JP2005079337A - Liquid cooled apparatus and system thereof - Google Patents

Liquid cooled apparatus and system thereof Download PDF

Info

Publication number
JP2005079337A
JP2005079337A JP2003307688A JP2003307688A JP2005079337A JP 2005079337 A JP2005079337 A JP 2005079337A JP 2003307688 A JP2003307688 A JP 2003307688A JP 2003307688 A JP2003307688 A JP 2003307688A JP 2005079337 A JP2005079337 A JP 2005079337A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid cooling
flow path
cooling device
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003307688A
Other languages
Japanese (ja)
Other versions
JP3908705B2 (en
Inventor
Hideo Iwasaki
秀夫 岩崎
Katsumi Kuno
勝美 久野
Tomonao Takamatsu
伴直 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003307688A priority Critical patent/JP3908705B2/en
Publication of JP2005079337A publication Critical patent/JP2005079337A/en
Application granted granted Critical
Publication of JP3908705B2 publication Critical patent/JP3908705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid cooled apparatus which enhances an electric characteristic and a mechanical reliability of a heating element by cooling the heating element uniformly, and simultaneously obtains a high cooling characteristic at a small coolant flow rate, to intend to reduce energy consumed for cooling. <P>SOLUTION: The liquid cooled apparatus comprises a main flow path 210 which passes a coolant L and also is thermally connected to a power element P, and a sub flow path 230 which is provided at a position more away from the power element P than the main flow path 210 and passes the coolant L. A communicating flow path 221 is provided between the main flow path 210 and the sub flow path 230 for passing the coolant L. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

半導体素子等の発熱体を冷媒により冷却する液冷装置及び液冷システムに関し、特に発熱体から冷媒への熱伝達を促進することで、発熱体を均等に冷却できると同時に冷媒の流量を低減できるものに関する。   The present invention relates to a liquid cooling device and a liquid cooling system for cooling a heating element such as a semiconductor element with a refrigerant, and in particular, by promoting heat transfer from the heating element to the refrigerant, the heating element can be cooled uniformly and at the same time the flow rate of the refrigerant can be reduced About things.

IGBT等の高発熱パワー素子(発熱体)を備えた電気装置の水冷構造が従来より知られている(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, a water-cooling structure for an electric device provided with a high heat-generating power element (heating element) such as an IGBT is known (see, for example, Patent Document 1).

図37は上述したような水冷構造が組み込まれた液冷システム10の一例を示す構成図、図38はこの液冷システム10に組み込まれた液冷装置30を示す縦断面図である。液冷システム10は、液相の冷媒Lを貯溜する冷媒溜11と、この冷媒溜11に配管12を介して接続され冷媒Lを送り出すポンプ13と、このポンプ13及び冷媒溜11にそれぞれ配管14,15を介して接続された流量調整装置16と、この流量調整装置16に配管17を介して接続された液冷装置30と、この液冷装置30に配管18を介して接続された熱交換器19と、この熱交換器19と冷媒溜11とを接続する配管20とを備えている。なお、冷媒溜11には圧力調整装置21が設けられている。流量調整装置16は、所定の流量の冷媒Lが液冷装置30に供給されるように調整する機能を有している。   FIG. 37 is a configuration diagram showing an example of the liquid cooling system 10 in which the water cooling structure as described above is incorporated, and FIG. 38 is a longitudinal sectional view showing the liquid cooling device 30 incorporated in the liquid cooling system 10. The liquid cooling system 10 includes a refrigerant reservoir 11 that stores a liquid-phase refrigerant L, a pump 13 that is connected to the refrigerant reservoir 11 via a pipe 12 and sends out the refrigerant L, and a pipe 14 that is connected to the pump 13 and the refrigerant reservoir 11, respectively. , 15, the flow rate adjusting device 16 connected via the pipe 15, the liquid cooling device 30 connected to the flow rate adjusting device 16 via the pipe 17, and the heat exchange connected to the liquid cooling apparatus 30 via the pipe 18. And a pipe 20 connecting the heat exchanger 19 and the refrigerant reservoir 11. The refrigerant reservoir 11 is provided with a pressure adjusting device 21. The flow rate adjusting device 16 has a function of adjusting so that the refrigerant L having a predetermined flow rate is supplied to the liquid cooling device 30.

液冷装置30は、銅材製の内部に冷却流路32が形成された筐体31を備え、筐体31の外壁面には高発熱パワー素子(発熱体)P等の半導体素子が搭載された基板Sが取付けられている。なお、高発熱パワー素子Pは、基板Sにはんだを用いて取り付けられており、基板Sは高発熱パワー素子Pを基板Sに取り付けるはんだよりも融点の低いはんだを用いて接続される。また、冷却流路32には冷媒Lとして純水等が通流する。
特開2002−314281号公報
The liquid cooling device 30 includes a casing 31 in which a cooling channel 32 is formed inside a copper material, and a semiconductor element such as a high heat generating power element (heating element) P is mounted on the outer wall surface of the casing 31. A substrate S is attached. The high heat generating power element P is attached to the substrate S using solder, and the substrate S is connected using solder having a lower melting point than the solder attaching the high heat generating power element P to the substrate S. Further, pure water or the like flows as the refrigerant L through the cooling flow path 32.
JP 2002-314281 A

上述した液冷システムであると次のような問題があった。すなわち、液冷装置30では冷却流路32の下流にいくにつれて冷媒Lの温度が上昇するとともに、高発熱パワー素子Pで発生した熱を冷媒Lに伝達する流路壁面(伝熱面H)の温度境界層が厚くなって熱伝達率が低下する。このため冷却流路32の下流側に実装された高発熱パワー素子Pほど温度が高くなるという問題がある。   The liquid cooling system described above has the following problems. That is, in the liquid cooling device 30, the temperature of the refrigerant L rises as it goes downstream of the cooling flow path 32, and the flow path wall surface (heat transfer surface H) that transmits heat generated by the high heat generating power element P to the refrigerant L. The temperature boundary layer becomes thick and the heat transfer coefficient decreases. For this reason, there exists a problem that temperature becomes high, so that the high heat_generation | fever power element P mounted downstream of the cooling flow path 32 exists.

特に大容量のパワーデバイス等の半導体素子ではモジュールサイズが大きいため、冷却流路の上流側に位置する半導体素子と下流側に位置する半導体素子とではその温度差が大きくなるという傾向がある。   In particular, since a module size is large in a semiconductor element such as a large-capacity power device, there is a tendency that the temperature difference between the semiconductor element located on the upstream side of the cooling flow path and the semiconductor element located on the downstream side becomes large.

パワーデバイスでは電気的な導通抵抗は素子温度に影響を受けるため、複数の素子を用いる、あるいは単一のウエハを使用する形態のように1つの素子の面積が広いとき、温度分布によりデバイスの性能を十分に引き出すことができなくなる虞がある。一般にはモジュール内の複数の素子あるいは単一のウエハ内での温度差は概ね5℃以下に制御することが好ましいとされている。また、温度分布はモジュール内部での熱膨張の差を発生させるためはんだ接合面等の信頼性に対しても悪影響を及ぼす可能性もある。   In a power device, the electrical conduction resistance is affected by the element temperature. Therefore, when the area of one element is large as in the case of using a plurality of elements or using a single wafer, the device performance depends on the temperature distribution. May not be able to be fully extracted. Generally, it is preferable to control the temperature difference within a plurality of elements in a module or within a single wafer to about 5 ° C. or less. In addition, since the temperature distribution generates a difference in thermal expansion inside the module, there is a possibility of adversely affecting the reliability of the solder joint surface and the like.

一方、このような温度分布がもたらす問題を回避するために、冷媒の流量を増やして冷媒Lの温度上昇を小さくするという方法が考えられるが、この方法ではポンプ動カが増大し、冷却のために費やすエネルギが増加するという問題が新たに生ずる。   On the other hand, in order to avoid such a problem caused by the temperature distribution, a method of increasing the flow rate of the refrigerant to reduce the temperature rise of the refrigerant L can be considered. A new problem arises in that the energy consumed in the process increases.

そこで本発明は、発熱体を均一に冷却することにより、発熱体の電気的特性及び機械的信頼性等を向上させると同時に、少ない冷媒流量で高い冷却特性が得られ、冷却に消費されるエネルギの低減を図ることが可能な液冷装置及び液冷システムを提供することを目的とする。   Therefore, the present invention uniformly improves the electrical characteristics and mechanical reliability of the heating element by cooling the heating element uniformly, and at the same time obtains high cooling characteristics with a small refrigerant flow rate, and energy consumed for cooling. An object of the present invention is to provide a liquid cooling device and a liquid cooling system capable of reducing the above.

上記課題を解決し目的を達成するために、本発明の液冷装置及び液冷システムは次のように構成されている。   In order to solve the above problems and achieve the object, the liquid cooling apparatus and the liquid cooling system of the present invention are configured as follows.

(1)発熱体を冷媒により冷却する液冷装置において、上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、この主流路よりも上記発熱体から離間した位置に設けられ、上記冷媒が通流する副流路とを備え、上記主流路と上記副流路との間には上記冷媒を通流させる連通流路が設けられている。 (1) In a liquid cooling apparatus that cools a heating element with a refrigerant, a main channel through which the refrigerant flows and is thermally connected to the heating element, and a position that is further away from the heating element than the main channel And a sub-flow path through which the refrigerant flows, and a communication flow path through which the refrigerant flows is provided between the main flow path and the sub-flow path.

(2)上記(1)に記載された液冷装置であって、上記主流路の上流側に比べて下流側に多く又は大口径の連通流路が設けられていることを特徴とする。 (2) The liquid cooling apparatus according to (1), wherein a communication channel having a larger or larger diameter is provided on the downstream side than the upstream side of the main channel.

(3)上記(1)に記載された液冷装置であって、上記主流路内の上記冷媒の通流方向と上記副流路内の上記冷媒の通流方向とが逆方向であることを特徴とする。 (3) In the liquid cooling device described in (1) above, the flow direction of the refrigerant in the main flow path and the flow direction of the refrigerant in the sub flow path are opposite to each other. Features.

(4)上記(1)に記載された液冷装置であって、上記主流路は、その流路内に上記冷媒を上記冷媒を分割・合流させる気泡破砕部材を具備していることを特徴とする。 (4) The liquid cooling apparatus according to (1), wherein the main flow path includes a bubble crushing member that divides and merges the refrigerant into the flow path. To do.

(5)上記(4)に記載された液冷装置であって、上記気泡破砕部材は、上記冷媒の分割位置と合流位置とで上記冷媒の通流方向に交差する断面内での流路位置を異ならせるものであることを特徴とする。 (5) The liquid cooling apparatus according to (4), wherein the bubble crushing member is a flow path position in a cross section that intersects a flow direction of the refrigerant at a division position and a merge position of the refrigerant. It is characterized by being different.

(6)上記(4)に記載された液冷装置であって、上記気泡破砕部材は、上記冷媒の分割位置と合流位置とで分割された冷媒の一方の流速と他方の流速とを異ならせるものであることを特徴とする。 (6) In the liquid cooling device described in (4) above, the bubble crushing member makes different one flow rate and the other flow rate of the refrigerant divided at the division position and the merge position of the refrigerant. It is characterized by being.

(7)上記(4)に記載された液冷装置であって、上記主流路には、上記気泡破砕部材の下流側ににより分割された流路に冷媒の通流を阻害する凹凸部材が設けられていることを特徴とする。 (7) In the liquid cooling apparatus described in (4) above, the main flow path is provided with a concavo-convex member that inhibits the flow of the refrigerant in the flow path divided on the downstream side of the bubble crushing member. It is characterized by being.

(8)上記(4)に記載された液冷装置であって、上記主流路は、上記気泡破砕部材の上流側において上記通流方向に直交する断面の面積が拡大されていることを特徴とする。 (8) The liquid cooling apparatus according to (4), wherein the main flow path has an enlarged cross-sectional area perpendicular to the flow direction on the upstream side of the bubble crushing member. To do.

(9)上記(4)に記載された液冷装置であって、上記主流路は、上記気泡破砕部材の下流側に上記連通流路が設けられていることを特徴とする。 (9) In the liquid cooling apparatus described in (4), the main flow path is provided with the communication flow path on the downstream side of the bubble crushing member.

(10)上記(1)に記載された液冷装置であって、上記副流路は、上記冷媒が通流する孔部を有する管状部を備え、上記管状部が上記主流路内に配置されていることを特徴とする。 (10) In the liquid cooling apparatus described in (1) above, the sub-flow path includes a tubular portion having a hole through which the refrigerant flows, and the tubular portion is disposed in the main flow path. It is characterized by.

(11)発熱体を冷媒により冷却する液冷装置において、上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、この主流路内に配置されるとともに、その羽根の少なくとも一部が上記発熱体の近傍を通過するように設けられた羽根車とを備えていることを特徴とする。 (11) In a liquid cooling apparatus that cools a heating element with a refrigerant, the refrigerant flows and the main channel is thermally connected to the heating element, the main channel is disposed in the main channel, and at least of the blades And an impeller provided so as to partially pass through the vicinity of the heating element.

(12)発熱体を冷媒により冷却する液冷システムにおいて、上記発熱体に設けられた液冷装置と、この液冷装置に冷媒を送るポンプと、このポンプにより送られた冷媒を分流して上記液冷装置に供給する分岐装置と、上記液冷装置から排出された冷媒を冷却する熱交換器とを備え、上記液冷装置は、上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、この主流路よりも上記発熱体から離間した位置に設けられ、上記冷媒が通流する副流路とを備え、上記主流路と上記副流路との間には上記冷媒を通流させる連通流路が設けられていることを特徴とする。 (12) In a liquid cooling system for cooling a heating element with a refrigerant, a liquid cooling device provided in the heating element, a pump that sends the refrigerant to the liquid cooling device, and the refrigerant sent by the pump The liquid cooling device includes a branch device that supplies the liquid cooling device and a heat exchanger that cools the refrigerant discharged from the liquid cooling device, and the liquid cooling device is thermally connected to the heating element while allowing the refrigerant to flow therethrough. And a sub-flow path that is provided at a position farther from the heating element than the main flow path and through which the refrigerant flows, and the refrigerant is interposed between the main flow path and the sub-flow path. A communication flow path for allowing flow is provided.

(13)発熱体を冷媒により冷却する液冷システムにおいて、上記発熱体に設けられた液冷装置と、この液冷装置に上記冷媒を送る主流路用ポンプと、上記液冷装置に上記冷媒を送る副流路用ポンプと、上記液冷装置から排出された冷媒を冷却する熱交換器とを備え、上記液冷装置は、上記主流路用ポンプから供給された上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、この主流路よりも上記発熱体から離間した位置に設けられ、上記副流路用ポンプから供給された上記冷媒が通流する副流路とを備え、上記主流路と上記副流路との間には上記冷媒を通流させる連通流路が設けられていることを特徴とする。 (13) In a liquid cooling system for cooling a heating element with a refrigerant, a liquid cooling device provided in the heating element, a main channel pump for sending the refrigerant to the liquid cooling device, and the refrigerant in the liquid cooling device A sub-flow channel pump to be sent and a heat exchanger for cooling the refrigerant discharged from the liquid cooling device, and the liquid cooling device allows the refrigerant supplied from the main flow channel pump to flow and A main flow path thermally connected to the heating element, and a sub flow path provided at a position farther from the heating element than the main flow path and through which the refrigerant supplied from the sub flow path pump flows. And a communication channel for allowing the refrigerant to flow between the main channel and the sub channel.

本発明によれば、発熱体を均一に冷却することができるため、発熱体の電気的特性及び機械的信頼性等を向上させると同時に、少ない冷媒流量で高い冷却特性が得られるため冷却に消費されるエネルギの低減を図ることが可能となる。   According to the present invention, since the heating element can be uniformly cooled, the electrical characteristics and mechanical reliability of the heating element are improved, and at the same time, high cooling characteristics can be obtained with a small refrigerant flow rate. Energy can be reduced.

パワー素子(発熱体)Pを冷媒Lにより冷却する液冷装置において、冷媒Lが通流するとともにパワー素子Pに熱的に接続された主流路と、この主流路よりもパワー素子Pから離間した位置に設けられ、冷媒Lが通流する副流路とを備え、主流路と副流路との間には冷媒Lを通流させる連通流路が設けられている。   In the liquid cooling device that cools the power element (heating element) P with the refrigerant L, the main flow path through which the refrigerant L flows and is thermally connected to the power element P is further separated from the power element P than the main flow path. And a sub-flow path through which the refrigerant L flows, and a communication flow path through which the refrigerant L flows is provided between the main flow path and the sub-flow path.

図1は本発明の第1の実施の形態に係る液冷システム100を示す図である。液冷システム100は、液相の冷媒Lを貯溜する冷媒溜101と、この冷媒溜101に配管102を介して接続され冷媒Lを送り出すポンプ103と、このポンプ103及び冷媒溜101にそれぞれ配管104,105を介して接続された流量調整装置106と、この流量調整装置106に配管107を介して接続された分岐装置108と、この分岐装置108と主流路配管109と副流路配管110とを介して接続された液冷装置200と、この液冷装置200に配管111を介して接続された熱交換器112と、この熱交換器112と冷媒溜101とを接続する配管113とを備えている。なお、冷媒溜101には圧力調整装置114が設けられている。   FIG. 1 is a diagram showing a liquid cooling system 100 according to a first embodiment of the present invention. The liquid cooling system 100 includes a refrigerant reservoir 101 that stores a liquid-phase refrigerant L, a pump 103 that is connected to the refrigerant reservoir 101 via a pipe 102 and sends out the refrigerant L, and a pipe 104 that is connected to the pump 103 and the refrigerant reservoir 101, respectively. , 105, a flow control device 106 connected through the flow control device 106, a branch device 108 connected to the flow control device 106 through a pipe 107, and the branch device 108, the main flow pipe 109 and the sub flow pipe 110. A liquid cooling apparatus 200 connected via the pipe, a heat exchanger 112 connected to the liquid cooling apparatus 200 via a pipe 111, and a pipe 113 connecting the heat exchanger 112 and the refrigerant reservoir 101. Yes. The refrigerant reservoir 101 is provided with a pressure adjusting device 114.

流量調整装置106は、所定の流量の冷媒Lが液冷装置200に供給されるように調整する機能を有しており、流量センサ(不図示)からの検出値に基づいて流路をバルブで絞る、又は、ポンプ103ヘの電カの供給を制御する。なお、ポンプ103の安定した運転に適した領域よりも流量を低くするときには冷媒溜101に一部の冷媒Lを戻すようにしている。分岐装置108は、バルブや絞り機構等により構成されている。   The flow rate adjusting device 106 has a function of adjusting the refrigerant L at a predetermined flow rate so as to be supplied to the liquid cooling device 200, and the flow path is configured by a valve based on a detection value from a flow rate sensor (not shown). The power supply to the pump 103 is controlled. A part of the refrigerant L is returned to the refrigerant reservoir 101 when the flow rate is made lower than the region suitable for stable operation of the pump 103. The branch device 108 includes a valve, a throttle mechanism, and the like.

液冷装置200は、図2に示すように、筐体201と、この筐体201に設けられ、冷媒Lが通流する主流路210と、この主流路210に隔壁220により隔てられて設けられた副流路230とを備えている。隔壁220の材質は、副流路230内の液相の冷媒Lが主流路210内の液体冷媒との熱交換により温度上昇しないように、例えばSUS304のように銅よりも熱伝導性の低い金属や耐熱プラスチック等が望ましい。   As shown in FIG. 2, the liquid cooling device 200 is provided in a casing 201, a main channel 210 provided in the casing 201, through which the refrigerant L flows, and the main channel 210 separated by a partition wall 220. And a secondary flow path 230. The material of the partition 220 is a metal having a lower thermal conductivity than copper, such as SUS304, so that the liquid-phase refrigerant L in the sub-channel 230 does not rise in temperature due to heat exchange with the liquid refrigerant in the main channel 210. Or heat-resistant plastic is desirable.

筐体201の主流路210側の外壁には、パワー素子(発熱体)Pを搭載した基板Sが取付けられている。主流路210は前述した主流路配管109に接続され、副流路230は前述した副流路配管110に接続されている。隔壁220には、主流路210と副流路230とを連通する連通流路221が設けられている。   A substrate S on which a power element (heating element) P is mounted is attached to the outer wall of the housing 201 on the main flow path 210 side. The main flow path 210 is connected to the main flow path pipe 109 described above, and the sub flow path 230 is connected to the sub flow path pipe 110 described above. The partition wall 220 is provided with a communication channel 221 that communicates the main channel 210 and the sub-channel 230.

このように構成された液冷システム100においては、次のようにしてパワー素子Pの冷却が行われる。すなわち、冷媒溜101内の液相の冷媒Lはポンプ103によって汲み上げられ、流量調整装置106内に導入される。流量調整装置106では冷媒Lの流量が調整され、過剰分の冷媒Lが配管105を介して冷媒溜101内に戻される。さらに、所定の流量の冷媒Lは分岐装置108に導入され、分岐装置108では所定の割合で主流路210と副流路230に冷媒Lを分流して液冷装置200に供給する。   In the liquid cooling system 100 configured as described above, the power element P is cooled as follows. That is, the liquid-phase refrigerant L in the refrigerant reservoir 101 is pumped up by the pump 103 and introduced into the flow rate adjusting device 106. In the flow rate adjusting device 106, the flow rate of the refrigerant L is adjusted, and an excessive amount of the refrigerant L is returned into the refrigerant reservoir 101 through the pipe 105. Further, the refrigerant L having a predetermined flow rate is introduced into the branching device 108, and the branching device 108 divides the refrigerant L into the main flow path 210 and the sub flow path 230 at a predetermined ratio and supplies the refrigerant L to the liquid cooling apparatus 200.

液冷装置200に供給された冷媒Lは後述するようにして、パワー素子Pにより加熱され、液冷装置200から排出される。液冷装置200から排出された冷媒Lは熱交換器112にて所定温度まで冷却され、冷媒溜101に戻される。   The refrigerant L supplied to the liquid cooling apparatus 200 is heated by the power element P and discharged from the liquid cooling apparatus 200 as described later. The refrigerant L discharged from the liquid cooling device 200 is cooled to a predetermined temperature by the heat exchanger 112 and returned to the refrigerant reservoir 101.

ここで、液冷装置200における熱移動について説明する。パワー素子Pからの熱は基板Sを経由して主流路210内を流れる冷媒Lに放熱される。一方、副流路230内に供給された冷媒Lは、連通流路221を介して主流路210内に流入する。隔壁220の下流側に連通流路221が配置されていることから、主流路210内の冷媒Lは下流においても温度上昇が抑えられ、さらに伝熱面Hに向かって副流路230冷媒Lが噴出されることにより温度境界層を薄くして熱伝達率を向上させることが可能となる。この結果、複数のパワー素子Pを均一に冷却することができる。   Here, heat transfer in the liquid cooling apparatus 200 will be described. Heat from the power element P is radiated to the refrigerant L flowing through the main flow path 210 via the substrate S. On the other hand, the refrigerant L supplied into the sub-channel 230 flows into the main channel 210 via the communication channel 221. Since the communication flow path 221 is disposed on the downstream side of the partition wall 220, the temperature of the refrigerant L in the main flow path 210 is suppressed from rising even downstream, and the sub flow path 230 refrigerant L is further directed toward the heat transfer surface H. By ejecting, the temperature boundary layer can be thinned to improve the heat transfer coefficient. As a result, the plurality of power elements P can be uniformly cooled.

上述したように、本第1の実施の形態に係る液冷システム100によれば、パワー素子P等の発熱体を均一に冷却することができるため、パワー素子Pの電気的特性及び機械的信頼性等を向上させると同時に、少ない冷媒流量で高い冷却特性が得られるため冷却に消費されるエネルギの低減を図ることが可能となる。   As described above, according to the liquid cooling system 100 according to the first embodiment, since the heating element such as the power element P can be cooled uniformly, the electrical characteristics and mechanical reliability of the power element P can be reduced. At the same time, it is possible to reduce the energy consumed for cooling because high cooling characteristics can be obtained with a small refrigerant flow rate.

したがって、比較的大きな伝熱面Hであっても均一に冷却することが可能であり、特に高発熱のパワーデバイス等の冷却に適している。なお、パーソナルコンピュータ等の小型電子機器にも適用可能なのはもちろんである。   Therefore, even a relatively large heat transfer surface H can be uniformly cooled, and is particularly suitable for cooling a power device having a high heat generation. Of course, the present invention can also be applied to small electronic devices such as personal computers.

なお、分岐装置108と流量調整装置106とは一体の装置としてポンプ103の下流に配置するようにしてもよい。   The branching device 108 and the flow rate adjusting device 106 may be disposed downstream of the pump 103 as an integrated device.

図3は液冷装置200において沸騰冷却を行う場合を示す縦断面図である。パワー素子Pの発熱量がより大きい場合、あるいは冷媒Lの流量が少ない場合には、沸騰現象を利用した液冷装置として作動する。すなわち、沸騰は冷媒が液相から気相へ相変化する現象であり、非常に高い熱伝達性能を得ることができる。   FIG. 3 is a longitudinal sectional view showing a case where boiling cooling is performed in the liquid cooling apparatus 200. When the heat generation amount of the power element P is larger, or when the flow rate of the refrigerant L is small, it operates as a liquid cooling device utilizing the boiling phenomenon. In other words, boiling is a phenomenon in which the refrigerant undergoes a phase change from the liquid phase to the gas phase, and extremely high heat transfer performance can be obtained.

例えば、冷媒Lとしてフロロカーボンを使用する場合、強制対流による典型的な熱伝達率が200〜2000W/(mK)であるのに対して、沸騰においては2000〜6000W/(mK)といった高い熱伝達率が得られる(香山晋監訳,マイクロエレクトロニクスパッケージングハンドブック,日経BP社,1991,p.138)。さらに、平滑面による水の沸騰熱伝達において熱伝達率は10万W/(mK)以上に達し、通常の強制対流熱伝達に対して桁違いの熱伝達性能が期待できる。また、熱の輸送は潜熱により行われるため顕熱に比較して非常に高い熱輸送性能が得られ、冷媒流量を小さくすることができる。 For example, when using a fluorocarbon as a refrigerant L, whereas a typical heat transfer rate by forced convection is 200~2000W / (m 2 K), in boiling such 2000~6000W / (m 2 K) A high heat transfer coefficient can be obtained (translated by Kayama Kaoru, Microelectronics Packaging Handbook, Nikkei Business Publications, 1991, p.138). Furthermore, in the boiling heat transfer of water by a smooth surface, the heat transfer coefficient reaches 100,000 W / (m 2 K) or more, and an order of magnitude heat transfer performance can be expected for normal forced convection heat transfer. Moreover, since heat is transported by latent heat, a very high heat transport performance can be obtained compared to sensible heat, and the refrigerant flow rate can be reduced.

したがって、沸騰現象の利用は、省エネルギ及び機器の小型化に極めて有効である。しかるに、冷媒Lとして水を使用する場合には、大気圧での沸点は100℃となるため半導体素子の温度は通常のSiを用いた半導体素子の許容温度よりも高くなることが多く、SiC等、高温動作が可能な半導体素子の冷却に適している。   Therefore, the use of the boiling phenomenon is extremely effective for energy saving and equipment miniaturization. However, when water is used as the refrigerant L, the boiling point at atmospheric pressure is 100 ° C., so the temperature of the semiconductor element is often higher than the allowable temperature of a semiconductor element using ordinary Si, such as SiC. It is suitable for cooling a semiconductor element capable of operating at a high temperature.

例えば、SiC素子を用いてモジュールを構成し、水をほぼ大気圧で沸騰させることにより冷却を行なうと、液冷装置の下流において約100℃の高温の水を得られる。環境温度との差が大きい冷媒が排出されるほど排熱利用には適しており、液冷装置という範囲での省エネルギにとどまらず、半導体素子が損失するエネルギの回収ということでもSiC素子と水の沸騰という組合せは優れている。   For example, when a module is formed using SiC elements and cooling is performed by boiling water at approximately atmospheric pressure, high-temperature water of about 100 ° C. can be obtained downstream of the liquid cooling device. The more the refrigerant with a large difference from the ambient temperature is discharged, the more suitable it is for exhaust heat utilization. It is not only energy saving in the range of liquid cooling devices, but also the recovery of energy lost by semiconductor elements, SiC elements and water. The combination of boiling is excellent.

一方、冷媒の沸騰熱伝達を用いる場合には、主流路210内で冷媒Lの蒸気泡Mが発生する。蒸気泡Mは下流にいくにつれて他の蒸気泡Mと合体し、大きな蒸気泡Mとなる。やがて主流路210内で蒸気充満状態となり、伝熱面Hが液相の冷媒Lで濡れていない状態となる。このような状態においては、放熱が阻害され、バーンアウト現象に陥る危険がある。バーンアウト現象が発生すると伝熱面温度は急激に上昇して1000℃以上に達することもあり、機器の損傷は避け難い。したがって、バーンアウト現象は機器の信頼性と安全の上から回避する必要がある。   On the other hand, when the boiling heat transfer of the refrigerant is used, the vapor bubbles M of the refrigerant L are generated in the main flow path 210. The vapor bubble M merges with other vapor bubbles M as it goes downstream, and becomes a large vapor bubble M. Eventually, the main flow path 210 becomes full of steam, and the heat transfer surface H is not wetted by the liquid-phase refrigerant L. In such a state, heat dissipation is hindered and there is a risk of falling into a burnout phenomenon. When the burnout phenomenon occurs, the heat transfer surface temperature rapidly rises and may reach 1000 ° C. or higher, and it is difficult to avoid damage to the equipment. Therefore, it is necessary to avoid the burnout phenomenon from the viewpoint of reliability and safety of the equipment.

液冷装置200によれば、副流路230から主流路210に過冷状態の冷媒Lを合体した蒸気泡Mに注入することにより、蒸気泡Mを凝縮崩壊させることが可能であり、バーンアウト現象を回避することができる。また過冷度の小さくなっている冷媒Lの主流路210の下流側に過冷度の大きい冷媒Lを供給することにより主流路210内の冷媒Lの過冷度をほぼ均一に制御することが可能となり、その結果、複数の素子をほぼ均一に冷却することが可能となる。   According to the liquid cooling device 200, the vapor bubble M can be condensed and collapsed by injecting the supercooled refrigerant L from the sub-flow channel 230 into the main flow channel 210 into the vapor bubble M. The phenomenon can be avoided. In addition, the supercooling degree of the refrigerant L in the main channel 210 can be controlled almost uniformly by supplying the refrigerant L having a high degree of supercooling to the downstream side of the main channel 210 of the refrigerant L having a low degree of supercooling. As a result, a plurality of elements can be cooled almost uniformly.

図4は上述した液冷装置200の第1変形例を示す縦断面図である。なお、この図において図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 4 is a longitudinal sectional view showing a first modification of the liquid cooling apparatus 200 described above. In this figure, the same functional parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

本変形例においては、連通流路221の分布が図2のものとは異なっている。すなわち、主流路210の上流から下流にいくにしたがい、連通流路221の設置密度が増えている。この構成により主流路210内の冷媒Lの温度をきめ細かく制御することができ、複数のパワー素子Pをより均一な温度に冷却することができる。   In this modification, the distribution of the communication channel 221 is different from that in FIG. That is, the installation density of the communication flow path 221 increases as it goes from the upstream to the downstream of the main flow path 210. With this configuration, the temperature of the refrigerant L in the main flow path 210 can be finely controlled, and the plurality of power elements P can be cooled to a more uniform temperature.

なお、設置密度を増やす代わりに、主流路210の上流から下流にいくにしたがい、連通流路221の内径を拡大するようにしてもよい。   Instead of increasing the installation density, the inner diameter of the communication channel 221 may be increased as the main channel 210 moves from the upstream to the downstream.

図5は上述した液冷装置200の第2変形例を示す縦断面図である。なお、この図において図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、主流路210と副流路230で冷媒Lの流れる向きが対向している。すなわち、隔壁220に熱伝導性の低い材料を用いても熱を完全に遮ることはできないため、主流路210と副流路230の流れが同じ方向であるよりも、本変形例のように逆方向に対向して流れているほうが、主流路210の下流に供給される液相の冷媒Lの過冷度を大きくすることができ、液相の冷媒Lの注入による蒸気泡Mの凝縮崩壊をより効果的に行なうことができる。   FIG. 5 is a longitudinal sectional view showing a second modification of the liquid cooling apparatus 200 described above. In this figure, the same functional parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. In this modification, the main flow path 210 and the sub flow path 230 face each other in the direction in which the refrigerant L flows. That is, even if a material having low thermal conductivity is used for the partition wall 220, heat cannot be completely blocked. Therefore, the flow in the main flow path 210 and the sub flow path 230 are reversed in the same direction as in this modification. Flowing in the opposite direction can increase the degree of supercooling of the liquid-phase refrigerant L supplied downstream of the main flow path 210, and condenses and collapses the vapor bubbles M due to the injection of the liquid-phase refrigerant L. This can be done more effectively.

図6は上述した液冷装置200の第3変形例を示す縦断面図である。なお、この図において図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、主流路210中に副流路230を挿入し、主流路210の両側にパワー素子Pを配置することにより、一組の主流路210と副流路230で2つの伝熱面Hを冷却することが可能となる。複数のパワー素子Pを搭載したモジュールを2組を冷却する場合において、各モジュールにそれぞれ液冷装置200を取り付けた場合には、冷媒Lの入出力配管の接続箇所が4ケ所となる。一方、本変形例の液冷装置200においては、液冷装置200への冷媒Lの入出力配管の接続箇所が2箇所となる。このため、入出力配管の接続箇所を減らすことができ、構造上の信頼性を高めることができる。   FIG. 6 is a longitudinal sectional view showing a third modification of the liquid cooling apparatus 200 described above. In this figure, the same functional parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. In this modification, by inserting the sub-flow channel 230 into the main flow channel 210 and disposing the power element P on both sides of the main flow channel 210, two sets of the main flow channel 210 and the sub-flow channel 230 can transfer two heat transfers. It becomes possible to cool the surface H. In the case of cooling two sets of modules each equipped with a plurality of power elements P, when the liquid cooling device 200 is attached to each module, the number of connection points of the input / output piping of the refrigerant L is four. On the other hand, in the liquid cooling device 200 of the present modification, there are two connection points of the input / output piping of the refrigerant L to the liquid cooling device 200. For this reason, the connection location of input-output piping can be reduced, and the structural reliability can be improved.

図7は本発明の第2の実施の形態に係る液冷システム100に組み込まれた液冷装置300を示す横断面図、図8は縦断面図である。   FIG. 7 is a transverse sectional view showing a liquid cooling apparatus 300 incorporated in the liquid cooling system 100 according to the second embodiment of the present invention, and FIG. 8 is a longitudinal sectional view.

液冷装置300は、筐体301と、この筐体301に設けられ、冷媒Lが通流する主流路310と、この主流路310に隔壁320により隔てられて設けられた副流路330とを備えている。   The liquid cooling device 300 includes a housing 301, a main flow channel 310 provided in the housing 301 through which the refrigerant L flows, and a sub flow channel 330 provided in the main flow channel 310 separated by a partition wall 320. I have.

筐体301の主流路310側の外壁には、パワー素子(発熱体)Pを搭載した基板Sが取付けられている。なお、図8中302は蓋体を示している。主流路310は前述した主流路配管109に接続され、副流路330は前述した副流路配管110に接続されている。   A substrate S on which a power element (heating element) P is mounted is attached to the outer wall of the housing 301 on the main flow path 310 side. In FIG. 8, reference numeral 302 denotes a lid. The main flow path 310 is connected to the main flow path pipe 109 described above, and the sub flow path 330 is connected to the sub flow path piping 110 described above.

主流路310内の最上流側に孔部311が配置されるとともに、後述するノズル321の上流側に気泡破砕部材312が設けられている。気泡破砕部材312は後述するように気泡破砕部材を有している。気泡破砕部材312は、主流路310の伝熱面Hから突設された第1の板群313と、隔壁322側の対向面Fから突設された第2の板群314とから構成されている。第1の板群313と第2の板群314は冷媒Lの流れに対して異なる角度を持って取り付けられている。隔壁320には、主流路310と副流路330とを連通するノズル(連通流路)321が設けられている。   A hole 311 is arranged on the most upstream side in the main flow path 310, and a bubble crushing member 312 is provided on the upstream side of a nozzle 321 described later. The bubble crushing member 312 has a bubble crushing member as will be described later. The bubble crushing member 312 includes a first plate group 313 projecting from the heat transfer surface H of the main flow path 310 and a second plate group 314 projecting from the facing surface F on the partition wall 322 side. Yes. The first plate group 313 and the second plate group 314 are attached with different angles with respect to the flow of the refrigerant L. The partition 320 is provided with a nozzle (communication channel) 321 that communicates the main channel 310 and the sub-channel 330.

