JP2005072268A - Metallic resistor - Google Patents

Metallic resistor Download PDF

Info

Publication number
JP2005072268A
JP2005072268A JP2003300376A JP2003300376A JP2005072268A JP 2005072268 A JP2005072268 A JP 2005072268A JP 2003300376 A JP2003300376 A JP 2003300376A JP 2003300376 A JP2003300376 A JP 2003300376A JP 2005072268 A JP2005072268 A JP 2005072268A
Authority
JP
Japan
Prior art keywords
resistor
electrode
metal
thin
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300376A
Other languages
Japanese (ja)
Other versions
JP2005072268A5 (en
JP4056445B2 (en
Inventor
Shinji Tabata
真志 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2003300376A priority Critical patent/JP4056445B2/en
Publication of JP2005072268A publication Critical patent/JP2005072268A/en
Publication of JP2005072268A5 publication Critical patent/JP2005072268A5/ja
Application granted granted Critical
Publication of JP4056445B2 publication Critical patent/JP4056445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a metallic resistor which can easily and surely mounted to the land of a standard chip component provided to a printed circuit board or the like and can obtain a predetermined resistance value with higher accuracy, and also to provide a method of manufacturing the metallic resistor. <P>SOLUTION: The metallic resistor comprises a rectangular resistance material 11 formed of an alloy for resistance, and electrodes 12, 12 formed of a metal material having higher conductivity bonded to both ends of the resistance material. These electrodes have thick portions 12a and thin portions 12b. The thick portion 12a of the electrode is arranged at the external side of the resistance material 11, while the thin portion 12b of the electrode is arranged at the internal side of the resistance material 11. The surface of the thin portion 12b of the electrode and the surface of the thin portion 11b of the resistance material between the electrodes 12, 12 are covered with an insulating material 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば大電流を高精度で検出するのに好適な電流検出用抵抗器およびその製造方法に係り、特に抵抗用合金からなる抵抗体に高導電率の金属からなる電極を接合した金属抵抗器の構造およびその製造方法に関する。   The present invention relates to a current detection resistor suitable for detecting, for example, a large current with high accuracy and a method for manufacturing the same, and in particular, a metal in which an electrode made of a high conductivity metal is joined to a resistor made of a resistance alloy. The present invention relates to a resistor structure and a manufacturing method thereof.

大電流の検出に、ミリΩオーダの極めて微小な抵抗値を有する金属抵抗器を用いることが広く知られている。この金属抵抗器を用いた大電流の検出では、既知の低抵抗値Rを有する抵抗器に、電流Iを流したときの抵抗器の両端における電圧降下Vを測定することで、オームの法則
I=V/R
を用いて電流値Iを検出することができる。
It is widely known to use a metal resistor having a very small resistance value on the order of milliohms for detecting a large current. In the detection of a large current using this metal resistor, Ohm's law I is obtained by measuring a voltage drop V across the resistor when a current I is passed through a resistor having a known low resistance value R. = V / R
Can be used to detect the current value I.

このような用途の金属抵抗器の一例として、図4に示すものが知られている(特許文献1参照)。この金属抵抗器は、抵抗用合金からなる矩形状の抵抗体11の裏面に、高導電率の金属からなる電極12,12をその両端部に配置したものである。ここで、電極12,12はプリント基板上に配置されたパッドに、はんだ処理により接続するためのものであり、プリント基板のパッド(電流配線)から電流を抵抗体に流し、その抵抗体の両端に生じる電圧を電極を介してプリント基板上のパッドに接続した電圧検出配線により取り出すものである。   As an example of such a metal resistor, one shown in FIG. 4 is known (see Patent Document 1). In this metal resistor, electrodes 12 and 12 made of a metal having a high conductivity are disposed on both ends of a rectangular resistor 11 made of a resistance alloy. Here, the electrodes 12 and 12 are for connecting to pads disposed on the printed circuit board by soldering, and a current is passed from a pad (current wiring) of the printed circuit board to the resistor, and both ends of the resistor are connected. The voltage generated in the circuit is taken out by a voltage detection wiring connected to a pad on the printed circuit board through an electrode.

特開2002−57009号公報JP 2002-57009 A

ところで、上述したような金属抵抗器の抵抗値は、電極間の抵抗体の長さおよび断面積と材料の固有抵抗により主として決まってくる。このため、所要の抵抗値を得るためには、両電極間の長さおよび抵抗体の板厚を調整する必要がある。しかしながら、金属抵抗器の抵抗値は、比較的低い領域から高い領域まで、一般に規格により定められている。このため抵抗値が決まると、抵抗体材料の固有抵抗や製品の寸法等の制約により電極のサイズが限定されてくる。   By the way, the resistance value of the metal resistor as described above is mainly determined by the length and cross-sectional area of the resistor between the electrodes and the specific resistance of the material. For this reason, in order to obtain a required resistance value, it is necessary to adjust the length between both electrodes and the thickness of the resistor. However, the resistance value of the metal resistor is generally determined by a standard from a relatively low region to a high region. For this reason, when the resistance value is determined, the size of the electrode is limited by restrictions such as the specific resistance of the resistor material and the dimensions of the product.

