JP3872233B2 - Silicon casting method - Google Patents

Silicon casting method Download PDF

Info

Publication number
JP3872233B2
JP3872233B2 JP18443699A JP18443699A JP3872233B2 JP 3872233 B2 JP3872233 B2 JP 3872233B2 JP 18443699 A JP18443699 A JP 18443699A JP 18443699 A JP18443699 A JP 18443699A JP 3872233 B2 JP3872233 B2 JP 3872233B2
Authority
JP
Japan
Prior art keywords
mold
raw material
silicon
crucible
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18443699A
Other languages
Japanese (ja)
Other versions
JP2001019591A (en
Inventor
芳明 湯本
宗義 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18443699A priority Critical patent/JP3872233B2/en
Publication of JP2001019591A publication Critical patent/JP2001019591A/en
Application granted granted Critical
Publication of JP3872233B2 publication Critical patent/JP3872233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はシリコン鋳造装置に関し、特に鋳型内にシリコン原料を供給して加熱溶融させた後に、一方向凝固させて鋳塊を作るシリコン鋳造装置に関する。
【0002】
【従来の技術】
従来のシリコン鋳造装置を図2に示す。図2において、11はグラファイトなどから成る鋳型、12はその内部で水などの冷媒が循環する冷却板、13は抵抗加熱ヒータ、14はグラファイトなどから成る断熱壁、15a、15bは断熱壁の上部に設けられた原料供給タンクである。このような鋳型11や断熱壁14などは全て真空容器(不図示)内に設置されている(例えば特開平10−139586号公報参照)。
【0003】
このシリコン鋳造装置では、鋳型11の内面壁に窒化珪素や炭化珪素などを主成分とする離型材を塗布して、この鋳型11内にシリコン原料17を入れ、このシリコン原料17をヒータ13で加熱して溶融させる。次に、シリコン原料17が溶融して鋳型11の上部に空きができたら、第一の原料供給タンク15a内のシリコン原料を鋳型11内へ供給する。次に、追加供給したシリコン原料が溶融して鋳型11の上部に空きができたら、第二の原料供給タンク15b内のシリコン原料を鋳型11内へ供給する。最後に、全てのシリコン原料が溶融したら、鋳型11を徐々に下降させてシリコン融液17をヒータ13から徐々に離して冷却し、あるいは鋳型11の位置はそのままでヒータ13の温度を下げて冷却し、この鋳型11内でシリコン融液を一方向凝固させて鋳塊を形成するものである。
【0004】
この一方向性凝固したシリコン融液17の鋳塊は、鋳型11を破壊することにより、鋳型11から取り出したり、もしくは組立型鋳型の場合は、鋳型11を分解して取り出す。
【0005】
【発明が解決しようとする課題】
ところが、このようなシリコンの鋳造方法では、一つの鋳型11内で全ての原料17を加熱溶融させるために原料の溶解時間が長くかかっていた。従来技術のままで溶解時間を短くするためには、ヒータ13の温度を高くする必要があるが、ヒータ13の温度を上げ過ぎると、鋳型11の内壁面に塗布する離型材が破損するという問題があり、溶解時間の短縮は困難であった。
【0006】
本発明は、このような従来装置の問題点に鑑みて発明されたものであり、シリコン原料の溶解時間が長くかかるという従来装置の問題点を解消したシリコン鋳造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るシリコン鋳造方法は、シリコン原料を鋳型内に投入する工程と、シリコン原料を溶解るつぼ内に投入する工程と、前記鋳型内のシリコン原料を、鋳型内で加熱溶融する工程と、前記溶解るつぼ内のシリコン原料を、溶解るつぼ内で加熱溶融する工程と、前記溶解るつぼ内で溶融されたシリコン融液を、前記溶解るつぼの底から出湯させて前記鋳型内に追加供給する工程と、を少なくとも有したことを特徴とする
【0008】
【発明の実施の形態】
以下、本発明を添付図面に基づき詳細に説明する。図1は、本発明に係るシリコン鋳造方法を用いたシリコン鋳造装置の一実施形態を示す断面図であり、1はグラファイトなどから成る鋳型、2はその内部で水などの冷媒が循環する冷却板、3は抵抗加熱ヒータ、4はグラファイトなどから成る断熱壁、5aは石英るつぼ、5bは黒鉛るつぼ、6(6a、6b)はるつぼ用抵抗加熱ヒータである。このような鋳型1や断熱壁4などは全て真空容器(不図示)内に設置される。
【0009】
本発明では鋳型1の上部に、石英るつぼ5aと黒鉛るつぼ5bから成る溶解るつぼ5を設ける。この溶解るつぼ5の部には、融液を出湯する穴5cが設けられている。この溶解るつぼ5も鋳型1と共に真空容器内に設置する。溶解るつぼ5の上部または周囲、若しくは両方に、るつぼ用抵抗加熱ヒータ6(6a、6b)を設置する。
【0010】
本発明に係る鋳造方法は、シリコン原料を鋳型内に投入する工程と、シリコン原料を溶解るつぼ内に投入する工程と、前記鋳型内のシリコン原料を、鋳型内で加熱溶融する工程と、前記溶解るつぼ内のシリコン原料を、溶解るつぼ内で加熱溶融する工程と、前記溶解るつぼ内で溶融されたシリコン融液を、前記溶解るつぼの底から出湯させて前記鋳型内に追加供給する工程と、を有している。具体的には、本発明を用いた鋳造装置での鋳造方法は次の通りである。まず、約半分の量のシリコン原料7を鋳型1内に、残りの約半分の量のシリコン原料8を石英るつぼ5a内に入れる。次に、鋳型1内のシリコン原料7、および石英るつぼ5a内のシリコン原料8をヒータ3、およびヒータ6(6a、6b)で加熱して溶融させる。石英るつぼ5a内で融液になったシリコンはるつぼ底の穴5cから流れ出し、鋳型1内に追加供給される。最後に、全てのシリコン原料7、8が溶融したら、ヒータ6(6a、6b)の出力を切り、ヒータ3の出力を調節して一方向凝固させる。
【0011】
