JP2005079529A - Manufacturing method of ceramic electronic component - Google Patents

Manufacturing method of ceramic electronic component Download PDF

Info

Publication number
JP2005079529A
JP2005079529A JP2003311660A JP2003311660A JP2005079529A JP 2005079529 A JP2005079529 A JP 2005079529A JP 2003311660 A JP2003311660 A JP 2003311660A JP 2003311660 A JP2003311660 A JP 2003311660A JP 2005079529 A JP2005079529 A JP 2005079529A
Authority
JP
Japan
Prior art keywords
ceramic
adhesive sheet
pressure
sensitive adhesive
ceramic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003311660A
Other languages
Japanese (ja)
Inventor
Masaru Shigeno
勝 重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003311660A priority Critical patent/JP2005079529A/en
Publication of JP2005079529A publication Critical patent/JP2005079529A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To chamfer a ceramic element assembly without causing the occurrence of structural defects such as the peeling, delamination, cracking, chipping, etc. of the ceramic element assembly. <P>SOLUTION: A plurality of ceramic element assemblies 1 are held in such an attitude that the exposed end faces 5a and 5b of internal electrodes 3a and 3b are roughly perpendicular to a mounting surface in such a manner as to form a predetermined gap G between the ceramic element assemblies 1. Sandblasting is performed from the upper side along the gap G between the ceramic element assemblies 1 to bevel a ridgeline part 21a on one main surface side of the ceramic element assembly 1. After the ceramic element assembly 1 is reversed, sandblasting is performed from the upper side along the gap G between the reversed ceramic element assemblies 1 to chamfer the ridgeline part 21b on the other main surface side of the ceramic element assembly 1. A mother lamination is cut by a dicing method, so that a plurality of ceramic element assemblies 1 are held in such a mode that a predetermined gap G is formed between the ceramic element assemblies 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、セラミック電子部品の製造方法に関し、詳しくは、セラミック電子部品を構成するセラミック素体の面取り方法の改良に関する。   The present invention relates to a method for manufacturing a ceramic electronic component, and more particularly to an improvement in a method for chamfering a ceramic body constituting a ceramic electronic component.

セラミック電子部品の代表的なものの1つに、図8に示すような積層セラミックコンデンサがある。この積層セラミックコンデンサは、セラミック層2を介して複数の内部電極3a,3bが互いに対向するように配設され、かつ、その一端側が交互に異なる側の端面5a,5bに引き出された構造を有するセラミック素子1を備えており、セラミック素子1の両端側には、内部電極3a,3bと導通するように一対の外部電極4a,4bが配設されている。   One typical ceramic electronic component is a multilayer ceramic capacitor as shown in FIG. This multilayer ceramic capacitor has a structure in which a plurality of internal electrodes 3a, 3b are arranged to face each other with a ceramic layer 2 therebetween, and one end side thereof is alternately drawn out to different end faces 5a, 5b. A ceramic element 1 is provided, and a pair of external electrodes 4a and 4b are disposed on both ends of the ceramic element 1 so as to be electrically connected to the internal electrodes 3a and 3b.

このような積層セラミックコンデンサは、一般に、内部電極パターンが付与されたセラミックグリーンシートを積層し、その上下両面側に内部電極パターンが付与されていない外層用のセラミックグリーンシートを積層した後、圧着し、得られたマザー積層体を所定の位置でカットして個々のセラミック素体(セラミック素子)に分割した後、セラミック素体を焼成し、得られた焼結体(セラミック素子)の両端に、導電性ペーストを塗布、焼き付けして外部電極を形成することにより製造されている。   In general, such a multilayer ceramic capacitor is formed by laminating ceramic green sheets provided with an internal electrode pattern, and laminating ceramic green sheets for outer layers not provided with an internal electrode pattern on both upper and lower surfaces thereof, followed by pressure bonding. Then, the obtained mother laminate is cut at a predetermined position and divided into individual ceramic bodies (ceramic elements), then the ceramic bodies are fired, and both ends of the obtained sintered body (ceramic elements) It is manufactured by applying and baking a conductive paste to form an external electrode.

ところで、マザー積層体を所定の位置でカットすることにより得られる個々の未焼成のセラミック素体、あるいはこれを焼成したセラミック素体は、稜線部などに割れや欠けが発生しやすい。そこで、このようなセラミック素体の割れや欠けなどの発生を防止するため、セラミック素体の面取り処理が施されている。
そして、この面取り処理の方法としては、通常、セラミック素体を研磨媒体(玉石ボール)とともにバレルに投入し、バレルを回転させることによりセラミック素体どうしあるいはセラミック素体と研磨媒体を接触させることにより、セラミック素体の面取りを行うバレル研磨の方法が一般に用いられている。
By the way, an individual unfired ceramic body obtained by cutting the mother laminated body at a predetermined position, or a ceramic body fired from this, is likely to be cracked or chipped at the ridge line portion or the like. Therefore, a chamfering process is performed on the ceramic body in order to prevent such cracking and chipping of the ceramic body.
And as a method of this chamfering treatment, the ceramic body is usually put into a barrel together with a polishing medium (cobble ball), and the ceramic bodies are brought into contact with each other or the ceramic body and the polishing medium are brought into contact by rotating the barrel. In general, a barrel polishing method for chamfering a ceramic body is used.

しかしながら、実際には、バレル研磨の際に、セラミック素体どうしや、セラミック素体と研磨媒体の衝突などにより、セラミック素体に、はがれやデラミネーション、割れや欠けなどの構造欠陥が発生するという問題点がある。
そこで、このような構造欠陥の発生を避けるために、研磨媒体を小さくしたり、バレルの回転数を下げたりすることにより、衝突エネルギーを低下させる工夫がなされているが、その場合、バレル研磨処理に要する時間が長くなり、生産性の低下を招くという問題点がある(例えば、特許文献1参照)。
However, in fact, during barrel polishing, structural defects such as peeling, delamination, cracking and chipping occur in the ceramic body due to collisions between the ceramic bodies and between the ceramic body and the polishing medium. There is a problem.
Therefore, in order to avoid the occurrence of such a structural defect, a device has been devised to reduce the collision energy by reducing the polishing medium or lowering the rotational speed of the barrel. There is a problem that the time required for the process becomes longer and the productivity is lowered (for example, see Patent Document 1).

一方、未焼成の段階でセラミック素体(生のチップ素体)の端面をサンドブラスト法で研磨して内部電極を露出させる方法(例えば、特許文献2参照)や、焼成後のセラミック素体の端面をサンドブラスト法で研磨して内部電極を露出させる方法(例えば、特許文献3参照)が知られている。   On the other hand, a method of polishing an end face of a ceramic body (raw chip body) by sandblasting in an unfired stage to expose internal electrodes (for example, refer to Patent Document 2), or an end face of a fired ceramic body Is known by sandblasting to expose internal electrodes (for example, see Patent Document 3).

