィリン亜鉛(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィリンバナジウム(IV)オキシド、5,10,15,20−テトラ(4−ピリジル)−21H,23H−ポルフィリン29H,31H−フタロシアニン銅(II)フタロシアニン亜鉛(II)フタロシアニンチタンフタロシアニンオキシドマグネシウムフタロシアニン鉛フタロシアニン銅(II)、4,4’,4’’,4’’’−テトラアザ−29H,31H−フタロシアニン等が挙げられる。   Next, preferred specific examples of the phthalocyanine derivative or porphyrin derivative used as the hole injecting / transporting material include the following compounds. For example, porphyrin, 5,10,15,20-tetraphenyl-21H, 23H-porphyrin, 5,10,15,20-tetraphenyl-21H, 23H-porphyrin cobalt (II), 5,10,15,20- Tetraphenyl-21H, 23H-porphyrin copper (II), 5,10,15,20-tetraphenyl-21H, 23H-porphyrin zinc (II), 5,10,15,20-tetraphenyl-21H, 23H-porphyrin Vanadium (IV) oxide, 5,10,15,20-tetra (4-pyridyl) -21H, 23H-porphyrin 29H, 31H-phthalocyanine copper (II) phthalocyanine zinc (II) phthalocyanine titanium phthalocyanine oxide magnesium phthalocyanine lead phthalocyanine copper ( II), 4, ', 4' ', 4' '' - tetraaza-29H, 31H-phthalocyanine, and the like.

さらに、正孔注入・輸送性材料として使用するジアリールアミノ基を有する8−ヒドロキシキノリン誘導体の金属錯体としては、例えば、下記一般式(5)で表されるものが挙げられる。   Furthermore, examples of the metal complex of an 8-hydroxyquinoline derivative having a diarylamino group used as a hole injecting / transporting material include those represented by the following general formula (5).

Figure 2005093427
Figure 2005093427

(一般式(5)中、Ar21及びAr22は、各々独立して置換基を有することがある芳香族基または芳香族複素環基を示す。R11〜R15は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、アルキニル基、シアノ基、アミノ基、アミド基、ニトロ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルスルホニル基、水酸基、芳香族炭化水素基または芳香族複素環基を表す。 (In General Formula (5), Ar 21 and Ar 22 each independently represent an aromatic group or an aromatic heterocyclic group that may have a substituent. R 11 to R 15 are each independently Hydrogen atom, halogen atom, alkyl group, aralkyl group, alkenyl group, alkynyl group, cyano group, amino group, amide group, nitro group, acyl group, alkoxycarbonyl group, carboxyl group, alkoxy group, alkylsulfonyl group, hydroxyl group, aromatic Represents an aromatic hydrocarbon group or an aromatic heterocyclic group.

尚、R11とR12、R12とR13、或いはR14とR15とは環を形成していてもよく、また、R11〜R15のいずれかがアルキル基、アラルキル基、アルケニル基、アルキニル基、2級若しくは3級アミノ基、アミド基、アシル基、アルコキシカルボニル基、アルコキシ基、アルキルスルホニル基、芳香族炭化水素基または芳香族複素環基を表す場合には、このものは更にその炭化水素部分に置換基を有することがある。 R 11 and R 12 , R 12 and R 13 , or R 14 and R 15 may form a ring, and any one of R 11 to R 15 is an alkyl group, an aralkyl group, or an alkenyl group. , An alkynyl group, a secondary or tertiary amino group, an amide group, an acyl group, an alkoxycarbonyl group, an alkoxy group, an alkylsulfonyl group, an aromatic hydrocarbon group or an aromatic heterocyclic group, The hydrocarbon portion may have a substituent.

また、Mは、アルカリ金属、アルカリ土類金属、Sc,Y,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Cd、Al、Ga,In,Si,Ge,Sn,Sm、EuまたはTbを表し、lは2から4までの整数を示す。)   M is an alkali metal, alkaline earth metal, Sc, Y, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Al, Ga, In, Si, Ge, Sn, Sm, Eu. Or it represents Tb, and l represents an integer of 2 to 4. )

一般式(5)で表される化合物の具体例としては、次のようなものが挙げられる。   Specific examples of the compound represented by the general formula (5) include the following.

Figure 2005093427
Figure 2005093427

その他、正孔注入・輸送性材料として使用するオリゴチオフェン誘導体としては、例えば、α−セキシチオフェン等が挙げられる。尚、これらの正孔注入・輸送性材料の分子量は、通常、2,000未満、好ましくは1,800未満、より好ましくは1,200未満、但し、通常、500以上、好ましくは、700以上である。   Other examples of the oligothiophene derivative used as the hole injecting / transporting material include α-sexithiophene. The molecular weight of these hole injecting / transporting materials is usually less than 2,000, preferably less than 1,800, more preferably less than 1,200, but usually 500 or more, preferably 700 or more. is there.

また正孔注入・輸送性材料として使用する、分子中に正孔輸送部位を有する高分子化合物としては、例えば芳香族三級アミノ基を構成単位として主骨格に含む高分子化合物が挙げられる。具体例として、以下の一般式(II)及び(III)で表される構造を繰り返し単位として有する正孔注入・輸送性材料が挙げられる。   Moreover, as a high molecular compound which has a positive hole transport site | part in a molecule | numerator used as a hole injection / transport material, the high molecular compound which contains an aromatic tertiary amino group as a structural unit in a main skeleton is mentioned, for example. Specific examples include hole injecting / transporting materials having a structure represented by the following general formulas (II) and (III) as a repeating unit.

Figure 2005093427
Figure 2005093427

((II)式中、Ar45〜Ar48は、各々独立して置換基を有することがある2価の芳香族環基を示し、R31〜R32は置換基を有することがある1価の芳香族環基を示し、Xは直接結合、または下記の連結基から選ばれる。なお、「芳香族環基」とは、「芳香族炭化水素環由来の基」及び「芳香族複素環由来の基」の両方を含む。) (In formula (II), Ar 45 to Ar 48 each independently represent a divalent aromatic ring group that may have a substituent, and R 31 to R 32 may be monovalent that may have a substituent. And X is selected from a direct bond or the following linking group, wherein “aromatic ring group” means “group derived from aromatic hydrocarbon ring” and “derived from aromatic heterocycle” Including both ").)

Figure 2005093427
Figure 2005093427

Figure 2005093427
Figure 2005093427

((III)式中、Ar49は置換基を有することがある2価の芳香族環基を示し、Ar50は置換基を有することがある1価の芳香族環基を示す。)
一般式(II)において、Ar45〜Ar48は、好ましくは、各々独立して置換基を有することがある2価のベンゼン環、ナフタレン環、アントラセン環、またはビフェニル基であり、好ましくはベンゼン環である。置換基としてはハロゲン原子;メチル基、エチル基等の炭素数1〜6の直鎖または分岐のアルキル基;ビニル基等のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数2〜7の直鎖または分岐のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1〜6の直鎖または分岐のアルコキシ基;フェノキシ基、ベンジルオキシ基などの炭素数6〜12のアリールオキシ基;ジエチルアミノ基、ジイソプロピルアミノ基等の、炭素数1〜6のアルキル鎖を有するジアルキルアミノ基、などが挙げられる。これらのうち、好ましくは炭素数1〜3のアルキル基が挙げられ、特に好ましくはメチル基が挙げられる。Ar45〜Ar48がいずれも無置換の芳香族環基である場合が、最も好ましい。
(In the formula (III), Ar 49 represents a divalent aromatic ring group which may have a substituent, and Ar 50 represents a monovalent aromatic ring group which may have a substituent.)
In the general formula (II), Ar 45 to Ar 48 are each preferably a divalent benzene ring, naphthalene ring, anthracene ring, or biphenyl group each independently having a substituent, preferably a benzene ring. It is. As a substituent, a halogen atom; a C1-C6 linear or branched alkyl group such as a methyl group or an ethyl group; an alkenyl group such as a vinyl group; a C2-C7 such as a methoxycarbonyl group or an ethoxycarbonyl group Linear or branched alkoxycarbonyl group; linear or branched alkoxy group having 1 to 6 carbon atoms such as methoxy group and ethoxy group; aryloxy group having 6 to 12 carbon atoms such as phenoxy group and benzyloxy group; diethylamino group And a dialkylamino group having an alkyl chain having 1 to 6 carbon atoms, such as a diisopropylamino group. Of these, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable. The case where Ar 45 to Ar 48 are all unsubstituted aromatic ring groups is most preferable.

31およびR32として好ましくは、各々独立して、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、またはビフェニル基であり、好ましくはフェニル基、ナフチル基またはビフェニル基であり、より好ましくはフェニル基である。置換基としては、Ar45〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。
一般式(II)で表される構造を繰り返し単位として有する化合物は、例えば、城戸らの方法(Polymers for Advanced Technologies,7巻,31頁,1996年;特開平9−188756号公報)に開示されている経路で合成される。
R 31 and R 32 are preferably each independently a phenyl group, naphthyl group, anthryl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, thienyl group, or biphenyl group, which may have a substituent. Preferably a phenyl group, a naphthyl group or a biphenyl group, more preferably a phenyl group. As a substituent, the group similar to the group mentioned above is mentioned as a group which the aromatic ring in Ar < 45 > -Ar < 48 > may have.
The compound having the structure represented by the general formula (II) as a repeating unit is disclosed in, for example, the method of Kido et al. (Polymers for Advanced Technologies, 7, 31 pages, 1996; JP-A-9-188756). Is synthesized by the route.

一般式(III)において、Ar49は、置換基を有することがある2価の芳香族環基、好ましくは正孔輸送性の面からは芳香族炭化水素環基であり、具体的には置換基を有することがある2価のベンゼン環、ナフタレン環、アントラセン環、ビフェニル基、およびターフェニル基等が挙げられる。また、置換基としては、Ar45〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。これらのうち、好ましくは炭素数1〜3のアルキル基が挙げられ、特に好ましくはメチル基が挙げられる。 In the general formula (III), Ar 49 is a divalent aromatic ring group which may have a substituent, preferably an aromatic hydrocarbon ring group from the viewpoint of hole transportability. And a divalent benzene ring, naphthalene ring, anthracene ring, biphenyl group, and terphenyl group that may have a group. As the substituent, a group in which an aromatic ring may have at Ar 45 to Ar 48, include the same groups as previously described. Of these, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable.

Ar50は、置換基を有することがある芳香族環基、好ましくは正孔輸送性の面からは芳香族炭化水素環基であり、具体的には、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、およびビフェニル基等が挙げられる。置換基としては、一般式(II)のAr45〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。
一般式(III)で表される化合物において、Ar49およびAr50がいずれも無置換の芳香族環基である場合が、最も好ましい。一般式(III)で表される構造を繰り返し単位として有する化合物は、例えば、以下の原料及び反応式に従って、キシレン等の有機溶媒中、パラジウム触媒の存在下で、110℃で16時間反応させることにより合成することができる。
Ar 50 is an aromatic ring group that may have a substituent, preferably an aromatic hydrocarbon ring group from the viewpoint of hole transportability, specifically, a phenyl group that may have a substituent, Examples include naphthyl group, anthryl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, thienyl group, and biphenyl group. As a substituent, the group similar to the group mentioned above is mentioned as a group which the aromatic ring in Ar < 45 > -Ar < 48 > of general formula (II) may have.
In the compound represented by the general formula (III), it is most preferable that Ar 49 and Ar 50 are both unsubstituted aromatic ring groups. The compound having the structure represented by the general formula (III) as a repeating unit is allowed to react at 110 ° C. for 16 hours in the presence of a palladium catalyst in an organic solvent such as xylene according to the following raw materials and reaction formula, for example. Can be synthesized.

Figure 2005093427
Figure 2005093427

芳香族三級アミノ基を側鎖として含む正孔注入・輸送性材料としては、例えば、以下の一般式(IV)及び(V)で表される構造を有する繰り返し単位として有する化合物が挙げられる。   Examples of the hole injecting / transporting material containing an aromatic tertiary amino group as a side chain include compounds having a repeating unit having a structure represented by the following general formulas (IV) and (V).