入るだけのシリコン原料7を鋳型1内に入れ、残りの原料を石英るつぼ5aに入れれば、必要な石英るつぼ5aの大きさが一番小さくなる。一般的なシリコン原料の嵩比重は1.0〜1.5で、シリコンの比重2.33の半分程度である。このため、鋳造に適した大きさの鋳型には、約半分のシリコン原料を入れることができる。したがって、約半分の量のシリコン原料7を鋳型1内に入れ、残りの約半分の量のシリコン原料8を石英るつぼ5a内に入れるようにすると、鋳型もるつぼも最も有効に利用することができる。ただし鋳型1内に入れるシリコン原料の量は、上記の説明にかかわらず、半分より少なくしても特に問題は無い。溶解るつぼ5aの方を主体にして溶解する場合は、溶解るつぼ5aの大きさを少し大きくし、溶解るつぼ5aに半分より多い量の原料を入れて溶解すればよい。
【0012】
溶解るつぼ5とヒータ3の間をグラファイトなどから成る断熱材で仕切ることもできる。ただし断熱材には出湯に必要な穴を設けておく。断熱仕切りを入れると、凝固中のヒータ3の出力を小さくすることができ、節電になる。
【0013】
るつぼ5は鋳造装置の上部から出し入れする。このとき、るつぼ5の上のヒータ6aと断熱壁4は横へ移動させるようになっている。原料は、るつぼ5が入っている状態でヒータ6aと断熱壁4を横へ移動させて入れる。または予め原料を入れておいたるつぼ5を鋳造装置内にいれる。鋳型1の場合、予め鋳型1内に原料を入れておき、その鋳型1を鋳造装置内に入れる。
【0014】
鋳型1とるつぼ5で原料を溶解すると、溶解時間はほぼ1/2になるが、シリコン原料を溶解する場合、るつぼ5内の方が短時間で溶解できるので、るつぼ5を大きくして、鋳型1内で溶解する量を減らし、るつぼ5内で溶解する量を増やすと溶解時間を1/2よりも短くできる。
【0015】
鋳型1のみで溶解する場合は、溶解時間が長く、鋳型1が長時間高温状態にさらされるため、鋳型1内面の離型材の損傷が発生しやすい。離型材の損傷が発生すると鋳塊の良品歩留りが低下する。本発明の場合は、溶解時間が短いので、離型材の損傷が発生しやすく、鋳塊の良品歩留りが高い。
【0016】
本発明の場合、溶解時間が約半分に短縮され生産性が向上するが、それに対して、設備費の増加はわずかである。真空容器の大きさは、図2に示す従来装置と同等か、または少し小さくて済む。また、図2に示す従来装置では、原料タンクの蓋15dおよび断熱壁14bに駆動装置が必要であるが、本発明ではこのような駆動装置は不要である。
【0017】
本発明では、図2の従来装置に比べて自動化が容易である。図2の従来装置では、鋳型11内の原料の溶け具合を観察して、適当な時期にタンク15a、15b内の原料を鋳型内に供給することが必要であるが、本発明では、溶解状態を観察して制御する必要はないので自動溶解が容易である。
【0018】
【発明の効果】
以上のように、本発明に係るシリコン鋳造方法によれば、シリコン原料を鋳型内に投入する工程と、シリコン原料を溶解るつぼ内に投入する工程と、前記鋳型内のシリコン原料を、鋳型内で加熱溶融する工程と、前記溶解るつぼ内のシリコン原料を、溶解るつぼ内で加熱溶融する工程と、前記溶解るつぼ内で溶融されたシリコン融液を、前記溶解るつぼの底から出湯させて前記鋳型内に追加供給する工程と、を少なくとも有したことから、シリコンの加熱溶融を鋳型内だけではなく、溶解るつぼ内でも平行して行うことができるようになり、溶解時間が大幅に短くなる。
【図面の簡単な説明】
【図1】本発明に係るシリコン鋳造方法を用いたシリコン鋳造装置の一実施形態を示す図である。
【図2】従来のシリコン鋳造装置を示す図である。
【符号の説明】
1‥‥‥鋳型、2‥‥‥冷却板、3‥‥‥ヒータ、4‥‥‥断熱壁、5(5a、5b)‥‥‥溶解るつぼ、6(6a、6b)‥‥‥るつぼ用ヒータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon casting apparatus, and more particularly to a silicon casting apparatus that supplies a silicon raw material into a mold, heats and melts it, and then solidifies in one direction to form an ingot.
[0002]
[Prior art]
A conventional silicon casting apparatus is shown in FIG. In FIG. 2, 11 is a mold made of graphite, 12 is a cooling plate in which a coolant such as water circulates, 13 is a resistance heater, 14 is a heat insulating wall made of graphite, and 15a and 15b are upper portions of the heat insulating wall. It is the raw material supply tank provided in. Such a mold 11 and a heat insulating wall 14 are all installed in a vacuum vessel (not shown) (see, for example, JP-A-10-139586).
[0003]
In this silicon casting apparatus, a mold release material mainly composed of silicon nitride or silicon carbide is applied to the inner wall of the mold 11, a silicon raw material 17 is placed in the mold 11, and the silicon raw material 17 is heated by the heater 13. And melt. Next, when the silicon raw material 17 is melted and a space is formed above the mold 11, the silicon raw material in the first raw material supply tank 15 a is supplied into the mold 11. Next, when the additionally supplied silicon raw material is melted and a space is formed above the mold 11, the silicon raw material in the second raw material supply tank 15 b is supplied into the mold 11. Finally, when all the silicon raw materials are melted, the mold 11 is gradually lowered and the silicon melt 17 is gradually separated from the heater 13 to cool, or the temperature of the heater 13 is lowered while the position of the mold 11 remains unchanged. Then, the silicon melt is unidirectionally solidified in the mold 11 to form an ingot.