しかしながら、これらの方法では、セラミック素体の、内部電極が引出された端面側からサンドブラストが行われており、ホルダー等でセラミック素体の側面を保持した状態で研磨が行われるため、セラミック素体の側面で面取りがされない部分が残り、その部分で割れや欠け等が生じるおそれがある。   However, in these methods, the ceramic body is sandblasted from the end surface side from which the internal electrode is drawn, and polishing is performed with the side surface of the ceramic body held by a holder or the like. There is a possibility that a portion that is not chamfered remains on the side surface, and that the portion is cracked or chipped.

また、セラミック素体の端面に垂直にサンドブラストを行った場合、積層界面に比較的強い力で粉粒体が吹き付けられることになり、積層界面におけるはがれが生じるおそれがあるという問題点がある。   In addition, when sandblasting is performed perpendicularly to the end face of the ceramic body, there is a problem in that the powder particles are sprayed to the laminated interface with a relatively strong force, and there is a possibility that peeling occurs at the laminated interface.

本発明は、上記問題点を解決するものであり、セラミック素体のはがれやデラミネーション、割れや欠けなどの構造欠陥の発生を引き起こすことなく面取りを行なうことが可能で、信頼性の高いセラミック電子部品を効率良く製造することが可能なセラミック電子部品の製造方法を提供することを目的とする。
特開平8−069943号公報 特開平7−235442号公報 特開平5−326319号公報
The present invention solves the above-described problems, and can perform chamfering without causing structural defects such as peeling, delamination, cracking and chipping of the ceramic body, and is a highly reliable ceramic electronic device. It is an object of the present invention to provide a method for manufacturing a ceramic electronic component capable of efficiently manufacturing a component.
JP-A-8-069943 JP 7-235442 A Japanese Patent Laid-Open No. 5-326319

上記目的を達成するために、本発明(請求項1)のセラミック電子部品の製造方法は、
(a)端面に内部電極が露出した構造を有する複数個のセラミック素体を、前記内部電極の露出した端面が載置面に対して略垂直になるような姿勢で、かつ、セラミック素体間に所定の隙間が形成されるような態様で保持する工程と、
(b)前記セラミック素体間の隙間に沿って上方からサンドブラストを行い、セラミック素体の一方主面側稜線部の面取りを行う工程と、
(c)前記セラミック素体を反転させ、前記内部電極の露出した端面が載置面に対して略垂直になるような姿勢で、かつ、セラミック素体間に所定の隙間が形成されるような態様で保持する工程と、
(d)反転した前記セラミック素体間の隙間に沿って上方からサンドブラストを行い、セラミック素体の他方主面側稜線部の面取りを行う工程と
を具備することを特徴としている。
In order to achieve the above object, a method for producing a ceramic electronic component of the present invention (Claim 1) comprises
(a) A plurality of ceramic elements having a structure in which internal electrodes are exposed on the end faces, in a posture such that the exposed end faces of the internal electrodes are substantially perpendicular to the mounting surface, and between the ceramic element bodies Holding in a manner such that a predetermined gap is formed in
(b) performing sandblasting from above along the gap between the ceramic element bodies, and chamfering the one main surface side ridge line part of the ceramic element body;
(c) Inverting the ceramic body so that the exposed end face of the internal electrode is substantially perpendicular to the mounting surface, and a predetermined gap is formed between the ceramic bodies. Holding in an aspect;
(d) performing a sandblast from above along the gap between the inverted ceramic bodies and chamfering the ridge line portion on the other main surface side of the ceramic body.

また、請求項2のセラミック電子部品の製造方法は、
前記(a)の工程においてセラミック素体を保持するのに、所定の粘着力を有する第1の粘着シートを用いるとともに、
前記(c)の工程において、前記(a)の工程で用いた第1の粘着シートよりも粘着力の大きい第2の粘着シートを用い、第1の粘着シートに保持されたセラミック素体の一方主面に、第2の粘着シートを貼り付け、第1の粘着シートをセラミック素体の他方主面から剥離させて、第2の粘着シートにセラミック素体を移行させるとともに、セラミック素体を反転させること
を特徴としている。
The method for manufacturing a ceramic electronic component according to claim 2
While holding the ceramic body in the step (a), using a first pressure-sensitive adhesive sheet having a predetermined adhesive strength,
In the step (c), one of the ceramic bodies held by the first pressure-sensitive adhesive sheet using a second pressure-sensitive adhesive sheet having a larger adhesive strength than the first pressure-sensitive adhesive sheet used in the step (a) The second adhesive sheet is attached to the main surface, the first adhesive sheet is peeled off from the other main surface of the ceramic body, the ceramic body is transferred to the second adhesive sheet, and the ceramic body is inverted. It is characterized by

また、請求項3のセラミック電子部品の製造方法は、
前記(a)の工程においてセラミック素体を保持するのに、所定の温度で粘着力を失う第1の粘着シートを用いるとともに、
前記(c)の工程において、前記(a)の工程で用いた第1の粘着シートよりも高い温度まで粘着力を失わない第2の粘着シートを用い、第1の粘着シートに保持されたセラミック素体の一方主面に、第2の粘着シートを貼り付けた後、第1の粘着シートは粘着力を失うが、第2の粘着シートは粘着力を失わない温度にまで加熱して、セラミック素体を前記第1の粘着シートから剥離させて、第1の粘着シートから第2の粘着シートにセラミック素体を移行させるとともに、セラミック素体を反転させること
を特徴としている。
The method for manufacturing a ceramic electronic component according to claim 3 comprises:
In order to hold the ceramic body in the step (a), using the first pressure-sensitive adhesive sheet that loses the adhesive strength at a predetermined temperature,
In the step (c), a ceramic held on the first pressure-sensitive adhesive sheet using a second pressure-sensitive adhesive sheet that does not lose its adhesive strength to a temperature higher than that of the first pressure-sensitive adhesive sheet used in the step (a). After the second pressure-sensitive adhesive sheet is attached to one main surface of the element body, the first pressure-sensitive adhesive sheet loses the adhesive strength, but the second pressure-sensitive adhesive sheet is heated to a temperature at which the adhesive strength is not lost. The element body is peeled from the first pressure-sensitive adhesive sheet, the ceramic body is transferred from the first pressure-sensitive adhesive sheet to the second pressure-sensitive adhesive sheet, and the ceramic body is inverted.

また、請求項4のセラミック電子部品の製造方法は、前記(a)の工程において、マザー積層体をダイシング法によりカットすることにより、複数個のセラミック素体を、前記内部電極の露出した端面が載置面に対して略垂直になるような姿勢で、かつ、セラミック素体間に所定の隙間が形成されるような態様で保持することを特徴としている。   In the method of manufacturing a ceramic electronic component according to claim 4, in the step (a), the mother laminated body is cut by a dicing method so that a plurality of ceramic element bodies are exposed on the exposed end surfaces of the internal electrodes. It is characterized in that it is held in such a manner that a predetermined gap is formed between the ceramic bodies in a posture that is substantially perpendicular to the mounting surface.

本発明(請求項1)のセラミック電子部品の製造方法は、複数個のセラミック素体を、内部電極の露出した端面が載置面に対して略垂直になるような姿勢で、セラミック素体間に所定の隙間が形成されるように保持し、セラミック素体間の隙間に沿って上方からサンドブラストを行うことによりセラミック素体の一方主面側稜線部の面取りを行い、セラミック素体を反転させた後、反転したセラミック素体間の隙間に沿って上方からサンドブラストを行うことによりセラミック素体の他方主面側稜線部の面取りを行うようにしているので、セラミック素体のはがれやデラミネーション、割れや欠けなどの構造欠陥の発生を引き起こすことなく、セラミック素体の稜線部の面取りを確実に行うことが可能になり、外部電極と内部電極の接続性や外部電極の焼結性が良好で、信頼性の高いセラミック電子部品を効率よく製造することが可能になる。   The method of manufacturing a ceramic electronic component according to the present invention (Claim 1) is to provide a plurality of ceramic bodies in a posture such that the exposed end surface of the internal electrode is substantially perpendicular to the mounting surface. The ridge line part of one main surface side of the ceramic body is chamfered by sandblasting from above along the gap between the ceramic body so as to invert the ceramic body. After that, by crushing the ridge line part on the other main surface side of the ceramic body by performing sandblasting from above along the gap between the inverted ceramic bodies, peeling or delamination of the ceramic body, It is possible to reliably chamfer the ridge line part of the ceramic body without causing structural defects such as cracks and chipping. Sinterability parts electrode is good, it is possible to manufacture a highly reliable ceramic electronic component efficiently.

また、請求項2のセラミック電子部品の製造方法のように、最初にセラミック素体を保持するのに、所定の粘着力を有する第1の粘着シートを用い、反転後にセラミック素体を保持するのに、第1の粘着シートよりも粘着力の大きい第2の粘着シートを用い、第1の粘着シートに保持されたセラミック素体の一方主面に、第2の粘着シートを貼り付け、第1の粘着シートをセラミック素体の他方主面から剥離させて、第2の粘着シートにセラミック素体を移行させるとともに、セラミック素体を反転させることにより、セラミック素体を容易かつ確実に反転させることが可能になり、本発明をより実効あらしめることが可能になる。   Further, as in the method of manufacturing a ceramic electronic component according to claim 2, the first adhesive sheet having a predetermined adhesive force is used to hold the ceramic body first, and the ceramic body is held after inversion. In addition, the second pressure-sensitive adhesive sheet having a larger adhesive strength than the first pressure-sensitive adhesive sheet is used, and the second pressure-sensitive adhesive sheet is attached to one main surface of the ceramic body held by the first pressure-sensitive adhesive sheet, The ceramic body is easily and reliably reversed by peeling the adhesive sheet from the other main surface of the ceramic body and transferring the ceramic body to the second adhesive sheet and inverting the ceramic body. It becomes possible to make the present invention more effective.

また、請求項3のセラミック電子部品の製造方法のように、最初にセラミック素体を保持するのに、所定の温度で粘着力を失う第1の粘着シートを用いるとともに、上記(a)の工程で用いた第1の粘着シートよりも高い温度まで粘着力を失わない第2の粘着シートを用い、第1の粘着シートに保持されたセラミック素体の一方主面に、第2の粘着シートを貼り付けた後、第1の粘着シートは粘着力を失うが、第2の粘着シートは粘着力を失わない温度にまで加熱して、セラミック素体を前記第1の粘着シートから剥離させて、第1の粘着シートから第2の粘着シートにセラミック素体を移行させるとともに、セラミック素体を反転させることにより、セラミック素体を容易かつ確実に反転させることが可能になり、本発明をより実効あらしめることが可能になる。   In addition, as in the method of manufacturing a ceramic electronic component according to claim 3, the first pressure-sensitive adhesive sheet that loses adhesive strength at a predetermined temperature is used to hold the ceramic body first, and the step (a) Using the second adhesive sheet that does not lose its adhesive strength to a temperature higher than that of the first adhesive sheet used in the above, the second adhesive sheet is attached to one main surface of the ceramic body held by the first adhesive sheet. After pasting, the first pressure-sensitive adhesive sheet loses adhesive strength, but the second pressure-sensitive adhesive sheet is heated to a temperature at which the adhesive strength is not lost, and the ceramic body is peeled off from the first pressure-sensitive adhesive sheet, By transferring the ceramic body from the first pressure-sensitive adhesive sheet to the second pressure-sensitive adhesive sheet and inverting the ceramic body, the ceramic body can be easily and reliably reversed, and the present invention is more effective. Storm It becomes possible.

また、請求項4のセラミック電子部品の製造方法のように、例えば粘着シート上に保持されたマザー積層体をダイシング法によりカットするようにした場合、カットするだけで、複数個のセラミック素体を、内部電極の露出した端面が載置面に対して略垂直になるような姿勢で、かつ、セラミック素体間に所定の隙間が形成されるような態様で保持することが可能になり、その状態で直ちにサンドブラストを行って、セラミック素体の面取りを行うことができるため、極めて効率よくサンドブラストを行うことが可能になり、本発明をさらに実効あらしめることができるようになる。   Further, when the mother laminated body held on the adhesive sheet is cut by the dicing method, for example, as in the method for manufacturing a ceramic electronic component according to claim 4, a plurality of ceramic bodies are simply cut. The exposed end face of the internal electrode can be held in such a posture that it is substantially perpendicular to the mounting surface, and a predetermined gap is formed between the ceramic bodies. Since the ceramic body can be chamfered immediately by sandblasting in the state, sandblasting can be performed extremely efficiently, and the present invention can be further effectively realized.

以下、本発明の実施例を示して、その特徴とするところをさらに詳しく説明する。   Hereinafter, examples of the present invention will be shown and the features thereof will be described in more detail.

この実施例1では、図8に示すように、セラミック層2を介して複数の内部電極3a,3bが互いに対向するように配設され、かつ、その一端側が交互に異なる側の端面5a,5bに引き出されたセラミック素子1を備え、かつ、セラミック素子1の両端側に、内部電極3a,3bと導通するように一対の外部電極4a,4bが配設された構造を有する積層セラミックコンデンサを製造する工程で、セラミック素体に面取り処理を行う場合を例にとって説明する。   In the first embodiment, as shown in FIG. 8, a plurality of internal electrodes 3a, 3b are arranged so as to face each other with the ceramic layer 2 therebetween, and end faces 5a, 5b on one side which are alternately different from each other. A multilayer ceramic capacitor having a structure in which a pair of external electrodes 4a and 4b are provided on both ends of the ceramic element 1 so as to be electrically connected to the internal electrodes 3a and 3b. A case where a chamfering process is performed on the ceramic body in the process of performing will be described as an example.

(1)まず、BaTiO3を主成分とするセラミック原料を、有機溶剤、有機バインダーとともにボールミルにて混合し、ドクターブレードを用いて成形することによりセラミックグリーンシートを作製し、その表面にNi内部電極(内部電極パターン)を印刷した。
(2)それから、内部電極パターンの印刷されたセラミックグリーンシートを380層積層し、その上下に内部電極パターンの印刷されていないセラミックグリーンシート(外層用のセラミックグリーンシート)を積層した後、積層体を所定の圧力でプレスし、マザー積層体を形成した。
(3)次に、図1に示すように、このマザー積層体10を、第1の粘着シート11に保持させた。このとき第1の粘着シート11として、100℃に加熱することにより、発泡して粘着性を失い、保持しているセラミック素体1(1a)(図2(a)、(b)など参照)が剥離するような粘着シート(100℃発泡剥離シート)を用いた。
(4)それから、ダイシングソーを用いて、最終的に積層セラミックコンデンサのサイズが2.0×1.25×1.25mmとなるように、マザー積層体10をカットして、図2(a)、(b)に示すように、未焼成のセラミック素体(生チップ)1(1a)に分割した。
(5)その後、図3(a),(b)に示すように、セラミック素体1間の隙間Gに沿って、一方主面側(上方)のノズル13から#800(約10μm程度の粒径)のメディア(この実施例1ではアルミナ)を吹き付けることによりサンドブラストを行い、セラミック素体1(1a)の一方主面側稜線部21aを切削して面取りを行った。
(6)次に、図4に示すように、第2の粘着シート12(この実施例1では、120℃発泡剥離シート(120℃に加熱することにより、発泡して粘着力を失い、保持しているセラミック素体が剥離するような粘着シート))を、セラミック素体1(1a)の一方主面(図4における上面)に貼り付けた後、反転させ、100℃に加熱して、第1の粘着シート11を剥離し、図5に示すように、第2の粘着シート12上にセラミック素体1を保持させた。
(7)それから、図6(a),(b)に示すように、セラミック素体1(1a)間の隙間Gに沿って、上方から#800のメディア(粉粒体)を吹き付けることによりサンドブラストを行い、セラミック素体1(1a)の他方主面側稜線部21bを切削して面取りを行った。
(8)次に、120℃で熱処理を行い、第2の粘着シート12からセラミック素体1(1a)(図7)を剥離した。
(9)その後、大気中において250℃で3時間の脱バインダーを行った後、1220℃でセラミック素体を焼成した。
(1) First, a ceramic raw material mainly composed of BaTiO 3 is mixed with an organic solvent and an organic binder in a ball mill, and formed using a doctor blade to produce a ceramic green sheet. (Internal electrode pattern) was printed.
(2) Then, 380 layers of ceramic green sheets on which internal electrode patterns are printed are laminated, and ceramic green sheets on which no internal electrode patterns are printed (ceramic green sheets for outer layers) are laminated on the top and bottom, and then the laminated body Was pressed at a predetermined pressure to form a mother laminate.
(3) Next, as shown in FIG. 1, the mother laminate 10 was held on the first pressure-sensitive adhesive sheet 11. At this time, as the first pressure-sensitive adhesive sheet 11, the ceramic body 1 (1a) which is foamed and loses its adhesiveness by being heated to 100 ° C. (see FIG. 2 (a), (b), etc.) A pressure-sensitive adhesive sheet (100 ° C. foam release sheet) was used.
(4) Then, using a dicing saw, the mother multilayer body 10 was cut so that the final size of the multilayer ceramic capacitor was 2.0 × 1.25 × 1.25 mm, and FIG. , (B) was divided into unfired ceramic body (raw chip) 1 (1a).
(5) Thereafter, as shown in FIGS. 3 (a) and 3 (b), along the gap G between the ceramic bodies 1, from the nozzle 13 on the one main surface side (upper side), # 800 (about 10 μm grains) (Diameter) media (alumina in Example 1) was blown to perform sand blasting, and the one main surface side ridge line portion 21a of the ceramic body 1 (1a) was cut and chamfered.
(6) Next, as shown in FIG. 4, the second pressure-sensitive adhesive sheet 12 (in this Example 1, 120 ° C. foam release sheet (which is foamed by heating to 120 ° C. and loses its adhesive strength) The adhesive sheet from which the ceramic body is peeled)) is attached to one main surface (the upper surface in FIG. 4) of the ceramic body 1 (1a), then inverted, heated to 100 ° C., The first adhesive sheet 11 was peeled off, and the ceramic body 1 was held on the second adhesive sheet 12 as shown in FIG.
(7) Then, as shown in FIGS. 6 (a) and 6 (b), sandblasting is performed by spraying # 800 media (powder) from above along the gap G between the ceramic bodies 1 (1a). Then, the other main surface side ridge line portion 21b of the ceramic body 1 (1a) was cut and chamfered.
(8) Next, heat treatment was performed at 120 ° C., and the ceramic body 1 (1 a) (FIG. 7) was peeled from the second adhesive sheet 12.
(9) Thereafter, the binder was removed at 250 ° C. for 3 hours in the air, and then the ceramic body was fired at 1220 ° C.

そして、得られた焼成後のセラミック素体(セラミック素子)の稜線部に付与された丸み(稜線部(コーナ部)の曲率半径R)と、はがれやデラミネーション、割れや欠けなどの構造欠陥の発生率を調べた。その結果を表1に示す。   And the roundness (curvature radius R of the ridgeline part (corner part)) given to the ridgeline part of the obtained ceramic body (ceramic element) after firing, and structural defects such as peeling, delamination, cracking and chipping The incidence was examined. The results are shown in Table 1.

Figure 2005079529
Figure 2005079529

また、比較のため、バレル研磨法により、セラミック素体の面取りを行い、その他の工程は、上記実施例1の場合と同様の方法及び条件にて処理を行い、比較用の試料(比較例)を作製した。その結果を表1に併せて示す。   For comparison, the ceramic body is chamfered by a barrel polishing method, and other processes are performed under the same method and conditions as in Example 1 above, and a comparative sample (comparative example). Was made. The results are also shown in Table 1.

表1に示すように、バレル研磨法により面取りを行った比較例(従来例)の試料では、確保する稜線部の丸み(曲率半径R)を大きくするにつれて、構造欠陥発生率が高くなり、曲率半径Rが80μmのときに構造欠陥発生率が0.6%、曲率半径Rが100μmのときに構造欠陥発生率が5.4%、曲率半径Rが120μmのときに構造欠陥発生率が13.5%になったが、本発明の実施例1にかかるサンドブラスト法により面取りを行った試料については、80μm、100μm、120μmのいずれの曲率半径Rの場合にも、構造欠陥の発生は認められなかった。   As shown in Table 1, in the sample of the comparative example (conventional example) chamfered by the barrel polishing method, the structural defect occurrence rate increases as the roundness (curvature radius R) of the ridge line portion to be secured increases. When the radius R is 80 μm, the structural defect rate is 0.6%, when the radius of curvature R is 100 μm, the structural defect rate is 5.4%, and when the radius of curvature R is 120 μm, the structural defect rate is 13. However, for the sample chamfered by the sandblasting method according to Example 1 of the present invention, no occurrence of structural defects was observed in any of the curvature radii R of 80 μm, 100 μm, and 120 μm. It was.

上記実施例1の結果より、本発明のサンドブラスト法による面取り方法の場合には、バレル研磨法により面取りを行う場合のように、セラミック素体に多面的に衝撃が加わることを抑制、防止して、はがれやデラミネーション、割れや欠けなどの構造欠陥の発生を引き起こすことなく、効率よく面取りを行うことが可能になることが確認された。したがって、本発明によれば、信頼性の高いセラミック電子部品を効率よくしかも確実に製造することが可能になる。   From the results of Example 1 above, in the case of the chamfering method by the sandblasting method of the present invention, as in the case of chamfering by the barrel polishing method, it is possible to suppress and prevent the multi-faceted impact on the ceramic body. It was confirmed that chamfering can be efficiently performed without causing structural defects such as peeling, delamination, cracking and chipping. Therefore, according to the present invention, it is possible to efficiently and reliably manufacture a highly reliable ceramic electronic component.

また、上記実施例1のように、本発明の方法においては、セラミック素体間の隙間に沿って上方から(セラミック素体の上面側から)サンドブラストを行うようにしているので、サンドブラストの際に吹き付けられる粉粒体が端面を研磨するものの、セラミック素体の端面に垂直にサンドブラストを行った場合よりも比較的弱い力で粉粒体が吹き付けられるため、積層界面のはがれが生じにくい。   Further, as in the first embodiment, in the method of the present invention, since sandblasting is performed from above (from the upper surface side of the ceramic body) along the gap between the ceramic bodies, the sandblasting is performed. Although the powder particles to be sprayed polish the end surfaces, the powder particles are sprayed with a relatively weak force as compared with the case where sandblasting is performed perpendicularly to the end surfaces of the ceramic body.

さらに、バレル研磨法では、セラミック素体のサイズや形状、あるいはそれらと研磨媒体の大きさの関係などにより研磨状態が左右され、バレル研磨により得られる曲率半径Rの大きさや構造欠陥発生率にばらつきが生じ、安定した面取り処理を行うことが困難になりやすいが、上記実施例1に示したような本発明の方法によれば、そのような制約がなく、条件を固定して、効率よくセラミック素体の面取りを行うことが可能になる。   Further, in the barrel polishing method, the polishing state depends on the size and shape of the ceramic body or the relationship between the ceramic body and the size of the polishing medium, and the size of the curvature radius R obtained by barrel polishing and the structural defect occurrence rate vary. However, according to the method of the present invention as shown in the first embodiment, there is no such limitation, the conditions are fixed, and the ceramic can be efficiently processed. It becomes possible to chamfer the element body.

なお、上記実施例1では、第1の粘着シートとして100℃発泡剥離シートを用い、第2の粘着シートとして120℃発泡剥離シートを用いたが、第1の粘着シートとして、所定の粘着力を有する粘着シートを用い、第2の粘着シートとして、第1の粘着シートよりも粘着力の大きい第2の粘着シートを用い、第1の粘着シートに保持されたセラミック素体の一方主面に、第2の粘着シートを貼り付け、第1の粘着シートをセラミック素体の他方主面から剥離させて、第2の粘着シートにセラミック素体を移行させるとともに、セラミック素体を反転させるように構成することも可能である。   In Example 1 above, a 100 ° C. foamed release sheet was used as the first pressure-sensitive adhesive sheet, and a 120 ° C. foamed release sheet was used as the second pressure-sensitive adhesive sheet. Using the pressure-sensitive adhesive sheet, using the second pressure-sensitive adhesive sheet having a larger adhesive force than the first pressure-sensitive adhesive sheet as the second pressure-sensitive adhesive sheet, on one main surface of the ceramic body held by the first pressure-sensitive adhesive sheet, The second adhesive sheet is pasted, the first adhesive sheet is peeled off from the other main surface of the ceramic body, the ceramic body is transferred to the second adhesive sheet, and the ceramic body is inverted. It is also possible to do.

(1)まず、BaTiO3を主成分とするセラミック原料を、有機溶剤、有機バインダーとともにボールミルにて混合し、ドクターブレードを用いて成形することによりセラミックグリーンシートを作製し、その表面にNi内部電極(内部電極パターン)を印刷した。
(2)それから、内部電極パターンの印刷されたセラミックグリーンシートを380層積層し、その上下に内部電極パターンの印刷されていないセラミックグリーンシート(外層用のセラミックグリーンシート)を積層した後、積層体を所定の圧力でプレスし、マザー積層体を形成した。
(3) それから、ダイシングソーを用いて、最終的な積層セラミックコンデンサのサイズが2.0×1.25×1.25mmとなるように、マザー積層体10をカットして、未焼成のセラミック素体(生チップ)1(1a)に分割した。
(4)その後、大気中において250℃で3時間の脱バインダーを行った後、1220℃でセラミック素体を焼成した。
(5)そして、得られた焼成後のセラミック素体(セラミック素子)を、振込み治具により所定の間隔を確保することができるように整列させた。
(6)そして、セラミック素体1の上から、第1の粘着シート11として、100℃発泡剥離シートを貼り付け、反転させた後、図3(a),(b)に示すように、第1のセラミック素体1間の隙間Gに沿って、一方主面側(上方)のノズル13から#800のメディア(粉粒体)を吹き付けることによりサンドブラストを行い、セラミック素体1の一方主面側稜線部21aを切削して面取りを行った。
(7)それから、図4に示すように、第2の粘着シート12として、120℃発泡剥離シートを、セラミック素体1の一方主面(図4における上面)に貼り付けた後、反転させ、100℃に加熱して、第1の粘着シート11を剥離し、図5に示すように、第2の粘着シート12上にセラミック素体1を保持させた。
(8)それから、図6(a),(b)に示すように、セラミック素体1間の隙間Gに沿って、上方から#800のメディア(粉粒体)を吹き付けることによりサンドブラストを行い、セラミック素体1の他方主面側稜線部21bを切削して面取りを行った。
(9)次に、120℃で熱処理を行い、第2の粘着シート12からセラミック素体1(図7)を剥離した。
(1) First, a ceramic raw material mainly composed of BaTiO 3 is mixed with an organic solvent and an organic binder in a ball mill, and formed using a doctor blade to produce a ceramic green sheet. (Internal electrode pattern) was printed.
(2) Then, 380 layers of ceramic green sheets on which internal electrode patterns are printed are laminated, and ceramic green sheets on which no internal electrode patterns are printed (ceramic green sheets for outer layers) are laminated on the top and bottom, and then the laminated body Was pressed at a predetermined pressure to form a mother laminate.
(3) Then, using a dicing saw, the mother multilayer body 10 is cut so that the final multilayer ceramic capacitor size is 2.0 × 1.25 × 1.25 mm, and the unfired ceramic element is cut. The body (raw chip) 1 (1a) was divided.
(4) Thereafter, the binder was removed at 250 ° C. for 3 hours in the air, and then the ceramic body was fired at 1220 ° C.
(5) The obtained fired ceramic bodies (ceramic elements) were aligned by a transfer jig so as to ensure a predetermined interval.
(6) Then, a 100 ° C. foam release sheet is attached as the first pressure-sensitive adhesive sheet 11 from the top of the ceramic body 1 and inverted, and as shown in FIGS. 3 (a) and 3 (b), The first main surface of the ceramic body 1 is sandblasted by spraying # 800 media (powder) from the nozzle 13 on the first main surface side (upper side) along the gap G between the first ceramic body 1. The side ridge line portion 21a was cut and chamfered.
(7) Then, as shown in FIG. 4, as the second adhesive sheet 12, a 120 ° C. foam release sheet is attached to one main surface (upper surface in FIG. 4) of the ceramic body 1, and then inverted. The first pressure-sensitive adhesive sheet 11 was peeled off by heating to 100 ° C., and the ceramic body 1 was held on the second pressure-sensitive adhesive sheet 12 as shown in FIG.
(8) Then, as shown in FIGS. 6 (a) and 6 (b), sandblasting is performed by spraying # 800 media (powder) from above along the gap G between the ceramic bodies 1, The other principal surface side ridge line portion 21b of the ceramic body 1 was cut and chamfered.
(9) Next, heat treatment was performed at 120 ° C., and the ceramic body 1 (FIG. 7) was peeled from the second adhesive sheet 12.

得られた焼成後のセラミック素体(セラミック素子)の稜線部に付与された丸み(コーナ部の曲率半径R)と、デラミネーション、欠け、割れなどの構造欠陥発生率を調べた結果、上記未焼成の段階でセラミック素体の面取りを行った実施例1の場合と同様に、焼成後にサンドブラスト法により面取りを行ったこの実施例2の場合においても、曲率半径Rの大きさ(80μm、100μm、120μm)にかかわらず、構造欠陥の発生は認められなかった。   As a result of examining the roundness (curvature radius of curvature R of the corner part) given to the ridge line part of the obtained ceramic body (ceramic element) after firing and the occurrence rate of structural defects such as delamination, chipping and cracking, Similar to the case of Example 1 in which the ceramic body was chamfered at the stage of firing, in the case of Example 2 in which chamfering was performed by the sandblasting method after firing, the size of the radius of curvature R (80 μm, 100 μm, Regardless of 120 μm), no structural defects were observed.

この実施例2により、本願発明は、未焼成のセラミック素体を面取り処理する場合に限らず、焼成後のセラミック素体を面取り処理する場合にも適用できることが確認された。   From this Example 2, it was confirmed that the present invention is applicable not only to chamfering an unfired ceramic body but also to chamfering a fired ceramic body.

本発明によれば、はがれやデラミネーション、割れや欠けなどの構造欠陥の発生を引き起こすことなく、しかも効率よく面取りを行うことが可能で、信頼性の高いセラミック電子部品を効率よく製造することが可能になる。したがって、本発明は、面取り工程を必要とする、積層セラミックコンデンサをはじめとする種々のセラミック電子部品を製造する技術分野に広く適用することが可能である。   According to the present invention, it is possible to efficiently chamfer without causing structural defects such as peeling, delamination, cracking and chipping, and to efficiently manufacture a highly reliable ceramic electronic component. It becomes possible. Therefore, the present invention can be widely applied to the technical field of manufacturing various ceramic electronic components including a multilayer ceramic capacitor that require a chamfering process.

本発明の一実施例にかかるセラミック電子部品の製造方法の一工程において、セラミックグリーンシートを第1の粘着シートに保持させた状態を示す図である。It is a figure which shows the state which hold | maintained the ceramic green sheet to the 1st adhesive sheet in 1 process of the manufacturing method of the ceramic electronic component concerning one Example of this invention. (a)は本発明の一実施例にかかるセラミック電子部品の製造方法の一工程において、第1の粘着シートに保持させたセラミックグリーンシートをダイシングソーによりカットして個々のセラミック素体に分割した状態を示す正面図、(b)は平面図である。(a) is a step of manufacturing a ceramic electronic component according to an embodiment of the present invention, wherein the ceramic green sheet held on the first adhesive sheet is cut by a dicing saw and divided into individual ceramic bodies. The front view which shows a state, (b) is a top view. (a)は本発明の一実施例にかかるセラミック電子部品の製造方法の一工程において、第1の粘着シートに保持させたセラミック素体の一方主面側稜線部の面取りを行っている状態を示す図であり、(b)はその要部を拡大して模式的に示す図である。(a) is the state which is chamfering the one main surface side ridgeline part of the ceramic body hold | maintained at the 1st adhesive sheet in 1 process of the manufacturing method of the ceramic electronic component concerning one Example of this invention. (B) is a diagram schematically showing an enlarged main part thereof. 本発明の一実施例にかかるセラミック電子部品の製造方法の一工程において、セラミック素体の一方主面に第2の粘着シートを貼り付けた状態を示す図である。It is a figure which shows the state which affixed the 2nd adhesive sheet on the one main surface of the ceramic element body in 1 process of the manufacturing method of the ceramic electronic component concerning one Example of this invention. 本発明の一実施例にかかるセラミック電子部品の製造方法の一工程において、セラミック素体を反転させた状態を示す図である。It is a figure which shows the state which reversed the ceramic body in one process of the manufacturing method of the ceramic electronic component concerning one Example of this invention. (a)は本発明の一実施例にかかるセラミック電子部品の製造方法の一工程において、第2の粘着シートに保持させたセラミック素体の他方主面側稜線部の面取りを行っている状態を示す図であり、(b)はその要部を拡大して模式的に示す図である。(a) is the state which is chamfering the other main surface side ridgeline part of the ceramic body hold | maintained at the 2nd adhesive sheet in 1 process of the manufacturing method of the ceramic electronic component concerning one Example of this invention. (B) is a diagram schematically showing an enlarged main part thereof. 本願発明の一実施例にかかるセラミック電子部品の製造方法により面取りを行ったセラミック素体を示す図である。It is a figure which shows the ceramic element | base_body which chamfered with the manufacturing method of the ceramic electronic component concerning one Example of this invention. 本願発明の一実施例にかかるセラミック電子部品の製造方法により製造されるセラミック電子部品(積層セラミックコンデンサ)を示す図である。It is a figure which shows the ceramic electronic component (multilayer ceramic capacitor) manufactured by the manufacturing method of the ceramic electronic component concerning one Example of this invention.

符号の説明Explanation of symbols

1 セラミック素子(セラミック素体)
1a 未焼成のセラミック素体
2 セラミック層
3a,3b 内部電極
4a,4b 外部電極
5a,5b セラミック素子の端面
10 マザー積層体
11 第1の粘着シート
12 第2の粘着シート
13 ノズル
21a 一方主面側稜線部
21b 他方主面側稜線部
G 隙間
1 Ceramic element (ceramic body)
DESCRIPTION OF SYMBOLS 1a Unbaked ceramic body 2 Ceramic layer 3a, 3b Internal electrode 4a, 4b External electrode 5a, 5b End face of ceramic element 10 Mother laminated body 11 First adhesive sheet 12 Second adhesive sheet 13 Nozzle 21a One main surface side Edge line part 21b The other main surface side edge line part G Gap

Claims (4)

(a)端面に内部電極が露出した構造を有する複数個のセラミック素体を、前記内部電極の露出した端面が載置面に対して略垂直になるような姿勢で、かつ、セラミック素体間に所定の隙間が形成されるような態様で保持する工程と、
(b)前記セラミック素体間の隙間に沿って上方からサンドブラストを行い、セラミック素体の一方主面側稜線部の面取りを行う工程と、
(c)前記セラミック素体を反転させ、前記内部電極の露出した端面が載置面に対して略垂直になるような姿勢で、かつ、セラミック素体間に所定の隙間が形成されるような態様で保持する工程と、
(d)反転した前記セラミック素体間の隙間に沿って上方からサンドブラストを行い、セラミック素体の他方主面側稜線部の面取りを行う工程と
を具備することを特徴とするセラミック電子部品の製造方法。
(a) A plurality of ceramic elements having a structure in which internal electrodes are exposed on the end faces, in a posture such that the exposed end faces of the internal electrodes are substantially perpendicular to the mounting surface, and between the ceramic element bodies Holding in a manner such that a predetermined gap is formed in
(b) performing sandblasting from above along the gap between the ceramic element bodies, and chamfering the one main surface side ridge line part of the ceramic element body;
(c) Inverting the ceramic body so that the exposed end face of the internal electrode is substantially perpendicular to the mounting surface, and a predetermined gap is formed between the ceramic bodies. Holding in an aspect;
(d) a step of sandblasting from above along the gap between the inverted ceramic element bodies, and chamfering the ridge line part on the other main surface side of the ceramic element body. Method.
前記(a)の工程においてセラミック素体を保持するのに、所定の粘着力を有する第1の粘着シートを用いるとともに、
前記(c)の工程において、前記(a)の工程で用いた第1の粘着シートよりも粘着力の大きい第2の粘着シートを用い、第1の粘着シートに保持されたセラミック素体の一方主面に、第2の粘着シートを貼り付け、第1の粘着シートをセラミック素体の他方主面から剥離させて、第2の粘着シートにセラミック素体を移行させるとともに、セラミック素体を反転させること
を特徴とする請求項1記載のセラミック電子部品の製造方法。
While holding the ceramic body in the step (a), using a first pressure-sensitive adhesive sheet having a predetermined adhesive strength,
In the step (c), one of the ceramic bodies held by the first pressure-sensitive adhesive sheet using a second pressure-sensitive adhesive sheet having a larger adhesive strength than the first pressure-sensitive adhesive sheet used in the step (a) The second adhesive sheet is attached to the main surface, the first adhesive sheet is peeled off from the other main surface of the ceramic body, the ceramic body is transferred to the second adhesive sheet, and the ceramic body is inverted. The method of manufacturing a ceramic electronic component according to claim 1, wherein:
前記(a)の工程においてセラミック素体を保持するのに、所定の温度で粘着力を失う第1の粘着シートを用いるとともに、
前記(c)の工程において、前記(a)の工程で用いた第1の粘着シートよりも高い温度まで粘着力を失わない第2の粘着シートを用い、第1の粘着シートに保持されたセラミック素体の一方主面に、第2の粘着シートを貼り付けた後、第1の粘着シートは粘着力を失うが、第2の粘着シートは粘着力を失わない温度にまで加熱して、セラミック素体を前記第1の粘着シートから剥離させて、第1の粘着シートから第2の粘着シートにセラミック素体を移行させるとともに、セラミック素体を反転させること
を特徴とする請求項1及び2記載のセラミック電子部品の製造方法。
In order to hold the ceramic body in the step (a), using the first pressure-sensitive adhesive sheet that loses the adhesive strength at a predetermined temperature,
In the step (c), a ceramic held on the first pressure-sensitive adhesive sheet using a second pressure-sensitive adhesive sheet that does not lose its adhesive strength to a temperature higher than that of the first pressure-sensitive adhesive sheet used in the step (a). After the second pressure-sensitive adhesive sheet is attached to one main surface of the element body, the first pressure-sensitive adhesive sheet loses the adhesive strength, but the second pressure-sensitive adhesive sheet is heated to a temperature at which the adhesive strength is not lost. The element body is peeled off from the first adhesive sheet, the ceramic element body is transferred from the first adhesive sheet to the second adhesive sheet, and the ceramic element body is inverted. The manufacturing method of the ceramic electronic component of description.
前記(a)の工程において、マザー積層体をダイシング法によりカットすることにより、複数個のセラミック素体を、前記内部電極の露出した端面が載置面に対して略垂直になるような姿勢で、かつ、セラミック素体間に所定の隙間が形成されるような態様で保持することを特徴とする請求項1〜3のいずれかに記載のセラミック電子部品の製造方法。   In the step (a), the mother laminated body is cut by a dicing method, so that the plurality of ceramic bodies are arranged in such a posture that the exposed end surfaces of the internal electrodes are substantially perpendicular to the mounting surface. The method for producing a ceramic electronic component according to claim 1, wherein the ceramic electronic component is held in such a manner that a predetermined gap is formed between the ceramic bodies.
JP2003311660A 2003-09-03 2003-09-03 Manufacturing method of ceramic electronic component Withdrawn JP2005079529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311660A JP2005079529A (en) 2003-09-03 2003-09-03 Manufacturing method of ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311660A JP2005079529A (en) 2003-09-03 2003-09-03 Manufacturing method of ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2005079529A true JP2005079529A (en) 2005-03-24

Family

ID=34413170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311660A Withdrawn JP2005079529A (en) 2003-09-03 2003-09-03 Manufacturing method of ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2005079529A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081228A (en) * 2005-09-15 2007-03-29 Tdk Corp Surface mounted electronic component array
JP2007173626A (en) * 2005-12-22 2007-07-05 Ngk Spark Plug Co Ltd Capacitor and manufacturing method thereof
WO2008133120A1 (en) * 2007-04-20 2008-11-06 Nitto Denko Corporation Thermally releasable double-sided adhesive sheet
WO2008133118A1 (en) * 2007-04-20 2008-11-06 Nitto Denko Corporation Heat-peelable pressure-sensitive adhesive sheet containing layered silicate and process for the production of electronic components by the use of the sheet
JP2014143357A (en) * 2013-01-25 2014-08-07 Murata Mfg Co Ltd Manufacturing method of multilayer ceramic electronic component
KR20160002340A (en) 2014-06-30 2016-01-07 미쓰보시 다이야몬도 고교 가부시키가이샤 Multipoint tool, positioning mechanism of multipoint tool, scribing head and scribing apparatus
KR20160002339A (en) 2014-06-30 2016-01-07 미쓰보시 다이야몬도 고교 가부시키가이샤 Multipoint diamond tool
KR20160088793A (en) 2015-01-16 2016-07-26 미쓰보시 다이야몬도 고교 가부시키가이샤 Multi-point diamond tools
KR20160089865A (en) 2015-01-20 2016-07-28 미쓰보시 다이야몬도 고교 가부시키가이샤 Multi-point diamond tools
KR20170038153A (en) 2015-09-29 2017-04-06 미쓰보시 다이야몬도 고교 가부시키가이샤 Method and scribe head unit for scribing brittle material substrate
KR20170038152A (en) 2015-09-29 2017-04-06 미쓰보시 다이야몬도 고교 가부시키가이샤 Tool holder and tool holder unit
KR20170122111A (en) 2016-04-26 2017-11-03 미쓰보시 다이야몬도 고교 가부시키가이샤 Scribe head unit
KR20180003426A (en) 2016-06-30 2018-01-09 미쓰보시 다이야몬도 고교 가부시키가이샤 Multipoint diamond tool and method of manufactureing the same
KR20180003425A (en) 2016-06-30 2018-01-09 미쓰보시 다이야몬도 고교 가부시키가이샤 Multipoint diamond tool and method of manufactureing the same
JP2018015945A (en) * 2016-07-26 2018-02-01 三星ダイヤモンド工業株式会社 Diamond tool and scribe method thereof
CN112768383A (en) * 2021-01-26 2021-05-07 长江存储科技有限责任公司 Wafer processing apparatus and wafer processing method
CN113096961A (en) * 2021-04-12 2021-07-09 中国振华集团云科电子有限公司 End face metallization method of multilayer ceramic dielectric capacitor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081228A (en) * 2005-09-15 2007-03-29 Tdk Corp Surface mounted electronic component array
JP2007173626A (en) * 2005-12-22 2007-07-05 Ngk Spark Plug Co Ltd Capacitor and manufacturing method thereof
WO2008133120A1 (en) * 2007-04-20 2008-11-06 Nitto Denko Corporation Thermally releasable double-sided adhesive sheet
WO2008133118A1 (en) * 2007-04-20 2008-11-06 Nitto Denko Corporation Heat-peelable pressure-sensitive adhesive sheet containing layered silicate and process for the production of electronic components by the use of the sheet
JP2008266455A (en) * 2007-04-20 2008-11-06 Nitto Denko Corp Heat-peelable adhesive sheet containing laminar silicate and production method of electronic part using the sheet
JP2014143357A (en) * 2013-01-25 2014-08-07 Murata Mfg Co Ltd Manufacturing method of multilayer ceramic electronic component
KR20160002340A (en) 2014-06-30 2016-01-07 미쓰보시 다이야몬도 고교 가부시키가이샤 Multipoint tool, positioning mechanism of multipoint tool, scribing head and scribing apparatus
KR20160002339A (en) 2014-06-30 2016-01-07 미쓰보시 다이야몬도 고교 가부시키가이샤 Multipoint diamond tool
CN105313232A (en) * 2014-06-30 2016-02-10 三星钻石工业股份有限公司 Multipoint diamond tool
KR20160088793A (en) 2015-01-16 2016-07-26 미쓰보시 다이야몬도 고교 가부시키가이샤 Multi-point diamond tools
KR20160089865A (en) 2015-01-20 2016-07-28 미쓰보시 다이야몬도 고교 가부시키가이샤 Multi-point diamond tools
KR20170038153A (en) 2015-09-29 2017-04-06 미쓰보시 다이야몬도 고교 가부시키가이샤 Method and scribe head unit for scribing brittle material substrate
KR20170038152A (en) 2015-09-29 2017-04-06 미쓰보시 다이야몬도 고교 가부시키가이샤 Tool holder and tool holder unit
KR20180109056A (en) 2015-09-29 2018-10-05 미쓰보시 다이야몬도 고교 가부시키가이샤 Method and scribe head unit for scribing brittle material substrate
KR20170122111A (en) 2016-04-26 2017-11-03 미쓰보시 다이야몬도 고교 가부시키가이샤 Scribe head unit
KR20180003426A (en) 2016-06-30 2018-01-09 미쓰보시 다이야몬도 고교 가부시키가이샤 Multipoint diamond tool and method of manufactureing the same
KR20180003425A (en) 2016-06-30 2018-01-09 미쓰보시 다이야몬도 고교 가부시키가이샤 Multipoint diamond tool and method of manufactureing the same
JP2018015945A (en) * 2016-07-26 2018-02-01 三星ダイヤモンド工業株式会社 Diamond tool and scribe method thereof
CN112768383A (en) * 2021-01-26 2021-05-07 长江存储科技有限责任公司 Wafer processing apparatus and wafer processing method
CN113096961A (en) * 2021-04-12 2021-07-09 中国振华集团云科电子有限公司 End face metallization method of multilayer ceramic dielectric capacitor
CN113096961B (en) * 2021-04-12 2023-08-15 中国振华集团云科电子有限公司 End face metallization method for multilayer ceramic dielectric capacitor

Similar Documents

Publication Publication Date Title
JP2005079529A (en) Manufacturing method of ceramic electronic component
JP2017135177A (en) Multilayer ceramic electronic component, manufacturing method of the same, and ceramic element
JP3760942B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3921946B2 (en) Manufacturing method of ceramic electronic component
JP2007200955A (en) Manufacturing method of multilayer ceramic electronic component
JPH0766076A (en) Manufacture of laminated chip component and laminated chip component
JP2004165295A (en) Ceramic multilayered board and its manufacturing method
JP2005191409A (en) Method for manufacturing laminated ceramic capacitor
JP3649246B2 (en) Manufacturing method of ceramic multilayer substrate
JP4042431B2 (en) Method for manufacturing ceramic laminate
JP2005213086A (en) Tray for thermal treatment and method for producing ceramic product using the same
JP4134604B2 (en) Method for manufacturing ceramic electronic component and ceramic electronic component
JP2020188192A (en) Electronic component manufacturing method
JP2005136441A (en) Manufacturing method of layered ceramic chip component
JP5094467B2 (en) Manufacturing method of ceramic substrate
JPH0666222B2 (en) Method for manufacturing ceramic laminate
TWI814872B (en) Temporary-fixing substrates, temporary-fixing method and a method of producing electronic parts
CN112530702B (en) Multilayer ceramic electronic component and method for manufacturing same
KR100631982B1 (en) Method for manufacturing ltcc substrate having goood suface flatteness
JP3847210B2 (en) Ceramic substrate having divided grooves and manufacturing method thereof
JP4978822B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP2004031623A (en) Glass ceramic substrate and its production method
JPH10167842A (en) Ceramic green sheet for restricting layer and production of ceramic substrate using that
JPH0671633A (en) Manufacture of ceramic electronic parts
WO2015019879A1 (en) Method for producing substrate for holding wafer, and substrate for holding wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107