ところが、プリント基板に表面実装する一般のチップ部品には、それぞれのサイズに対応した標準的な電極パッドの寸法およびパッド間の間隔が存在する。このため、上述したような所要の抵抗値を出すための電極サイズおよび間隔と整合が取れず、表面実装時に抵抗器の搭載位置がずれる等の問題があった。   However, in general chip parts that are surface-mounted on a printed circuit board, there are standard electrode pad dimensions and inter-pad spacings corresponding to each size. For this reason, there is a problem that the electrode size and the interval for obtaining the required resistance value as described above cannot be matched, and the mounting position of the resistor is shifted during surface mounting.

本発明は上記事情に鑑みて為されたもので、プリント基板等に設けられた標準的なチップ部品のランドに、容易に且つ確実に実装することができるとともに、所要の抵抗値を高精度で得ることができる金属抵抗器およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can be easily and surely mounted on a land of a standard chip part provided on a printed circuit board or the like, and can provide a required resistance value with high accuracy. An object of the present invention is to provide a metal resistor that can be obtained and a method for manufacturing the same.

本発明の金属抵抗器は、抵抗用合金からなる矩形状の抵抗体と、該抵抗体の両端部に接合した高導電率の金属からなる電極とを備えた金属抵抗器であって、前記電極は肉厚部と肉薄部とを備えたことを特徴とするものである。ここで、前記電極の肉厚部が前記抵抗体の外側に配置され、前記電極の肉薄部が前記抵抗体の内側に配置されている。そして、前記電極の肉薄部の表面とその間の抵抗体表面は絶縁材料で覆われていることが好ましく、前記電極の肉厚部と肉薄部との境界は、曲率半径を有する面で接続されていることが好ましく、前記抵抗体には、その両端部に配置された両電極間に肉薄部が形成され、該肉薄部は曲率半径を有する面で前記抵抗体の前記電極の接合部である肉厚部に接続されていることが好ましい。   The metal resistor of the present invention is a metal resistor comprising a rectangular resistor made of a resistance alloy and electrodes made of a high conductivity metal joined to both ends of the resistor, Has a thick part and a thin part. Here, the thick part of the electrode is disposed outside the resistor, and the thin part of the electrode is disposed inside the resistor. The surface of the thin part of the electrode and the surface of the resistor in between are preferably covered with an insulating material, and the boundary between the thick part and the thin part of the electrode is connected by a surface having a radius of curvature. Preferably, the resistor is formed with a thin portion between both electrodes arranged at both ends thereof, and the thin portion is a wall having a radius of curvature and serving as a joint portion of the electrode of the resistor. It is preferable to be connected to the thick part.

上記本発明によれば、電極に肉厚部と肉薄部を設けるようにしたものである。これにより、肉厚部のサイズおよび間隔を標準的なチップ部品のパットサイズに適合させることができる。また、肉薄部を含む電極全体のサイズにより、任意の抵抗値の金属抵抗器を製作することができる。従って、電極全体としては抵抗値の調整等のために、そのサイズを任意に設定することが可能であり、任意の高精度の抵抗値の抵抗器を得ることができると共に、その実装用の電極として肉厚部のサイズを、標準チップ部品の電極パッドサイズに適合させることができる。それ故、金属抵抗器の実装に際して、ランドパターンと電極との整合が取れない等の問題がなくなり、搭載位置がずれる等の問題が無くなり、安定した実装が可能となる。   According to the present invention, the electrode is provided with a thick part and a thin part. Thereby, the size and interval of the thick part can be adapted to the pad size of a standard chip part. In addition, a metal resistor having an arbitrary resistance value can be manufactured depending on the size of the entire electrode including the thin portion. Therefore, it is possible to arbitrarily set the size of the electrode as a whole in order to adjust the resistance value, etc., and it is possible to obtain a resistor with an arbitrary high-precision resistance value, as well as an electrode for mounting the electrode. The size of the thick part can be adapted to the size of the electrode pad of the standard chip part. Therefore, when mounting the metal resistor, there is no problem that the land pattern and the electrode cannot be matched, and there is no problem that the mounting position is shifted, and stable mounting is possible.

また、抵抗体の肉薄部を曲率半径を有する面で抵抗体の肉厚部に接続することで、その接続部における電流の集中を回避できる。また、曲率半径を有する面で接続することで、抵抗体の厚みが確保できるので熱伝導性も確保できる。また、電極の肉薄部を曲率半径を有する面でその肉厚部に接続することで、熱伝導性が向上し、特性の安定化に寄与する。   Further, by connecting the thin portion of the resistor to the thick portion of the resistor with a surface having a radius of curvature, current concentration at the connection portion can be avoided. Moreover, since the thickness of a resistor can be ensured by connecting on a surface having a radius of curvature, thermal conductivity can be ensured. Further, by connecting the thin part of the electrode to the thick part with a surface having a radius of curvature, the thermal conductivity is improved and the characteristic is stabilized.