このように構成された液冷装置300によれば、上述した液冷装置200と同様にしてパワー素子Pで発生した熱が主流路310内を通流する冷媒Lに伝達され、冷媒Lは伝熱面Hで沸騰し、蒸気泡Mを発生する。過冷状態の冷媒Lは副流路330によりノズル位置321まで供給される。   According to the liquid cooling apparatus 300 configured as described above, the heat generated in the power element P is transmitted to the refrigerant L flowing through the main flow path 310 in the same manner as the liquid cooling apparatus 200 described above, and the refrigerant L is transmitted. Boils on the hot surface H and generates a vapor bubble M. The supercooled refrigerant L is supplied to the nozzle position 321 through the sub-channel 330.

蒸気泡Mは気泡破砕部材312に導入され、第1の板群313と第2の板群314の隙間よりも寸法が大きくなると分断される。第1の板群313と第2の板群314の隙間の流路は、下流側へ次第に幅が広がる流路315と、下流側へ次第に幅が狭まる流路316とが隣り合っているため、分断された蒸気泡Mが気泡破砕部材312を抜け出したときには隣接する流路間の出口の流速の差により流れ方向の蒸気泡Mの位置がずれる。このため、下流で広がる流路315では蒸気泡Mが第1の板群313と第2の板群314から離れやすくなり、気泡破砕部材312入口で分断された蒸気泡Mが気泡破砕部材312出口で合体しにくくなる。すなわち、大型の蒸気泡Mが形成されてにくい。さらに、気泡破砕部材312の下流側には過冷状態の冷媒Lがノズル321から供給されるため、破砕されて表面積が大きくなった蒸気泡Mと過冷状態の冷媒Lが混合し、蒸気泡Mが消滅あるいは減容する。このため、バーンアウト現象の発生を抑制することが可能となる。   The vapor bubble M is introduced into the bubble crushing member 312 and is divided when the dimension becomes larger than the gap between the first plate group 313 and the second plate group 314. Since the flow path in the gap between the first plate group 313 and the second plate group 314 is adjacent to the flow path 315 gradually widening to the downstream side and the flow path 316 gradually narrowing to the downstream side, When the divided vapor bubbles M exit the bubble crushing member 312, the position of the vapor bubbles M in the flow direction is shifted due to the difference in the flow velocity at the outlet between the adjacent flow paths. For this reason, in the flow path 315 spreading downstream, the vapor bubbles M are easily separated from the first plate group 313 and the second plate group 314, and the vapor bubbles M divided at the inlet of the bubble crushing member 312 are discharged from the bubble crushing member 312. It becomes difficult to unite. That is, it is difficult to form a large steam bubble M. Further, since the supercooled refrigerant L is supplied from the nozzle 321 to the downstream side of the bubble crushing member 312, the vapor bubbles M that are crushed and have a large surface area are mixed with the supercooled refrigerant L, and the vapor bubbles are mixed. M disappears or is reduced in volume. For this reason, it is possible to suppress the occurrence of the burnout phenomenon.

なお、気泡破砕部材312の形成方法としては、伝熱面Hと対向面Fそれぞれに同一の方向を持つ板群を設ければよく、切削等の機械加工や複数の板を並べて蝋付やカシメにより取り付けるときには、片方の面に角度の異なる板を交互に取り付けるよりも製造が容易になる。また、金属材料を用いたダイカストや鋳造あるいは樹脂の射出成型など、金型に材料を流し込む方法で製作してもよいし、伝熱面Hあるいは対向面Fのいずれかに向きの異なる板をすべてまとめて取り付けてもよい。さらに、枠で板群を保持した構造物を主流路310内に挿入する形式でもよい。   As a method for forming the bubble crushing member 312, a plate group having the same direction may be provided on each of the heat transfer surface H and the opposing surface F, and machining such as cutting or a plurality of plates are arranged and brazed or caulked. When mounting by the method, manufacturing is easier than mounting plates with different angles alternately on one side. Moreover, it may be manufactured by a method in which a material is poured into a mold, such as die casting using metal material, casting, or resin injection molding, or all plates having different orientations on either the heat transfer surface H or the opposing surface F are used. They may be attached together. Further, a structure in which a structure holding a plate group with a frame is inserted into the main flow path 310 may be used.

切削による加工では、例えばC1100のような熱伝導性の高い銅材料を採用できるものは製造コストが高く、鋳造あるいはダイカストに適した材料は熱伝導性が低くなる。このため、製造方法と板を伝熱面Hに付けるか対向面Fに取り付けるか、あるいは伝熱面Hと対向面Fのどちらに取り付けるかは、要求される放熱性能とコスト、信頼性に依存する。例えば対向面F側を樹脂製とし、気泡破砕部材を対向面Fと一体に樹脂の射出成型で製造すればコストは低いが金属材料よりも信頼性は低下し、対向面Fは主要な放熱経路とはならないものの放熱性能も低下する。   In machining by cutting, for example, a material that can adopt a copper material having high thermal conductivity such as C1100 has a high manufacturing cost, and a material suitable for casting or die casting has low thermal conductivity. For this reason, whether to attach the manufacturing method and the plate to the heat transfer surface H, the opposite surface F, or the heat transfer surface H or the opposite surface F depends on the required heat radiation performance, cost, and reliability. To do. For example, if the facing surface F side is made of resin and the bubble crushing member is manufactured by injection molding of the resin integrally with the facing surface F, the cost is low but the reliability is lower than that of the metal material. However, the heat dissipation performance is also reduced.

図9は上述した液冷装置300の第1変形例を示す横断面図、図10は縦断面図である。なお、これらの図において図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例における気泡破砕部材312では、第1の板群313と第2の板群314を構成する板が途中で折曲している。直線的な形状では板間隔と気泡破砕部材312の流れ方向の長さは独立した設計パラメータとして扱うことができないが、曲線にすることにより、これらのパラメータを独立して自由に変更することができる。例えば、熱流束が高い場合には蒸気泡Mの寸法が大きくなる傾向にあるが、冷媒Lの流速が大きい場合にも蒸気泡Mが流れ方向に伸びた扁平形状になるため、気泡破砕部材312の主流方向の長さLをある程度長くしなければならない。   FIG. 9 is a transverse sectional view showing a first modification of the liquid cooling apparatus 300 described above, and FIG. 10 is a longitudinal sectional view. In these drawings, the same functional parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted. In the bubble crushing member 312 in this modification, the plates constituting the first plate group 313 and the second plate group 314 are bent halfway. In the linear shape, the plate interval and the length of the bubble crushing member 312 in the flow direction cannot be treated as independent design parameters, but by making a curve, these parameters can be freely changed independently. . For example, when the heat flux is high, the size of the vapor bubble M tends to increase, but even when the flow rate of the refrigerant L is large, the vapor bubble M has a flat shape extending in the flow direction, and thus the bubble crushing member 312. The length L in the mainstream direction must be increased to some extent.

図11は液冷装置300に組み込まれた平行フィンの要部を示す模式図である。本変形例における気泡破砕部材312では、第1の板群313と第2の板群314を構成する板が互いに平行に配置され、第1の板群313の図中下側の面は凹凸が形成されており、第2の板群314の図中上側の面は凹凸が形成されている。   FIG. 11 is a schematic diagram showing the main part of the parallel fins incorporated in the liquid cooling apparatus 300. FIG. In the bubble crushing member 312 in this modification, the plates constituting the first plate group 313 and the second plate group 314 are arranged in parallel to each other, and the lower surface of the first plate group 313 is uneven. The upper surface of the second plate group 314 in the drawing is uneven.

このため、板により仕切られた隣り合う流路315,316間の流体抵抗は凹凸により差異が生じ、冷媒Lの流速に差が発生する。このため、蒸気泡Mが気泡破砕部材312により分断された後、気泡破砕部材312の出口側に蒸気泡Mが排出される時間がずれるため、蒸気泡Mが再合体しにくい。   For this reason, the fluid resistance between the adjacent flow paths 315 and 316 partitioned by the plate is different due to the unevenness, and the flow rate of the refrigerant L is different. For this reason, after the vapor bubbles M are separated by the bubble crushing member 312, the time for the vapor bubbles M to be discharged to the outlet side of the bubble crushing member 312 shifts, so that the vapor bubbles M are unlikely to rejoin.

図12は上述した液冷装置300の第2変形例を示す横断面図、図13は図12における12A−12A線で切断して矢印方向に見た縦断面図、図14は図12における12B−12B線で切断して矢印方向に見た縦断面図である。なお、これらの図において図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。   12 is a transverse sectional view showing a second modification of the liquid cooling apparatus 300 described above, FIG. 13 is a longitudinal sectional view taken along the line 12A-12A in FIG. 12 and viewed in the direction of the arrow, and FIG. 14 is 12B in FIG. It is the longitudinal cross-sectional view cut | disconnected by the -12B line and looked at the arrow direction. In these drawings, the same functional parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted.

主流路310内には気泡破砕部材340が形成されている。気泡破砕部材340は、主流路310の流路高さの約半分の高さをもつ突起群341と、対向面Fに設けられた同様な突起群342とを備えている。気泡破砕部材340の入口側で破砕された蒸気泡Mの一部は伝熱面Hに近い位置に、残りは対向面Fに近い位置に放出される。   A bubble crushing member 340 is formed in the main channel 310. The bubble crushing member 340 includes a projection group 341 having a height that is approximately half the channel height of the main channel 310 and a similar projection group 342 provided on the facing surface F. A part of the steam bubbles M crushed on the inlet side of the bubble crushing member 340 is discharged to a position close to the heat transfer surface H, and the rest is discharged to a position close to the facing surface F.

一方、ノズル321から過冷状態の冷媒Lが噴き出すが、気泡破砕部材340の出口で対向面Fの近くに吐き出された蒸気泡Mは対向面Fから同じ高さに吐き出される他の蒸気泡Mとの間の隙間に冷媒Lが噴出されることになるため、他の気泡と合体しにくくなる。このため、バーンアウト現象の発生を抑制することが可能となる。   On the other hand, although the supercooled refrigerant L is ejected from the nozzle 321, the vapor bubble M discharged near the opposing surface F at the outlet of the bubble crushing member 340 is another vapor bubble M discharged from the opposing surface F to the same height. Since the refrigerant L is ejected into the gap between the two, it is difficult to unite with other bubbles. For this reason, it is possible to suppress the occurrence of the burnout phenomenon.

なお、ノズル321は、突起群342の下流に配置しても良いし、突起群342の伝熱面Hに近い位置や、突起群342の側面に配置しても良い。   The nozzle 321 may be disposed downstream of the projection group 342, or may be disposed at a position near the heat transfer surface H of the projection group 342 or on the side surface of the projection group 342.

図15は上述した液冷装置300の第3変形例の原理を示す説明図、図16は図15における15A−15A線で切断して矢印方向に見た断面図、図17は図15における15B−15B線で切断して矢印方向に見た断面図である。   15 is an explanatory view showing the principle of the third modification of the liquid cooling apparatus 300 described above, FIG. 16 is a sectional view taken along the line 15A-15A in FIG. 15 and viewed in the direction of the arrow, and FIG. It is sectional drawing cut | disconnected by the -15B line | wire and seeing in the arrow direction.

本変形例では気泡破砕部材350が設けられている。気泡破砕部材350は、複数の管状部材351〜353とを備えている。気泡破砕部材350に導入された蒸気泡Mは、入口で破砕される。これら分離された蒸気泡Mは気泡破砕部材350の出口では、冷媒Lの通流方向に直交する断面において、入口とは異なる位置に排出される。このため、蒸気泡Mが再合体にしにくい。なお、管状部材351〜353の長さを異ならせる、内壁面に凹凸を形成する等してさらに蒸気泡Mの再合体を確実に防止するようにしてもよい。   In this modification, a bubble crushing member 350 is provided. The bubble crushing member 350 includes a plurality of tubular members 351 to 353. The vapor bubble M introduced into the bubble crushing member 350 is crushed at the inlet. The separated vapor bubbles M are discharged from the outlet of the bubble crushing member 350 to a position different from the inlet in a cross section orthogonal to the flow direction of the refrigerant L. For this reason, it is difficult for the vapor bubbles M to be reunited. In addition, you may make it prevent the recombination of the vapor bubble M reliably by making the length of the tubular members 351-353 different, forming an unevenness | corrugation in an inner wall surface, etc.

図18は上述した液冷装置300の第4変形例を示す図であって、図19における19A−19A線で切断して矢印方向に見た断面図、図19は図18における18A−18A線で切断して矢印方向に見た断面図である。なお、これらの図において図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。   18 is a view showing a fourth modification of the liquid cooling device 300 described above, which is a cross-sectional view taken along the line 19A-19A in FIG. 19 and viewed in the direction of the arrow, and FIG. 19 is a line 18A-18A in FIG. It is sectional drawing cut | disconnected by and seen in the arrow direction. In these drawings, the same functional parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted.