Figure 2005093427
Figure 2005093427

(式中、Ar51は置換基を有することがある2価の芳香族環基を示し、Ar52〜Ar53は置換基を有することがある1価の芳香族環基を示し、R33〜R35は、各々独立して水素原子、ハロゲン原子、アルキル基、アルコキシ基、置換基を有することがある1価の芳香族環基を示す。) (In the formula, Ar 51 represents a divalent aromatic ring group which may have a substituent, Ar 52 to Ar 53 represent a monovalent aromatic ring group which may have a substituent, and R 33 to R 35 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or a monovalent aromatic ring group that may have a substituent.

Figure 2005093427
Figure 2005093427

(式中、Ar54〜Ar58は、各々独立して置換基を有することがある2価の芳香族環基を示し、R36及びR37は置換基を有することがある芳香族環基を示し、Yは直接結合、または下記の連結基から選ばれる。) (In the formula, Ar 54 to Ar 58 each independently represent a divalent aromatic ring group that may have a substituent, and R 36 and R 37 represent an aromatic ring group that may have a substituent. Y is selected from a direct bond or the following linking group.)

Figure 2005093427
Figure 2005093427

一般式(IV)において、Ar51は、好ましくは、各々置換基を有することがある2価のベンゼン環、ナフタレン環、アントラセン環、ビフェニルであり、また、置換基としては、例えば、前述した一般式(II)のAr45〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。
Ar52及びAr53として、好ましくは、各々独立してフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、およびビフェニル基が挙げられ、これらは置換基を有することがある。置換基としては例えば、一般式(II)のAr45〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。
In the general formula (IV), Ar 51 is preferably a divalent benzene ring, naphthalene ring, anthracene ring, or biphenyl, each of which may have a substituent. Examples of the group that the aromatic ring in Ar 45 to Ar 48 of formula (II) may have include the same groups as those described above, and preferred groups are also the same.
Ar 52 and Ar 53 are preferably each independently a phenyl group, a naphthyl group, an anthryl group, a pyridyl group, a triazyl group, a pyrazyl group, a quinoxalyl group, a thienyl group, and a biphenyl group. May have. Examples of the substituent include the same groups as those described above as the groups that the aromatic ring in Ar 45 to Ar 48 of the general formula (II) may have, and preferred groups are also the same.

33〜R35は、好ましくは、各々独立して、水素原子;ハロゲン原子;メチル基、エチル基等の炭素数1〜6の直鎖または分岐のアルキル基;メトキシ基、エトキシ基等の炭素数1〜6の直鎖または分岐のアルコキシ基;フェニル基;またはトリル基である。一般式(IV)で表される構造を繰り返し単位として有する化合物は、例えば、特開平1−105954号公報に開示されている経路で合成される。
一般式(V)において、Ar54〜Ar58は、好ましくは、各々独立して置換基を有することがある2価のベンゼン環、ナフタレン環、アントラセン環、ビフェニルであり、好ましくはベンゼン環である。置換基としては、一般式(II)のAr45〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。
R 33 to R 35 are preferably each independently a hydrogen atom; a halogen atom; a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; a carbon such as a methoxy group or an ethoxy group. A linear or branched alkoxy group of 1 to 6; a phenyl group; or a tolyl group. A compound having a structure represented by the general formula (IV) as a repeating unit is synthesized, for example, by the route disclosed in JP-A-1-105954.
In the general formula (V), Ar 54 to Ar 58 are preferably a divalent benzene ring, naphthalene ring, anthracene ring, or biphenyl, each of which may independently have a substituent, and preferably a benzene ring. . As a substituent, the group similar to the group mentioned above is mentioned as a group which the aromatic ring in Ar < 45 > -Ar < 48 > of general formula (II) may have, A preferable group is also the same.

36及びR37は、好ましくは、各々独立して置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、またはビフェニル基である。置換基としては、一般式(II)のAr45〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。一般式(V)で表される化合物は、例えば、城戸らの方法(Polymers for Advanced Technologies,7巻,31頁,1996年;特開平9−188756号公報)に開示されている経路で合成される。 R 36 and R 37 are each preferably a phenyl group, a naphthyl group, an anthryl group, a pyridyl group, a triazyl group, a pyrazyl group, a quinoxalyl group, a thienyl group, or a biphenyl group, each of which may have a substituent. . As a substituent, the group similar to the group mentioned above is mentioned as a group which the aromatic ring in Ar < 45 > -Ar < 48 > of general formula (II) may have, A preferable group is also the same. The compound represented by the general formula (V) is synthesized, for example, by the route disclosed in the method of Kido et al. (Polymers for Advanced Technologies, Vol. 7, page 31, 1996; JP-A-9-188756). The

一般式(II)〜(V)で示される構造のうち好ましい例を以下に示すが、何らこれらに限定されない。   Of the structures represented by the general formulas (II) to (V), preferred examples are shown below, but are not limited thereto.

Figure 2005093427
Figure 2005093427

分子中に正孔輸送部位を有する高分子化合物である正孔注入・輸送性材料は、一般式(II)〜(V)のいずれかで表される構造のホモポリマーであることが最も好ましいが、他の任意のモノマーとの共重合体(コポリマー)であっても良い。共重合体である場合、一般式(II)〜(V)で表される構成単位を50モル%以上、特に70モル%以上含有することが好ましい。尚、高分子化合物である正孔注入・輸送性材料は、一化合物中に、一般式(II)〜(V)で表される構造を複数種含有していても良い。また、一般式(II)〜(V)で表される構造を含む化合物を、複数種併用して用いても良い。一般式(II)〜(V)のうち、特に好ましくは、一般式(II)で表される繰り返し単位からなるホモポリマーである。高分子化合物からなる正孔注入・輸送性材料としては、さらに、共役系高分子が挙げられる。この目的のために、ポリフルオレン、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラフェニレンビニレンが好適である。   The hole injecting / transporting material, which is a polymer compound having a hole transporting site in the molecule, is most preferably a homopolymer having a structure represented by any one of the general formulas (II) to (V). Further, it may be a copolymer (copolymer) with any other monomer. When it is a copolymer, it is preferable to contain 50 mol% or more, especially 70 mol% or more of the structural units represented by the general formulas (II) to (V). The hole injecting / transporting material which is a polymer compound may contain a plurality of structures represented by the general formulas (II) to (V) in one compound. Moreover, you may use the compound containing the structure represented by general formula (II)-(V) in combination of multiple types. Of the general formulas (II) to (V), a homopolymer comprising a repeating unit represented by the general formula (II) is particularly preferable. Examples of the hole injecting / transporting material made of a polymer compound further include conjugated polymers. For this purpose, polyfluorene, polypyrrole, polyaniline, polythiophene, polyparaphenylene vinylene are preferred.

さらに、正孔注入・輸送性材料として使用する分子中に正孔輸送部位を有する高分子化合物としては、例えば、芳香族ジアミン含有ポリエーテル(特開2000−36390号公報);ポリビニルカルバゾール、ポリシラン、ポリフォスファゼン(特開平5−310949号公報);ポリアミド(特開平5−310949号公報);ポリビニルトリフェニルアミン(特開平7−53953号公報);トリフェニルアミン骨格を有する高分子(特開平4−133065号公報);芳香族アミンを含有するポリメタクリレート等が挙げられる。   Further, examples of the polymer compound having a hole transporting site in the molecule used as the hole injecting / transporting material include, for example, an aromatic diamine-containing polyether (Japanese Patent Laid-Open No. 2000-36390); polyvinylcarbazole, polysilane, Polyphosphazene (JP-A-5-310949); Polyamide (JP-A-5-310949); Polyvinyltriphenylamine (JP-A-7-53953); Polymer having a triphenylamine skeleton (JP-A-4-4) No. 1333065); polymethacrylates containing aromatic amines and the like.

次に、電子受容性化合物について説明する。本実施の形態が適用される有機電界素子用組成物に含有される電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。これらの電子受容性化合物は、正孔注入・輸送性材料と混合して用いられ、正孔注入・輸送性材料を酸化することにより正孔注入層の導電率を向上させることができる。   Next, the electron accepting compound will be described. Examples of the electron-accepting compound contained in the composition for an organic electric field element to which the present embodiment is applied include, for example, a triaryl boron compound, a metal halide, a Lewis acid, an organic acid, an arylamine, and a metal halide. Examples thereof include one or two or more compounds selected from the group consisting of a salt, a salt of an arylamine and a Lewis acid. These electron-accepting compounds are used in combination with a hole injecting / transporting material, and the conductivity of the hole injecting layer can be improved by oxidizing the hole injecting / transporting material.

電子受容性化合物として、トリアリールホウ素化合物としては、下記一般式(6)に示したホウ素化合物が挙げられる。一般式(6)で表されるホウ素化合物は、ルイス酸であることが好ましい。また、ホウ素化合物の電子親和力は、通常、4eV以上、好ましくは、5eV以上である。   Examples of the triarylboron compound as the electron-accepting compound include boron compounds represented by the following general formula (6). The boron compound represented by the general formula (6) is preferably a Lewis acid. Further, the electron affinity of the boron compound is usually 4 eV or more, preferably 5 eV or more.

Figure 2005093427
Figure 2005093427

一般式(6)において、好ましくは、Ar〜Arは、各々独立に、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ビフェニル基等の5または6員環の単環、またはこれらが2〜3個縮合及び/または直接結合してなる芳香族炭化水素環基;或いは置換基を有することがあるチエニル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基等の5または6員環の単環、またはこれらが2〜3個縮合及び/または直接結合してなる芳香族複素環基を表す。 In the general formula (6), preferably, Ar 1 to Ar 3 are each independently a 5- or 6-membered monocycle such as a phenyl group, a naphthyl group, an anthryl group, or a biphenyl group that may have a substituent, Or an aromatic hydrocarbon ring group formed by condensing and / or directly bonding 2 to 3 thereof; or 5 or 6 such as a thienyl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, etc., which may have a substituent. It represents a monocyclic member or an aromatic heterocyclic group formed by condensing 2 or 3 thereof and / or directly bonding them.

このような置換基としては、例えば、フッ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1〜6の直鎖または分岐のアルキル基;ビニル基等のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数1〜6の直鎖または分岐のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1〜6の直鎖または分岐のアルコキシ基;フェノキシ基、ベンジルオキシ基等のアリールオキシ基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基、アセチル基等のアシル基、トリフルオロメチル基等のハロアルキル基、シアノ基等が挙げられる。   Examples of such a substituent include a halogen atom such as a fluorine atom; a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; a methoxycarbonyl group and an ethoxy group. C1-C6 linear or branched alkoxycarbonyl group such as carbonyl group; C1-C6 linear or branched alkoxy group such as methoxy group and ethoxy group; Aryloxy such as phenoxy group and benzyloxy group Groups; dialkylamino groups such as dimethylamino group and diethylamino group; acyl groups such as acetyl group; haloalkyl groups such as trifluoromethyl group; and cyano groups.

このような置換基として、Ar乃至Arの少なくとも1つが、ハメット定数(σおよび/またはσ)が正の値を示す置換基を有する化合物であることが好ましく、Ar乃至Arが、いずれもハメット定数(σおよび/またはσ)が正の値を示す置換基を有する化合物であることが特に好ましい。このような、電子吸引性の置換基を有することにより、これらの化合物の電子受容性が向上する。また、Ar乃至Arがいずれも、ハロゲン原子で置換された芳香族炭化水素基または芳香族複素環基を表す化合物であることがさらに好ましい。 As such substituents, at least one of Ar 1 to Ar 3, is preferably Hammett constants (sigma m and / or sigma p) is a compound having a substituent having a positive value, Ar 1 to Ar 3 Are particularly preferably compounds having a substituent with a positive Hammett constant (σ m and / or σ p ). By having such an electron-withdrawing substituent, the electron acceptability of these compounds is improved. Further, it is more preferable that Ar 1 to Ar 3 are all compounds representing an aromatic hydrocarbon group or an aromatic heterocyclic group substituted with a halogen atom.