また、本発明の金属抵抗器の製造方法は、抵抗用合金からなる抵抗体に電極となる高導電率の金属の板体を接合し、矩形状の抵抗体となる部分の中央部を切削することによりその部分の前記金属板体を除去すると共に前記抵抗体に肉薄部を形成し、前記抵抗体の肉薄部に隣接した金属板体の一部を切削することにより前記高導電率の金属からなる電極に肉薄部を形成することを特徴とするものである。ここで、前記抵抗体の肉薄部は、曲率半径を有する面で前記抵抗体の肉厚部に接続することが好ましく、前記電極の肉薄部が曲率半径を有する面で前記電極の肉厚部に接続するように切削することが好ましい。   In the metal resistor manufacturing method of the present invention, a high-conductivity metal plate serving as an electrode is joined to a resistor composed of a resistance alloy, and a central portion of a portion serving as a rectangular resistor is cut. By removing the metal plate body in that portion, forming a thin portion in the resistor, and cutting a part of the metal plate adjacent to the thin portion of the resistor from the high conductivity metal A thin portion is formed on the electrode. Here, the thin portion of the resistor is preferably connected to the thick portion of the resistor at a surface having a radius of curvature, and the thin portion of the electrode is connected to the thick portion of the electrode at a surface having a radius of curvature. It is preferable to cut to connect.

本発明によれば、任意の抵抗値を有する高精度の金属抵抗器が標準的なチップ部品のパッドサイズに対応した電極(肉厚部)を備えているので、表面実装を容易に且つ正確に行うこことができるという効果が生じる。総じて本発明によれば、実装性が良好な高精度の金属抵抗器を容易に且つ低コストで製造することができるという効果が生じる。   According to the present invention, a high-precision metal resistor having an arbitrary resistance value is provided with an electrode (thick part) corresponding to the pad size of a standard chip component, so that surface mounting can be performed easily and accurately. The effect is that it can be done. In general, according to the present invention, there is an effect that a high-precision metal resistor having good mountability can be easily manufactured at low cost.

以下、本発明の実施の形態について、図1乃至図3を参照しながら説明する。図1は本発明の実施形態の金属抵抗器をプリント基板に実装した状態を示し、図2(a)(b)はその金属抵抗器の断面および底面の構成例を示す。なお、各図中、同一の機能を有する部材または要素には同一の符号を付して、その重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 shows a state in which a metal resistor according to an embodiment of the present invention is mounted on a printed circuit board, and FIGS. 2A and 2B show cross-sectional and bottom surface configuration examples of the metal resistor. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same function, and the duplicate description is abbreviate | omitted.

図1および図2(a)に示すように、金属抵抗器10は抵抗用合金からなる矩形状の抵抗体11と、この抵抗体の裏面側両端部にクラッド接合により接合した高導電率の金属からなる電極12,12とを備えている。ここで、抵抗用合金としては、銅・ニッケル合金、ニッケル・クロム合金、鉄・クロム合金、マンガン・銅・ニッケル合金、白金・パラジウム・銀合金、金・銀合金、金・白金・銀合金、等が用いられる。また、電極12を構成する高導電率の金属としては銅が好ましい。   As shown in FIG. 1 and FIG. 2 (a), a metal resistor 10 includes a rectangular resistor 11 made of a resistance alloy, and a high-conductivity metal bonded to both ends of the back side of the resistor by clad bonding. The electrodes 12 and 12 which consist of are provided. Here, as a resistance alloy, copper / nickel alloy, nickel / chromium alloy, iron / chromium alloy, manganese / copper / nickel alloy, platinum / palladium / silver alloy, gold / silver alloy, gold / platinum / silver alloy, Etc. are used. Further, copper is preferable as the high conductivity metal constituting the electrode 12.

電極12は、抵抗体の外側に配置された肉厚部12aとその内側に配置された肉薄部12bとを備えている。抵抗体11には両電極の肉薄部12b,12b間に凹部13を備え、この部分が抵抗体の肉薄部11bとなり、その他の部分が肉厚部11a,11aとなっている。電極の肉厚部12a,12aの下面には、溶融はんだ層17,17が配置され、はんだ付け性を良好なものとしている。   The electrode 12 includes a thick portion 12a disposed on the outside of the resistor and a thin portion 12b disposed on the inside thereof. The resistor 11 is provided with a recess 13 between the thin portions 12b and 12b of both electrodes, and this portion is the thin portion 11b of the resistor, and the other portions are the thick portions 11a and 11a. Molten solder layers 17 and 17 are disposed on the lower surfaces of the thick portions 12a and 12a of the electrodes to improve the solderability.

そして、電極の肉薄部12b,12bと抵抗体の肉薄部11bとの表面は、例えばポリイミド樹脂等の絶縁材料15により被覆(アンダコート)されている。また、抵抗体11の上面(表面)も同様に例えばエポキシ樹脂等の絶縁材料(トップコート)16により被覆されている。これらの絶縁材料は、絶縁保護層としての役割を果たしている。なお、トップコート16は省略される場合もある。   The surfaces of the thin portions 12b and 12b of the electrode and the thin portion 11b of the resistor are covered (undercoated) with an insulating material 15 such as polyimide resin. Similarly, the upper surface (surface) of the resistor 11 is also covered with an insulating material (top coat) 16 such as an epoxy resin. These insulating materials play a role as an insulating protective layer. The top coat 16 may be omitted.