気泡破砕部材360は、伝熱面Hに設けられた第1の板群361と対向面Fに設けられた第2の板群362とを備えている。第1の板群361及び第2の板群362はいずれも主流路310の流路高さの約半分の高さを有し、冷媒Lの通流方向に対する傾斜角度が異なって取り付けられている。主流路310は板群の傾斜に沿って、気泡破砕部材360の下流側で主流路310の上半分と下半分で異なる方向に曲げられている。気泡破砕部材360の下流には副流路330から主流路310に冷媒Lを供給するためのノズル321が設けられている。   The bubble crushing member 360 includes a first plate group 361 provided on the heat transfer surface H and a second plate group 362 provided on the facing surface F. Each of the first plate group 361 and the second plate group 362 has a height that is about half of the flow path height of the main flow path 310, and is attached with different inclination angles with respect to the flow direction of the refrigerant L. . The main flow path 310 is bent in different directions in the upper half and the lower half of the main flow path 310 on the downstream side of the bubble crushing member 360 along the inclination of the plate group. A nozzle 321 for supplying the refrigerant L from the sub-flow path 330 to the main flow path 310 is provided downstream of the bubble crushing member 360.

気泡破砕部材360に到達して分割された蒸気泡Mの上半分と下半分とは異なる方向へ排出されるため、再び合体しにくい。なお、第1の板群361及び第2の板群362はほぼ同じ高さであるが、例えば第1の板群361の高さを高くして第2の板群362の高さを低くしたり、その逆であってもよい。   Since the upper half and the lower half of the vapor bubbles M that have reached the bubble crushing member 360 and are divided are discharged in different directions, it is difficult to unite again. The first plate group 361 and the second plate group 362 have substantially the same height. For example, the height of the first plate group 361 is increased and the height of the second plate group 362 is decreased. Or vice versa.

図20は上述した液冷装置300の第5変形例の要部を示す縦断面図、図21は動作原理を示す説明図である。なお、これらの図において図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例では主流路310内に気泡破砕部材370が突設されている。   FIG. 20 is a longitudinal sectional view showing an essential part of a fifth modification of the liquid cooling apparatus 300 described above, and FIG. 21 is an explanatory view showing the operating principle. In these drawings, the same functional parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted. In the present modification, a bubble crushing member 370 is protruded from the main channel 310.

気泡破砕部材370は、対向面Fに上流側が細く、下流側が太くなった突起状に形成されている。また、ノズル321が気泡破砕部材370の下流側端面に設けられている。気泡破砕部材370により分断された蒸気泡Mは気泡破砕部材370の出口で互いに過冷状態の冷媒Lにより仕切られるため、蒸気泡Mが再合体しにくくなると同時に、蒸気泡Mと冷媒Lとの熱交換も促進され、蒸気泡Mの消滅あるいは減容を効果的に行なうことができる。   The bubble crushing member 370 is formed in a protruding shape in which the upstream side is thin on the facing surface F and the downstream side is thick. A nozzle 321 is provided on the downstream end face of the bubble crushing member 370. Since the vapor bubbles M divided by the bubble crushing member 370 are separated from each other by the supercooled refrigerant L at the outlet of the bubble crushing member 370, the vapor bubbles M are difficult to recombine and at the same time, Heat exchange is also promoted, and the vapor bubbles M can be effectively eliminated or reduced in volume.

図22は上述した液冷装置300の第6変形例の要部を示す横断面図、図23は要部を示す縦断面図である。これらの図において、図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 22 is a cross-sectional view showing the main part of a sixth modification of the liquid cooling apparatus 300 described above, and FIG. 23 is a vertical cross-sectional view showing the main part. In these drawings, the same functional parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted.

本変形例では、主流路310の一部であって上述した気泡破砕部材312の上流側直前に凹部380を設け、冷媒Lの通流方向に直交する方向の断面積を拡大するようにしている。   In this modification, a recess 380 is provided in part of the main flow path 310 and immediately upstream of the above-described bubble crushing member 312 so as to increase the cross-sectional area in the direction orthogonal to the flow direction of the refrigerant L. .

一般的に、放熱性能を高めるために主流路310の流速を大きくし、蒸気泡Mが通流方向に伸長し細長形状となった場合には気泡破砕部材312による分割数が少なくなる虞がある。このため、気泡破砕部材312を通過しても蒸気泡Mが比較的大きい状態で残る可能性がある。一方、気泡を小さく分割するためには気泡破砕部材の板間の隙間を小さくしなければならなくなる。これは流体抵抗を上昇させ、また製造も困難となる。   In general, when the flow velocity of the main flow path 310 is increased in order to improve the heat dissipation performance and the vapor bubbles M are elongated in the flow direction and become elongated, the number of divisions by the bubble crushing member 312 may be reduced. . For this reason, even if it passes through the bubble crushing member 312, the vapor bubbles M may remain in a relatively large state. On the other hand, in order to divide the bubbles into small pieces, the gaps between the plates of the bubble crushing member must be reduced. This increases fluid resistance and makes it difficult to manufacture.

本変形例によれば、気泡破砕部材312の上流で主流路310を流れる冷媒Lの流速が低下し、細長形状の蒸気泡Mが一旦偏平形状となる。このため、蒸気泡Mの分割数を増やすことができるとともに、圧力損失が小さく、かつ、気泡破砕部材312も容易に製造が可能となる。   According to this modification, the flow rate of the refrigerant L flowing through the main channel 310 upstream of the bubble crushing member 312 is reduced, and the elongated vapor bubble M once becomes a flat shape. For this reason, the number of divisions of the vapor bubbles M can be increased, the pressure loss is small, and the bubble crushing member 312 can be easily manufactured.

図24は本発明の第3の実施の形態に係る液冷装置400の要部を示す平面図、図25は斜視図である。これらの図において、図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 24 is a plan view showing the main part of a liquid cooling apparatus 400 according to the third embodiment of the present invention, and FIG. 25 is a perspective view. In these drawings, the same functional parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

液冷装置400は、筐体401と、この筐体401に設けられ、冷媒Lが通流する主流路410と、この主流路410の両側に隔壁420により隔てられて設けられた一対の副流路430とを備えている。   The liquid cooling device 400 includes a casing 401, a main flow path 410 that is provided in the casing 401 and through which the refrigerant L flows, and a pair of substreams that are provided on both sides of the main flow path 410 and separated by a partition wall 420. Road 430 is provided.

筐体401の主流路410側の外壁には、パワー素子(不図示)を搭載した基板Sが取付けられている。主流路410は前述した主流路配管109に接続され、副流路430は前述した副流路配管110に接続されている。   A substrate S on which a power element (not shown) is mounted is attached to the outer wall of the housing 401 on the main flow path 410 side. The main channel 410 is connected to the main channel pipe 109 described above, and the sub channel 430 is connected to the sub channel pipe 110 described above.

一対の副流路430間には管状路431が設けられている。管状路431には、冷媒Lが通流する連通流路432が設けられている。   A tubular path 431 is provided between the pair of sub flow paths 430. The tubular channel 431 is provided with a communication channel 432 through which the refrigerant L flows.

このように構成された液冷装置400によれば、上述した液冷装置200と同様にしてパワー素子Pで発生した熱が主流路410内を通流する冷媒Lに伝達され、冷媒Lは伝熱面Hで沸騰し、蒸気泡Mを発生する。過冷状態の冷媒Lは副流路430により管状路431を介して連通流路432まで供給される。冷媒Lが連通流路432を通して主流路310に噴出する。   According to the liquid cooling apparatus 400 configured as described above, the heat generated in the power element P is transmitted to the refrigerant L flowing through the main flow path 410 in the same manner as the liquid cooling apparatus 200 described above, and the refrigerant L is transmitted. Boils on the hot surface H and generates a vapor bubble M. The supercooled refrigerant L is supplied to the communication channel 432 through the tubular channel 431 by the sub-channel 430. The refrigerant L is ejected to the main flow path 310 through the communication flow path 432.

液冷装置400によれば、上述した液冷装置200と同様の効果を得ることができる。また、管状路431は図示のとおりほぼ均等に配置されていもよいし、主流路410の下流側ほど本数を増やしたり、下流側のみに配置するようにしてもよい。また、必ずしも管状路431は流れと直交していなくてもよいし、管状路431の断面積や管状路431に設けられた連通流路432の形状は各連通流路432からの噴出量を制御するため場所により変化させてもよい。また、管状路431の材質は噴出される冷媒Lの温度と主流路410内の冷媒Lの温度との差ができる限り大きくなるように、熱伝導率の低い材質を用いることが望ましい。副流路430に流す冷媒Lは伝熱面H前方にて主流路410から分流された冷媒Lではなく、主流路410に冷媒Lを供給するものとは別系統の循環経路による冷媒Lを流してもよい。   According to the liquid cooling apparatus 400, the same effect as the liquid cooling apparatus 200 described above can be obtained. Further, the tubular passages 431 may be arranged substantially equally as shown in the figure, or the number of the tubular passages 431 may be increased toward the downstream side of the main flow path 410 or may be arranged only on the downstream side. In addition, the tubular passage 431 does not necessarily have to be orthogonal to the flow, and the cross-sectional area of the tubular passage 431 and the shape of the communication channel 432 provided in the tubular channel 431 control the ejection amount from each communication channel 432. Therefore, it may be changed depending on the place. Moreover, it is desirable to use a material having a low thermal conductivity so that the difference between the temperature of the refrigerant L to be ejected and the temperature of the refrigerant L in the main channel 410 is as large as possible. The refrigerant L flowing through the sub-flow path 430 is not the refrigerant L diverted from the main flow path 410 in front of the heat transfer surface H, but flows through the circulation path of a system different from that supplying the refrigerant L to the main flow path 410. May be.

図26は上述した液冷装置400の第1変形例の要部を示す平面図である。この図において、図24と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例では、副流路430が主流路410の片側にのみ設けられている。なお、管状路431の主流路410の反対側の壁面付近、すなわち副流路430から最も離れた先端部は閉じられていても良いし、連通流路432と同様の穴が開けられていてもよい。   FIG. 26 is a plan view showing a main part of a first modification of the liquid cooling apparatus 400 described above. In this figure, the same functional parts as those in FIG. 24 are denoted by the same reference numerals, and detailed description thereof is omitted. In this modification, the sub flow channel 430 is provided only on one side of the main flow channel 410. Note that the vicinity of the wall surface on the opposite side of the main channel 410 of the tubular channel 431, that is, the distal end portion farthest from the sub-channel 430 may be closed, or a hole similar to the communication channel 432 may be formed. Good.

図27は上述した液冷装置400の第2変形例の要部を示す斜視図である。この図において、図24と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、管状路431の外形が円形となっている。   FIG. 27 is a perspective view showing a main part of a second modification of the liquid cooling apparatus 400 described above. In this figure, the same functional parts as those in FIG. 24 are denoted by the same reference numerals, and detailed description thereof is omitted. In this modification, the outer shape of the tubular path 431 is circular.

図28は上述した液冷装置の第3変形例の要部を示す斜視図である。この図において、図24と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、管状路431の外形が楕円形となっている。このため、主流路410内を通流する冷媒Lの流体抵抗を軽減できる。   FIG. 28 is a perspective view showing an essential part of a third modification of the liquid cooling apparatus described above. In this figure, the same functional parts as those in FIG. 24 are denoted by the same reference numerals, and detailed description thereof is omitted. In this modification, the outer shape of the tubular path 431 is an ellipse. For this reason, the fluid resistance of the refrigerant L flowing through the main flow path 410 can be reduced.

図29は上述した液冷装置の第4変形例の要部を示す斜視図である。この図において、図24と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、管状路431の外形が楕円形であり、かつ、気泡破砕部材433が取付けられている。   FIG. 29 is a perspective view showing a main part of a fourth modification of the liquid cooling apparatus described above. In this figure, the same functional parts as those in FIG. 24 are denoted by the same reference numerals, and detailed description thereof is omitted. In this modification, the outer shape of the tubular path 431 is an ellipse, and the bubble crushing member 433 is attached.

図30は本発明の第4の実施の形態に係る液冷装置500の要部を示す縦断面図、図31は横断面図である。これらの図において、図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 30 is a longitudinal sectional view showing a main part of a liquid cooling apparatus 500 according to the fourth embodiment of the present invention, and FIG. 31 is a transverse sectional view. In these drawings, the same functional parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted.