一般式(6)で表されるホウ素化合物の好ましい具体例(1〜30)を以下に示すが、これらに限定するものではない。   Although the preferable specific examples (1-30) of the boron compound represented by General formula (6) are shown below, it is not limited to these.

Figure 2005093427
Figure 2005093427

Figure 2005093427
Figure 2005093427

Figure 2005093427
Figure 2005093427

(30)特願2004−68958号の明細書段落(0059)欄の表中に記載されている番号A−1のイオン化合物。 (30) The ionic compound of number A-1 described in the table in the paragraph (0059) column of the specification of Japanese Patent Application No. 2004-68958.

これらの中、以下に示す化合物が特に好ましい。   Of these, the following compounds are particularly preferred.

Figure 2005093427
Figure 2005093427

(30)特願2004−68958号の明細書段落(0059)欄の表中に記載されている番号A−1のイオン化合物。 (30) The ionic compound of number A-1 described in the table in the paragraph (0059) column of the specification of Japanese Patent Application No. 2004-68958.

また、電子受容性化合物として、ハロゲン化金属、ルイス酸、有機酸、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物の具体例として、以下に示す化合物が挙げられる。   Further, as the electron-accepting compound, one or more compounds selected from the group consisting of metal halides, Lewis acids, organic acids, salts of arylamines and metal halides, and salts of arylamines and Lewis acids Specific examples of these include the compounds shown below.

Figure 2005093427
Figure 2005093427

なお、電子受容性化合物の正孔注入・輸送性材料に対する含有量は、通常、0.1モル%以上、好ましくは、1モル%以上である。但し、通常、100モル%以下、好ましくは、40モル%以下である。   In addition, the content of the electron-accepting compound with respect to the hole injecting / transporting material is usually 0.1 mol% or more, preferably 1 mol% or more. However, it is usually 100 mol% or less, preferably 40 mol% or less.

次に、本実施の形態が適用される有機電界発光素子組成物を用いて作製した有機電界発光素子について説明する。図1(a)〜図1(c)は、本実施の形態が適用される有機電界発光素子組成物を用いて、湿式製膜法により形成した薄層を有する有機電界発光素子を説明するための図である。図1(a)に示された有機電界発光素子100aは、基板101と、基板101上に順次積層された陽極102と、正孔注入層103と、発光層105と、陰極107とを有する。   Next, the organic electroluminescent element produced using the organic electroluminescent element composition to which this embodiment is applied will be described. FIG. 1A to FIG. 1C illustrate an organic electroluminescent element having a thin layer formed by a wet film forming method using the organic electroluminescent element composition to which the present embodiment is applied. FIG. An organic electroluminescent element 100a shown in FIG. 1A includes a substrate 101, an anode 102, a hole injection layer 103, a light emitting layer 105, and a cathode 107, which are sequentially stacked on the substrate 101.

基板101は、有機電界発光素子100aの支持体である。基板101を形成する材料としては、石英板、ガラス板、金属板、金属箔、プラスチックフィルム及びプラスチックシート等が挙げられる。これらの中でも、ガラス板、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明なプラスチックシートが好ましい。なお、基板101にプラスチクを用いる場合には、基板101の片面又は両面に緻密なシリコン酸化膜等を設けてガスバリア性を高めることが好ましい。   The substrate 101 is a support for the organic electroluminescent element 100a. Examples of the material for forming the substrate 101 include a quartz plate, a glass plate, a metal plate, a metal foil, a plastic film, and a plastic sheet. Among these, a transparent plastic sheet such as a glass plate, polyester, polymethacrylate, polycarbonate, polysulfone is preferable. Note that in the case where plastic is used for the substrate 101, it is preferable to provide a dense silicon oxide film or the like on one or both surfaces of the substrate 101 to enhance gas barrier properties.

陽極102は、基板101上に設けられ、正孔注入層103への正孔注入の役割を果たすものである。陽極102の材料としては、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の導電性の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック;ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等が挙げられる。陽極102の形成方法としては、通常、基板101上へのスパッタリング、真空蒸着等;銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子又は導電性高分子微粉末等を適当なバインダー樹脂溶液中に分散させて基板101上に塗布する方法;電解重合により基板101上に直接導電性重合薄膜を形成する方法;基板101上に導電性高分子溶液を塗布する方法等が挙げられる。尚、陽極102は、通常、可視光の透過率が60%以上、特に80%以上であることが好ましい。陽極102の厚さは、通常1000nm以下、好ましくは500nm以下であり、通常5nm以上、好ましくは10nm以上である。   The anode 102 is provided on the substrate 101 and plays a role of hole injection into the hole injection layer 103. Materials for the anode 102 include metals such as aluminum, gold, silver, nickel, palladium, and platinum; conductive metal oxides such as oxides of indium and / or tin; metal halides such as copper iodide; carbon black A conductive polymer such as poly (3-methylthiophene), polypyrrole, and polyaniline; The anode 102 is usually formed by sputtering on the substrate 101, vacuum deposition, etc .; fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine particles. A method in which powder or the like is dispersed in an appropriate binder resin solution and applied onto the substrate 101; a method in which a conductive polymer thin film is formed directly on the substrate 101 by electrolytic polymerization; a conductive polymer solution is applied onto the substrate 101 Methods and the like. The anode 102 usually has a visible light transmittance of 60% or more, particularly preferably 80% or more. The thickness of the anode 102 is usually 1000 nm or less, preferably 500 nm or less, and usually 5 nm or more, preferably 10 nm or more.

正孔注入層103は陽極102の上に設けられ、好ましくは、本実施の形態が適用される有機電界発光素子組成物を用いて、湿式製膜法により形成される。正孔注入層103は、正孔注入・輸送性材料とこの正孔注入・輸送性材料を酸化しうる電子受容性化合物を用いて形成することが好ましい。このようにして形成される正孔注入層103の膜厚は、通常5nm以上、好ましくは10nm以上である。但し、通常、1,000nm以下、好ましくは500nm以下である。   The hole injection layer 103 is provided on the anode 102, and is preferably formed by a wet film forming method using the organic electroluminescent element composition to which the present embodiment is applied. The hole injection layer 103 is preferably formed using a hole injection / transport material and an electron-accepting compound capable of oxidizing the hole injection / transport material. The film thickness of the hole injection layer 103 formed in this way is usually 5 nm or more, preferably 10 nm or more. However, it is usually 1,000 nm or less, preferably 500 nm or less.

発光層105は、正孔注入層103上に設けられ、電界を与えられた電極間において陰極107から注入された電子と正孔注入層103から輸送された正孔を効率よく再結合し、かつ、再結合により効率よく発光する材料から形成される。発光層105を形成する材料としては、8−ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10−ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2−ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p−フェニレンビニレン)、ポリ[2−メトキシ−5−(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン]、ポリ(3−アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられる。   The light emitting layer 105 is provided on the hole injection layer 103, and efficiently recombines electrons injected from the cathode 107 and holes transported from the hole injection layer 103 between electrodes to which an electric field is applied, and It is formed from a material that emits light efficiently by recombination. As a material for forming the light-emitting layer 105, a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyrylarylene derivative, (2-hydroxyphenyl) Low molecular light emitting materials such as metal complexes of benzothiazole and silole derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3- Examples thereof include a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as alkylthiophene) or polyvinylcarbazole.

また、例えば、8−ヒドロキシキノリンのアルミニウム錯体等の金属錯体をホスト材料として、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等を、ホスト材料に対して0.1〜10重量%ドープすることにより、素子の発光特性、特に駆動安定性を大きく向上させることができる。これらの材料は正孔注入層103上に、真空蒸着法又は湿式製膜法により正孔注入層103上に塗布して薄膜形成される。このようにして形成される発光層105の膜厚は、通常10nm以上、好ましくは30nm以上である。但し、通常200nm以下、好ましくは100nm以下である。   Further, for example, using a metal complex such as an aluminum complex of 8-hydroxyquinoline as a host material, a condensed polycyclic aromatic ring such as a naphthacene derivative such as rubrene, a quinacridone derivative, and perylene is 0.1 to 0.1% relative to the host material. By doping 10% by weight, the light emission characteristics of the device, particularly the driving stability, can be greatly improved. These materials are coated on the hole injection layer 103 by a vacuum deposition method or a wet film formation method to form a thin film on the hole injection layer 103. The thickness of the light emitting layer 105 formed in this manner is usually 10 nm or more, preferably 30 nm or more. However, it is usually 200 nm or less, preferably 100 nm or less.

陰極107は、発光層105に電子を注入する役割を果たす。陰極107として用いられる材料は、仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属またはそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。陰極107の膜厚は、通常、陽極102と同様である。低仕事関数金属から成る陰極107を保護する目的で、この上にさらに、仕事関数が高く大気に対して安定な金属層を積層することは素子の安定性を増す上で有効である。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。さらに、陰極107と発光層105との界面にLiF、MgF2、Li2O等の極薄絶縁膜(膜厚0.1〜5nm)を挿入することにより、素子の効率を向上させることができる。   The cathode 107 serves to inject electrons into the light emitting layer 105. The material used for the cathode 107 is preferably a metal having a low work function. For example, a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy. The film thickness of the cathode 107 is usually the same as that of the anode 102. In order to protect the cathode 107 made of a low work function metal, it is effective to increase the stability of the device by further laminating a metal layer having a high work function and stable to the atmosphere. For this purpose, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used. Furthermore, the efficiency of the device can be improved by inserting an extremely thin insulating film (film thickness of 0.1 to 5 nm) such as LiF, MgF 2, or Li 2 O at the interface between the cathode 107 and the light emitting layer 105.

図1(b)は、機能分離型発光素子を説明するための図である。図1(b)に示された有機電界発光素子100bは、素子の発光特性を向上させるために、正孔注入層103と発光層105との間に正孔輸送層104が設けられ、その他の層は、図1(a)に示した有機電界発光素子100aと同様な構成を有する。正孔輸送層104の材料としては、正孔注入層103からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが必要である。そのためには、イオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが要求される。また、発光層105と直接接する層であるために、発光を消光する物質が含まれていないことが望ましい。   FIG. 1B is a diagram for explaining a function-separated light-emitting element. In the organic electroluminescent device 100b shown in FIG. 1B, a hole transport layer 104 is provided between the hole injection layer 103 and the light emitting layer 105 in order to improve the light emitting characteristics of the device. The layer has a configuration similar to that of the organic electroluminescent element 100a shown in FIG. The material of the hole transport layer 104 needs to be a material that has high hole injection efficiency from the hole injection layer 103 and can efficiently transport the injected holes. For this purpose, it is required that the ionization potential is low, the hole mobility is high, the stability is high, and impurities that become traps are not easily generated during production or use. In addition, since the layer is in direct contact with the light-emitting layer 105, it is preferable that a substance that quenches light emission is not included.

正孔輸送層104を形成する正孔注入・輸送性材料としては、本実施の形態が適用される有機電界発光素子用組成物における正孔注入・輸送性材料として例示した化合物と同様なものが挙げられる。また、ポリビニルカルバゾール、ポリビニルトリフェニルアミン、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン等の高分子材料が挙げられる。正孔輸送層104は、これらの正孔注入・輸送性材料を湿式製膜法又は真空蒸着法により正孔注入層103上に積層することにより形成される。このようにして形成される正孔輸送層104の膜厚は、通常10nm以上、好ましくは30nmである。但し、通常、300nm以下、好ましくは100nm以下である。   Examples of the hole injecting / transporting material for forming the hole transporting layer 104 include the same compounds as those exemplified as the hole injecting / transporting material in the composition for organic electroluminescent elements to which the exemplary embodiment is applied. Can be mentioned. In addition, polymer materials such as polyarylene ether sulfone containing polyvinyl carbazole, polyvinyl triphenylamine, and tetraphenylbenzidine can be given. The hole transport layer 104 is formed by laminating these hole injection / transport materials on the hole injection layer 103 by a wet film forming method or a vacuum deposition method. The thickness of the hole transport layer 104 formed in this way is usually 10 nm or more, preferably 30 nm. However, it is usually 300 nm or less, preferably 100 nm or less.

図1(c)は、機能分離型発光素子の他の実施形態を説明するための図である。図1(c)に示された有機電界発光素子100cは、発光層105と陰極107との間に電子輸送層106が設けられ、その他の層は、図1(b)に示した有機電界発光素子100bと同様な構成を有する。電子輸送層106に用いられる化合物には、陰極107からの電子注入が容易で、電子の輸送能力がさらに大きいことが要求される。このような電子輸送性材料としては、例えば、8−ヒドロキシキノリンのアルミニウム錯体、オキサジアゾール誘導体又はそれらをポリメタクリル酸メチル(PMMA)等の樹脂に分散した系、フェナントロリン誘導体、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛等が挙げられる。電子輸送層106の膜厚は、通常5nm以上、好ましくは10nm以上である。但し、通常200nm以下、好ましくは100nm以下である。   FIG.1 (c) is a figure for demonstrating other embodiment of a function separation type light emitting element. In the organic electroluminescent device 100c shown in FIG. 1C, an electron transport layer 106 is provided between the light emitting layer 105 and the cathode 107, and the other layers are organic electroluminescent devices shown in FIG. The structure is similar to that of the element 100b. The compound used for the electron transport layer 106 is required to easily inject electrons from the cathode 107 and to have a larger electron transport capability. Examples of such electron transporting materials include 8-hydroxyquinoline aluminum complexes, oxadiazole derivatives, or systems in which they are dispersed in a resin such as polymethyl methacrylate (PMMA), phenanthroline derivatives, 2-t-butyl. Examples include -9,10-N, N'-dicyanoanthraquinone diimine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, and n-type zinc selenide. The film thickness of the electron transport layer 106 is usually 5 nm or more, preferably 10 nm or more. However, it is usually 200 nm or less, preferably 100 nm or less.

尚、図1(a)〜図1(c)に示した有機電界発光素子100a〜100cは、図示のものに限定されるものではない。例えば、図1(a)〜図1(c)に示したものとは逆の構造、即ち、基板101上に陰極107、発光層105、正孔注入層103、陽極102の順に積層することも可能である。また、少なくとも一方が透明性の高い2枚の基板の間に有機電界発光素子を設けることも可能である。さらに、正孔注入・輸送性材料と電子受容性化合物とを含有する層は、陽極102に接する正孔注入層103である必要はなく、陽極102と発光層105との間に設けられていれば良く、特に、正孔注入層103であることが好ましい。また、図1(a)〜図1(c)に示した各層の間に、任意の層を有していてもよい。   Note that the organic electroluminescent elements 100a to 100c shown in FIGS. 1A to 1C are not limited to the illustrated ones. For example, a structure reverse to that shown in FIGS. 1A to 1C, that is, a cathode 107, a light emitting layer 105, a hole injection layer 103, and an anode 102 may be stacked on the substrate 101 in this order. Is possible. It is also possible to provide an organic electroluminescent element between two substrates, at least one of which is highly transparent. Further, the layer containing the hole injecting / transporting material and the electron accepting compound need not be the hole injecting layer 103 in contact with the anode 102, and may be provided between the anode 102 and the light emitting layer 105. In particular, the hole injection layer 103 is preferable. Moreover, you may have arbitrary layers between each layer shown to Fig.1 (a)-FIG.1 (c).

次に、本実施の形態が適用される有機電界発光素子用組成物を用いて、湿式製膜法により形成した薄層を有する有機電界発光素子100a〜有機電界発光素子100cの製造方法について説明する。有機電界発光素子100a〜有機電界発光素子100cは、基板101上へのスパッタリング、真空蒸着等により陽極102を形成し、形成された陽極102の上層に、正孔注入層103及び正孔輸送層104の少なくとも1層を、本実施の形態が適用される正孔注入・輸送性材料及び/又は電子受容性化合物を含有する有機電界素子組成物を用いた湿式製膜法により形成し、形成された正孔注入層103及び/又は正孔輸送層104の上層に、真空蒸着法又は湿式製膜法により発光層105を形成し、形成された発光層105の上層に、必要に応じて、真空蒸着法又は湿式製膜法により電子輸送層106を形成し、形成された電子輸送層106上に陰極107を形成することにより製造される。   Next, a method for producing organic electroluminescent elements 100a to 100c having a thin layer formed by a wet film-forming method using the composition for organic electroluminescent elements to which the exemplary embodiment is applied will be described. . The organic electroluminescent element 100a to the organic electroluminescent element 100c are formed by forming the anode 102 by sputtering, vacuum deposition, or the like on the substrate 101, and the hole injection layer 103 and the hole transport layer 104 are formed on the formed anode 102. Is formed by a wet film forming method using an organic electric field element composition containing a hole injecting / transporting material and / or an electron accepting compound to which the present embodiment is applied. A light emitting layer 105 is formed on the hole injection layer 103 and / or the hole transport layer 104 by a vacuum deposition method or a wet film forming method, and vacuum deposition is performed on the formed light emitting layer 105 as necessary. The electron transport layer 106 is formed by a method or a wet film forming method, and the cathode 107 is formed on the formed electron transport layer 106.

正孔注入層103及び正孔輸送層104の少なくとも1層を、湿式製膜法により形成する場合は、通常、正孔注入・輸送性材料及び/又は電子受容性化合物の所定量に、必要により正孔のトラップにならないバインダー樹脂又は塗布性改良剤等の添加剤等を添加し、溶解して塗布液、即ち、有機電界発光素子用組成物を調製し、調製後、通常、24時間以内、好ましくは、12時間以内、特に好ましくは、6時間以内に、スピンコート法やディップコート法等の湿式製膜法により陽極102上に塗布し、乾燥し、正孔注入層103及び正孔輸送層104の少なくとも1層を形成する。   When at least one of the hole injection layer 103 and the hole transport layer 104 is formed by a wet film forming method, it is usually necessary to add a predetermined amount of the hole injection / transport material and / or the electron-accepting compound as necessary. Add additives such as binder resin or coating property improver that does not trap holes, dissolve to prepare a coating solution, that is, a composition for an organic electroluminescent device, and usually within 24 hours after preparation, Preferably, within 12 hours, particularly preferably within 6 hours, the film is applied onto the anode 102 by a wet film formation method such as spin coating or dip coating, and dried to form the hole injection layer 103 and the hole transport layer. At least one layer 104 is formed.

正孔注入・輸送性材料及び/又は電子受容性化合物を含有する溶液において、アルコール、アルデヒドまたはケトン等、酸化を受けやすい化合物が存在すると、酸化を受けやすいこれらの化合物と電子受容性化合物とが反応するおそれがある。また、酸化を受けやすいこれらの化合物は、正孔注入・輸送性材料と電子受容性化合物との併用にて生じた正孔注入・輸送性材料のカチオンラジカル(このラジカル生成が正孔注入特性・正孔輸送特性を向上させる)とも反応することがある。これらの、酸化を受けやすい化合物の反応により、塗布液中の電子受容性化合物又はカチオンラジカルが消費されると、不純物が生成すると考えられ、このため、溶液が徐々に失活し、溶液の保存安定性が低下する。正孔注入・輸送性材料と電子受容性化合物とを含有する溶液を調製後20時間以内の溶液を用いた湿式製膜法により正孔注入層103及び正孔輸送層104の少なくとも1層を形成することにより、溶液中の正孔注入・輸送性材料又は電子受容性化合物が安定した状態で有機電界発光素子100a〜100cを製造することができる。   In a solution containing a hole injecting / transporting material and / or an electron accepting compound, if there is a compound susceptible to oxidation, such as alcohol, aldehyde or ketone, these compounds susceptible to oxidation and the electron accepting compound May react. In addition, these compounds, which are susceptible to oxidation, are cation radicals of the hole injection / transport material generated by the combined use of a hole injection / transport material and an electron accepting compound (this radical generation is based on hole injection characteristics, May also react). When the electron accepting compound or cation radical in the coating solution is consumed due to the reaction of these compounds that are susceptible to oxidation, it is considered that impurities are generated. For this reason, the solution is gradually deactivated and the solution is stored. Stability is reduced. At least one of the hole injection layer 103 and the hole transport layer 104 is formed by a wet film forming method using a solution within 20 hours after preparing a solution containing a hole injection / transport material and an electron accepting compound. By doing so, the organic electroluminescent elements 100a to 100c can be manufactured in a state where the hole injecting / transporting material or the electron accepting compound in the solution is stable.

尚、バインダー樹脂の含有量は、正孔移動度の面から、通常、これらの層中50重量%以下が好ましく、30重量%以下がより好ましく、実質的にバインダー樹脂を含有しない場合が最も好ましい。   The binder resin content is usually preferably 50% by weight or less in these layers, more preferably 30% by weight or less, and most preferably no binder resin from the viewpoint of hole mobility. .

また、正孔注入・輸送性材料及び/又は電子輸送性化合物を含む層は、湿式製膜及び乾燥工程の後、更に加熱工程を経ることにより、得られる膜に含まれる分子のマイグレーションを活性化し、熱的に安定な薄膜構造に到達させることができ、これにより膜の表面平坦性が向上し、かつ素子の発光効率が向上するため好ましい。   In addition, the layer containing the hole injecting / transporting material and / or the electron transporting compound activates the migration of molecules contained in the obtained film through a heating process after the wet film formation and drying process. Therefore, it is possible to reach a thermally stable thin film structure, which is preferable because the surface flatness of the film is improved and the light emission efficiency of the device is improved.

具体的には、正孔注入・輸送性材料及び/又は電子受容性化合物を含む層を湿式製膜法にて形成した後、用いた正孔注入・輸送性材料のガラス転移点Tg以下の温度で加熱する。加熱温度は、正孔注入・輸送性材料のガラス転移点Tgより10℃以上低温であることが好ましい。また、加熱処理による効果を十分に得るためには、60℃以上で処理することが好ましい。加熱時間は通常1分〜8時間程度である。このように湿式製膜法により形成された正孔注入・輸送性材料及び/又は電子受容性化合物を含む層は、表面が平滑なものとなるため、ITO等の陽極102の表面粗さに起因する素子作製時の短絡の問題を解消することができる。   Specifically, after a layer containing a hole injecting / transporting material and / or an electron-accepting compound is formed by a wet film forming method, the temperature is equal to or lower than the glass transition point Tg of the used hole injecting / transporting material. Heat with. The heating temperature is preferably 10 ° C. or more lower than the glass transition point Tg of the hole injecting / transporting material. Moreover, in order to fully acquire the effect by heat processing, it is preferable to process at 60 degreeC or more. The heating time is usually about 1 minute to 8 hours. Since the layer containing the hole injecting / transporting material and / or the electron accepting compound formed by the wet film forming method in this way has a smooth surface, it is caused by the surface roughness of the anode 102 such as ITO. It is possible to solve the problem of a short circuit at the time of manufacturing the device.

以下に、実施例、比較例及び参考例に基づき、本実施の形態を更に具体的に説明する。尚、本実施の形態は、以下の実施例の記載に限定されるものではない。
(参考例1)
ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を120nm堆積したもの(ジオマテック社製;電子ビーム成膜品;シート抵抗15Ω)をアセトンで超音波洗浄、純水で水洗、イソプロピルアルコールで超音波洗浄、乾燥窒素で乾燥、UV/オゾン洗浄を行った後、以下の構造式(P1)に示す正孔輸送性高分子(単独重合体。Mw=27,000、Mn=13,000)及び電子受容性化合物として、下記構造式(A1)に示すPPB(tris(pentafluorophenyl)borane)を含有する組成物溶液を下記の条件で、上記基板上にスピンコートし、膜厚30nmの均一な薄膜を形成した。スピンコートは大気中で行った。このときの環境条件は、気温23℃・相対湿度60%であった。
Hereinafter, the present embodiment will be described more specifically based on examples, comparative examples, and reference examples. In addition, this Embodiment is not limited to description of the following Examples.
(Reference Example 1)
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 120 nm (manufactured by Geomat Corp .; electron beam film-formed product; sheet resistance 15Ω) is ultrasonically cleaned with acetone, washed with pure water, and with isopropyl alcohol After ultrasonic cleaning, drying with dry nitrogen, and UV / ozone cleaning, a hole transporting polymer represented by the following structural formula (P1) (homopolymer. Mw = 27,000, Mn = 13,000) And a composition film containing PPB (tris (pentafluorophenyl) borane) represented by the following structural formula (A1) as an electron-accepting compound by spin coating on the substrate under the following conditions to form a uniform thin film having a thickness of 30 nm Formed. Spin coating was performed in air. The environmental conditions at this time were a temperature of 23 ° C. and a relative humidity of 60%.

Figure 2005093427
Figure 2005093427

Figure 2005093427
Figure 2005093427

溶媒 安息香酸エチル
塗布液濃度 正孔輸送性高分子2重量%/電子受容性化合物0.2重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 ホットプレート上で80℃1分間の加熱乾燥の後、オーブン内で10
0℃の60分間加熱乾燥。
Solvent Ethyl benzoate coating solution concentration 2% by weight of hole transporting polymer / 0.2% by weight of electron accepting compound
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying condition After drying at 80 ° C for 1 minute on a hot plate,
Heat drying at 0 ° C. for 60 minutes.

(参考例2)
参考例1と同様にして、正孔輸送性高分子(P1)及び電子受容性化合物としてのPPBを含有する組成物溶液を下記の条件で、基板上にスピンコートし、膜厚30nmの均一な薄膜を形成した。スピンコートは大気中で行った。このときの環境条件は、気温23℃、相対湿度60%であった。
溶媒 シクロヘキサノン
塗布液濃度 正孔輸送性高分子1重量%/電子受容性化合物0.1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 オーブン内で100℃60分間の加熱乾燥。
(Reference Example 2)
In the same manner as in Reference Example 1, a composition solution containing a hole transporting polymer (P1) and PPB as an electron-accepting compound was spin-coated on a substrate under the following conditions, and a uniform film thickness of 30 nm was obtained. A thin film was formed. Spin coating was performed in air. The environmental conditions at this time were an air temperature of 23 ° C. and a relative humidity of 60%.
Solvent Cyclohexanone coating concentration 1% by weight of hole transporting polymer / 0.1% by weight of electron accepting compound
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying conditions Heat drying at 100 ° C. for 60 minutes in an oven.

(参考例3)
参考例1と同様にして、下記構造式(P2)に示す正孔輸送性高分子(単独重合体。Mw=17,000、Mn=8,300)及び電子受容性化合物として下記構造式(A2)に示すTBPAH(tris(4−bromophenyl)aminium tetrachloroantimonate)を含有する組成物溶液を下記の条件で、上記基板上にスピンコートし、膜厚15nmの均一な薄膜を形成した。スピンコートは大気中で行った。このときの環境条件は、気温23℃、相対湿度60%であった。
(Reference Example 3)
In the same manner as in Reference Example 1, a hole transporting polymer (homopolymer. Mw = 17,000, Mn = 8,300) represented by the following structural formula (P2) and an electron accepting compound are represented by the following structural formula (A2). The composition solution containing TBPAH (tris (4-bromophenyl) amine tetrachloroantimonate) shown in FIG. 3 was spin-coated on the substrate under the following conditions to form a uniform thin film having a thickness of 15 nm. Spin coating was performed in air. The environmental conditions at this time were an air temperature of 23 ° C. and a relative humidity of 60%.

Figure 2005093427
Figure 2005093427

Figure 2005093427
Figure 2005093427

溶媒 シクロヘキサノン
塗布液濃度 正孔輸送性高分子0.5重量%/電子受容性化合物0.05重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 オーブン内で100℃60分間の加熱乾燥。
Solvent Cyclohexanone coating solution concentration Hole transporting polymer 0.5 wt% / electron accepting compound 0.05 wt%
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying conditions Heat drying at 100 ° C. for 60 minutes in an oven.

(参考例4)
参考例3と同様にして、正孔輸送性高分子(P2)及び電子受容性化合物としてのTBPAHを含有する組成物溶液を下記の条件で、上記基板上にスピンコートし、膜厚15nmの均一な薄膜を形成した。スピンコートは大気中で行った。このときの環境条件は、気温23℃、相対湿度60%であった。
溶媒 クロロホルム
塗布液濃度 正孔輸送性高分子0.5重量%/電子受容性化合物0.05重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 オーブン内で100℃60分間の加熱乾燥。
(Reference Example 4)
In the same manner as in Reference Example 3, a composition solution containing a hole-transporting polymer (P2) and TBPAH as an electron-accepting compound was spin-coated on the substrate under the following conditions, and a uniform film thickness of 15 nm was obtained. A thin film was formed. Spin coating was performed in air. The environmental conditions at this time were an air temperature of 23 ° C. and a relative humidity of 60%.
Solvent chloroform coating solution concentration hole transporting polymer 0.5% by weight / electron accepting compound 0.05% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying conditions Heat drying at 100 ° C. for 60 minutes in an oven.

(実施例1)
図1(b)に示す有機電界発光素子100bと同様な構造を有する有機電界発光素子を以下の方法で作製した。
ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を120nm堆積したもの(ジオマテック社製;電子ビーム成膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて、2mm幅のストライプにパターニングして陽極を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
(Example 1)
An organic electroluminescent device having the same structure as the organic electroluminescent device 100b shown in FIG. 1B was produced by the following method.
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 120 nm (manufactured by Geomat Corp .; electron beam film-formed product; sheet resistance 15 Ω) is 2 mm wide using ordinary photolithography and hydrochloric acid etching. An anode was formed by patterning the stripes. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.

先ず、正孔輸送性高分子(P1)及び電子受容性化合物としてのPPBを含有する組成物溶液を参考例1と同様に調製し、参考例1と同一条件で上記ITOガラス基板上にスピンコートした。なお、このときの組成物溶液は、正孔輸送性高分子(P1)及びPPBを、溶媒である安息香酸エチル中に溶解後30分経過したものを用いた。このスピンコートにより、30nmの膜厚の均一な薄膜形状を有する正孔注入層を形成した。
次に、上記正孔注入層を塗布成膜した基板を真空蒸着装置内に設置した。上記装置の粗排気を油回転ポンプにより行った後、装置内の真空度が2×10−6Torr(約2.7×10−4Pa)以下になるまで液体窒素トラップを備えた油拡散ポンプを用いて排気した。上記装置内に配置されたセラミックるつぼに入れた以下の構造式(H1)に示す芳香族アミン化合物、4,4’−ビス[N−(9−フェナンチル)−N−フェニルアミノ]ビフェニルを加熱して蒸着を行った。蒸着時の真空度は1.3×10−6Torr(約1.7×10−4Pa)、蒸着速度は0.3nm/秒で、膜厚40nmの膜を正孔注入層の上に積層して正孔輸送層を完成させた。
First, a composition solution containing a hole transporting polymer (P1) and PPB as an electron-accepting compound was prepared in the same manner as in Reference Example 1, and spin-coated on the ITO glass substrate under the same conditions as in Reference Example 1. did. In addition, the composition solution at this time used the thing which 30 minutes passed after melt | dissolving the hole transportable polymer (P1) and PPB in the ethyl benzoate which is a solvent. By this spin coating, a hole injection layer having a uniform thin film shape with a thickness of 30 nm was formed.
Next, the substrate on which the hole injection layer was applied and formed was placed in a vacuum evaporation apparatus. An oil diffusion pump equipped with a liquid nitrogen trap until the degree of vacuum in the apparatus becomes 2 × 10 −6 Torr (about 2.7 × 10 −4 Pa) or less after rough exhaust of the above apparatus by an oil rotary pump Was evacuated. An aromatic amine compound represented by the following structural formula (H1), 4,4′-bis [N- (9-phenanthyl) -N-phenylamino] biphenyl, heated in a ceramic crucible placed in the apparatus was heated. The vapor deposition was performed. The degree of vacuum during deposition is 1.3 × 10 −6 Torr (about 1.7 × 10 −4 Pa), the deposition rate is 0.3 nm / second, and a 40 nm-thick film is stacked on the hole injection layer. Thus, a hole transport layer was completed.

Figure 2005093427
Figure 2005093427

引続き、発光層の材料として、以下の構造式(E1)に示すアルミニウムの8−ヒドロキシキノリン錯体、Al(CNO)をルツボを用いて加熱することにより蒸着を行った。この時のルツボの温度は、282〜294℃の範囲で制御した。蒸着時の真空度は1.3×10−6Torr(約1.7×10−4Pa)、蒸着速度は0.1〜0.3nm/秒で、蒸着時間は2分40秒であった。その結果、膜厚60nmの発光層が得られた。 Subsequently, vapor deposition was performed by heating an aluminum 8-hydroxyquinoline complex represented by the following structural formula (E1), Al (C 9 H 6 NO) 3 using a crucible as a material of the light emitting layer. At this time, the temperature of the crucible was controlled in a range of 282 to 294 ° C. The degree of vacuum during the deposition was 1.3 × 10 −6 Torr (about 1.7 × 10 −4 Pa), the deposition rate was 0.1 to 0.3 nm / second, and the deposition time was 2 minutes and 40 seconds. . As a result, a light emitting layer having a thickness of 60 nm was obtained.

Figure 2005093427
Figure 2005093427

上記の正孔輸送層及び発光層を真空蒸着する時の基板温度は室温に保持した。ここで、発光層までの蒸着を行った素子を陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内に設置して有機層と同様にして装置内の真空度が2×10−6Torr(約2.7×10−4Pa)以下になるまで排気した。陰極として、先ず、フッ化リチウム(LiF)をモリブデンボートを用いて、蒸着速度0.1nm/秒、真空度7.0×10−6Torr(約9.3×10−4Pa)で、0.5nmの膜厚で発光層の上に成膜した。次に、アルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.5nm/秒、真空度1×10−5Torr(約1.3×10−3Pa)で膜厚80nmのアルミニウム層を形成して陰極を形成した。以上の2層型陰極の蒸着時の基板温度は室温に保持した。以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子の発光特性を表1に示す。 The substrate temperature during vacuum deposition of the hole transport layer and the light emitting layer was kept at room temperature. Here, a striped shadow mask having a width of 2 mm is used as a mask for cathode vapor deposition with the element deposited up to the light-emitting layer in close contact with the element so as to be orthogonal to the ITO stripe of the anode, and in another vacuum vapor deposition apparatus. It was evacuated until the degree of vacuum in the apparatus was 2 × 10 −6 Torr (about 2.7 × 10 −4 Pa) or less. As the cathode, first, lithium fluoride (LiF) was used at a deposition rate of 0.1 nm / second, a degree of vacuum of 7.0 × 10 −6 Torr (about 9.3 × 10 −4 Pa) using a molybdenum boat, and 0 A film having a thickness of 0.5 nm was formed on the light emitting layer. Next, aluminum is similarly heated by a molybdenum boat to form an aluminum layer having a thickness of 80 nm at a deposition rate of 0.5 nm / second and a degree of vacuum of 1 × 10 −5 Torr (about 1.3 × 10 −3 Pa). Thus, a cathode was formed. The substrate temperature at the time of vapor deposition of the above two-layer cathode was kept at room temperature. As described above, an organic electroluminescent element having a light emitting area portion having a size of 2 mm × 2 mm was obtained. The light emission characteristics of this device are shown in Table 1.

表1は、通電電流250mA/cmにおける発光輝度(単位:cd/m)、発光輝度100cd/mにおける発光効率(単位:lm/W)、輝度/電流(単位:cd/A)及び駆動電圧(単位:V)の数値を各々示す。 Table 1 shows light emission luminance (unit: cd / m 2 ) at an electric current of 250 mA / cm 2 , light emission efficiency (unit: lm / W) at light emission luminance of 100 cd / m 2 , luminance / current (unit: cd / A), and The numerical values of drive voltage (unit: V) are shown respectively.