[0004]
The ingot of the unidirectionally solidified silicon melt 17 is taken out from the mold 11 by breaking the mold 11, or in the case of an assembly mold, the mold 11 is disassembled and taken out.
[0005]
[Problems to be solved by the invention]
However, in such a silicon casting method, it takes a long time to dissolve the raw materials in order to heat and melt all the raw materials 17 in one mold 11. In order to shorten the melting time with the conventional technique, it is necessary to increase the temperature of the heater 13, but if the temperature of the heater 13 is excessively increased, the release material applied to the inner wall surface of the mold 11 is damaged. Therefore, it was difficult to shorten the dissolution time.
[0006]
The present invention was invented in view of such problems of the conventional apparatus, and an object of the present invention is to provide a silicon casting apparatus that solves the problem of the conventional apparatus that it takes a long time to dissolve the silicon raw material. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a silicon casting method according to the present invention includes a step of introducing a silicon raw material into a mold, a step of introducing a silicon raw material into a melting crucible, and the silicon raw material in the mold in a mold. Heating and melting the silicon raw material in the melting crucible, heating and melting the silicon raw material in the melting crucible, and discharging the molten silicon melt in the melting crucible from the bottom of the melting crucible. And a step of additionally supplying the inside .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing an embodiment of a silicon casting apparatus using a silicon casting method according to the present invention. 1 is a mold made of graphite or the like, 2 is a cooling plate in which a coolant such as water circulates. 3 is a resistance heater, 4 is a heat insulating wall made of graphite, 5a is a quartz crucible, 5b is a graphite crucible, and 6 (6a, 6b) is a resistance heater for the crucible. Such mold 1 and heat insulating wall 4 are all installed in a vacuum container (not shown).
[0009]
In the present invention, a melting crucible 5 composed of a quartz crucible 5a and a graphite crucible 5b is provided on the upper part of the mold 1. At the bottom of the melting crucible 5, a hole 5c for discharging the melt is provided. This melting crucible 5 is also installed in the vacuum container together with the mold 1. A crucible resistance heater 6 (6a, 6b) is installed on or around the melting crucible 5 or both.
[0010]
The casting method according to the present invention includes a step of introducing a silicon raw material into a mold, a step of introducing a silicon raw material into a melting pot, a step of heating and melting the silicon raw material in the mold in the mold, and the melting A step of heating and melting a silicon raw material in a crucible in a melting crucible, and a step of additionally supplying the silicon melt melted in the melting crucible from the bottom of the melting crucible into the mold. Have. Specifically , the casting method in the casting apparatus using the present invention is as follows. First, about half of the silicon raw material 7 is put into the mold 1 and the remaining half of the silicon raw material 8 is put into the quartz crucible 5a. Next, the silicon raw material 7 in the mold 1 and the silicon raw material 8 in the quartz crucible 5a are heated and melted by the heater 3 and the heater 6 (6a, 6b). The silicon melted in the quartz crucible 5 a flows out from the hole 5 c at the bottom of the crucible and is additionally supplied into the mold 1. Finally, when all the silicon raw materials 7 and 8 are melted, the output of the heater 6 (6a, 6b) is turned off and the output of the heater 3 is adjusted to solidify in one direction.
[0011]
If enough silicon raw material 7 is put in the mold 1 and the remaining raw materials are put in the quartz crucible 5a, the required size of the quartz crucible 5a becomes the smallest. The bulk specific gravity of a general silicon raw material is 1.0 to 1.5, which is about half of the specific gravity of silicon 2.33. For this reason, about half of the silicon raw material can be placed in a mold of a size suitable for casting. Therefore, if about half of the silicon raw material 7 is put into the mold 1 and the remaining half of the silicon raw material 8 is put into the quartz crucible 5a, the mold and the crucible can be used most effectively. . However, there is no particular problem even if the amount of silicon raw material put into the mold 1 is less than half regardless of the above description. When melting mainly with the melting crucible 5a, the size of the melting crucible 5a is slightly increased, and the melting crucible 5a may be filled with more than half of the raw material.
[0012]
The melting crucible 5 and the heater 3 can be partitioned by a heat insulating material made of graphite or the like. However, a hole necessary for hot water is provided in the heat insulating material. If a heat insulating partition is inserted, the output of the heater 3 during solidification can be reduced, thus saving power.
[0013]
The crucible 5 is taken in and out from the upper part of the casting apparatus. At this time, the heater 6a and the heat insulation wall 4 on the crucible 5 are moved sideways. The raw material is introduced by moving the heater 6a and the heat insulating wall 4 sideways while the crucible 5 is contained. Alternatively, the crucible 5 in which raw materials are previously placed is placed in the casting apparatus. In the case of the mold 1, raw materials are put in the mold 1 in advance, and the mold 1 is put in a casting apparatus.
[0014]
When the raw material is melted with the mold 1 and the crucible 5, the melting time is almost halved. However, when the silicon raw material is melted, the crucible 5 can be melted in a shorter time. If the amount dissolved in 1 is reduced and the amount dissolved in the crucible 5 is increased, the dissolution time can be made shorter than 1/2.
[0015]
When only the mold 1 is melted, the melting time is long and the mold 1 is exposed to a high temperature state for a long time, so that the release material on the inner surface of the mold 1 is easily damaged. When the release material is damaged, the yield of good ingots decreases. In the case of the present invention, since the melting time is short, the release material is easily damaged, and the yield of good ingots is high.
[0016]
In the case of the present invention, the melting time is shortened to about half and the productivity is improved, whereas the increase in the equipment cost is slight. The size of the vacuum vessel may be the same as or slightly smaller than that of the conventional apparatus shown in FIG. In the conventional apparatus shown in FIG. 2, a driving device is required for the lid 15d and the heat insulating wall 14b of the raw material tank. However, in the present invention, such a driving device is unnecessary.
[0017]
In the present invention, automation is easier compared to the conventional apparatus of FIG. In the conventional apparatus shown in FIG. 2, it is necessary to observe the melting state of the raw material in the mold 11 and supply the raw material in the tanks 15a and 15b into the mold at an appropriate time. It is not necessary to observe and control this, so automatic dissolution is easy.
[0018]
【The invention's effect】
As described above, according to the silicon casting method of the present invention, the step of introducing the silicon raw material into the mold, the step of introducing the silicon raw material into the melting crucible, and the silicon raw material in the mold within the mold A step of heating and melting; a step of heating and melting the silicon raw material in the melting crucible; and a step of discharging the silicon melt melted in the melting crucible from the bottom of the melting crucible to within the mold. And at least the step of additionally supplying to the substrate, the silicon can be heated and melted not only in the mold but also in the melting crucible in parallel, and the melting time is significantly shortened.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a silicon casting apparatus using a silicon casting method according to the present invention .
FIG. 2 is a view showing a conventional silicon casting apparatus.
[Explanation of symbols]
1 ... Mold, 2 ... Cooling plate, 3 Heater, 4 Heat insulation wall, 5 (5a, 5b) Melting crucible, 6 (6a, 6b) Heater for crucible

Claims (1)

シリコン原料を鋳型内に投入する工程と、A step of introducing silicon raw material into a mold;
シリコン原料を溶解るつぼ内に投入する工程と、Adding silicon raw material into a melting crucible;
前記鋳型内のシリコン原料を、鋳型内で加熱溶融する工程と、A step of heating and melting the silicon raw material in the mold in the mold;
前記溶解るつぼ内のシリコン原料を、溶解るつぼ内で加熱溶融する工程と、A step of heating and melting the silicon raw material in the melting crucible in the melting crucible;
前記溶解るつぼ内で溶融されたシリコン融液を、前記溶解るつぼの底から出湯させて前記鋳型内に追加供給する工程と、A step of additionally supplying the silicon melt melted in the melting crucible from the bottom of the melting crucible into the mold;
を少なくとも有したことを特徴とするシリコン鋳造方法。A silicon casting method characterized by comprising:
JP18443699A 1999-06-29 1999-06-29 Silicon casting method Expired - Fee Related JP3872233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18443699A JP3872233B2 (en) 1999-06-29 1999-06-29 Silicon casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18443699A JP3872233B2 (en) 1999-06-29 1999-06-29 Silicon casting method

Publications (2)

Publication Number Publication Date
JP2001019591A JP2001019591A (en) 2001-01-23
JP3872233B2 true JP3872233B2 (en) 2007-01-24

Family

ID=16153131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18443699A Expired - Fee Related JP3872233B2 (en) 1999-06-29 1999-06-29 Silicon casting method

Country Status (1)

Country Link
JP (1) JP3872233B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486190B2 (en) 2006-01-20 2014-05-07 エイエムジー・アイデアルキャスト・ソーラー・コーポレーション Single crystal molded silicon for photoelectric conversion and method and apparatus for manufacturing single crystal molded silicon body
CN101755075A (en) 2007-07-20 2010-06-23 Bp北美公司 Methods and apparatuses for manufacturing cast silicon from seed crystals
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
WO2009015167A1 (en) 2007-07-25 2009-01-29 Bp Corporation North America Inc. Methods for manufacturing monocrystalline or near-monocrystalline cast materials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183682A (en) * 1989-12-08 1991-08-09 Sumitomo Electric Ind Ltd Method and device for growing single crystal
DE4018967A1 (en) * 1990-06-13 1991-12-19 Wacker Chemitronic Polycrystalline silicon blocks with column crystallised structure
JP3713332B2 (en) * 1996-06-21 2005-11-09 同和鉱業株式会社 Single crystal copper target and manufacturing method thereof
JP3512576B2 (en) * 1996-10-30 2004-03-29 京セラ株式会社 Silicon casting equipment
JP3852147B2 (en) * 1996-12-27 2006-11-29 Jfeスチール株式会社 Method for producing polycrystalline silicon ingot for solar cell

Also Published As

Publication number Publication date
JP2001019591A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP3211754B2 (en) Equipment for manufacturing metal for semi-solid molding
US7336692B2 (en) Induction furnace for melting semi-conductor materials
CN103170577A (en) Induction stirred, ultrasonically modified investment castings and apparatus for producing
EP2072645B2 (en) Method for producing a monocrystalline or polycrystalline semiconductor material
DK158629B (en) APPARATUS FOR STRENGTHENING METAL FOR A PRODUCT WITH CONTROLLED CRYSTALLOGRAPHICAL ORIENTATION
WO1993012272A1 (en) Method of and apparatus for casting crystalline silicon ingot by electron beam melting
JPH0379103B2 (en)
KR20120128643A (en) Crucible for use in a directional solidification furnace
JP3872233B2 (en) Silicon casting method
EP0576845B1 (en) Float melting apparatus and method employing axially movable crucibles
WO1999046433A1 (en) Auxiliary apparatus for melting single crystal raw material and method of melting single crystal raw material
US4213497A (en) Method for casting directionally solidified articles
JP4126450B2 (en) Dissolution method
JP2002292455A (en) Silicon casting device and silicon casting method
JP2000016893A (en) Method and apparatus for pulling single crystal
JPS60191640A (en) Casting method of casting ingot in heated mold type continuous casting method
JPH1143318A (en) Melting apparatus
JP4077712B2 (en) Silicon casting method
JP2005069532A (en) Dissolving device, and dissolving method using the same
JPH10139586A (en) Silicon casting device
JP4660689B2 (en) Gallium extraction method, storage, transport method and storage container
JP4273664B2 (en) Crystalline silicon production equipment
JPH09301709A (en) Method for casting silicon
JP2598107Y2 (en) Vacuum induction melting furnace
JP2000105083A (en) Melting system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees