JP2005069532A - Dissolving device, and dissolving method using the same - Google Patents

Dissolving device, and dissolving method using the same Download PDF

Info

Publication number
JP2005069532A
JP2005069532A JP2003298024A JP2003298024A JP2005069532A JP 2005069532 A JP2005069532 A JP 2005069532A JP 2003298024 A JP2003298024 A JP 2003298024A JP 2003298024 A JP2003298024 A JP 2003298024A JP 2005069532 A JP2005069532 A JP 2005069532A
Authority
JP
Japan
Prior art keywords
crucible
heating means
raw material
silicon
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003298024A
Other languages
Japanese (ja)
Inventor
Seiji Nakazumi
征治 中住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003298024A priority Critical patent/JP2005069532A/en
Publication of JP2005069532A publication Critical patent/JP2005069532A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Silicon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dissolving device for polycrystalline silicone for solar batteries capable of solving problems wherein fused liquid of silicone is scattered when discharged to adhere to a device to discharge the fused liquid of silicone to cause severe abrasion, need large-sizing of the device, and require long time till sufficiently dissolved, and a dissolving method using that. <P>SOLUTION: Heating means 7 and 6 are provided at an upper part and a side part of crucibles 1 and 2, and silicone material is charged into the crucibles to be dissolved by the heating means to be discharged from a discharge port 3 provided at a bottom part in this dissolving device. The diameter of the discharge port is set to be larger than 10 mm, and smaller than 50 mm. The silicone material is gradually dissolved from the upper part of the crucible to the lower part by the heating means 7 at the upper part of the crucible and the heating means 6 at the side part, so that it is discharged from the discharge port. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は溶解装置とそれを用いた溶解方法に関し、特に太陽電池用多結晶シリコンを鋳造するための鋳造装置などに用いられる溶解装置とそれを用いた溶解方法に関する。   The present invention relates to a melting apparatus and a melting method using the same, and more particularly to a melting apparatus used in a casting apparatus for casting polycrystalline silicon for solar cells and a melting method using the same.

従来、シリコンなどの半導体材料を溶解する溶解装置は、図2に示すように、るつぼ1内に投入された原料を加熱手段2で加熱して溶解し、るつぼ11の底部に円形の出湯口13aを有するノズル13を設け、このノズル13内の原料を加熱する第2の加熱手段14を設け、この第2の加熱手段14でノズル13内の原料を溶解させてるつぼ11内の融液を出湯させるように構成したものがあった(特許文献1参照)。なお、図2において、15はるつぼ11の断熱壁、16のるつぼ11の補強材、17はノズル13の補強材である。   2. Description of the Related Art Conventionally, as shown in FIG. 2, a melting apparatus for melting a semiconductor material such as silicon melts a raw material charged in a crucible 1 by heating means 2 and melts a circular tap 13a at the bottom of the crucible 11. The second heating means 14 for heating the raw material in the nozzle 13 is provided, and the melt in the crucible 11 in which the raw material in the nozzle 13 is dissolved by the second heating means 14 is discharged. There existed what was comprised so that it might make (refer patent document 1). In FIG. 2, 15 is a heat insulating wall of the crucible 11, 16 is a reinforcing material for the crucible 11, and 17 is a reinforcing material for the nozzle 13.

また、図3に示すように、るつぼ11内に投入された原料を加熱手段12で加熱して溶解し、るつぼ11の底部に出湯口13aを設け、この出湯口13aに可動式の水冷金属板から成る蓋部材18を設け、出湯の際にはこの蓋部材18を取り去ることでるつぼ11内の融液を出湯させる装置もあった(特許文献2参照)。なお、図3において、15はるつぼ11の断熱壁、16はるつぼ11の補強材である。   Further, as shown in FIG. 3, the raw material charged in the crucible 11 is heated and melted by the heating means 12, and a hot water outlet 13a is provided at the bottom of the crucible 11, and a movable water-cooled metal plate is provided at the hot water outlet 13a. There is also an apparatus for removing the melt in the crucible 11 by removing the lid member 18 when the lid member 18 is provided (see Patent Document 2). In FIG. 3, 15 is a heat insulating wall of the crucible 11, and 16 is a reinforcing material of the crucible 11.

更に、るつぼを装置内にセットした後、機械的な栓機構を使用してるつぼ11の底部の出湯口13aに栓をし、原料溶解と共に栓を引き抜くといった機構とすることも可能である。
特開平11−43318号公報 特開2000−105083号公報
Further, after setting the crucible in the apparatus, it is possible to use a mechanical plug mechanism to plug the hot water outlet 13a at the bottom of the crucible 11 and withdraw the plug together with the melting of the raw material.
JP 11-43318 A JP 2000-105083 A

ところが、これら従来の鋳造装置では、シリコン原料を溶解して出湯させるためには、ノズル13内のシリコン原料を加熱するための第2の加熱手段14、または可動式の水冷金属板から成る蓋部材18、若しくは機械的な栓機構といった駆動部が必要であり、且つ、るつぼ11内のシリコン原料を溶解させて融液を出湯させる際に飛散した融液が加熱装置16または蓋部材18に付着し、消耗が激しいといった問題があった。   However, in these conventional casting apparatuses, in order to melt the silicon raw material and discharge the hot water, the second heating means 14 for heating the silicon raw material in the nozzle 13 or a lid member made of a movable water-cooled metal plate. 18 or a driving part such as a mechanical plug mechanism is required, and the melted liquid melted when the silicon raw material in the crucible 11 is dissolved to discharge the melt adheres to the heating device 16 or the lid member 18. There was a problem that consumption was severe.

また、これら従来の溶解装置は、シリコン融液を出湯させるための装置として、第2の加熱手段14または可動式の水冷金属板から成る蓋部材18が必要であり、装置が大型化するといった問題もあった。   Further, these conventional melting devices require the second heating means 14 or the lid member 18 made of a movable water-cooled metal plate as a device for discharging the silicon melt, and the size of the device is increased. There was also.

さらに、これらの従来の鋳造装置では、るつぼ11内のシリコン原料が完全に融液になったことを確認できないため、るつぼ11内のシリコン原料を全て溶解して出湯させるには、溶解に十分な時間をかけなければならないという問題があった。   Furthermore, in these conventional casting apparatuses, since it cannot be confirmed that the silicon raw material in the crucible 11 is completely melted, it is sufficient to dissolve the silicon raw material in the crucible 11 so that all the silicon raw material is melted and discharged. There was a problem of having to spend time.

本発明は、このような従来装置の問題点に鑑みてなされたものであり、シリコン融液を出湯させる際に飛散したシリコン融液が、シリコン融液を出湯させるための装置に付着し、消耗が激しいという問題点、および装置が大型化するという問題点、ならびに溶解に十分な時間がかかるという問題点を解消した溶解装置とそれを用いた溶解方法を提供することを目的とする。   The present invention has been made in view of such problems of the conventional apparatus, and the silicon melt scattered when the silicon melt is poured out adheres to the apparatus for draining the silicon melt and wears out. It is an object of the present invention to provide a melting apparatus and a melting method using the same, which have solved the problem that the temperature is severe, the problem that the apparatus becomes large, and the problem that it takes a sufficient time for melting.

本発明に係る溶解装置は、るつぼに投入されたシリコン原料を加熱手段で加熱溶解して底部に設けた円形の出湯口から出湯する溶解装置において、前記出湯口の径を10mmより大きく、50mmより小さい範囲としたことを特徴とする。   The melting apparatus according to the present invention is a melting apparatus in which a silicon raw material charged in a crucible is heated and melted by a heating means and discharged from a circular outlet provided at the bottom, and the diameter of the outlet is larger than 10 mm and larger than 50 mm. It is characterized by a small range.

上記溶解装置では、前記出湯口に、この出湯口の径と同じか、もしくは大きい径の筒状のノズルを垂下して設けることが望ましい。   In the melting apparatus, it is desirable that a cylindrical nozzle having a diameter that is the same as or larger than the diameter of the pouring spout is provided at the pouring spout.

また、本発明の溶解方法では、るつぼの上部と側部に加熱手段を設け、このるつぼにシリコン原料を投入して前記加熱手段で加熱溶解して底部に設けた円形の出湯口から出湯する溶解方法において、前記出湯口の径を10mmより大きく、50mmより小さい範囲にするとともに、前記るつぼの上部の加熱手段と側部の加熱手段でるつぼ上部のシリコン原料から下部のシリコン原料へ徐々に溶解して、前記出湯口から出湯することを特徴とする。   Further, in the melting method of the present invention, heating means are provided at the upper and side portions of the crucible, a silicon raw material is charged into the crucible, and is melted by heating with the heating means and discharged from a circular outlet provided at the bottom. In the method, the diameter of the outlet is larger than 10 mm and smaller than 50 mm, and the upper crucible heating means and the side heating means gradually dissolve the silicon raw material from the upper crucible into the lower silicon raw material. The hot water is discharged from the hot water outlet.

以上のように、本発明に係る溶解装置によれば、溶解したシリコンを出湯する円形の出湯口の径を10mmより大きく、50mmより小さい範囲とすることで、ブロック品質、切断、スライシングに悪影響を及ぼす鋳型底面の急速凝固層をるつぼからの高温融液の供給だけで再溶解させることが可能となり、鋳型加熱手段の駆動による時間、電力コストを削減できると共に、新たな加熱手段の設置による鋳造装置大型化の問題を解決することができる。   As described above, according to the melting apparatus according to the present invention, the diameter of the circular tap for pouring the melted silicon is larger than 10 mm and smaller than 50 mm, thereby adversely affecting the block quality, cutting and slicing. The rapid solidification layer on the bottom of the casting mold can be re-dissolved only by supplying the high-temperature melt from the crucible, and the time and power cost due to the driving of the mold heating means can be reduced, and the casting apparatus by installing a new heating means The problem of enlargement can be solved.

さらに、本発明に係る溶解方法によれは、るつぼ内のシリコン原料が完全に融液に変わったところで出湯が開始され、かつ加熱手段を制御してるつぼ内のシリコン原料を上方から徐々に溶解することで、溶解中の融液の漏れ出しを防ぐことから、溶解時間の短縮を図ることができ、必要最小限の電力で溶解を行うことができる。   Further, according to the melting method of the present invention, the hot water is started when the silicon raw material in the crucible is completely changed to the melt, and the silicon raw material in the crucible is gradually dissolved from above by controlling the heating means. As a result, leakage of the melt during melting can be prevented, so that the melting time can be shortened and the melting can be performed with the minimum necessary power.

以下、本発明を添付図面に基づき詳細に説明する。図1は、本発明に係る溶解装置の一実施形態を示す断面図であり、1、2はるつぼ、3はるつぼの底部に設けられた円形の出湯口、4は出湯口を塞ぐシリコン原料、5はるつぼの底部に垂下して設けられたノズル、6、7、8は加熱手段であり、9は鋳型である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an embodiment of a melting apparatus according to the present invention, wherein 1, 2 are crucibles, 3 is a circular outlet provided at the bottom of the crucible, 4 is a silicon raw material for closing the outlet, Reference numeral 5 denotes a nozzle provided at the bottom of the crucible, 6, 7 and 8 are heating means, and 9 is a mold.

るつぼ1、2は、シリコン原料を加熱溶解して融液を鋳型9に注湯するものであり、内側に設けられた石英るつぼ1と外側に設けられたグラファイトるつぼ2から成る。なお、石英るつぼ1で溶解されて鋳型9に注湯されて凝固したシリコン材料は、太陽電池用多結晶シリコン基板材料に用いられる。石英るつぼ1は、投入されたシリコン原料を溶解するものであり、耐火強度と半導体材料中に不純物が拡散しないことを考慮して石英製のものなどが用いられる。石英るつぼ1は高温になると軟化して形を保てないため、グラファイトるつぼ2により石英るつぼ1を保持する。   The crucibles 1 and 2 are for melting the silicon raw material by heating and pouring the melt into the mold 9 and comprising a quartz crucible 1 provided on the inside and a graphite crucible 2 provided on the outside. The silicon material melted in the quartz crucible 1, poured into the mold 9 and solidified is used as a polycrystalline silicon substrate material for solar cells. The quartz crucible 1 dissolves the silicon raw material that has been charged, and quartz or the like is used in consideration of fire resistance and the fact that impurities do not diffuse into the semiconductor material. The quartz crucible 1 is softened at a high temperature and cannot keep its shape, so the quartz crucible 1 is held by the graphite crucible 2.

るつぼ1の材料は、シリコン原料の融解温度以上の温度において、融解、蒸発、軟化、変形、分解等を生じず、かつ太陽電池特性を落とさない純度であれば特に限定されないが、通常は高純度の石英やグラファイト等が用いられる。   The material of the crucible 1 is not particularly limited as long as it has a purity that does not cause melting, evaporation, softening, deformation, decomposition, etc. at a temperature higher than the melting temperature of the silicon raw material, and does not deteriorate the solar cell characteristics. Quartz and graphite are used.

出湯初期においては、出湯口3を通過する融液は水位に依存する圧力によって押し出されるが、出湯後期には水位による圧力がほとんどなくなるために、自重による落下で出湯口3から流れ出るようになる。従って、無駄なく出湯させるためにはるつぼ1、2の底部はある一定以上の傾斜が必要である。   At the beginning of the hot water, the melt passing through the hot water outlet 3 is pushed out by the pressure depending on the water level. However, since the pressure due to the water level almost disappears in the late stage of the hot water, the melt flows out of the hot water outlet 3 due to falling by its own weight. Therefore, the bottoms of the crucibles 1 and 2 need to have a certain slope or more in order to discharge hot water without waste.

るつぼ1、2の寸法は、一度に溶解する溶解量に応じたシリコン原料を内包できる寸法である必要がある。シリコン原料の溶解量は、およそ1kgから150kgの範囲である。   The dimensions of the crucibles 1 and 2 are required to include silicon raw materials according to the amount dissolved at a time. The amount of silicon raw material dissolved is in the range of approximately 1 kg to 150 kg.

るつぼ1、2の上部には加熱手段7が設けられ、るつぼ1、2の側部には加熱手段6が設けられている。この加熱手段6、7は、抵抗加熱式のヒーターや誘導加熱式のコイルなどから成る。   A heating means 7 is provided on the upper parts of the crucibles 1 and 2, and a heating means 6 is provided on the sides of the crucibles 1 and 2. The heating means 6 and 7 are formed of a resistance heating type heater, an induction heating type coil, or the like.

石英るつぼ1の底部には、出湯口3が設けられている。この出湯口3はその径が10mmより大きく、50mmより小さい範囲に形成されている。出湯口3の径が10mm以下の場合は、出湯口3からるつぼ1の下部に配置された鋳型9内へシリコン融液が出湯した際、鋳型底部に急速凝固層を形成し、太陽電池用シリコンウェハーとした際に品質を低下させるほか、ブロックの切断、スライシング時にも悪影響を及ぼすため望ましくない。   A hot water outlet 3 is provided at the bottom of the quartz crucible 1. The hot water outlet 3 has a diameter larger than 10 mm and smaller than 50 mm. When the diameter of the tap 3 is 10 mm or less, when the silicon melt is poured from the tap 3 into the mold 9 disposed under the crucible 1, a rapidly solidified layer is formed at the bottom of the mold, and the silicon for solar cells In addition to reducing the quality of the wafer, it is also undesirable because it adversely affects block cutting and slicing.

また、出湯口3の径が50mm以上の場合は、出湯口3と出湯口を塞ぐシリコンとの間に隙間ができ、溶解途中に僅かに融液が漏れ出して固まってしまい歩留りを落としてしまうため望ましくない。   Further, when the diameter of the tap 3 is 50 mm or more, a gap is formed between the tap 3 and the silicon that closes the tap, and the melt slightly leaks out in the middle of melting, thereby reducing the yield. Therefore, it is not desirable.

以上のような理由から、出湯口3の径は10mmより大きく、50mmより小さい範囲とする。   For the above reasons, the diameter of the tap 3 is set to a range larger than 10 mm and smaller than 50 mm.

また、出湯口3を塞ぐ原料が最後に溶けることで原料が完全に融液となった瞬間に出湯が開始されることから、溶解後の出湯を効率良く行うことができる。   Moreover, since the raw material which blocks the hot water outlet 3 is melted lastly, the hot water is started at the moment when the raw material is completely melted, so that the hot water after melting can be efficiently performed.

本発明に係る溶解装置では、ノズル5をるつぼ1の底部から垂下するように設けることが望ましい。   In the melting apparatus according to the present invention, it is desirable to provide the nozzle 5 so as to hang from the bottom of the crucible 1.

石英るつぼ1の底部には、ノズル5が突出して設けられている。このノズル5は全体が筒状に形成されている。このノズル5も石英などから成り、通常は石英るつぼ1と一体に形成される。なお、石英るつぼ1とは、別体に形成して、石英るつぼ1の底部に取り付けるようにしてもよい。ノズル5は、出湯したシリコン融液の飛散を抑えるためのものであり、ノズル5の形状は、出湯口3から出湯したシリコン融液の落下の方向を妨げない形状であることが望ましい。   A nozzle 5 protrudes from the bottom of the quartz crucible 1. The entire nozzle 5 is formed in a cylindrical shape. The nozzle 5 is also made of quartz or the like, and is usually formed integrally with the quartz crucible 1. The quartz crucible 1 may be formed separately and attached to the bottom of the quartz crucible 1. The nozzle 5 is for suppressing splashing of the molten silicon melt, and the shape of the nozzle 5 is preferably a shape that does not hinder the direction of dropping of the molten silicon discharged from the hot water outlet 3.

次に、シリコン融液の出湯の制御方法を説明する。まず、石英るつぼ1内にシリコン原料を供給する。石英るつぼ1が新品で、出湯口3がシリコン原料で塞がれていない場合は、出湯口3を塞ぐようにシリコン原料で栓をする。次に、ヒーターに通電して加熱手段7を駆動して、石英るつぼ1内の原料を所定温度に加熱して上方から徐々に溶解する。石英るつぼ1内の上方のシリコン原料の一部が融液になったら、加熱手段6を駆動して、シリコン原料の溶解を促進する。上部加熱手段7を駆動した後に、側部加熱手段6を駆動することで、ノズル5の出湯口3に近いシリコン原料は出湯まで低温に保たれ、石英るつぼ1内のシリコン原料が完全に融液に変わるまで、まだ溶けていないシリコン原料の隙間を流れ落ちて来た融液が出湯口3の周囲で凝固する。これで、石英るつぼ1内のシリコン融液は、シリコン原料が完全に融液に変わるまで、石英るつぼ1から流れ落ちにくくなって石英るつぼ1内に保持される。   Next, a method for controlling the molten silicon melt will be described. First, a silicon raw material is supplied into the quartz crucible 1. When the quartz crucible 1 is new and the pouring gate 3 is not clogged with the silicon raw material, it is plugged with the silicon raw material so as to close the pouring gate 3. Next, the heater is energized to drive the heating means 7 so that the raw material in the quartz crucible 1 is heated to a predetermined temperature and gradually melted from above. When a part of the upper silicon material in the quartz crucible 1 becomes a melt, the heating means 6 is driven to promote dissolution of the silicon material. By driving the side heating means 6 after the upper heating means 7 is driven, the silicon raw material close to the tap 3 of the nozzle 5 is kept at a low temperature until the hot water, and the silicon raw material in the quartz crucible 1 is completely melted. The melt that has flowed down through the gaps of the silicon raw material that has not yet melted is solidified around the tap 3. Thus, the silicon melt in the quartz crucible 1 is held in the quartz crucible 1 so that it does not easily flow out of the quartz crucible 1 until the silicon raw material is completely changed to the melt.

石英るつぼ1内のシリコン原料が融液に変わり、ノズルを塞いでいるシリコン原料が融液となることで、出湯口3からシリコン融液が下部に配置された鋳型9内へ流れ出す。この時、出湯初期の融液は温度が低く粘性も高いため鋳型9の底部で急速凝固し、品質が悪く、切断、切削性にも悪影響を及ぼす急速凝固層を形成するが、出湯口3の径が10mmから50mmの範囲にあると、るつぼ1からの単位時間当たりの高温融液の供給量が増えるため加熱手段を用いずに前記急速凝固層を再溶解し鋳型9底面にシリコン融液が一様に濡れた状態から凝固をさせることができる。   The silicon raw material in the quartz crucible 1 is changed to a melt, and the silicon raw material closing the nozzle becomes a melt, so that the silicon melt flows out from the tap 3 into the mold 9 disposed below. At this time, since the melt at the beginning of the hot water is low in temperature and high in viscosity, it rapidly solidifies at the bottom of the mold 9 to form a rapidly solidified layer having poor quality and adversely affecting cutting and cutting properties. When the diameter is in the range of 10 mm to 50 mm, the supply amount of the high-temperature melt from the crucible 1 per unit time increases, so that the rapidly solidified layer is redissolved without using heating means, and the silicon melt is formed on the bottom of the mold 9. Solidification can be performed from a uniformly wet state.

また、本発明による溶解方法においては、シリコン融液はるつぼ1内の上部から下部に向かって流れ落ちるが、溶解の初期段階ではるつぼ1の底部の温度はシリコンを溶解させるのに十分な温度に達していないため、上部から流れ落ちてきたシリコン融液は周囲のシリコン原料にその潜熱を奪われて凝固することから、るつぼ1の底部の出湯口3から出湯されることはない。   Further, in the melting method according to the present invention, the silicon melt flows down from the upper part to the lower part in the crucible 1, but at the initial stage of melting, the temperature of the bottom of the crucible 1 reaches a temperature sufficient to dissolve silicon. Therefore, the silicon melt that has flowed down from the upper part is deprived of its latent heat by the surrounding silicon raw material and solidifies, so that it is not discharged from the hot water outlet 3 at the bottom of the crucible 1.

また、ノズル5は石英るつぼ1の底部から垂下するように設けられていることから、石英るつぼ1内で溶解されたシリコン融液は石英るつぼ1内のシリコン融液の残量にかかわらず、常に石英るつぼ1の真下の同じ位置に落下する。   Further, since the nozzle 5 is provided so as to hang down from the bottom of the quartz crucible 1, the silicon melt dissolved in the quartz crucible 1 always remains regardless of the remaining amount of silicon melt in the quartz crucible 1. It falls to the same position just below the quartz crucible 1.

本発明に係る溶解装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the melt | dissolution apparatus which concerns on this invention. 従来の溶解装置を示す図である。It is a figure which shows the conventional melt | dissolution apparatus. 従来の他の溶解装置を示す図である。It is a figure which shows the other conventional melt | dissolution apparatus.

符号の説明Explanation of symbols

1、2・・・るつぼ
3・・・出湯口
4・・・出湯口を塞ぐシリコン原料
5・・・ノズル
6、7、8・・・加熱手段
9・・・鋳型
1, 2, crucible 3, outlet 4, silicon raw material 5 that closes the outlet 5, nozzles 6, 7, 8, heating means 9, mold

Claims (3)

るつぼに投入されたシリコン原料を加熱手段で加熱溶解して底部に設けた円形の出湯口から出湯する溶解装置において、前記出湯口の径を10mmより大きく、50mmより小さい範囲としたことを特徴とする溶解装置。 In a melting apparatus in which a silicon raw material charged in a crucible is heated and melted by a heating means and discharged from a circular hot water outlet provided at the bottom, the diameter of the hot water outlet is set to a range larger than 10 mm and smaller than 50 mm. A melting device. 前記出湯口に、この出湯口の径と同じか、もしくは大きい径の筒状のノズルを垂下して設けたことを特徴とする請求項1に記載の溶解装置。 The melting apparatus according to claim 1, wherein a cylindrical nozzle having a diameter equal to or larger than the diameter of the hot water outlet is provided at the hot water outlet. るつぼの上部と側部に加熱手段を設け、このるつぼにシリコン原料を投入して前記加熱手段で加熱溶解して底部に設けた円形の出湯口から出湯する溶解方法において、前記出湯口の径を10mmより大きく、50mmより小さい範囲にするとともに、前記るつぼの上部の加熱手段と側部の加熱手段でるつぼ上部のシリコン原料から下部のシリコン原料へ徐々に溶解して、前記出湯口から出湯することを特徴とする溶解方法。 In a melting method in which heating means are provided at the top and sides of a crucible, silicon raw material is charged into the crucible, heated and melted by the heating means, and discharged from a circular outlet provided at the bottom, the diameter of the outlet is determined. The range is larger than 10 mm and smaller than 50 mm, and gradually melts from the silicon raw material at the upper part of the crucible into the silicon raw material at the lower part by the heating means at the upper part of the crucible and the heating means at the side part. A dissolution method characterized by the above.
JP2003298024A 2003-08-21 2003-08-21 Dissolving device, and dissolving method using the same Pending JP2005069532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298024A JP2005069532A (en) 2003-08-21 2003-08-21 Dissolving device, and dissolving method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298024A JP2005069532A (en) 2003-08-21 2003-08-21 Dissolving device, and dissolving method using the same

Publications (1)

Publication Number Publication Date
JP2005069532A true JP2005069532A (en) 2005-03-17

Family

ID=34403648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298024A Pending JP2005069532A (en) 2003-08-21 2003-08-21 Dissolving device, and dissolving method using the same

Country Status (1)

Country Link
JP (1) JP2005069532A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273664A (en) * 2005-03-29 2006-10-12 Kyocera Corp Casting mold for silicon casting, silicon casting device and method for casting polycrystalline silicon ingot
JP2006306699A (en) * 2005-03-28 2006-11-09 Kyocera Corp Apparatus and method for manufacturing semiconductor ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306699A (en) * 2005-03-28 2006-11-09 Kyocera Corp Apparatus and method for manufacturing semiconductor ingot
JP2006273664A (en) * 2005-03-29 2006-10-12 Kyocera Corp Casting mold for silicon casting, silicon casting device and method for casting polycrystalline silicon ingot

Similar Documents

Publication Publication Date Title
KR101457368B1 (en) Induction Tapping Equipment and Method for Melt
JP4126450B2 (en) Dissolution method
JP2005069532A (en) Dissolving device, and dissolving method using the same
JP6230847B2 (en) Aluminum melting and holding furnace
KR20100050307A (en) Continuous casting equipment and method for high purity silicon
JP2014069983A (en) Method and apparatus for producing glass substrate
JP2005076972A (en) Melting holding furnace controlling device
JP3872233B2 (en) Silicon casting method
JP2007284347A (en) Molten glass supplying device
JP2005127678A (en) Melting device, and melting method using it
JP2006275426A (en) Manufacturing method for crucible and semiconductor ingot
JP4077712B2 (en) Silicon casting method
JP2004244276A (en) Melting apparatus
JP2006275425A (en) Manufacturing method for crucible and semiconductor ingot
JP2002292455A (en) Silicon casting device and silicon casting method
JP2005279663A (en) Apparatus for casting silicon
JP2005271078A (en) Inert gas treatment structure, silicon casting apparatus having structure thereof, silicon casting method, polycrystalline silicon ingot using method thereof, and polycrystalline silicon substrate
JPH1143318A (en) Melting apparatus
JP4535720B2 (en) Method for producing silicon ingot
JP2006272400A (en) Casting device and semiconductor ingot
JP2000271706A (en) Twin roll type continuous casting method and device thereof
JP2006242418A (en) Casting device
JPH06329420A (en) Glass melting furnace
JP3330883B2 (en) Melting and holding furnace with tilting mechanism
JP2006242417A (en) Casting device and casting method using this device