Figure 2005093427
Figure 2005093427

(実施例2)
正孔輸送性高分子(P1)及びPPBを溶媒である安息香酸エチル中に溶解後、23℃で4週間遮光して保管した組成物溶液を用いて、正孔注入層を形成したこと以外は、実施例1と同様にして、図1(b)に示す有機電界発光素子100bと同様な構造を有する有機電界発光素子を作製した。この素子の発光特性を表1に示す。
表1より、実施例1に記載の素子と駆動電圧がほとんど等しく、参考例1に記載する方法で調製した塗布組成物は23℃にて2週保管した場合も、同等の特性を持つ有機電界発光素子が得られたことが分かる。
(Example 2)
Except that the hole-injecting layer was formed using a composition solution that was stored for 4 weeks in the dark at 23 ° C. after dissolving the hole-transporting polymer (P1) and PPB in ethyl benzoate as a solvent. In the same manner as in Example 1, an organic electroluminescent element having the same structure as that of the organic electroluminescent element 100b shown in FIG. The light emission characteristics of this device are shown in Table 1.
From Table 1, the driving voltage is almost equal to the device described in Example 1, and the coating composition prepared by the method described in Reference Example 1 has an organic electric field having the same characteristics even when stored at 23 ° C. for 2 weeks. It can be seen that a light emitting element was obtained.

(実施例3)
参考例2に記載する組成で、塗布液として正孔輸送性高分子(P1)及び電子受容性化合物としてのPPBを溶媒としてのシクロヘキサノン中にて混合後、30分経過後に、参考例2と同様の条件で成膜して正孔注入層を形成した他は、実施例1と同様にして図1(b)に示す有機電界発光素子100bと同様な構造を有する有機電界発光素子を作製した。この素子の発光特性を表1に示す。
(Example 3)
After mixing 30 minutes after mixing the hole transporting polymer (P1) as the coating liquid and PPB as the electron accepting compound in cyclohexanone as the solvent with the composition described in Reference Example 2, the same as in Reference Example 2 An organic electroluminescent device having the same structure as that of the organic electroluminescent device 100b shown in FIG. 1B was prepared in the same manner as in Example 1 except that the hole injection layer was formed by forming the film under the above conditions. The light emission characteristics of this device are shown in Table 1.

(比較例1)
参考例2に記載する組成で、溶媒であるシクロヘキサノンに正孔輸送性高分子(P1)及びPPBを溶解させた後、23℃で4週間遮光して保管した組成物溶液を用いて、参考例2と同様の条件で成膜して正孔注入層を形成したこと以外は、実施例1と同様にして図1bに示す有機電界発光素子100bと同様な構造を有する有機電界発光素子を作製した。この素子の発光特性を表1に示す。この素子の駆動電圧は、実施例3に記載の素子よりも高い値となった。
(Comparative Example 1)
In the composition described in Reference Example 2, after dissolving the hole transporting polymer (P1) and PPB in cyclohexanone as a solvent, the composition solution was stored at 23 ° C., protected from light for 4 weeks. An organic electroluminescent device having the same structure as the organic electroluminescent device 100b shown in FIG. 1b was prepared in the same manner as in Example 1 except that the hole injection layer was formed by forming the film under the same conditions as in FIG. . The light emission characteristics of this device are shown in Table 1. The drive voltage of this element was higher than that of the element described in Example 3.

(実施例4)
図1(c)に示す有機電界発光素子100cと同様な構造を有する有機電界発光素子を以下の方法で作製した。
ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を120nm堆積したもの(ジオマテック社製;電子ビーム成膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
Example 4
An organic electroluminescent element having the same structure as that of the organic electroluminescent element 100c shown in FIG. 1C was produced by the following method.
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 120 nm (manufactured by Geomat Corp .; electron beam film-formed product; sheet resistance 15 Ω) is 2 mm wide using ordinary photolithography technology and hydrochloric acid etching. The anode was formed by patterning into stripes. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.

先ず、正孔輸送性高分子(P1)及び電子受容性化合物であるPPBを含有する組成物溶液を、参考例2と同様に調製し、実施例2と同一条件で上記ITOガラス基板上にスピンコートした。なお、この時の塗布液は、正孔輸送性高分子(P1)及びPPBを溶媒であるシクロヘキサノンに溶解後、23℃にて1時間保管したものを用いた。このスピンコートにより、30nmの膜厚の均一な薄膜形状を有する正孔注入層を形成した。
次に、上記正孔注入層を塗布成膜した基板を真空蒸着装置内に設置した。上記装置の粗排気を油回転ポンプにより行った後、装置内の真空度が2×10−6Torr(約2.7×10−4Pa)以下になるまで液体窒素トラップを備えた油拡散ポンプを用いて排気した。上記装置内に配置されたセラミックるつぼに入れた化合物(H1)を加熱して蒸着を行った。蒸着時の真空度は1.3×10−6Torr(約1.7×10−4Pa)、蒸着速度は0.3nm/秒で、膜厚40nmの膜を正孔注入層の上に積層して正孔輸送層を形成した。
First, a composition solution containing a hole transporting polymer (P1) and PPB which is an electron accepting compound was prepared in the same manner as in Reference Example 2, and spinned on the ITO glass substrate under the same conditions as in Example 2. Coated. In addition, the coating liquid at this time used what melt | dissolved the hole transportable polymer (P1) and PPB in cyclohexanone which is a solvent, and stored at 23 degreeC for 1 hour. By this spin coating, a hole injection layer having a uniform thin film shape with a thickness of 30 nm was formed.
Next, the substrate on which the hole injection layer was applied and formed was placed in a vacuum evaporation apparatus. An oil diffusion pump equipped with a liquid nitrogen trap until the degree of vacuum in the apparatus becomes 2 × 10 −6 Torr (about 2.7 × 10 −4 Pa) or less after rough exhaust of the above apparatus by an oil rotary pump Was evacuated. The compound (H1) placed in a ceramic crucible placed in the above apparatus was heated for vapor deposition. The degree of vacuum during deposition is 1.3 × 10 −6 Torr (about 1.7 × 10 −4 Pa), the deposition rate is 0.3 nm / second, and a 40 nm-thick film is stacked on the hole injection layer. Thus, a hole transport layer was formed.

引続き、発光層の材料として、化合物(E1)及び以下の構造式(D1)に示すルブレンを各々、別々のルツボを用いて同時に加熱することにより蒸着を行った。この時の各ルツボの温度は、化合物(E1)に対しては282〜294℃の範囲で、化合物(D1)に対しては180〜190℃の範囲に制御した。蒸着時の真空度は1.3×10−6Torr(約1.7×10−4Pa)、蒸着速度は0.1〜0.3nm/秒で、蒸着時間は2分45秒であった。その結果、膜厚30.7nmで化合物(D1)が錯体(E1)に対して2.5膜厚%ドープされた発光層が得られた。 Subsequently, as a material for the light emitting layer, vapor deposition was performed by simultaneously heating the compound (E1) and rubrene represented by the following structural formula (D1) using separate crucibles. The temperature of each crucible at this time was controlled in the range of 282 to 294 ° C. for the compound (E1) and in the range of 180 to 190 ° C. for the compound (D1). The degree of vacuum during the deposition was 1.3 × 10 −6 Torr (about 1.7 × 10 −4 Pa), the deposition rate was 0.1 to 0.3 nm / second, and the deposition time was 2 minutes and 45 seconds. . As a result, a light emitting layer in which the film thickness was 30.7 nm and the compound (D1) was doped 2.5% by film thickness with respect to the complex (E1) was obtained.

Figure 2005093427
Figure 2005093427

さらに、化合物(D1)の加熱を停止し、アルミニウムの8−ヒドロキシキノリン錯体のみを282〜294℃の範囲で温度制御し、膜厚45nmの電子輸送層106を蒸着した。このときの真空度は1.3×10−6Torr(約1.7×10−4Pa)、蒸着速度は0.1〜0.4nm/秒で、蒸着時間は2分52秒であった。上記の正孔輸送層、発光層及び電子輸送層を真空蒸着する時の基板温度は室温に保持した。
ここで、電子輸送層までの蒸着を行った素子を陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内に設置して有機層と同様にして装置内の真空度が2×10−6Torr(約2.7×10−4Pa)以下になるまで排気した。陰極として、先ず、フッ化リチウム(LiF)をモリブデンボートを用いて、蒸着速度0.1nm/秒、真空度7.0×10−6Torr(約9.3×10−4Pa)で、0.5nmの膜厚で発光層の上に成膜した。次に、アルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.5nm/秒、真空度1×10−5Torr(約1.3×103Pa)で膜厚80nmのアルミニウム層を形成して陰極を完成させた。以上の2層型陰極の蒸着時の基板温度は室温に保持した。以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子の発光特性を表2に示す。
Furthermore, the heating of the compound (D1) was stopped, and the temperature of the aluminum 8-hydroxyquinoline complex alone was controlled in the range of 282 to 294 ° C., and the electron transport layer 106 having a film thickness of 45 nm was deposited. The degree of vacuum at this time was 1.3 × 10 −6 Torr (about 1.7 × 10 −4 Pa), the deposition rate was 0.1 to 0.4 nm / second, and the deposition time was 2 minutes 52 seconds. . The substrate temperature when vacuum-depositing the hole transport layer, the light emitting layer, and the electron transport layer was maintained at room temperature.
Here, another vacuum deposition apparatus in which a striped shadow mask having a width of 2 mm is closely attached to the element so as to be orthogonal to the ITO stripe of the anode, using the element deposited up to the electron transport layer as a mask for cathode deposition. The inside of the apparatus was evacuated until the degree of vacuum in the apparatus was 2 × 10 −6 Torr (about 2.7 × 10 −4 Pa) or less. As the cathode, first, lithium fluoride (LiF) was used at a deposition rate of 0.1 nm / second, a degree of vacuum of 7.0 × 10 −6 Torr (about 9.3 × 10 −4 Pa) using a molybdenum boat, and 0 A film having a thickness of 0.5 nm was formed on the light emitting layer. Next, aluminum was heated in the same molybdenum boat, deposition rate 0.5 nm / sec, the degree of vacuum 1 × 10 -5 Torr (about 1.3 × 10 - 3Pa) an aluminum layer having a thickness of 80nm was formed by The cathode was completed. The substrate temperature at the time of vapor deposition of the above two-layer cathode was kept at room temperature. As described above, an organic electroluminescent element having a light emitting area portion having a size of 2 mm × 2 mm was obtained. The light emission characteristics of this element are shown in Table 2.

Figure 2005093427
Figure 2005093427

(実施例5)
参考例2に記載する組成で、溶媒であるシクロヘキサノンに正孔輸送性高分子(P1)及びPPBを溶解させた後、23℃にて5時間保管した組成物溶液を用いて、参考例2と同様の条件で成膜して正孔注入層を形成した他は、実施例4と同様にして、図1(c)に示す有機電界発光素子100cと同様な構造を有する有機電界発光素子を作製した。この素子の発光特性を表2に示す。
表2より、実施例4に記載の素子と駆動電圧がほとんど等しく、参考例2に記載する方法で調製した塗布組成物は23℃にて5時間保管した場合も、同等の特性を持つ有機電界発光素子が得られたことが分かる。
(Example 5)
With the composition described in Reference Example 2, the hole transporting polymer (P1) and PPB were dissolved in cyclohexanone as a solvent, and then stored at 23 ° C. for 5 hours. An organic electroluminescent device having the same structure as that of the organic electroluminescent device 100c shown in FIG. 1C is manufactured in the same manner as in Example 4 except that the hole injection layer is formed by forming a film under the same conditions. did. The light emission characteristics of this element are shown in Table 2.
From Table 2, the driving voltage is almost equal to the device described in Example 4, and the coating composition prepared by the method described in Reference Example 2 has an organic electric field having the same characteristics even when stored at 23 ° C. for 5 hours. It can be seen that a light emitting element was obtained.

(比較例2)
参考例2に記載する組成で、溶媒であるシクロヘキサノンに正孔輸送性高分子(P1)及びPPBを溶解させた後、23℃で24時間遮光して保管した組成物溶液を用いて、参考例2と同様の条件で成膜して正孔注入層を形成したこと以外は、実施例4と同様にして、図1(c)に示す有機電界発光素子100cと同様な構造を有する有機電界発光素子を作製した。この素子の発光特性を表2に示す。
この素子の駆動電圧は、実施例4に記載の素子よりも高い値となったことが分かる。
(Comparative Example 2)
In the composition described in Reference Example 2, after dissolving the hole transporting polymer (P1) and PPB in cyclohexanone as a solvent, the composition solution stored in the dark for 24 hours at 23 ° C. was used as a reference example. Organic electroluminescence having the same structure as that of the organic electroluminescent device 100c shown in FIG. 1 (c) except that the hole injection layer was formed by forming the film under the same conditions as in FIG. An element was produced. The light emission characteristics of this element are shown in Table 2.
It can be seen that the drive voltage of this element was higher than that of the element described in Example 4.

(実施例6)
図1(b)に示す有機電界発光素子100bと同様な構造を有する有機電界発光素子を以下の方法で作製した。
ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を120nm堆積したもの(ジオマテック社製;電子ビーム成膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
(Example 6)
An organic electroluminescent device having the same structure as the organic electroluminescent device 100b shown in FIG. 1B was produced by the following method.
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 120 nm (manufactured by Geomat Corp .; electron beam film-formed product; sheet resistance 15 Ω) is 2 mm wide using ordinary photolithography technology and hydrochloric acid etching. The anode was formed by patterning into stripes. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.

先ず、参考例3に記載する方法で、塗布液として正孔輸送性高分子(P2)及び電子受容性化合物であるTBPAHを、溶媒であるシクロヘキサノンに溶解後、30分経過後に正孔注入層を塗布し、膜厚15nmの正孔注入層を成膜した。次に、上記正孔注入層を塗布成膜した基板を真空蒸着装置内に設置した。上記装置の粗排気を油回転ポンプにより行った後、装置内の真空度が2×10−6Torr(約2.7×10−4Pa)以下になるまで液体窒素トラップを備えた油拡散ポンプを用いて排気した。上記装置内に配置されたセラミックるつぼに入れた以下の構造式(H2)に示す芳香族アミン化合物、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルを加熱して蒸着を行った。蒸着時の真空度は1.3×10−6Torr(約1.7×10−4Pa)、蒸着速度は0.3nm/秒で、膜厚40nmの膜を正孔注入層の上に積層して正孔輸送層を完成させた。 First, in the method described in Reference Example 3, a hole transporting polymer (P2) and TBPAH as an electron-accepting compound were dissolved as a coating solution in cyclohexanone as a solvent, and a hole injection layer was formed after 30 minutes. This was applied to form a 15 nm-thick hole injection layer. Next, the substrate on which the hole injection layer was applied and formed was placed in a vacuum evaporation apparatus. An oil diffusion pump equipped with a liquid nitrogen trap until the degree of vacuum in the apparatus becomes 2 × 10 −6 Torr (about 2.7 × 10 −4 Pa) or less after rough exhaust of the above apparatus by an oil rotary pump Was evacuated. An aromatic amine compound represented by the following structural formula (H2), 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, heated in a ceramic crucible placed in the apparatus was heated. The vapor deposition was performed. The degree of vacuum during deposition is 1.3 × 10 −6 Torr (about 1.7 × 10 −4 Pa), the deposition rate is 0.3 nm / second, and a 40 nm-thick film is stacked on the hole injection layer. Thus, a hole transport layer was completed.

Figure 2005093427
Figure 2005093427

引続き、発光層の材料として、化合物(E1)を蒸着した。この時のルツボの温度は、282〜294 ℃の範囲で制御した。蒸着時の真空度は1.3×10−6Torr(約1.7×10−4Pa)、蒸着速度は0.1〜0.3nm/秒で、蒸着時間は5分5秒であった。結果として、膜厚60nmの発光層を形成した。上記の正孔輸送層及び発光層を真空蒸着する時の基板温度は室温に保持した。 Subsequently, a compound (E1) was deposited as a material for the light emitting layer. At this time, the temperature of the crucible was controlled in the range of 282 to 294 ° C. The degree of vacuum during the deposition was 1.3 × 10 −6 Torr (about 1.7 × 10 −4 Pa), the deposition rate was 0.1 to 0.3 nm / second, and the deposition time was 5 minutes and 5 seconds. . As a result, a light emitting layer having a thickness of 60 nm was formed. The substrate temperature during vacuum deposition of the hole transport layer and the light emitting layer was kept at room temperature.

ここで、発光層までの蒸着を行った素子を陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内に設置して有機層と同様にして装置内の真空度が2×10−6Torr(約2.7×10−4Pa)以下になるまで排気した。陰極として、先ず、フッ化リチウム(LiF)をモリブデンボートを用いて、蒸着速度0.1nm/秒、真空度7.0×10−6Torr(約9.3×10−4Pa)で、0.5nmの膜厚で発光層の上に成膜した。次に、アルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.5nm/秒、真空度1×10−5Torr(約1.3×10−3Pa)で膜厚80nmのアルミニウム層を形成して陰極を完成させた。以上の2層型陰極の蒸着時の基板温度は室温に保持した。
以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子の発光特性を表3に示す。
Here, a striped shadow mask having a width of 2 mm is used as a cathode vapor deposition mask with the element deposited up to the light-emitting layer in close contact with the element so as to be orthogonal to the ITO stripe of the anode, and in another vacuum deposition apparatus. It was evacuated until the degree of vacuum in the apparatus was 2 × 10 −6 Torr (about 2.7 × 10 −4 Pa) or less. As the cathode, first, lithium fluoride (LiF) was used at a deposition rate of 0.1 nm / second, a degree of vacuum of 7.0 × 10 −6 Torr (about 9.3 × 10 −4 Pa) using a molybdenum boat, and 0 A film having a thickness of 0.5 nm was formed on the light emitting layer. Next, aluminum is similarly heated by a molybdenum boat to form an aluminum layer having a thickness of 80 nm at a deposition rate of 0.5 nm / second and a degree of vacuum of 1 × 10 −5 Torr (about 1.3 × 10 −3 Pa). Thus, the cathode was completed. The substrate temperature at the time of vapor deposition of the above two-layer cathode was kept at room temperature.
As described above, an organic electroluminescent element having a light emitting area portion having a size of 2 mm × 2 mm was obtained. Table 3 shows the light emission characteristics of the device.

(比較例3)
参考例4に記載する組成で、正孔輸送性高分子(P2)及びTBPAHを、溶媒であるクロロホルム中に溶解し、30分経過後に参考例4と同様の条件で成膜して正孔注入層を形成した他は、実施例6と同様にして図1(b)に示す有機電界発光素子100bと同様な構造を有する有機電界発光素子を作製した。この素子の発光特性を表3に示す。表3に示す結果から、この素子の駆動電圧は、実施例6に記載の素子よりも高い値となったことが分かる。
(Comparative Example 3)
With the composition described in Reference Example 4, the hole-transporting polymer (P2) and TBPAH were dissolved in chloroform as a solvent, and after 30 minutes, a film was formed under the same conditions as in Reference Example 4 to inject holes. An organic electroluminescent element having the same structure as the organic electroluminescent element 100b shown in FIG. 1B was produced in the same manner as in Example 6 except that the layer was formed. Table 3 shows the light emission characteristics of the device. From the results shown in Table 3, it can be seen that the drive voltage of this element was higher than that of the element described in Example 6.

Figure 2005093427
Figure 2005093427

本発明が適用される有機電界発光素子用組成物及び有機電界発光素子は、フラットパネル・ディスプレイ(例えば、OAコンピュータ用や壁掛けテレビ)や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられる。   A composition for an organic electroluminescent element and an organic electroluminescent element to which the present invention is applied include a light source (for example, a copier) utilizing characteristics of a flat panel display (for example, for an OA computer or a wall-mounted television) or a surface light emitter. Application to light sources for LCDs, backlight sources for liquid crystal displays and instruments), display panels, and sign lamps.

図1(a)〜図1(c)は、本実施の形態が適用される有機電界発光素子用組成物を用いて、湿式製膜法により形成した薄層を有する有機電界発光素子を説明するための図である。1 (a) to 1 (c) illustrate an organic electroluminescent device having a thin layer formed by a wet film forming method using the composition for organic electroluminescent device to which the present embodiment is applied. FIG.

符号の説明Explanation of symbols

100a,100b,100c…有機電界発光素子、101…基板、102…陽極、103…正孔注入層、104…正孔輸送層、105…発光層、106…電子輸送層、107…陰極 DESCRIPTION OF SYMBOLS 100a, 100b, 100c ... Organic electroluminescent element, 101 ... Substrate, 102 ... Anode, 103 ... Hole injection layer, 104 ... Hole transport layer, 105 ... Light emitting layer, 106 ... Electron transport layer, 107 ... Cathode

Claims (8)

有機電界発光素子の正孔注入層及び正孔輸送層の中、少なくとも1層を形成する正孔注入・輸送性材料及び/又は電子受容性化合物と、
前記正孔注入・輸送性材料及び/又は前記電子受容性化合物を溶解する溶媒と、を含有した組成物において、
前記組成物中に含まれる、前記正孔注入・輸送性材料及び/又は前記電子受容性化合物を失活させる失活物質又は前記失活物質を発生させる化合物の濃度が1重量%以下であることを特徴とする有機電界発光素子用組成物。
A hole injection / transport material and / or an electron-accepting compound forming at least one of the hole injection layer and the hole transport layer of the organic electroluminescence device;
In the composition containing the hole injecting / transporting material and / or the solvent for dissolving the electron accepting compound,
The concentration of the deactivating substance for deactivating the hole injecting / transporting material and / or the electron accepting compound or the compound for generating the deactivating substance contained in the composition is 1% by weight or less. The composition for organic electroluminescent elements characterized by these.
前記失活物質又は前記失活物質を発生させる化合物の中、少なくとも1つは、アルコール系溶媒、アルデヒド系溶媒又はケトン系溶媒であることを特徴とする請求項1記載の有機電界発光素子用組成物。   2. The composition for an organic electroluminescence device according to claim 1, wherein at least one of the deactivating substance or the compound generating the deactivating substance is an alcohol solvent, an aldehyde solvent or a ketone solvent. Stuff. 前記失活物質又は前記失活物質を発生させる化合物の中、少なくとも1つは、プロトン酸又はハロゲン系溶媒であることを特徴とする請求項1又は2記載の有機電界発光素子用組成物。   3. The composition for an organic electroluminescent element according to claim 1, wherein at least one of the deactivating substance or the compound that generates the deactivating substance is a protonic acid or a halogen-based solvent. 前記正孔注入・輸送性材料が芳香族アミン化合物であり、前記電子受容性化合物が芳香族ホウ素化合物であることを特徴とする請求項1乃至3いずれか1項に記載の有機電界発光素子用組成物。   4. The organic electroluminescent element according to claim 1, wherein the hole injecting / transporting material is an aromatic amine compound, and the electron accepting compound is an aromatic boron compound. 5. Composition. 前記組成物中の水分濃度が1重量%以下であることを特徴とする請求項1乃至4いずれか1項に記載の有機電界発光素子用組成物。   5. The composition for an organic electroluminescent element according to claim 1, wherein a water concentration in the composition is 1% by weight or less. 基板上に、少なくとも陽極、正孔注入層、正孔輸送層、発光層及び陰極を積層した有機電界発光素子において、
前記正孔注入層及び前記正孔輸送層の中、少なくとも1層は、請求項1乃至5いずれか1項に記載の有機電界発光素子用組成物を用いた湿式製膜法により形成されたものであることを特徴とする有機電界発光素子。
In an organic electroluminescent device in which at least an anode, a hole injection layer, a hole transport layer, a light emitting layer and a cathode are laminated on a substrate,
6. At least one of the hole injection layer and the hole transport layer is formed by a wet film forming method using the composition for organic electroluminescent elements according to any one of claims 1 to 5. An organic electroluminescent element characterized by the above.
基板上に陽極を形成する陽極形成工程と、
形成された前記陽極の上層に、正孔注入・輸送性材料と電子受容性化合物とを含有する正孔注入層を形成する正孔注入層形成工程と、
形成された前記正孔注入層の上層に、直接又は他の層を介して、発光層を形成する発光層形成工程と、
形成された前記発光層の上層に、直接又は他の層を介して、陰極を形成する陰極形成工程と、を有し、
前記正孔注入層形成工程は、前記正孔注入・輸送性材料と前記電子受容性化合物とを含有する組成物を調製した後、20時間以内に前記組成物を用いた湿式製膜法により前記正孔注入層を形成することを特徴とする有機電界発光素子の製造方法。
An anode forming step of forming an anode on the substrate;
A hole injection layer forming step of forming a hole injection layer containing a hole injection / transport material and an electron accepting compound on the upper layer of the formed anode;
A light emitting layer forming step of forming a light emitting layer directly or through another layer on the hole injection layer formed;
A cathode forming step for forming a cathode directly or via another layer on the formed light emitting layer; and
In the hole injection layer forming step, after preparing a composition containing the hole injecting / transporting material and the electron accepting compound, the wet injection film forming method using the composition is performed within 20 hours. A method for producing an organic electroluminescent device, comprising forming a hole injection layer.
前記組成物は、請求項1乃至5いずれか1項に記載した有機電界発光素子用組成物であることを特徴とする請求項7記載の有機電界発光素子の製造方法。   The said composition is the composition for organic electroluminescent elements of any one of Claims 1 thru | or 5, The manufacturing method of the organic electroluminescent element of Claim 7 characterized by the above-mentioned.
JP2004233676A 2003-08-14 2004-08-10 Composition for organic electroluminescent element, and manufacturing method of organic electroluminescent element Pending JP2005093427A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004233676A JP2005093427A (en) 2003-08-14 2004-08-10 Composition for organic electroluminescent element, and manufacturing method of organic electroluminescent element
US11/278,772 US20060182993A1 (en) 2004-08-10 2006-04-05 Compositions for organic electroluminescent device and organic electroluminescent device
US12/500,872 US20090309070A1 (en) 2004-08-10 2009-07-10 Compositions for organic electroluminescent device and organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003293647 2003-08-14
JP2004233676A JP2005093427A (en) 2003-08-14 2004-08-10 Composition for organic electroluminescent element, and manufacturing method of organic electroluminescent element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008155903A Division JP4816687B2 (en) 2003-08-14 2008-06-13 Composition for organic electroluminescent device, organic electroluminescent device, method for producing organic electroluminescent device, and storage method for composition for organic electroluminescent device

Publications (1)

Publication Number Publication Date
JP2005093427A true JP2005093427A (en) 2005-04-07

Family

ID=34466898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233676A Pending JP2005093427A (en) 2003-08-14 2004-08-10 Composition for organic electroluminescent element, and manufacturing method of organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2005093427A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129589A1 (en) * 2005-06-03 2006-12-07 Nissan Chemical Industries, Ltd. Charge-transporting varnishes containing charge-transporting polymers and organic electroluminescent devices made by using the same
JP2007520858A (en) * 2003-12-19 2007-07-26 ケンブリッジ ディスプレイ テクノロジー リミテッド Optical device
JP2007531993A (en) * 2004-03-31 2007-11-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Organic light-emitting diode and use thereof
JP2008078373A (en) * 2006-09-21 2008-04-03 Dainippon Printing Co Ltd Organic electroluminescent element and its fabrication process
JP2009245816A (en) * 2008-03-31 2009-10-22 Panasonic Corp Organic el ink composite and production method thereof
JP2009245878A (en) * 2008-03-31 2009-10-22 Mitsubishi Chemicals Corp Organic electroluminescent element and method of manufacturing the same, and organic electroluminescent display
JP2009278076A (en) * 2008-04-16 2009-11-26 Mitsubishi Chemicals Corp Composition for forming hole injection/transport layer, method of manufacturing composition for forming hole injection/transport layer, organic electroluminescent element,organic el display and organic el illumination
JP2010254962A (en) * 2009-03-30 2010-11-11 Fujifilm Corp Electro conductive polymer composition, conductive cured film, and organic electroluminescent element
WO2011052648A1 (en) * 2009-10-27 2011-05-05 大日本印刷株式会社 Device having hole injection/transport layer, method for producing same, and ink for forming hole injection/transport layer
WO2011052645A1 (en) * 2009-10-27 2011-05-05 大日本印刷株式会社 Nanoparticle containing transition metal compound, method for producing same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same
US8053973B2 (en) 2005-02-15 2011-11-08 Pioneer Corporation Film forming composition and organic electroluminescent device
US8822039B2 (en) 2004-03-25 2014-09-02 Nissan Chemical Industries, Ltd. Charge-transporting varnish and organic electro-luminescent devices made by using the same
JP2018022705A (en) * 2017-11-06 2018-02-08 ユニバーサル ディスプレイ コーポレイション Solution processable and doped triarylamine hole injection material
JP7463890B2 (en) 2020-07-13 2024-04-09 株式会社レゾナック Organic electronic material, ink composition, organic layer, organic electronic element, organic electroluminescence element, lighting device, display element, and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284055A (en) * 2000-03-29 2001-10-12 Honda Motor Co Ltd Organic electroluminescent element and manufacturing method of the same
JP2003213002A (en) * 2001-11-19 2003-07-30 Mitsubishi Chemicals Corp Aromatic diamine-containing polymer compound and organic electroluminescent element using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284055A (en) * 2000-03-29 2001-10-12 Honda Motor Co Ltd Organic electroluminescent element and manufacturing method of the same
JP2003213002A (en) * 2001-11-19 2003-07-30 Mitsubishi Chemicals Corp Aromatic diamine-containing polymer compound and organic electroluminescent element using the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520858A (en) * 2003-12-19 2007-07-26 ケンブリッジ ディスプレイ テクノロジー リミテッド Optical device
JP2011124235A (en) * 2003-12-19 2011-06-23 Cambridge Display Technology Ltd Optical device
US8822039B2 (en) 2004-03-25 2014-09-02 Nissan Chemical Industries, Ltd. Charge-transporting varnish and organic electro-luminescent devices made by using the same
JP2007531993A (en) * 2004-03-31 2007-11-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Organic light-emitting diode and use thereof
US8580392B2 (en) 2004-03-31 2013-11-12 Osram Opto Semiconductors Gmbh Organic light-emitting diode and uses thereof
US8053973B2 (en) 2005-02-15 2011-11-08 Pioneer Corporation Film forming composition and organic electroluminescent device
WO2006129589A1 (en) * 2005-06-03 2006-12-07 Nissan Chemical Industries, Ltd. Charge-transporting varnishes containing charge-transporting polymers and organic electroluminescent devices made by using the same
JP2008078373A (en) * 2006-09-21 2008-04-03 Dainippon Printing Co Ltd Organic electroluminescent element and its fabrication process
JP4547441B2 (en) * 2008-03-31 2010-09-22 パナソニック株式会社 Organic EL ink composition and method for producing the same
JP2009245878A (en) * 2008-03-31 2009-10-22 Mitsubishi Chemicals Corp Organic electroluminescent element and method of manufacturing the same, and organic electroluminescent display
US8414960B2 (en) 2008-03-31 2013-04-09 Panasonic Corporation Ink composition for organic electroluminescent device and production method thereof
JP2009245816A (en) * 2008-03-31 2009-10-22 Panasonic Corp Organic el ink composite and production method thereof
JP2009278076A (en) * 2008-04-16 2009-11-26 Mitsubishi Chemicals Corp Composition for forming hole injection/transport layer, method of manufacturing composition for forming hole injection/transport layer, organic electroluminescent element,organic el display and organic el illumination
JP2010254962A (en) * 2009-03-30 2010-11-11 Fujifilm Corp Electro conductive polymer composition, conductive cured film, and organic electroluminescent element
WO2011052645A1 (en) * 2009-10-27 2011-05-05 大日本印刷株式会社 Nanoparticle containing transition metal compound, method for producing same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same
CN102484210A (en) * 2009-10-27 2012-05-30 大日本印刷株式会社 Transition Metal Compound-Containing Nanoparticle And Method For Producing The Same, Ink For Positive Hole Injection Transport Layer, Device Comprising Positive Hole Injection Transport Layer And Method For Producing The Same
JP2011119681A (en) * 2009-10-27 2011-06-16 Dainippon Printing Co Ltd Nanoparticle containing transition metal compound, method for producing the same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing the same
JP2011096733A (en) * 2009-10-27 2011-05-12 Dainippon Printing Co Ltd Device having hole injection/transport layer, method for manufacturing the device, and ink for forming hole injection/transport layer
WO2011052648A1 (en) * 2009-10-27 2011-05-05 大日本印刷株式会社 Device having hole injection/transport layer, method for producing same, and ink for forming hole injection/transport layer
US8927099B2 (en) 2009-10-27 2015-01-06 Dai Nippon Printing Co., Ltd. Transition metal compound-containing nanoparticle and method for producing the same, ink for positive hole injection transport layer, device comprising positive hole injection transport layer and method for producing the same
US9391277B2 (en) 2009-10-27 2016-07-12 Dai Nippon Printing Co., Ltd. Device comprising positive hole injection transport layer, method for producing the same and ink for forming positive hole injection transport layer
JP2018022705A (en) * 2017-11-06 2018-02-08 ユニバーサル ディスプレイ コーポレイション Solution processable and doped triarylamine hole injection material
JP7463890B2 (en) 2020-07-13 2024-04-09 株式会社レゾナック Organic electronic material, ink composition, organic layer, organic electronic element, organic electroluminescence element, lighting device, display element, and display device

Similar Documents

Publication Publication Date Title
JP4023204B2 (en) Organic electroluminescence device
JP5454422B2 (en) Composition for charge transport film, charge transport film and organic electroluminescence device
JP4058842B2 (en) Organic electroluminescence device
JP4144192B2 (en) Method for manufacturing organic electroluminescent device
JP4692025B2 (en) Charge transport film composition and ionic compound, charge transport film and organic electroluminescent device using the same, method for producing organic electroluminescent device, and method for producing charge transport film
JP3855675B2 (en) Organic electroluminescence device
JP4407102B2 (en) Anthracene compound, method for producing the same, and organic electroluminescent device
JP3972588B2 (en) Organic electroluminescence device
JP4186758B2 (en) Polymer compound, hole injecting / transporting material, organic electroluminescent device material and organic electroluminescent device
JP2004002740A (en) Polymer compound, 1,4-phenylenediamine derivative, charge-transporting material, organic electroluminescent element material and organic electroluminescent element
JP2001223084A (en) Organic electric field light emitting element
JP3988539B2 (en) Organic electroluminescence device
JP2005093427A (en) Composition for organic electroluminescent element, and manufacturing method of organic electroluminescent element
JP4066619B2 (en) Binaphthyl compound, method for producing the same, and organic electroluminescent device
JP2000150169A (en) Organic electroluminescence element
JP4816687B2 (en) Composition for organic electroluminescent device, organic electroluminescent device, method for producing organic electroluminescent device, and storage method for composition for organic electroluminescent device
JP4135411B2 (en) Asymmetric 1,4-phenylenediamine derivative and organic electroluminescence device using the same
JP4985343B2 (en) Charge transport film composition and organic electroluminescent device using the same
JP2004002741A (en) Polymer compound, 1,4-phenylenediamine derivative, charge-transporting material, organic electroluminescent element material and organic electroluminescent element
JPH11135262A (en) Organic electroluminescent element
JP2005093428A (en) Composition for organic electroluminescent element and organic electroluminescent element
JP4876390B2 (en) Composition, charge transport material, organic electroluminescent device and method for producing the same
JP4906810B2 (en) Organic electroluminescent device using benzopyrrole compound
JP2004362930A (en) Organic electroluminescent element, charge transport material, and organic electroluminescent element material
JP2007169606A (en) Polymer compound, polymer composition, organic thin film and organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525