この金属抵抗器10は、プリント基板21に実装されている。即ち、プリント基板21にはランドパターン22,22を備え、この部分に電極12の肉厚部12a,12aが例えばクリームはんだのリフロー処理等により接合される。ここで、ランドパターン22には電流供給配線22aが接続されると共に、電圧検出配線23が接続されている。   The metal resistor 10 is mounted on the printed board 21. That is, the printed circuit board 21 is provided with land patterns 22 and 22, and the thick portions 12a and 12a of the electrode 12 are joined to the portions by, for example, a reflow process of cream solder. Here, the current supply wiring 22 a and the voltage detection wiring 23 are connected to the land pattern 22.

従って、電流供給配線22aから金属抵抗器10の一方の電極12に電流が流入し、抵抗体11の内部を電流が流れ、他方の電極12から他方のランドパターンに接続された電流供給配線22aに電流が流出する。そして、この電流が流れることによって形成される抵抗体の電圧は、ランドパターン22に接続された電圧検出配線23,23により取り出される。従って、電流Iの検出にあたっては、この金属抵抗器の既知の抵抗値Rに対して、検出された電圧Vとの関係から、
I=V/R
により、電流値の大きさIを求めることができる。
Therefore, a current flows from the current supply wiring 22a to one electrode 12 of the metal resistor 10, a current flows through the resistor 11, and the current supply wiring 22a connected to the other land pattern from the other electrode 12 flows. Current flows out. The voltage of the resistor formed by the flow of this current is taken out by the voltage detection wirings 23 and 23 connected to the land pattern 22. Therefore, in detecting the current I, the relationship between the detected resistance V and the known resistance value R of the metal resistor is
I = V / R
Thus, the magnitude I of the current value can be obtained.

ここで、この金属抵抗器においては、電極肉厚部12aのサイズを、標準チップ部品のランドパターン22のサイズに合わせると共に、電極肉厚部12a,12aの間の間隔を標準チップ部品のランドパターン22,22間の間隔に合わせている。従って、実装に際して、プリント基板21が標準チップ部品のランドパターンを備えている場合には、金属抵抗器10の電極12,12の位置を正確にランドパターン22,22の位置に合わせることができる。それ故、従来から金属抵抗器の電極が標準的なチップ部品のランドパターンのサイズから外れることに伴う位置ズレ等の弊害を防止することができる。   Here, in this metal resistor, the size of the electrode thick portion 12a is adjusted to the size of the land pattern 22 of the standard chip component, and the distance between the electrode thick portions 12a and 12a is set to the land pattern of the standard chip component. The distance between 22 and 22 is adjusted. Therefore, when the printed circuit board 21 is provided with a land pattern of standard chip parts at the time of mounting, the positions of the electrodes 12 and 12 of the metal resistor 10 can be accurately aligned with the positions of the land patterns 22 and 22. Therefore, it is possible to prevent adverse effects such as misalignment caused by the conventional deviation of the electrode of the metal resistor from the size of the land pattern of a standard chip component.

図2(a)(b)は、電極肉薄部を形成した金属抵抗器の構造例を示す。この金属抵抗器10は、上述したように電極12の肉厚部12a,12aのサイズを標準チップ部品のランドパターンのサイズに合わせると共に、その間隔も標準チップ部品のランドパターンの間隔に合わせるようにしたものである。例えば、「2B」サイズのチップ部品の場合、A=1.6mmであり、B=3.2mmである。この場合、標準チップ部品のランドパターンのサイズおよび間隔は、概略図2(c)に示す程度となる。   2A and 2B show structural examples of a metal resistor in which an electrode thin portion is formed. As described above, the metal resistor 10 adjusts the size of the thick portions 12a and 12a of the electrode 12 to the size of the land pattern of the standard chip component, and also adjusts the interval to the interval of the land pattern of the standard chip component. It is a thing. For example, in the case of a “2B” size chip part, A = 1.6 mm and B = 3.2 mm. In this case, the size and interval of the land pattern of the standard chip component are approximately as shown in FIG.

この金属抵抗器では、A×Bの標準チップサイズの標準ランドパターンの大きさが、概略A×Dであると、これに合わせて電極肉厚部12aのサイズをA×Dとし、その間隔を標準ランドパターンの間隔に合わせてEとしたものである。   In this metal resistor, if the size of the standard land pattern of the standard chip size of A × B is approximately A × D, the size of the electrode thick portion 12a is set to A × D according to this, and the interval is set to E in accordance with the interval of the standard land pattern.

一方で、電極12の全体としてのサイズは、抵抗器の所要抵抗値R、抵抗体材料の固有抵抗ρ、および抵抗器のサイズA×B、等により決められる。ここで、抵抗体11の肉薄部11bの厚さをtとすると、抵抗器の抵抗値Rは、実質的に両電極間の抵抗体の断面積(A×t)と、長さFと、固有抵抗ρとから決まってくる。即ち、
R=ρ・F/(A×t)
となる。
On the other hand, the overall size of the electrode 12 is determined by the required resistance value R of the resistor, the specific resistance ρ of the resistor material, the size A × B of the resistor, and the like. Here, when the thickness of the thin portion 11b of the resistor 11 is t, the resistance value R of the resistor is substantially the cross-sectional area (A × t) of the resistor between both electrodes, the length F, It is determined from the specific resistance ρ. That is,
R = ρ · F / (A × t)
It becomes.

従って、この金属抵抗器10においては、所要の抵抗値Rから抵抗体材料の固有抵抗ρ、および抵抗体肉薄部11bの厚さtおよび幅Aを考慮して、電極12,12の間隔Fを定めることができる。即ち、間隔Fは抵抗値およびそのトリミングのし易さ等を考慮して自由に設定できる。そして、標準チップ部品のランドパターンのサイズおよび位置に合わせて、電極肉厚部12a,12a間の間隔Eを決めることができる。これにより、任意の抵抗値で且つその標準チップ部品のランドパターンのサイズおよび間隔に合わせた電極肉厚部を有する金属抵抗器を設計することができる。なお、厚さtおよび幅Aを正確にトリミングすることで、高精度の抵抗値を有する抵抗器を製造することができる。   Therefore, in this metal resistor 10, the distance F between the electrodes 12, 12 is determined in consideration of the specific resistance ρ of the resistor material from the required resistance value R and the thickness t and width A of the resistor thin portion 11b. Can be determined. That is, the interval F can be freely set in consideration of the resistance value and the ease of trimming. The distance E between the electrode thick portions 12a and 12a can be determined according to the size and position of the land pattern of the standard chip component. Thereby, it is possible to design a metal resistor having an electrode thick portion having an arbitrary resistance value and matching the size and interval of the land pattern of the standard chip part. A resistor having a highly accurate resistance value can be manufactured by accurately trimming the thickness t and the width A.

次ぎに、抵抗体の肉厚部と肉薄部との境界に設けられた曲面について説明する。即ち、抵抗体11には、その両端部に配置された両電極12,12間に凹部13(肉薄部11b)が形成され、肉薄部は曲率半径rを有する面で抵抗体の電極12の接合部である肉厚部11aに接続されている。この曲率半径rを有する面で肉薄部を肉厚部に接続することで、電流の集中を回避することができ、特性の安定化を図ることができる。即ち、図4に示す従来例の場合には、この部分に角部が形成されるため、この部分で電流が集中し発熱するという問題があり、特性を悪くする一因があった。曲率半径rを有する面で接続することで、電流分布の均一性が向上し、局部的な発熱も防止され、また電流パスが安定化することから抵抗値の変動や浮遊インダクタンスの上昇等を防止することが可能である。   Next, the curved surface provided at the boundary between the thick part and the thin part of the resistor will be described. That is, the resistor 11 is formed with a recess 13 (thin portion 11b) between the electrodes 12 and 12 disposed at both ends thereof, and the thin portion is joined to the resistor electrode 12 with a surface having a radius of curvature r. It is connected to the thick part 11a which is a part. By connecting the thin portion to the thick portion on the surface having the curvature radius r, current concentration can be avoided and the characteristics can be stabilized. That is, in the case of the conventional example shown in FIG. 4, since a corner portion is formed in this portion, there is a problem that current concentrates in this portion and heat is generated, which is a cause of deteriorating characteristics. Connecting with a surface having a radius of curvature r improves the uniformity of current distribution, prevents local heat generation, and stabilizes the current path to prevent fluctuations in resistance and floating inductance. Is possible.

同様に、電極肉厚部12aと肉薄部12bとの境界は、曲率半径r’を有する面で接続されているので、同様に電流分布の均一性を向上し、また熱伝導効率を向上することができる。   Similarly, since the boundary between the electrode thick portion 12a and the thin portion 12b is connected by a surface having a curvature radius r ′, the uniformity of the current distribution can be similarly improved and the heat conduction efficiency can be improved. Can do.

次ぎに、この金属抵抗器の製造方法について、図3を参照して説明する。まず、図3(a)に示すように、抵抗用合金(例えば銅・ニッケル合金)からなる抵抗体に、高導電率の金属(例えば銅)の板体32をクラッド接合により固着する。クラッド接合とは均一な圧力の元で異種金属を熱融着するもので、強固な機械的接続が得られると共に、電気的にも均一な接合面が得られ、これにより抵抗体と電極界面で電流分布が安定した金属抵抗器が得られる。なお、図では1個の抵抗器となる部分のみを表示しているが、抵抗体および電極となる金属の板体とを長尺状(フープ状)に形成し、その後の工程で適宜切断し、個々の抵抗器とすることが好ましい。   Next, a method for manufacturing the metal resistor will be described with reference to FIG. First, as shown in FIG. 3A, a high conductivity metal plate (for example, copper) 32 is fixed to a resistor made of a resistance alloy (for example, copper / nickel alloy) by clad bonding. Clad bonding is the fusion of dissimilar metals under uniform pressure, which provides a strong mechanical connection and an electrically uniform bonding surface. A metal resistor having a stable current distribution can be obtained. In the figure, only one portion to be a resistor is shown, but a resistor and a metal plate to be an electrode are formed in a long shape (hoop shape) and cut appropriately in the subsequent steps. Preferably, individual resistors are used.

次ぎに、図3(b)に示すように、抵抗体31の上面に例えばエポキシ材等からなる絶縁材料の被覆(トップコート)33を形成する。なお、被覆33は省略される場合もあり、その場合にはこの工程は勿論省略される。次ぎに、図3(c)に示すように、電極となる金属の板体32の下面に溶融はんだ層34を形成する。なお、溶融はんだ層34の形成は、トップコート33の形成に先立って行うようにしても勿論よい。   Next, as shown in FIG. 3B, an insulating material coating (top coat) 33 made of, for example, an epoxy material is formed on the upper surface of the resistor 31. Note that the covering 33 may be omitted, and in this case, this step is of course omitted. Next, as shown in FIG.3 (c), the molten solder layer 34 is formed in the lower surface of the metal plate 32 used as an electrode. Of course, the molten solder layer 34 may be formed prior to the formation of the top coat 33.

次ぎに、図3(d)に示すように、抵抗値調整および電極分離のための第一の切削を行う。即ち、上述したように所要の抵抗値Rを得るために、所要の幅Fおよび抵抗体厚さtが得られるようにグラインダ等により切削して、その部分の溶融はんだ層34、電極となる金属板体32、および抵抗体31の一部を除去する。ここで、グラインダ等はエッジ部に曲率半径rを有するものを用い、これにより抵抗体31の肉厚部と肉薄部との境界部が曲率半径rを有する面で接続することが好ましい。   Next, as shown in FIG. 3D, first cutting for resistance value adjustment and electrode separation is performed. That is, as described above, in order to obtain the required resistance value R, cutting with a grinder or the like so as to obtain the required width F and resistor thickness t, the molten solder layer 34 in that portion, and the metal that becomes the electrode A part of the plate 32 and the resistor 31 is removed. Here, it is preferable to use a grinder or the like having a radius of curvature r at the edge portion, whereby the boundary portion between the thick portion and the thin portion of the resistor 31 is connected by a surface having the curvature radius r.

次ぎに、図3(e)に示すように、電極肉厚部のサイズ(A×D)および間隔Eの調整のための第二の切削を行う。即ち、図2(b)に示す電極肉厚部12a,12a間の間隔(距離)Eを形成するように、グラインダ等を用いて電極となる金属板体32を切削して、その部分の溶融はんだ層34および金属板体32を除去する。これにより、電極肉薄部12b,12bが形成され、肉薄部12bと肉厚部12aとは曲率半径r’を有する面で接続することが好ましい。この曲率半径r’を有する面の形成は、例えばグラインダのエッジ部に曲率半径r’となる部分を設けておくことで形成することができる。なお、除去する厚さは、肉薄部の厚さが電流分布の均一性に影響を与えないように選定する必要がある。また、図3(d)と(e)の工程順は逆にしても勿論よい。   Next, as shown in FIG. 3E, second cutting for adjusting the size (A × D) of the electrode thick portion and the interval E is performed. That is, the metal plate 32 serving as an electrode is cut using a grinder or the like so as to form an interval (distance) E between the electrode thick portions 12a and 12a shown in FIG. The solder layer 34 and the metal plate 32 are removed. Thereby, the electrode thin parts 12b and 12b are formed, and it is preferable that the thin part 12b and the thick part 12a are connected by a surface having a curvature radius r '. The surface having the curvature radius r ′ can be formed by providing a portion having the curvature radius r ′ at the edge portion of the grinder, for example. The thickness to be removed must be selected so that the thickness of the thin portion does not affect the uniformity of the current distribution. Of course, the order of steps shown in FIGS. 3D and 3E may be reversed.

次ぎに、図3(f)に示すように、切削により露出した電極肉薄部12bおよび抵抗体肉薄部11bの表面を例えばポリイミド等からなる絶縁材料の保護膜(アンダコート)15を形成する。これにより、抵抗体31(11)の上面に絶縁材料の被覆(トップコート)33(16)を備え、抵抗体の下面に肉厚部と肉薄部を有する電極32(12)を備え、且つ電極肉厚部がサイズ(A×D)および間隔Eを有し、標準のチップ部品の電極パッドサイズに適合した金属抵抗器を製造することができる。なお、フープ状の板材の接合体から個々の金属抵抗器とする切断加工は、例えば工程(c)乃至(f)のいずれかにより行うことができる。   Next, as shown in FIG. 3F, a protective film (undercoat) 15 made of an insulating material made of polyimide or the like is formed on the surfaces of the electrode thin portion 12b and the resistor thin portion 11b exposed by cutting. Thereby, the upper surface of the resistor 31 (11) is provided with an insulating material coating (top coat) 33 (16), the lower surface of the resistor is provided with an electrode 32 (12) having a thick portion and a thin portion, and the electrode A metal resistor having a thickness (A × D) and an interval E in the thickness portion and adapted to the electrode pad size of a standard chip component can be manufactured. In addition, the cutting process which makes each metal resistor from the joined body of a hoop-shaped board | plate material can be performed by either of process (c) thru | or (f), for example.

なお、上記実施形態は本発明の実施例の一態様を述べたもので、本発明の趣旨を逸脱することなく種々の変形実施例が可能なことは勿論である。   In addition, the said embodiment described the one aspect | mode of the Example of this invention, Of course, a various deformation | transformation Example is possible, without deviating from the meaning of this invention.

本発明の実施の形態の金属抵抗器をプリント基板に実装した状態を示す斜視図である。It is a perspective view which shows the state which mounted the metal resistor of embodiment of this invention in the printed circuit board. 図1に示す金属抵抗器の(a)は断面図であり、(b)は底面図であり、(c)はランドパターン例を示す平面図である。1A is a cross-sectional view, FIG. 1B is a bottom view, and FIG. 1C is a plan view showing an example of a land pattern. 図1に示す金属抵抗器の製造工程の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the manufacturing process of the metal resistor shown in FIG. 従来の金属抵抗器の構造例を示す断面図である。It is sectional drawing which shows the structural example of the conventional metal resistor.

符号の説明Explanation of symbols

10 金属抵抗器
11,31 抵抗体
11a 肉厚部
11b 肉薄部
12,32 電極(金属板体)
12a 肉厚部
12b 肉薄部
15 絶縁材料(アンダコート)
16,33 絶縁材料(トップコート)
17,34 溶融はんだ層
DESCRIPTION OF SYMBOLS 10 Metal resistor 11, 31 Resistor 11a Thick part 11b Thin part 12, 32 Electrode (metal plate body)
12a Thick part 12b Thin part 15 Insulating material (undercoat)
16, 33 Insulation material (top coat)
17, 34 Molten solder layer

Claims (10)

抵抗用合金からなる矩形状の抵抗体と、該抵抗体の両端部に接合した高導電率の金属からなる電極とを備えた金属抵抗器であって、
前記電極は肉厚部と肉薄部とを備えたことを特徴とする金属抵抗器。
A metal resistor comprising a rectangular resistor made of a resistance alloy, and electrodes made of a high conductivity metal bonded to both ends of the resistor,
The metal resistor comprising a thick part and a thin part.
前記電極の肉厚部が前記抵抗体の外側に配置され、前記電極の肉薄部が前記抵抗体の内側に配置されたことを特徴とする請求項1記載の金属抵抗器。   2. The metal resistor according to claim 1, wherein a thick portion of the electrode is disposed outside the resistor, and a thin portion of the electrode is disposed inside the resistor. 前記電極の肉薄部の表面および電極間の抵抗体表面は絶縁材料で覆われていることを特徴とする請求項2記載の金属抵抗器。   3. The metal resistor according to claim 2, wherein the surface of the thin portion of the electrode and the surface of the resistor between the electrodes are covered with an insulating material. 前記電極の肉厚部と肉薄部との境界は、曲率半径を有する面で接続されていることを特徴とする請求項1記載の金属抵抗器。   The metal resistor according to claim 1, wherein a boundary between the thick part and the thin part of the electrode is connected by a surface having a radius of curvature. 前記抵抗体には、その両端部に配置された両電極間に肉薄部が形成され、該肉薄部は曲率半径を有する面で前記抵抗体の前記電極の接合部である肉厚部に接続されていることを特徴とする請求項1記載の金属抵抗器。   The resistor is formed with a thin portion between both electrodes disposed at both ends thereof, and the thin portion is connected to a thick portion which is a joint portion of the electrode of the resistor with a surface having a radius of curvature. The metal resistor according to claim 1, wherein: 抵抗用合金からなる抵抗体に電極となる高導電率の金属板体を接合し、
矩形状の抵抗体となる部分の中央部を切削することによりその部分の前記金属板体を除去すると共に前記抵抗体に凹部を形成し、
前記抵抗体の凹部に隣接した金属板体の一部を切削することによりその部分の前記金属板体を除去し、前記高導電率の金属板体からなる電極に肉薄部を形成することを特徴とする金属抵抗器の製造方法。
Bonding a highly conductive metal plate to be an electrode to a resistor made of a resistance alloy,
By cutting the central portion of the portion to be a rectangular resistor, the metal plate body of the portion is removed and a recess is formed in the resistor,
A part of the metal plate adjacent to the concave portion of the resistor is cut to remove the metal plate at that portion, and a thin part is formed on the electrode made of the metal plate with high conductivity. A method of manufacturing a metal resistor.
前記抵抗体の肉薄部は、曲率半径を有する面で前記抵抗体の肉厚部に接続することを特徴とする請求項6記載の金属抵抗器の製造方法。   The metal resistor manufacturing method according to claim 6, wherein the thin portion of the resistor is connected to the thick portion of the resistor through a surface having a radius of curvature. 前記電極の肉薄部は、曲率半径を有する面で前記電極の肉厚部に接続することを特徴とする請求項6記載の金属抵抗器の製造方法。   The method of manufacturing a metal resistor according to claim 6, wherein the thin portion of the electrode is connected to the thick portion of the electrode at a surface having a radius of curvature. 前記電極の肉薄部の形成後に、前記抵抗体の肉薄部および電極の肉薄部を絶縁材料で被覆することを特徴とする請求項6記載の金属抵抗器の製造方法。   7. The method of manufacturing a metal resistor according to claim 6, wherein after forming the thin part of the electrode, the thin part of the resistor and the thin part of the electrode are covered with an insulating material. 前記抵抗体の表面を絶縁材料で被覆することを特徴とする請求項6記載の金属抵抗器の製造方法。   The method of manufacturing a metal resistor according to claim 6, wherein a surface of the resistor is covered with an insulating material.
JP2003300376A 2003-08-25 2003-08-25 Metal resistor Expired - Lifetime JP4056445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300376A JP4056445B2 (en) 2003-08-25 2003-08-25 Metal resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300376A JP4056445B2 (en) 2003-08-25 2003-08-25 Metal resistor

Publications (3)

Publication Number Publication Date
JP2005072268A true JP2005072268A (en) 2005-03-17
JP2005072268A5 JP2005072268A5 (en) 2005-07-14
JP4056445B2 JP4056445B2 (en) 2008-03-05

Family

ID=34405326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300376A Expired - Lifetime JP4056445B2 (en) 2003-08-25 2003-08-25 Metal resistor

Country Status (1)

Country Link
JP (1) JP4056445B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091310A1 (en) * 2004-03-24 2005-09-29 Rohm Co., Ltd. Chip resistor and manufacturing method thereof
JP2009194316A (en) * 2008-02-18 2009-08-27 Kamaya Denki Kk Low-resistance chip resistor composed of resistor metal plate and method of manufacturing the same
JP5039867B1 (en) * 2011-11-22 2012-10-03 株式会社シンテック Resistor and manufacturing method of resistor
JP2016213367A (en) * 2015-05-12 2016-12-15 株式会社磐城無線研究所 Resistor and manufacturing method therefor
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
CN110911067A (en) * 2019-11-08 2020-03-24 广东风华高新科技股份有限公司 Current sensing resistor and manufacturing method thereof
WO2023100858A1 (en) * 2021-12-01 2023-06-08 ローム株式会社 Chip resistor and method of producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400732B (en) 2003-07-10 2013-07-01 Showa Denko Kk Manufacturing method of capacitor for capacitor, capacitor manufacturing method and capacitor
JP4868601B2 (en) 2007-12-05 2012-02-01 Necトーキン株式会社 Solid electrolytic capacitor and manufacturing method thereof
KR101670140B1 (en) 2014-12-15 2016-10-27 삼성전기주식회사 Resistor element, manufacturing method of the same ans board having the same mounted thereon

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091310A1 (en) * 2004-03-24 2005-09-29 Rohm Co., Ltd. Chip resistor and manufacturing method thereof
US7667568B2 (en) 2004-03-24 2010-02-23 Rohm Co., Ltd. Chip resistor and manufacturing method thereof
US8081059B2 (en) 2004-03-24 2011-12-20 Rohm Co., Ltd. Chip resistor and manufacturing method thereof
JP2009194316A (en) * 2008-02-18 2009-08-27 Kamaya Denki Kk Low-resistance chip resistor composed of resistor metal plate and method of manufacturing the same
JP4537465B2 (en) * 2008-02-18 2010-09-01 釜屋電機株式会社 Resistance metal plate low resistance chip resistor manufacturing method
WO2013076817A1 (en) * 2011-11-22 2013-05-30 株式会社シンテック Resistor and resistor manufacturing method
JP5039867B1 (en) * 2011-11-22 2012-10-03 株式会社シンテック Resistor and manufacturing method of resistor
JP2016213367A (en) * 2015-05-12 2016-12-15 株式会社磐城無線研究所 Resistor and manufacturing method therefor
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10418157B2 (en) 2015-10-30 2019-09-17 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
CN110911067A (en) * 2019-11-08 2020-03-24 广东风华高新科技股份有限公司 Current sensing resistor and manufacturing method thereof
WO2023100858A1 (en) * 2021-12-01 2023-06-08 ローム株式会社 Chip resistor and method of producing same

Also Published As

Publication number Publication date
JP4056445B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US10156587B2 (en) Current detecting device and current detecting resistor
JP4452196B2 (en) Metal plate resistor
JP4670922B2 (en) Low resistance resistor
CN101484952B (en) Resistor, particularly SMD resistor, and associated production method
JP5256544B2 (en) Resistor
JP4056445B2 (en) Metal resistor
US20200185131A1 (en) Surface mount resistors and methods of manufacturing same
JP2000114009A (en) Resistor, its mounting method, and its manufacture
US11187724B2 (en) Current measuring device and current sensing resistor
JP2006332413A (en) Chip resistor and its manufacturing method
JP2005072268A5 (en)
JP2004319787A (en) Chip resistor and its manufacturing method
JP2001118701A (en) Low-resistance resistor for detecting current and its manufacturing method
JP6408758B2 (en) Jumper element
JP4391918B2 (en) Current detection resistor
KR20190059910A (en) Welding electronic components, mounting board and temperature sensor
JP2009218317A (en) Surface-mounted resistor, and its manufacturing method
JP6652393B2 (en) Shunt resistor and current detection device using shunt resistor
JP2005197394A (en) Metallic resistor
JP5143353B2 (en) Resistor manufacturing method
JP2008270599A (en) Metal plate resistor
US20180122537A1 (en) Electronic component
JP2009272476A (en) Chip resistor and method of manufacturing the same
JP2005164469A (en) Resistance apparatus for detecting electric current and its manufacturing method
JP2008182078A (en) Chip type metallic plate resistor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Ref document number: 4056445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term