液冷装置500は、筐体501と、この筐体501に設けられ、冷媒Lが通流する主流路510と、この主流路510の凹部511の近傍に配置された羽根車520を備えている。筐体501の外壁には、パワー素子Pを搭載した基板Sが取付けられている。主流路510は前述した主流路配管109に接続されている。   The liquid cooling apparatus 500 includes a housing 501, a main channel 510 provided in the housing 501, through which the refrigerant L flows, and an impeller 520 disposed in the vicinity of the recess 511 of the main channel 510. . A substrate S on which the power element P is mounted is attached to the outer wall of the housing 501. The main flow path 510 is connected to the main flow path pipe 109 described above.

羽根車520の回転軸521は、主流路510の中心から所定だけずれた位置に配置されており、この回転軸521の周囲に羽根522が取付けられており、羽根522の先端が伝熱面Hに非常に近い場所を通過するようになっている。なお、回転軸521には、モータ等の駆動手段は取付けられていない。   The rotating shaft 521 of the impeller 520 is disposed at a position deviated from the center of the main flow path 510 by a predetermined amount, and the blade 522 is attached around the rotating shaft 521, and the tip of the blade 522 has a heat transfer surface H. It is supposed to pass through a place very close to. Note that a driving means such as a motor is not attached to the rotating shaft 521.

このように構成された液冷装置500においては、主流路510を通流する冷媒Lの流れによって羽根車520が回転する。羽根車520の回転に伴って伝熱面H近傍の冷媒Lが攪拌される。このため、伝熱面H近傍に形成された温度境界層を破壊し熱伝達を促進することができる。また、沸騰により蒸気泡Mが発生している場合には、羽根522により蒸気泡Wが破砕され、伝熱面Hに付着した蒸気泡Mが強制的に引き剥がされ、バーンアウト現象の発生を防止することができる。   In the liquid cooling apparatus 500 configured as described above, the impeller 520 is rotated by the flow of the refrigerant L flowing through the main flow path 510. As the impeller 520 rotates, the refrigerant L near the heat transfer surface H is agitated. For this reason, the temperature boundary layer formed in the vicinity of the heat transfer surface H can be broken and heat transfer can be promoted. Further, when the vapor bubble M is generated by boiling, the vapor bubble W is crushed by the blade 522, the vapor bubble M adhering to the heat transfer surface H is forcibly peeled off, and a burnout phenomenon is generated. Can be prevented.

なお、回転軸521が主流路510の中心からずれているために羽根車522の円周の一部分は主流路510の側壁を膨らませた凹部511に入る構造となっているが、この凹部511に副流路530からの過冷状態の冷媒Lを連通流路531を介して送ることで、伝熱面Hに効果的に冷媒Lを供給することもできる。また、冷媒Lを供給する連通流路531の向きを調整することにより、冷媒Lが噴出す力を羽根車520を回転させる動力として用いても良い。   Since the rotation shaft 521 is displaced from the center of the main flow path 510, a part of the circumference of the impeller 522 enters a recess 511 in which the side wall of the main flow path 510 is expanded. The refrigerant L can also be effectively supplied to the heat transfer surface H by sending the supercooled refrigerant L from the flow path 530 through the communication flow path 531. Further, by adjusting the direction of the communication flow path 531 for supplying the refrigerant L, the force ejected by the refrigerant L may be used as power for rotating the impeller 520.

なお、羽根車520の羽根522の高さは主流路510の流路高さとほぼ等しいが、主流路510の流れあるいは副流路530から供給される冷媒Lの流れにより羽根車520を回転させる動力に不足がなければ羽根高さを低くすることができる。この場合、回転する羽根522は伝熱面H近くのみに存在するため、主流路510を流れる冷媒Lの流体抵抗が羽根高さが高い場合に比較して小さくなる。   The height of the blade 522 of the impeller 520 is substantially equal to the height of the main flow path 510, but the power for rotating the impeller 520 by the flow of the main flow path 510 or the flow of the refrigerant L supplied from the sub flow path 530. If there is no shortage, the blade height can be lowered. In this case, since the rotating blade 522 exists only near the heat transfer surface H, the fluid resistance of the refrigerant L flowing through the main flow path 510 is smaller than that when the blade height is high.

図32は上述した液冷装置500の第1変形例の要部を示す断面図、図33は羽根車の一例を示す正面図、図34は羽根車の別の例を示す正面図。これらの図において、図30及び図31と同一機能部分には同一符号を付し、その詳細な説明は省略する。   32 is a cross-sectional view showing the main part of the first modification of the liquid cooling apparatus 500 described above, FIG. 33 is a front view showing an example of an impeller, and FIG. 34 is a front view showing another example of the impeller. In these drawings, the same functional parts as those in FIGS. 30 and 31 are denoted by the same reference numerals, and detailed description thereof is omitted.

本変形例では、主流路510内に軸流の羽根車540が配置されている。この羽根車540の回転軸541は冷媒Lの通流方向に平行である。羽根車540は主流路510内に1つ配置されていてもよいし、複数配置されていてもよい。羽根車540の回転軸541には複数の羽根542が設けられており、羽根542の先端部と伝熱面Hとの間隙は狭くなるように設定されている。   In this modification, an axial flow impeller 540 is disposed in the main flow path 510. The rotating shaft 541 of the impeller 540 is parallel to the flow direction of the refrigerant L. One impeller 540 may be disposed in the main flow path 510, or a plurality of impellers 540 may be disposed. The rotating shaft 541 of the impeller 540 is provided with a plurality of blades 542, and the gap between the tip of the blade 542 and the heat transfer surface H is set to be narrow.

図35は上述した液冷装置500の第2変形例の要部を示す縦断面図である。この図において、図30及び図31と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、冷媒Lの通流方向に複数の羽根車540が配置されている。主流路510内の冷媒流速が大きいとき、沸騰により発生した蒸気泡Mは通流方向に伸びた形状となるが、このような羽根車540の配置とすることにより、通流方向に長い蒸気泡Mを分断することもできる。   FIG. 35 is a longitudinal sectional view showing a main part of a second modification of the liquid cooling apparatus 500 described above. In this figure, the same functional parts as those in FIGS. 30 and 31 are denoted by the same reference numerals, and detailed description thereof is omitted. In this modification, a plurality of impellers 540 are arranged in the flow direction of the refrigerant L. When the refrigerant flow rate in the main channel 510 is large, the vapor bubbles M generated by boiling have a shape extending in the flow direction. By arranging such an impeller 540, the vapor bubbles long in the flow direction are provided. M can also be divided.

図36は本発明の第5の実施の形態に係る液冷システム600の構成を示す図である。なお、図36において図1と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 36 is a diagram showing a configuration of a liquid cooling system 600 according to the fifth embodiment of the present invention. 36, the same functional parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

液冷システム600においては、1つのポンプと1つの分岐装置の組み合わせではなく、2組のポンプを設けるようにしたものである。液冷システム600は、液相の冷媒Lを貯溜する冷媒溜601と、液冷装置200の主流路210に冷媒Lを供給する冷媒主供給部610と、液冷装置200の副流路230に冷媒Lを供給する冷媒副供給部620と、液冷装置200と、この液冷装置200に配管630を介して接続された熱交換器631と、この熱交換器631と冷媒溜601とを接続する配管632とを備えている。なお、冷媒溜601には圧力調整装置602が設けられている。   In the liquid cooling system 600, two sets of pumps are provided instead of a combination of one pump and one branching device. The liquid cooling system 600 includes a refrigerant reservoir 601 that stores the liquid phase refrigerant L, a refrigerant main supply unit 610 that supplies the refrigerant L to the main flow path 210 of the liquid cooling apparatus 200, and a sub-flow path 230 of the liquid cooling apparatus 200. A refrigerant sub-supply unit 620 for supplying the refrigerant L, a liquid cooling device 200, a heat exchanger 631 connected to the liquid cooling device 200 via a pipe 630, and the heat exchanger 631 and the refrigerant reservoir 601 are connected. And a piping 632 to be used. The refrigerant reservoir 601 is provided with a pressure adjusting device 602.

冷媒主供給部610は、冷媒溜601に配管611を介して接続され冷媒Lを送り出すポンプ612と、このポンプ612及び冷媒溜601にそれぞれ配管613,614を介して接続された流量調整装置615とを備えている。なお、流量調整装置615は配管616を介して主流路210に接続されている。   The refrigerant main supply unit 610 is connected to the refrigerant reservoir 601 via a pipe 611 and sends out the refrigerant L, and a flow rate adjusting device 615 connected to the pump 612 and the refrigerant reservoir 601 via pipes 613 and 614, respectively. It has. The flow rate adjusting device 615 is connected to the main flow path 210 via a pipe 616.

流量調整装置615は、所定の流量の冷媒Lが主流路210に供給されるように調整する機能を有しており、流量センサ(不図示)からの検出値に基づいて流路をバルブで絞る、又は、ポンプ612ヘの電カの供給を制御する。なお、ポンプ621の安定した運転に適した領域よりも流量を低くするときには冷媒溜601に一部の冷媒Lを戻すようにしている。   The flow rate adjusting device 615 has a function of adjusting the refrigerant L at a predetermined flow rate so as to be supplied to the main flow path 210, and throttles the flow path with a valve based on a detection value from a flow rate sensor (not shown). Alternatively, the power supply to the pump 612 is controlled. Note that when the flow rate is made lower than the region suitable for stable operation of the pump 621, a part of the refrigerant L is returned to the refrigerant reservoir 601.

冷媒副供給部620は、冷媒溜601に配管621を介して接続され冷媒Lを送り出すポンプ622と、このポンプ622及び冷媒溜601にそれぞれ配管623,624を介して接続された流量調整装置625とを備えている。なお、流量調整装置625は配管626を介して主流路230に接続されている。   The refrigerant sub-supply unit 620 is connected to the refrigerant reservoir 601 via a pipe 621 and sends out a refrigerant L, and the flow rate adjusting device 625 connected to the pump 622 and the refrigerant reservoir 601 via pipes 623 and 624, respectively. It has. The flow rate adjusting device 625 is connected to the main flow path 230 via a pipe 626.

流量調整装置625は、所定の流量の冷媒Lが副流路230に供給されるように調整する機能を有しており、流量センサ(不図示)からの検出値に基づいて流路をバルブで絞る、又は、ポンプ622ヘの電カの供給を制御する。なお、ポンプ622の安定した運転に適した領域よりも流量を低くするときには冷媒溜601に一部の冷媒Lを戻すようにしている。   The flow rate adjusting device 625 has a function of adjusting the refrigerant L at a predetermined flow rate so as to be supplied to the sub flow path 230, and the flow path is controlled by a valve based on a detection value from a flow rate sensor (not shown). The power supply to the pump 622 is controlled. It should be noted that a part of the refrigerant L is returned to the refrigerant reservoir 601 when the flow rate is made lower than the region suitable for stable operation of the pump 622.

このように主流路210に導入される冷媒Lと副流路230主流路に導入される冷媒Lとが別系統によるもの場合、それぞれの冷媒Lのモジュール入口での温度を別個に制御可能であり、副流路230に供給する冷媒Lの温度を主流路210に供給する冷媒Lの温度よりも低くできる。このとき、主流路210と副流路230に供給する冷媒温度は同一の場合よりも副流路230に供給する冷媒流量は小さくても同じ効果を期待できる。   In this way, when the refrigerant L introduced into the main flow path 210 and the refrigerant L introduced into the sub flow path 230 are in different systems, the temperatures at the module inlets of the respective refrigerant L can be controlled separately. In addition, the temperature of the refrigerant L supplied to the sub flow path 230 can be lower than the temperature of the refrigerant L supplied to the main flow path 210. At this time, the same effect can be expected even if the refrigerant flow rate supplied to the sub-channel 230 is smaller than the case where the refrigerant temperatures supplied to the main channel 210 and the sub-channel 230 are the same.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明によれば、発熱体から冷媒への熱伝達を促進することで、発熱体を均等に冷却できると同時に冷媒の流量を低減できる液冷装置及び液冷システムが得られる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid cooling apparatus and liquid cooling system which can reduce the flow volume of a refrigerant | coolant while being able to cool a heat generating body uniformly by accelerating | stimulating the heat transfer from a heat generating body to a refrigerant | coolant are obtained.

本発明の第1の実施の形態に係る液冷システムの構成を示す図。The figure which shows the structure of the liquid cooling system which concerns on the 1st Embodiment of this invention. 同液冷システムに組み込まれた液冷装置の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the liquid cooling apparatus integrated in the liquid cooling system. 同液冷装置の作用を示す縦断面図。The longitudinal cross-sectional view which shows the effect | action of the liquid cooling device. 同液冷装置の第1変形例を示す縦断面図。The longitudinal cross-sectional view which shows the 1st modification of the liquid cooling device. 同液冷装置の第2変形例を示す縦断面図。The longitudinal cross-sectional view which shows the 2nd modification of the liquid cooling device. 同液冷装置の第3変形例を示す縦断面図。The longitudinal cross-sectional view which shows the 3rd modification of the liquid cooling device. 本発明の第2の実施の形態に係る液冷システムに組み込まれた液冷装置を示す横断面図。The cross-sectional view which shows the liquid cooling device integrated in the liquid cooling system which concerns on the 2nd Embodiment of this invention. 同液冷装置の縦断面図。The longitudinal cross-sectional view of the liquid cooling device. 同液冷装置の第1変形例を示す横断面図。The cross-sectional view which shows the 1st modification of the liquid cooling device. 同液冷装置の縦断面図。The longitudinal cross-sectional view of the liquid cooling device. 同液冷装置に組み込まれた平行フィンの要部を示す模式図。The schematic diagram which shows the principal part of the parallel fin integrated in the liquid cooling device. 同液冷装置の第2変形例を示す横断面図。The cross-sectional view which shows the 2nd modification of the liquid cooling device. 同液冷装置を図12における12A−12A線で切断して矢印方向に見た縦断面図。The longitudinal cross-sectional view which cut | disconnected the liquid cooling device by the 12A-12A line | wire in FIG. 12, and looked at the arrow direction. 同液冷装置を図12における12B−12B線で切断して矢印方向に見た縦断面図。The longitudinal cross-sectional view which cut | disconnected the liquid cooling device by the 12B-12B line | wire in FIG. 12, and looked at the arrow direction. 同液冷装置の第3変形例の原理を示す説明図。Explanatory drawing which shows the principle of the 3rd modification of the liquid cooling device. 同液冷装置の要部を図15における15A−15A線で切断して矢印方向に見た断面図。Sectional drawing which cut | disconnected the principal part of the liquid cooling device by the 15A-15A line in FIG. 15, and looked at the arrow direction. 同液冷装置の要部を図15における15B−15B線で切断して矢印方向に見た断面図。Sectional drawing which cut | disconnected the principal part of the liquid cooling device by the 15B-15B line | wire in FIG. 15, and looked at the arrow direction. 同液冷装置の第4変形例を示す図であって、図19における19A−19A線で切断して矢印方向に見た断面図。It is a figure which shows the 4th modification of the liquid cooling device, Comprising: Sectional drawing cut | disconnected by the 19A-19A line | wire in FIG. 同液冷装置を図18における18A−18A線で切断して矢印方向に見た断面図。Sectional drawing which cut | disconnected the liquid cooling device by the 18A-18A line in FIG. 18, and looked at the arrow direction. 同液冷装置の第5変形例の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the 5th modification of the liquid cooling device. 同液冷装置の動作原理を示す説明図。Explanatory drawing which shows the operating principle of the liquid cooling device. 同液冷装置の第6変形例の要部を示す横断面図。The cross-sectional view which shows the principal part of the 6th modification of the liquid cooling device. 同液冷装置の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the liquid cooling device. 本発明の第3の実施の形態に係る液冷装置の要部を示す平面図。The top view which shows the principal part of the liquid cooling device which concerns on the 3rd Embodiment of this invention. 同液冷装置を示す斜視図。The perspective view which shows the liquid cooling device. 同液冷装置の第1変形例の要部を示す平面図。The top view which shows the principal part of the 1st modification of the liquid cooling device. 同液冷装置の第2変形例の要部を示す斜視図。The perspective view which shows the principal part of the 2nd modification of the liquid cooling device. 同液冷装置の第3変形例の要部を示す斜視図。The perspective view which shows the principal part of the 3rd modification of the liquid cooling device. 同液冷装置の第4変形例の要部を示す斜視図。The perspective view which shows the principal part of the 4th modification of the liquid cooling device. 本発明の第4の実施の形態に係る液冷装置の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the liquid cooling device which concerns on the 4th Embodiment of this invention. 同液冷装置の要部を示す横断面図。The cross-sectional view which shows the principal part of the liquid cooling device. 同液冷装置の第1変形例の要部を示す断面図。Sectional drawing which shows the principal part of the 1st modification of the liquid cooling device. 同液冷装置に組み込まれた羽根車の一例を示す正面図。The front view which shows an example of the impeller integrated in the liquid cooling device. 同液冷装置に組み込まれた羽根車の別の例を示す正面図。The front view which shows another example of the impeller integrated in the liquid cooling device. 同液冷装置の第2変形例の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the 2nd modification of the liquid cooling device. 本発明の第5の実施の形態に係る液冷システムの構成を示す図。The figure which shows the structure of the liquid cooling system which concerns on the 5th Embodiment of this invention. 液冷システムの一例を示す図。The figure which shows an example of a liquid cooling system. 同液冷システムに組み込まれた液冷装置を示す縦断面図。The longitudinal cross-sectional view which shows the liquid cooling device integrated in the liquid cooling system.

符号の説明Explanation of symbols

100,600…液冷システム、200,300,400,500…液冷装置、P…パワー素子(発熱体)、L…冷媒。   DESCRIPTION OF SYMBOLS 100,600 ... Liquid cooling system, 200,300,400,500 ... Liquid cooling device, P ... Power element (heating element), L ... Refrigerant.

Claims (13)

発熱体を冷媒により冷却する液冷装置において、
上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、
この主流路よりも上記発熱体から離間した位置に設けられ、上記冷媒が通流する副流路とを備え、
上記主流路と上記副流路との間には上記冷媒を通流させる連通流路が設けられていることを特徴とする液冷装置。
In a liquid cooling device that cools a heating element with a refrigerant,
A main flow path through which the refrigerant flows and is thermally connected to the heating element;
Provided in a position farther from the heating element than the main flow path, and a sub flow path through which the refrigerant flows,
A liquid cooling apparatus, wherein a communication channel for allowing the refrigerant to flow therethrough is provided between the main channel and the sub channel.
上記主流路の上流側に比べて下流側に多く又は大口径の連通流路が設けられていることを特徴とする請求項1に記載の液冷装置。   The liquid cooling device according to claim 1, wherein a communication channel having a larger or larger diameter is provided on the downstream side than the upstream side of the main channel. 上記主流路内の上記冷媒の通流方向と上記副流路内の上記冷媒の通流方向とが逆方向であることを特徴とする請求項1に記載の液冷装置。   The liquid cooling device according to claim 1, wherein a flow direction of the refrigerant in the main flow path and a flow direction of the refrigerant in the sub flow path are opposite to each other. 上記主流路は、その流路内に上記冷媒を上記冷媒を分割・合流させる気泡破砕部材を具備していることを特徴とする請求項1に記載の液冷装置。   The liquid cooling apparatus according to claim 1, wherein the main flow path includes a bubble crushing member that divides and merges the refrigerant into the flow path. 上記気泡破砕部材は、上記冷媒の分割位置と合流位置とで上記冷媒の通流方向に交差する断面内での流路位置を異ならせるものであることを特徴とする請求項4に記載の液冷装置。   5. The liquid according to claim 4, wherein the bubble crushing member changes a flow path position in a cross section intersecting a flow direction of the refrigerant between a division position and a merge position of the refrigerant. Cold equipment. 上記気泡破砕部材は、上記冷媒の分割位置と合流位置とで分割された冷媒の一方の流速と他方の流速とを異ならせるものであることを特徴とする請求項4に記載の液冷装置。   5. The liquid cooling device according to claim 4, wherein the bubble crushing member makes one flow rate and the other flow rate of the refrigerant divided at the division position and the merge position of the refrigerant different from each other. 上記主流路には、上記気泡破砕部材の下流側ににより分割された流路に冷媒の通流を阻害する凹凸部材が設けられていることを特徴とする請求項4に記載の液冷装置。   5. The liquid cooling apparatus according to claim 4, wherein the main flow path is provided with a concavo-convex member that inhibits the flow of the refrigerant in a flow path divided on the downstream side of the bubble crushing member. 上記主流路は、上記気泡破砕部材の上流側において上記通流方向に直交する断面の面積が拡大されていることを特徴とする請求項4に記載の液冷装置。   The liquid cooling device according to claim 4, wherein the main channel has an enlarged cross-sectional area orthogonal to the flow direction on the upstream side of the bubble crushing member. 上記主流路は、上記気泡破砕部材の下流側に上記連通流路が設けられていることを特徴とする請求項4に記載の液冷装置。   The liquid cooling apparatus according to claim 4, wherein the main flow path is provided with the communication flow path downstream of the bubble crushing member. 上記副流路は、上記冷媒が通流する孔部を有する管状部を備え、上記管状部が上記主流路内に配置されていることを特徴とする請求項1に記載の液冷装置。   The liquid cooling device according to claim 1, wherein the sub-channel includes a tubular portion having a hole through which the refrigerant flows, and the tubular portion is disposed in the main channel. 発熱体を冷媒により冷却する液冷装置において、
上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、
この主流路内に配置されるとともに、その羽根の少なくとも一部が上記発熱体の近傍を通過するように設けられた羽根車とを備えていることを特徴とする液冷装置。
In a liquid cooling device that cools a heating element with a refrigerant,
A main flow path through which the refrigerant flows and is thermally connected to the heating element;
A liquid cooling apparatus comprising: an impeller disposed in the main flow path and provided so that at least a part of the blades pass through the vicinity of the heating element.
発熱体を冷媒により冷却する液冷システムにおいて、
上記発熱体に設けられた液冷装置と、
この液冷装置に冷媒を送るポンプと、
このポンプにより送られた冷媒を分流して上記液冷装置に供給する分岐装置と、
上記液冷装置から排出された冷媒を冷却する熱交換器とを備え、
上記液冷装置は、上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、
この主流路よりも上記発熱体から離間した位置に設けられ、上記冷媒が通流する副流路とを備え、
上記主流路と上記副流路との間には上記冷媒を通流させる連通流路が設けられていることを特徴とする液冷システム。
In a liquid cooling system that cools a heating element with a refrigerant,
A liquid cooling device provided in the heating element;
A pump for sending refrigerant to the liquid cooling device;
A branch device for diverting the refrigerant sent by the pump and supplying the refrigerant to the liquid cooling device;
A heat exchanger for cooling the refrigerant discharged from the liquid cooling device,
The liquid cooling device includes a main channel through which the refrigerant flows and is thermally connected to the heating element;
Provided in a position farther from the heating element than the main flow path, and a sub flow path through which the refrigerant flows,
A liquid cooling system, wherein a communication channel for allowing the refrigerant to flow is provided between the main channel and the sub channel.
発熱体を冷媒により冷却する液冷システムにおいて、
上記発熱体に設けられた液冷装置と、
この液冷装置に上記冷媒を送る主流路用ポンプと、
上記液冷装置に上記冷媒を送る副流路用ポンプと、
上記液冷装置から排出された冷媒を冷却する熱交換器とを備え、
上記液冷装置は、上記主流路用ポンプから供給された上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、
この主流路よりも上記発熱体から離間した位置に設けられ、上記副流路用ポンプから供給された上記冷媒が通流する副流路とを備え、
上記主流路と上記副流路との間には上記冷媒を通流させる連通流路が設けられていることを特徴とする液冷システム。
In a liquid cooling system that cools a heating element with a refrigerant,
A liquid cooling device provided in the heating element;
A main channel pump for sending the refrigerant to the liquid cooling device;
A sub-channel pump for sending the refrigerant to the liquid cooling device;
A heat exchanger for cooling the refrigerant discharged from the liquid cooling device,
The liquid cooling device includes a main flow path through which the refrigerant supplied from the main flow path pump flows and is thermally connected to the heating element;
Provided in a position farther from the heating element than the main flow path, and a sub flow path through which the refrigerant supplied from the sub flow path pump flows,
A liquid cooling system, wherein a communication channel for allowing the refrigerant to flow is provided between the main channel and the sub channel.
JP2003307688A 2003-08-29 2003-08-29 Liquid cooling device and liquid cooling system Expired - Fee Related JP3908705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307688A JP3908705B2 (en) 2003-08-29 2003-08-29 Liquid cooling device and liquid cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307688A JP3908705B2 (en) 2003-08-29 2003-08-29 Liquid cooling device and liquid cooling system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006230944A Division JP4435125B2 (en) 2006-08-28 2006-08-28 Liquid cooling device

Publications (2)

Publication Number Publication Date
JP2005079337A true JP2005079337A (en) 2005-03-24
JP3908705B2 JP3908705B2 (en) 2007-04-25

Family

ID=34410407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307688A Expired - Fee Related JP3908705B2 (en) 2003-08-29 2003-08-29 Liquid cooling device and liquid cooling system

Country Status (1)

Country Link
JP (1) JP3908705B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089011A1 (en) * 2006-01-31 2007-08-09 Toyota Jidosha Kabushiki Kaisha Cooling structure of power semiconductor element and inverter
JP2007208155A (en) * 2006-02-06 2007-08-16 Hitachi Ltd Cooling system for electronic equipment
JP2007208154A (en) * 2006-02-06 2007-08-16 Hitachi Ltd Cooling device for electronic equipment
WO2007102498A1 (en) 2006-03-06 2007-09-13 Tokyo University Of Science Educational Foundation Administrative Organization Method of ebullient cooling, ebullient cooling apparatus, flow channel structure and application product thereof
WO2007105450A1 (en) * 2006-02-22 2007-09-20 Kyushu University, National University Corporation Heat removing method and heat removing apparatus
JP2007266117A (en) * 2006-03-27 2007-10-11 Toyota Motor Corp Cooler
JP2007266463A (en) * 2006-03-29 2007-10-11 Toyota Motor Corp Cooler
JP2008028124A (en) * 2006-07-20 2008-02-07 Tokyo Univ Of Science Ebullient cooling method, ebullient cooling apparatus and applied product thereof
JP2008028122A (en) * 2006-07-20 2008-02-07 Tokyo Univ Of Science Ebullient cooling method, ebullient cooling apparatus and applied product thereof
JP2008066670A (en) * 2006-09-11 2008-03-21 Toyota Motor Corp Two-flow-path type cooling device
KR100892626B1 (en) * 2006-07-25 2009-04-09 후지쯔 가부시끼가이샤 Liquid cooling unit and electronic apparatus
US7652884B2 (en) 2006-07-25 2010-01-26 Fujitsu Limited Electronic apparatus including liquid cooling unit
US7672125B2 (en) 2006-07-25 2010-03-02 Fujitsu Limited Electronic apparatus
US7701715B2 (en) 2006-07-25 2010-04-20 Fujitsu Limited Electronic apparatus
JP2012116455A (en) * 2010-12-03 2012-06-21 Hyundai Motor Co Ltd Cooling device for electric device of hybrid vehicle and electric vehicle
DE112007000829B4 (en) * 2006-04-06 2012-07-19 Toyota Jidosha Kabushiki Kaisha Arrangement of inverter and radiator and their use
DE112007001424B4 (en) * 2006-06-14 2014-06-26 Toyota Jidosha Kabushiki Kaisha cooler
JP2015002291A (en) * 2013-06-17 2015-01-05 富士通株式会社 Semiconductor device and cooling method for the same
WO2016151805A1 (en) * 2015-03-25 2016-09-29 三菱電機株式会社 Cooler, power conversion device, and cooling system
JP2017050375A (en) * 2015-09-01 2017-03-09 三菱電機株式会社 Electrical apparatus with coolant passage
WO2017203847A1 (en) * 2016-05-23 2017-11-30 パナソニックIpマネジメント株式会社 Cooling device, projector, and heat reception unit
JPWO2017047151A1 (en) * 2015-09-14 2018-02-01 三菱電機株式会社 Cooler, power conversion device, and cooling system
WO2019198368A1 (en) * 2018-04-09 2019-10-17 株式会社デンソー Heat exchanger
CN110520980A (en) * 2017-03-22 2019-11-29 福利家麦克罗斯株式会社 Cooling construction body, cooling system, heat generating device and structure
JP2019211112A (en) * 2018-05-31 2019-12-12 株式会社Soken Heat exchanger
JP2019216177A (en) * 2018-06-12 2019-12-19 株式会社Soken Component cooler
CN110637363A (en) * 2017-05-18 2019-12-31 迪亚巴蒂克斯股份有限公司 Heat sink and method for producing the same
WO2020196332A1 (en) * 2019-03-22 2020-10-01 日立化成株式会社 Cooling structure
CN113328176A (en) * 2020-02-28 2021-08-31 丰田自动车株式会社 Cooling device
WO2023248989A1 (en) * 2022-06-20 2023-12-28 ニデック株式会社 Cooling device and semiconductor device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207917A (en) * 2006-01-31 2007-08-16 Toyota Motor Corp Cooling structure and inverter of power semiconductor element
US7876563B2 (en) 2006-01-31 2011-01-25 Toyota Jidosha Kabushiki Kaisha Cooling structure of power semiconductor device and inverter
WO2007089011A1 (en) * 2006-01-31 2007-08-09 Toyota Jidosha Kabushiki Kaisha Cooling structure of power semiconductor element and inverter
JP4682859B2 (en) * 2006-02-06 2011-05-11 株式会社日立製作所 Cooling system for electronic equipment
JP2007208155A (en) * 2006-02-06 2007-08-16 Hitachi Ltd Cooling system for electronic equipment
JP2007208154A (en) * 2006-02-06 2007-08-16 Hitachi Ltd Cooling device for electronic equipment
JP4682858B2 (en) * 2006-02-06 2011-05-11 株式会社日立製作所 Cooling device for electronic equipment
WO2007105450A1 (en) * 2006-02-22 2007-09-20 Kyushu University, National University Corporation Heat removing method and heat removing apparatus
WO2007102498A1 (en) 2006-03-06 2007-09-13 Tokyo University Of Science Educational Foundation Administrative Organization Method of ebullient cooling, ebullient cooling apparatus, flow channel structure and application product thereof
JPWO2007102498A1 (en) * 2006-03-06 2009-07-23 学校法人東京理科大学 Boiling cooling method, boiling cooling device, flow channel structure, and application product thereof
JP2007266117A (en) * 2006-03-27 2007-10-11 Toyota Motor Corp Cooler
JP4552877B2 (en) * 2006-03-27 2010-09-29 トヨタ自動車株式会社 Cooler
JP2007266463A (en) * 2006-03-29 2007-10-11 Toyota Motor Corp Cooler
JP4544187B2 (en) * 2006-03-29 2010-09-15 トヨタ自動車株式会社 Cooler
DE112007000829B4 (en) * 2006-04-06 2012-07-19 Toyota Jidosha Kabushiki Kaisha Arrangement of inverter and radiator and their use
DE112007001424B4 (en) * 2006-06-14 2014-06-26 Toyota Jidosha Kabushiki Kaisha cooler
JP2008028122A (en) * 2006-07-20 2008-02-07 Tokyo Univ Of Science Ebullient cooling method, ebullient cooling apparatus and applied product thereof
JP2008028124A (en) * 2006-07-20 2008-02-07 Tokyo Univ Of Science Ebullient cooling method, ebullient cooling apparatus and applied product thereof
KR100892626B1 (en) * 2006-07-25 2009-04-09 후지쯔 가부시끼가이샤 Liquid cooling unit and electronic apparatus
US7652884B2 (en) 2006-07-25 2010-01-26 Fujitsu Limited Electronic apparatus including liquid cooling unit
US7672125B2 (en) 2006-07-25 2010-03-02 Fujitsu Limited Electronic apparatus
US7701715B2 (en) 2006-07-25 2010-04-20 Fujitsu Limited Electronic apparatus
JP4529961B2 (en) * 2006-09-11 2010-08-25 トヨタ自動車株式会社 Two-channel cooling system
JP2008066670A (en) * 2006-09-11 2008-03-21 Toyota Motor Corp Two-flow-path type cooling device
JP2012116455A (en) * 2010-12-03 2012-06-21 Hyundai Motor Co Ltd Cooling device for electric device of hybrid vehicle and electric vehicle
JP2015002291A (en) * 2013-06-17 2015-01-05 富士通株式会社 Semiconductor device and cooling method for the same
WO2016151805A1 (en) * 2015-03-25 2016-09-29 三菱電機株式会社 Cooler, power conversion device, and cooling system
JPWO2016151805A1 (en) * 2015-03-25 2017-10-19 三菱電機株式会社 Cooler, power conversion device and cooling system
CN107407529A (en) * 2015-03-25 2017-11-28 三菱电机株式会社 Cooler, power conversion device, and cooling system
JP2017050375A (en) * 2015-09-01 2017-03-09 三菱電機株式会社 Electrical apparatus with coolant passage
US10729040B2 (en) 2015-09-14 2020-07-28 Mitsubishi Electric Corporation Cooler, power conversion apparatus, and cooling system
JPWO2017047151A1 (en) * 2015-09-14 2018-02-01 三菱電機株式会社 Cooler, power conversion device, and cooling system
JPWO2017203847A1 (en) * 2016-05-23 2019-03-22 パナソニックIpマネジメント株式会社 Cooling device, projector, and heat receiving unit
WO2017203847A1 (en) * 2016-05-23 2017-11-30 パナソニックIpマネジメント株式会社 Cooling device, projector, and heat reception unit
CN110520980A (en) * 2017-03-22 2019-11-29 福利家麦克罗斯株式会社 Cooling construction body, cooling system, heat generating device and structure
US11994351B2 (en) 2017-03-22 2024-05-28 Beji Sasaki Cooling structural body, cooling system, heat generator and construction
CN110637363B (en) * 2017-05-18 2023-12-19 迪亚巴蒂克斯股份有限公司 Radiator and method for producing the radiator
CN110637363A (en) * 2017-05-18 2019-12-31 迪亚巴蒂克斯股份有限公司 Heat sink and method for producing the same
JP2020522144A (en) * 2017-05-18 2020-07-27 ダイアバティクス・ナムローゼ・フエンノートシャップDiabatix Nv Heat sink and manufacturing method thereof
WO2019198368A1 (en) * 2018-04-09 2019-10-17 株式会社デンソー Heat exchanger
US12074089B2 (en) 2018-04-09 2024-08-27 Denso Corporation Heat exchanger
JP2019211112A (en) * 2018-05-31 2019-12-12 株式会社Soken Heat exchanger
JP2019216177A (en) * 2018-06-12 2019-12-19 株式会社Soken Component cooler
JP7002410B2 (en) 2018-06-12 2022-02-04 株式会社Soken Parts cooling device
WO2020196332A1 (en) * 2019-03-22 2020-10-01 日立化成株式会社 Cooling structure
CN113328176B (en) * 2020-02-28 2024-03-26 丰田自动车株式会社 Cooling device
CN113328176A (en) * 2020-02-28 2021-08-31 丰田自动车株式会社 Cooling device
WO2023248989A1 (en) * 2022-06-20 2023-12-28 ニデック株式会社 Cooling device and semiconductor device

Also Published As

Publication number Publication date
JP3908705B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP3908705B2 (en) Liquid cooling device and liquid cooling system
JP4435125B2 (en) Liquid cooling device
Iradukunda et al. A review of advanced thermal management solutions and the implications for integration in high-voltage packages
US7188662B2 (en) Apparatus and method of efficient fluid delivery for cooling a heat producing device
CN102832185B (en) Boiling cooling system
Jung et al. Microchannel cooling strategies for high heat flux (1 kW/cm 2) power electronic applications
US10006720B2 (en) System for using active and passive cooling for high power thermal management
JP4464914B2 (en) Boiling cooling method, boiling cooling device, flow channel structure, and application product thereof
CN101005745A (en) Micro jet flow cooling system for electronic device
JP7018147B2 (en) Phase change cooling module and battery pack using it
CN100461995C (en) Array jetting micro heat exchanger
JP2007180505A (en) Cooling device for electronic component
KR20130031825A (en) Cooler
JP2008244495A (en) Evaporation cooling method, evaporation cooling device, flow path structure, and its application product
JP2007010211A (en) Cooling device of electronics device
JP4899997B2 (en) Thermal siphon boiling cooler
TWI808656B (en) Liquid cooling device and liquid cooling system having the liquid cooling device
Lee et al. Experimental investigation of oblique finned microchannel heat sink+
JP4697171B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP2011196659A (en) Porous body, boil cooling device, boil cooling system, power generation system, and boil cooling method
JP2010080455A (en) Cooling device and cooling method for electronic equipment
JP4766427B2 (en) Boiling cooling method, boiling cooling apparatus and applied products thereof
JP2007081375A (en) Cooling device
JP5252059B2 (en) Cooling system
JP4517962B2 (en) Cooling device for electronic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R151 Written notification of patent or utility model registration

Ref document number: 3908705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees