JPS60191640A - Casting method of casting ingot in heated mold type continuous casting method - Google Patents

Casting method of casting ingot in heated mold type continuous casting method

Info

Publication number
JPS60191640A
JPS60191640A JP4693084A JP4693084A JPS60191640A JP S60191640 A JPS60191640 A JP S60191640A JP 4693084 A JP4693084 A JP 4693084A JP 4693084 A JP4693084 A JP 4693084A JP S60191640 A JPS60191640 A JP S60191640A
Authority
JP
Japan
Prior art keywords
ingot
mold
dummy
casting method
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4693084A
Other languages
Japanese (ja)
Inventor
Hiroshi Hamada
浜田 宏
Atsumi Ono
大野 篤美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
OCC Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
OCC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, OCC Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP4693084A priority Critical patent/JPS60191640A/en
Publication of JPS60191640A publication Critical patent/JPS60191640A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/145Plants for continuous casting for upward casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To draw out surely a casting ingot and to cast continuously the casting ingot in succession thereto by inserting a dummy casting ingot into a casting mold so as to contact a molten metal, bringing the top end part thereof into contact with the molten metal and unitizing homogeneously said part to the melten metal then drawing out the dummy casting ingot. CONSTITUTION:The temp. of at least the inside wall of the outlet of a casting mold 3 contg. a heating element 6 and a thermocouple 6 is held at the temp. above the solidifying temp. of the metal to be cast and a molten metal 2 is supplied into the mold 3 from the inlet end thereof and is brought into contact with the top end of a dummy casting ingot 7 inserted into the mold from the outlet end and is then held for a while in a heated mold type continuous casting device in which the mold 3 is fixed by a fixing mechanism 4 into the molten metal 2 in a holding furnace 1 so as to make the top surface thereof flush with the molten metal surface. The part near the top end of the ingot 7 is thereby melted. The ingot 7 is drawn out by pinch rollers 11 after the homogeneous unification of the molten metal 2 and the top end of the dummy casting ingot to one body is detected from the change in the temp. detected by the thermocouple 6. The solidified shell drawn out with said dummy casting ingot is cooled by a casting ingot cooler 8 by which the casting ingot is surely and continuously cast.

Description

【発明の詳細な説明】 本発明は金属の連続鋳造法、よ#)詐しくは鋳塊引出用
の出口と溶湯供給のだめの入口とを有し、内壁温度を鋳
造しようとする金属の凝固温度以上に保持した加熱鋳型
の人口端よシ鋳屋内に金属溶湯を供給し、との溶湯を鋳
型出口端よシ鋳型内に挿入されたダミー鋳塊の先端に接
触させた後、このダミー鋳塊を鋳型出口よシ引出すこと
によってダミー鋳塊の先端に連続的に金塊凝固体を形成
させる金塊の連続鋳造法における、鋳塊鋳造開始時の操
作に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for metal, which has an outlet for drawing out the ingot and an inlet for the molten metal supply reservoir, and the inner wall temperature is set to the solidification temperature of the metal to be cast. The molten metal is supplied into the casting chamber from the artificial end of the heated mold held above, and the molten metal is brought into contact with the tip of the dummy ingot inserted into the mold from the mold outlet end. This relates to the operation at the start of ingot casting in a continuous gold ingot casting method in which a gold ingot solidified body is continuously formed at the tip of a dummy ingot by drawing it out of the mold outlet.

従来、この柚の金属の連続鋳造法は、表面が平滑美麗な
鋳造法を得る鋳造法として特許第1049146号で提
案されているが、これを行なうには鋳塊鋳造開始時のタ
イミングか非常に困難であった。例えは垂面上用式連続
鋳造法を行なうに当っては、ダミー鋳塊を@型内に満た
された金属溶湯に接触させた直後にダミー鋳塊の引上げ
を開始すると、このダミー鋳塊と溶湯との接触が不充分
で鋳塊が引上げられなかったシ、ダミー鋳塊に接触した
部分の溶湯が凝固して鉄壁に固着し、鋳塊引出しが出来
なくなったシする。又垂直下引式連続鋳造法及び水平横
引式連続鋳造法を行なうに当ってはダミー鋳塊引出のタ
イミングを間違えるとブレークアウトを起したシ、逆に
ダミー鋳塊に接触した部分の溶湯が凝固して@壁に固着
し、鋳塊引出しが出来なくなったりする。特に鋳銑のよ
うに1000°Cを越える凝固温度を有する金塊や、ア
ルミニウムのような700°C前後の低い凝固温度を有
する金塊でも直径!011011以下の小佳丸棒釧塊を
鋳造しようとするに当っては鋳塊引出しのタイミングが
至難であり、開始時における成功率は極めて低く、工業
的に使用することは極めて困難であった。
Conventionally, this continuous casting method for yuzu metal has been proposed in Patent No. 1049146 as a casting method that produces a smooth and beautiful surface, but in order to carry out this method, the timing at the start of ingot casting is extremely high. It was difficult. For example, when performing vertical continuous casting, if you start pulling the dummy ingot immediately after it comes into contact with the molten metal filled in the mold, the dummy ingot The ingot could not be pulled up due to insufficient contact with the molten metal, and the molten metal in the area that came into contact with the dummy ingot solidified and stuck to the iron wall, making it impossible to pull out the ingot. In addition, when performing the vertical downward drawing continuous casting method and the horizontal horizontal drawing continuous casting method, if the timing of pulling out the dummy ingot is incorrect, a breakout may occur, or conversely, the molten metal in the area that came into contact with the dummy ingot may It solidifies and sticks to the wall, making it impossible to pull out the ingot. In particular, even gold ingots such as cast pig iron, which have a solidification temperature of over 1000°C, and gold ingots, such as aluminum, which have a low solidification temperature of around 700°C, the diameter! When trying to cast small round bar ingots of 011011 or less, the timing of withdrawing the ingot is extremely difficult, the success rate at the beginning is extremely low, and it is extremely difficult to use it industrially.

発明者は鋭意努力してりt死を重ねた結呆、鋳造開始に
当シ、ダミー鋳塊を鋳型内に挿入して金属溶湯と接触さ
せた後、ダミー鋳塊の先端部分を溶解させて金属溶湯と
均質一体化させた後ダミー鋳塊を@型出口より引出すと
きは鋳塊鋳造の成功率を飛躍的に向上させることができ
ることを見い出即ち、本発明を更に具体的に説明すれば
ダミー鋳塊が加熱鋳型内に挿入されて金縞溶湯と接触す
ると、接触部はダミー鋳塊を通じての熱流出によシ゛、
先ず凝固が進行する。その後、凝固部分は、その周囲の
溶湯よりの熱流入、鋳型加熱用発熱体よシの熱流入によ
シ溶融し始める。この際に、ダミー鋳塊を通して鋳型外
に流出する熱電より、前記2項の熱流入が大きくなるよ
うな条件とすれば、この全編凝固部分は総て溶解し、し
かもダミー鋳塊の先端部まで溶解が進行する。そこでダ
ミー鋳塊の引出しを開始すればダミー鋳塊と溶湯とが均
質一体化した状態となっているため、鋳塊引出開始時に
おいて、鋳塊とダミー鋳塊の分離を起すことなく引出速
度を適度に保つことによシ鋳塊はダミー鋳塊に引続いて
円滑に鋳型出口より引出されるので鋳造成功率は飛躍的
に向上する。但しこの方法を実施するに当ってはダミー
鋳塊先端部が過度に溶解していること1−1認しなくて
はならない。
The inventor made a lot of effort and died, but at the start of casting, a dummy ingot was inserted into the mold and brought into contact with the molten metal, and then the tip of the dummy ingot was melted. It has been discovered that the success rate of ingot casting can be dramatically improved when the dummy ingot is pulled out from the @-type outlet after being homogeneously integrated with the molten metal. When the dummy ingot is inserted into the heating mold and comes into contact with the gold striped molten metal, the contact area is affected by heat flow through the dummy ingot.
First, coagulation proceeds. Thereafter, the solidified portion begins to melt due to heat inflow from the surrounding molten metal and heat inflow from the heating element for heating the mold. At this time, if the conditions are such that the heat inflow described in the above two terms is greater than the thermoelectricity flowing out of the mold through the dummy ingot, the entire solidified part will melt, and even the tip of the dummy ingot will melt. Dissolution progresses. If you start pulling out the dummy ingot, the dummy ingot and the molten metal will be in a homogeneous state, so when you start pulling out the ingot, you can adjust the drawing speed without causing separation between the ingot and the dummy ingot. By keeping it at a suitable level, the ingot can be smoothly pulled out from the mold outlet following the dummy ingot, and the casting success rate can be dramatically improved. However, in carrying out this method, it must be acknowledged that the tip of the dummy ingot is excessively melted.

即ち、ダミー鋳塊先端部の溶解が少な過ぎるとダミー鋳
塊を引出しても、それに絖いて溶湯が引出されなくなっ
たり、鋳型内溶湯が一部凝同したままとなってダミー鋳
塊と溶湯との間に間隙が生じたシする。逆にダミー鋳塊
先端部の溶解が進行し過ぎると、鋳塊引出開始時におい
て垂直上釦式連続鋳造の場合においては鋳塊の断面形状
が乱れて定常引出しまでに長時間を要し垂直下引式又は
水平横引式連続鋳塊鋳造の場合においてはブレークアウ
トを起して、鋳塊の引出しが不可能となる。
In other words, if there is too little melting at the tip of the dummy ingot, even if the dummy ingot is pulled out, the molten metal may not be drawn out, or some of the molten metal in the mold may remain condensed, causing the dummy ingot and molten metal to separate. There is a gap between the two. On the other hand, if the melting of the tip of the dummy ingot progresses too much, the cross-sectional shape of the ingot will become disordered in the case of vertical top button type continuous casting when the ingot starts to be withdrawn, and it will take a long time to reach a steady state of withdrawal. In the case of continuous ingot casting using the pull or horizontal pull type, a breakout occurs and the ingot cannot be withdrawn.

発明堝らの値死によればダミー鋳塊先端部の適度の溶解
とは鋳塊の引出方向の如伺を問わず、ダミー鋳塊の先端
部が5#ll11以上に亘って溶解し、且つダミー鋳塊
未溶解部分が5〜10間@型内に残る状態が望ましい。
According to Inventor et al., moderate melting of the tip of the dummy ingot means that the tip of the dummy ingot is melted over 5#11 or more, regardless of the drawing direction of the ingot, and It is desirable that the unmelted portion of the ingot remains in the mold for 5 to 10 days.

又、本発明において、ダミー鋳塊先端部が適度に溶解し
ているか否かの判断は次の方法による。
Further, in the present invention, the following method is used to determine whether the tip of the dummy ingot is appropriately melted.

即ち、第1の手段は、ダミー鋳塊を@型内に挿入して金
@済湯と接触させ、た後、鋳型加熱用発熱体の発熱量が
一定となるように保ちつつ、鋳型出口端内壁近傍温度を
検知して、そのダミー鋳塊の先端が適度に溶解したこと
を検出する方法である。
That is, the first method is to insert a dummy ingot into the mold and bring it into contact with the finished metal, and then, while keeping the calorific value of the heating element for heating the mold constant, This method detects the temperature near the inner wall and detects that the tip of the dummy ingot has melted appropriately.

この方法を実施するに当って、予め鋳込むべき金属の柚
類、鋳塊の断面形状、ダミー鋳塊の形状、鋳型の形状及
び材質に加えて、鋳型出口端内壁近傍温度検出位置を考
慮した上で、ダミー鋳塊先端部が適度に溶解して鋳塊の
引出しが可能となる鋳型出口端内壁近傍温度の下限値及
び上限値を実験的に確かめておく必要がある。なお、鋳
型出口端内壁近傍温度はダミー鋳塊と金属溶湯とが接触
した後、急激に降下し、続いて鋳型加熱用発熱体及び金
属溶湯よυの熱流入によシ上昇して行く。そして鋳塊引
出しは検知した鋳型内壁近傍温度が上記の下限値及び上
限値の間で経験的に定められた標準値に達した時点で開
始すればよい。
In implementing this method, in addition to the metal to be cast, the cross-sectional shape of the ingot, the shape of the dummy ingot, and the shape and material of the mold, the temperature detection position near the inner wall at the end of the mold was considered. In the above, it is necessary to experimentally confirm the lower and upper limits of the temperature near the inner wall of the mold outlet end at which the tip of the dummy ingot melts appropriately and the ingot can be pulled out. The temperature near the inner wall of the mold outlet end drops rapidly after the dummy ingot and the molten metal come into contact with each other, and then rises due to the heat flow of υ into the mold heating heating element and the molten metal. The ingot withdrawal may be started when the detected temperature near the inner wall of the mold reaches a standard value determined empirically between the lower limit value and the upper limit value.

第2の手段は、鋳型出口端内壁近傍温度が一定となるよ
うに、鋳型加熱用発熱体の発熱蓋を制御しつつ、これに
喪するその発熱量を検出する方法である。この方法を実
施するに当っては、一定となるように制御される鋳型内
壁近傍温度及びダミー鋳塊の先端が適度に溶解して鋳塊
の引出しか可能となる@型加熱用発熱体の発熱蓋の上限
値及び下限値との関係を予め鋳込むべき金属の独類、鋳
塊の断面形状、ダミー鋳塊の形状、鋳型の形状及び材質
に加えて鋳型出口端内壁近傍温度検出位置を考慮した上
で実験的に確かめておく必要がある。
The second method is to control the heating lid of the heating element for heating the mold so that the temperature near the inner wall at the exit end of the mold is constant, and to detect the amount of heat generated by the heating element. In carrying out this method, the temperature near the inner wall of the mold is controlled to be constant, and the heat generated by the heating element for @-type heating is such that the tip of the dummy ingot melts appropriately and the ingot can only be pulled out. The relationship between the upper and lower limit values of the lid should be determined in advance by considering the type of metal to be cast, the cross-sectional shape of the ingot, the shape of the dummy ingot, the shape and material of the mold, and the temperature detection position near the inner wall at the mold outlet end. It is necessary to confirm this experimentally.

ダミー鋳塊と金W4溶湯とが接触した後、鋳型内壁近傍
温度が低下し、絖いて上昇して予め定められた一定温度
となるように、制御されるべき1はに近付くまで、@型
加熱用発熱体の発熱蓋は最筒餉をかし、その後徐々に低
下して付く。@塊の引出しは検知した@型加熱用発熱体
の発熱量が上記の上限憧及び下限l111の間で経験的
に足められた標準値に達した時点で開始すれはよい。な
お=m加熱用発熱体の発熱量を制御するに当っては比例
積分微分制御等適宜公知の制御法を用いればよい。また
、この方法を使用すれば、第1の方法と比軟して鋳型出
口端内壁近傍温度が低い状態で鋳塊の引出し開始が可能
であるため、鋳造速度が定冨状態となるまでの操作が容
易となることに加えて、鋳型加熱用発熱体の負性が低減
され、鋳型寿命の蝉長が可能となる。但し、この方法で
は第1の方法に比較してダミー鋳塊を金属溶湯に接触さ
せた後、鋳塊引出しを開始するまでに喪する時間が長く
なる。
After the dummy ingot and the molten gold W4 come into contact, the temperature near the inner wall of the mold decreases, then rises to a predetermined constant temperature. The heat-generating lid of the heat-generating element is first heated, and then gradually lowered. It is sufficient to start withdrawing the @ block when the calorific value of the detected @ type heating element reaches a standard value determined empirically between the above upper limit 111 and lower limit 111. Note that in controlling the calorific value of the heating element for =m heating, an appropriate known control method such as proportional-integral-derivative control may be used. In addition, if this method is used, it is possible to start drawing the ingot when the temperature near the inner wall at the mold outlet end is lower than in the first method, so the operation until the casting speed reaches a constant state is necessary. In addition to this, the negativity of the heating element for heating the mold is reduced, making it possible to extend the life of the mold. However, in this method, compared to the first method, a longer period of time is required between bringing the dummy ingot into contact with the molten metal and starting to draw out the ingot.

第3の手段は、鋳型外部のダミー鋳塊の温度を検知して
ダミー鋳塊先端部が適度に溶解したことを検出する方法
である。この方法を実施するVc尚っては、ダミー鋳塊
の先端が過度に溶解して鋳塊引出しが可能となるダミー
鋳塊の検知される温度鋳塊の断面形状、ダミー鋳塊の形
状、鋳型の形状及び材質、一定としつつある鋳型加熱用
発熱体の発熱量又は一定にされつつある鋳型出口端内壁
近傍温度及び検知されるダミー鋳塊温度位置を′4ML
して実験的に確かめておく必要がある。ダミー鋳塊が容
易に接触した後、検知されるダミー鋳塊温度は上昇し続
ける。鋳塊引出しは、検知したダミー鋳塊温度が上記の
下限値と上限値の間で軸線的に定められた標準11kに
達した時点で開始すればよい。この方法を使用すれば第
1及び第2の方法と比軟してダミー鋳塊先端部の溶解状
態が精度よく検出される反面、ダミー鋳塊温度を検知す
るための温度検出センサーの設置が必要となる。また、
この温度検出センサーに元高理財、放射温良計或は接触
式温度計等があるが、鉋えば熱電対を使用した場合には
、鋳塊引出し開始後にその除去が必要となる場合がある
The third means is a method of detecting the temperature of the dummy ingot outside the mold to detect that the tip of the dummy ingot has melted appropriately. The Vc for carrying out this method is the temperature at which the tip of the dummy ingot is excessively melted and the ingot can be pulled out.The cross-sectional shape of the ingot, the shape of the dummy ingot, The shape and material of the mold, the calorific value of the mold heating heating element which is becoming constant, the temperature near the inner wall of the mold outlet end which is becoming constant, and the detected dummy ingot temperature position are '4ML.
It is necessary to confirm this experimentally. After the dummy ingot makes easy contact, the detected dummy ingot temperature continues to rise. Ingot withdrawal may be started when the detected dummy ingot temperature reaches the standard 11k defined axially between the above lower limit and upper limit. If this method is used, the melting state of the dummy ingot tip can be detected more accurately than the first and second methods, but on the other hand, it is necessary to install a temperature detection sensor to detect the dummy ingot temperature. becomes. Also,
This temperature detection sensor includes a thermometer, a radiation thermometer, a contact thermometer, etc., but if a thermocouple is used, it may be necessary to remove it after starting to draw the ingot.

第4の手段は@型内部の溶湯温度を検知してダミー鋳塊
の先端部が適度に溶解したことを検出する方法である。
The fourth method is to detect whether the tip of the dummy ingot has melted appropriately by detecting the temperature of the molten metal inside the mold.

この方法を実施するに商っては、ダミー鋳塊の先端が適
度に溶解して鋳塊引出しが可能となる鋳型内溶湯の検知
される温度の下限値及び上限値を予め鋳込むべき金栖の
鴇類、鋳塊の断面形状、ダミー鋳塊の形状、鋳型の形状
及び材質、鋳型自溶湯温度検出位置及び一定としつつあ
る鋳型加熱用発熱体の発熱量又は一定に制御されつつあ
る鋳型出口端内壁近傍温度を考慮して、実験的に確かめ
ておく必要がある。ダミー鋳塊を浴湯と接触させた後、
鋳型内浴湯温度は一旦下廃し、再び上昇して行く。鋳塊
の引出しは検知した鋳型内浴湯温度が上記の下限値と上
限値の間で経験的に定められた標準値に達した時に開始
すればよい。
When implementing this method, the lower and upper limits of the detected temperature of the molten metal in the mold must be set in advance so that the tip of the dummy ingot melts appropriately and the ingot can be pulled out. the cross-sectional shape of the ingot, the shape of the dummy ingot, the shape and material of the mold, the temperature detection position of the self-molten metal in the mold, and the calorific value of the heating element for heating the mold, which is becoming constant, or the mold outlet, which is being controlled to be constant. It is necessary to confirm this experimentally, taking into consideration the temperature near the end inner wall. After bringing the dummy ingot into contact with the bath water,
The temperature of the bath water in the mold drops once and rises again. The withdrawal of the ingot may be started when the detected temperature of the bath water in the mold reaches a standard value determined empirically between the above-mentioned lower limit and upper limit.

この方法は第1の方法に比較して温度検知用センサーが
溶湯内に置かれるために応答遅れが短かい反曲、温度検
知センサーを鋳型内の成る位置に正確に設置する必簀が
あると同時に、ダミー鋳塊を溶湯に接触させた後に、そ
の先端付近の溶湯が凝固し、温度検知センサーを破損す
る場合もある。
Compared to the first method, this method has a shorter response delay because the temperature detection sensor is placed inside the molten metal. At the same time, after the dummy ingot is brought into contact with the molten metal, the molten metal near the tip of the dummy ingot may solidify, damaging the temperature detection sensor.

以上、これらの方法を実施するに当っては、ダミー鋳塊
の先端を金属溶湯に接触させてから、その先端を過度に
溶糎させて鋳塊引出しが可能となるまでの時間を短縮さ
せることが望ましい。そのためにはダミー鋳塊先端から
他端に向っての熱伝達を低下させればよい。
As mentioned above, in carrying out these methods, the time from bringing the tip of the dummy ingot into contact with the molten metal until the tip can be melted excessively and the ingot can be pulled out is shortened. is desirable. To achieve this, it is sufficient to reduce the heat transfer from the tip of the dummy ingot to the other end.

そのだめの第1の手段は、ダミー鋳塊の先端を除く部分
に断熱材を使用する方法である。この手段を実施するに
当っては、鋳塊引出開始直後の鋳塊凝II!LI速度の
低下を防止する目的で断熱材使用位置を餉塊冷却位振よ
り離すことが望ましい。
The first way to prevent this is to use heat insulating material on the dummy ingot except for its tip. In carrying out this method, ingot solidification II immediately after the start of ingot withdrawal! In order to prevent a decrease in the LI speed, it is desirable that the position where the heat insulating material is used is located away from the cooling level of the cake.

第2の手段はダミー鋳塊の先端を除く部分を中窒とする
方法である。この手段は中実の棒状鋳塊を連続@造する
際に有効である。また鋳塊引出開始直後の鋳塊凝固速度
の低下を防止する目的で鋳塊冷却位置以降の位置におけ
るダミー鋳塊を中窒とすることが望ましい。
The second method is to use the portion of the dummy ingot excluding the tip as a core nitrogen. This method is effective when continuously producing solid rod-shaped ingots. Further, in order to prevent a decrease in the solidification rate of the ingot immediately after the start of ingot withdrawal, it is desirable to use a dummy ingot at a position after the ingot cooling position as a core nitrogen.

第3の手段はダミー鋳塊の先端を除く部分に熱伝達性の
悪い金属を使用する方法である。この手段は前述第2の
手段と組み合わせて使用するとよい。
The third method is to use a metal with poor heat conductivity for the parts of the dummy ingot except for the tip. This means is preferably used in combination with the second means mentioned above.

第4の手段はダミー鋳塊の先端を除く部分の表向に、例
えはセラミック溶射などによる輻射率の低い材料を使用
する方法であり、この方法は銅や妖及び、これらの合金
の様に高融点を有する金属の場合、ダミー鋳塊次面よシ
の熱放射を低下させるために有効である。この手段を用
いるに当っては前述の第1〜第3の手段と組み合わせて
使用するとよい。
The fourth method is to use a material with low emissivity, such as ceramic spraying, on the surface of the dummy ingot, excluding the tip. In the case of metals with a high melting point, this is effective for reducing heat radiation from the dummy ingot's surface. When using this means, it is preferable to use it in combination with the first to third means described above.

以上の本発明の岡谷については、次に述べる図面の説明
及び実施例によって、より明確に示す。
The above-mentioned Okaya of the present invention will be more clearly illustrated by the following description of the drawings and examples.

第1図は垂匣上引式連続鋳造装置に於て、ダミー鋳塊を
鋳造しようとする金属溶湯に接触させた瞬間の状態を示
す。図中、1は溶湯保持炉で、金属溶湯2は、その上面
が公知の手段によシ鋳型3の上面と同一となるように保
持されている。鋳型3は固定機構4によシ固定されてお
シ、発熱体5を内蔵すると同時に熱電対6を内蔵し、鋳
型3の内壁近傍温度を検知できるようになっている。7
はダミー鋳塊で、金l!4溶湯2との接触を良くする鋳
塊及び鋳塊冷却装置で、冷却用空気は流入口9から送入
され、噴出口10よシ排出される。11は鋳塊引出用の
ピンチローラーテアル。
FIG. 1 shows the state at the moment when a dummy ingot is brought into contact with the molten metal to be cast in a top-pull type continuous casting apparatus. In the figure, reference numeral 1 denotes a molten metal holding furnace, in which molten metal 2 is held so that its upper surface is flush with the upper surface of a mold 3 by known means. The mold 3 is fixed by a fixing mechanism 4 and has a built-in heating element 5 and a thermocouple 6 so that the temperature near the inner wall of the mold 3 can be detected. 7
is a dummy ingot, gold! 4 An ingot and ingot cooling device that improves contact with the molten metal 2. Cooling air is introduced through the inlet 9 and discharged through the spout 10. 11 is a pinch roller tear for pulling out ingots.

先ず、ダミー鋳塊7を鋳型3内の金属溶湯2に接触させ
ると、鋳型的溶湯はダミー鋳塊7を介しての熱流出によ
シ凝固した後、金属溶湯2及び鋳型内蔵発熱体5よシの
熱流入によシ序々に再溶解し、ダミー鋳塊7の先端部が
適度に溶解した状態になる。この時に、鋳塊引上げを開
始すると同時に鋳塊冷却装[8を用いて鋳塊の冷却を開
始し、鋳塊引出し速度を適切にコントロールして、鋳塊
の狭面凝固位置が鋳型用口端直外となるようにすれは、
平滑美麗な鋳肌を有する鋳塊が得られる。
First, when the dummy ingot 7 is brought into contact with the molten metal 2 in the mold 3, the molten metal in the mold solidifies due to heat flow through the dummy ingot 7, and then flows out from the molten metal 2 and the heating element 5 built into the mold. The dummy ingot 7 is gradually remelted by the inflow of heat, and the tip of the dummy ingot 7 becomes appropriately melted. At this time, at the same time as starting to pull the ingot, start cooling the ingot using the ingot cooling device [8, and appropriately control the ingot drawing speed so that the solidified position of the narrow side of the ingot is at the mold mouth end. If it is just outside,
An ingot with a smooth and beautiful casting surface is obtained.

第2図はダミー鋳塊の一態様を示す断面図である。図中
、12はダミー鋳塊の先端部で、冷却装置以降の部分1
3は中空状となっている。この両者は螺着されている。
FIG. 2 is a sectional view showing one aspect of the dummy ingot. In the figure, 12 is the tip of the dummy ingot, and the part 1 after the cooling device
3 is hollow. Both are screwed together.

例えば99.99 ’%アルミニウムの連続鋳造におい
ては先端部12は99.99%アルミニウムとし、冷却
装置以降の部分13にはステンレス等の熱伝達係数の低
い材質を使用すると効果的である。
For example, in continuous casting of 99.99'% aluminum, it is effective to use 99.99% aluminum for the tip portion 12 and use a material with a low heat transfer coefficient such as stainless steel for the portion 13 after the cooling device.

第3図はダミー鋳塊の一別の態様を示す断面図である。FIG. 3 is a sectional view showing another aspect of the dummy ingot.

図中14はダミー鋳塊の先端部で、冷却装置以降の部分
15とは断熱性のリング16を介して螺子17で接続さ
れている。
In the figure, reference numeral 14 denotes the tip of the dummy ingot, which is connected to a portion 15 after the cooling device with a screw 17 via a heat insulating ring 16.

次に本発明による実施例について述べる。Next, embodiments according to the present invention will be described.

実施例1 本実施例は加熱鋳型による垂直上引代連続鋳造にて、9
9.99%アルミニウムのIk& 20 ays丸棒を
本発明に基き鋳造した場合について示したものである。
Example 1 In this example, vertical top-pass continuous casting was performed using a heating mold.
This figure shows a case where a 9.99% aluminum Ik & 20 ays round bar is cast according to the present invention.

鋳型には内径20市、外径(資)順、高さ40調の炭化
珪素を用いた。鋳型の周囲にニッケルクロム線を取付け
、鋳型加熱用発熱体とした。鋳型上端から5順下方で内
壁から2.5gm%の位置にアルメル−クロメル熱電対
を設置して、ダミー鋳塊を鋳型円溶湯に接触させた後の
鋳型内壁近傍温度を記録した。金属溶湯温度は720°
Cとなるように保ち、ダミー鋳塊は99.99チアルミ
ニウムの@径19.5mmの丸棒を用い、その先端は高
さ7咽の円錐形とした。最初鋳型加熱用発熱体の出力を
100Wにしておき、ダミー鋳塊をその先端から17m
鋳型内に押し込み金属溶湯と接触させた直後に、鋳型加
熱用発熱体の出力を500Wに保った。数回の実験の後
、前述の鋳型内壁近傍温度が700 ’Cに達した時に
鋳塊引上げを開始すれば押し込まれた17順のダミー鋳
塊が5間未溶解の状態となり、残9の12#III+が
溶解して、ダミー鋳塊と金属溶湯とが一体連続化した状
態となり、鋳塊引上げ開始時の失敗が殆んど皆無に等し
くなることが分った。なお、鋳塊引上は開始と同時に鋳
型加熱用発熱体の出力を100Wに低下させ、鈎型上に
設置した鋳塊冷却装置から毎分300tの冷却用窒気を
ダミー鋳塊及び鋳塊に当てた。引上圀#3直後の鋳造速
度は、ダミー鋳塊の未溶解部分が゛鋳型上端に達するま
での間、毎分100 am以上とし、その後鋳塊光面の
凝固位置が、@型上端面直上となるように、鋳造速度を
コントロール−した。得られた鋳塊は鋳造開始n−i後
から平滑美麗な鋳肌を崩していた。なお、ダミー鋳塊を
鋳型内金輌溶湯に接触させてから鋳造開始域てに侠した
時間は約7分であった。
The mold used was silicon carbide with an inner diameter of 20 mm, an outer diameter of 40 mm, and a height of 40 mm. A nickel-chrome wire was attached around the mold to serve as a heating element for heating the mold. An alumel-chromel thermocouple was installed at a position 2.5 gm % from the inner wall five orders downward from the upper end of the mold to record the temperature near the inner wall of the mold after the dummy ingot was brought into contact with the molten metal in the mold circle. Molten metal temperature is 720°
The dummy ingot was a round bar made of 99.99 thialuminium with a diameter of 19.5 mm, and the tip was a conical shape with a height of 7 mm. Initially, the output of the heating element for heating the mold was set to 100W, and the dummy ingot was placed 17m from the tip.
Immediately after being pushed into the mold and brought into contact with the molten metal, the output of the heating element for heating the mold was maintained at 500W. After several experiments, when the temperature near the inner wall of the mold reached 700'C and the ingot was pulled up, the dummy ingots in the 17th order that had been pushed in remained unmelted for 5 hours, leaving 9 of the remaining 12 ingots. It was found that #III+ was melted and the dummy ingot and molten metal were in a continuous state, and failures at the start of ingot pulling became almost non-existent. As soon as ingot pulling starts, the output of the heating element for heating the mold is reduced to 100 W, and 300 t/min of cooling nitrogen is supplied to the dummy ingot and the ingot from the ingot cooling device installed on the hook mold. I guessed it. The casting speed immediately after drawing area #3 is set at 100 am/min or more until the unmelted portion of the dummy ingot reaches the top of the mold, and then the solidification position of the ingot light surface is directly above the top of the mold. The casting speed was controlled so that The smooth and beautiful casting surface of the obtained ingot began to deteriorate after ni after the start of casting. The time it took for the dummy ingot to reach the casting start area after it came into contact with the molten metal in the mold was about 7 minutes.

実施例2 本実施例は加熱鋳型による垂直上用式連続鋳造にて、9
9.99%アルミニウムの直往2f) #丸棒を本発明
の他の実施態様に基づき鋳造した場合についてボしたも
のである。@型には内径2onrM、外径加朋、高さ4
0間の炭化珪素を用い、その周囲にニッケルクロム線を
取付けて、鋳型加熱用発熱体とした。また、鋳型上端か
ら5#R下万で、内壁から2.5Fa央の位置にアルメ
ル−クロメル熱電対を設置して、測温点の温贋が680
 ’C±1°Cとなるように微分・積分・比例制御を用
いて、鋳型加熱用発熱体の出力をコントロールすると同
時に、JJt 34 ’4力tiを用いて、単位時間当
りあ鋳型加熱用発熱体の出力を記録した。この除、@■
加熱用発熱体の最大出力は500Wとした。ダミ/−鋳
塊には第3図に示す形式のものを使用した。即ち、ダミ
ー鋳塊の先端部は直往19.5騙、長さ62馴で、その
先端7藺を円錐形とした!、99%アルミニウム丸棒を
用いた。
Example 2 This example uses vertical continuous casting using a heated mold.
9.99% aluminum direct 2f) # is shown for the case where a round bar is cast according to another embodiment of the present invention. @ type has an inner diameter of 2 onrM, an outer diameter of 4 mm, and a height of 4
A nickel-chromium wire was attached to the periphery of silicon carbide to form a heating element for heating the mold. In addition, an alumel-chromel thermocouple was installed at a position 5#R lower than the upper end of the mold and 2.5Fa center from the inner wall, and the temperature at the temperature measurement point was 680.
The output of the heating element for mold heating is controlled using differential, integral, and proportional control so that the temperature is ±1°C, and at the same time, the output of the heating element for mold heating is controlled using JJt 34 Body output was recorded. Except for this, @■
The maximum output of the heating element was 500W. The type of dummy/ingot shown in Fig. 3 was used. That is, the tip of the dummy ingot has a diameter of 19.5 mm and a length of 62 mm, and its tip has a conical shape! , a 99% aluminum round bar was used.

ダミー鋳塊の後端部には直1+19.5mの99.99
 %アルミニウムを用い、ダミー鋳塊の先端と後端との
間に、外径19.5am、内径5絋、長さ25藺の窒化
珪紫を挿入してダミー鋳塊の先端と後端とを直径4日の
螺子で接続した。金属溶湯は720”Cに保ち、溶湯向
と@型上面とが而−となるようにしだ後、ダミー鋳塊を
その先端から17!ll1II鋳型内に押し込んで金属
溶湯と接触させた。数回の実験の後、前述の鋳型内壁温
度を680°C±1°Cに保つために要する鋳型加熱用
発熱体の過去(9)秒間における平均出力が250Wに
達した時に鋳塊引上げを開始すれば押込まれた17順の
グミ!鋳塊が5麿禾溶解の状態とな)、残りの12mm
が溶解してダミー鋳塊と金属溶湯とが一体連続化した状
態となり、鋳塊引上げ開始時の失敗が殆んど皆無に吟し
くなることが分った。なお、ダミー鋳塊を@型内金属溶
湯に接触させてから鋳造開始までに要した時間は約6分
であった。
At the rear end of the dummy ingot is a straight 1+19.5m 99.99
% aluminum, insert silicon nitride with an outer diameter of 19.5 am, an inner diameter of 5 mm, and a length of 25 mm between the tip and rear end of the dummy ingot. They were connected using screws with a diameter of 4 days. The molten metal was maintained at 720"C, and after the molten metal was aligned with the top of the mold, a dummy ingot was pushed into the 17!ll1II mold from the tip and brought into contact with the molten metal several times. After the above experiment, when the average output of the heating element for heating the mold over the past (9) seconds reaches 250 W, which is required to maintain the temperature of the inner wall of the mold at 680°C ± 1°C, ingot pulling is started. The 17th gummy that was pushed in! The ingot is in a state of melting), the remaining 12mm
It was found that the dummy ingot and the molten metal were melted, and the dummy ingot and molten metal were in a continuous state, making it easier to pull up the ingot with almost no failures when starting to pull up the ingot. The time required from bringing the dummy ingot into contact with the molten metal in the mold to starting casting was about 6 minutes.

実施例3 本笑施例は加熱鋳型による垂直下引式連続鋳造にて、9
9.9%錫の直径12mの丸棒を本発明に基づき鋳造し
た場合を示したものである。鋳型には内径12耽、外径
20 rras 、高さ40+mのステンレスを用い、
その周囲にニッケルクロム線を取付けて鋳型加熱用発熱
体とした。又鋳型下端から15闘上方の鋳型の中心に直
径1.6+o+のアルメル−クロメルシース熱電対を取
付けて@型内溶湯温度を記録した。鋳型加熱用発熱体の
出力は100 Wとなるようにし、溶湯温度は240°
Cに保った。ダミー鋳塊には直径11.5mmの99.
9%錫の丸棒を用い、その先端部は円錐形とはせずに平
面とした。金属溶湯面と@型上面とが面一となる鋳型下
端出口よシダミー鋳塊を下端からIOm程鋳型内に押し
込んでおいて鋳型上端入口から金属溶湯を注入し暫時こ
の状態で保持した。数回の実験の後1.前述の鋳型自溶
湯温度が265°CK達した時にダミー鋳塊の引下げを
開始すれば、押し込まれた10mのダミー鋳塊の先端部
51II+11禾溶解の状態となシ、残りの51Mが溶
解して、ダミー鋳塊と金属溶湯とが一体連続化した状態
となり、鋳塊引上げ開始時の失敗が殆んど皆無となるこ
とが分った。なおダミー鋳塊を鋳型白金属溶湯に接触さ
せてから鋳造開始までに要した時間はfI4分I抄であ
った。
Example 3 In this example, 9 pieces were made by vertical bottom drawing continuous casting using a heating mold.
This figure shows a case where a round bar of 9.9% tin with a diameter of 12 m was cast according to the present invention. The mold is made of stainless steel with an inner diameter of 12mm, an outer diameter of 20mm, and a height of 40+m.
A nickel-chrome wire was attached around it to create a heating element for heating the mold. In addition, an alumel-chromel sheathed thermocouple with a diameter of 1.6+o+ was attached to the center of the mold, 15 mm above the lower end of the mold, and the temperature of the molten metal in the mold was recorded. The output of the heating element for heating the mold was set to 100 W, and the temperature of the molten metal was set to 240°.
I kept it at C. The dummy ingot has a diameter of 11.5mm.
A 9% tin round rod was used, and its tip was not conical but flat. From the bottom outlet of the mold, where the molten metal surface and the top surface of the mold were flush with each other, the sidummy ingot was pushed into the mold by IOm from the bottom, and the molten metal was poured into the mold from the top inlet of the mold and held in this state for a while. After several experiments 1. If the lowering of the dummy ingot is started when the temperature of the self-molten metal in the mold reaches 265°CK, the tip of the pushed 10m dummy ingot will be in a state of melting, and the remaining 51M will be melted. It was found that the dummy ingot and the molten metal became integrated and continuous, and there were almost no failures when starting to pull up the ingot. The time required from bringing the dummy ingot into contact with the molten white metal mold to starting casting was 4 minutes.

実施例4 本笑施例は、垂直下引式連続鋳造において、99.9係
亜鉛の直径12+o+の外棒を連続鋳造したものである
。鋳型には同社12厘、外桂茄間、高さ40馴の炭化珪
素ヲ用い、その周囲にニッケルクロム線を取付けて鋳型
加熱用発熱体とした。ダミー鋳塊には@径IL5rnM
の99.9%亜鉛の丸棒を用い、その先端部5 rrm
 f円錐形とした。又ダミー鋳塊の先端から30順の位
首に横穴を明けて、そこにアルメル−クロメル熱電対を
挿入同定し、ダミー鋳塊温度を記録した。@型加熱用発
熱体の出力を250Wにと醸金楓溶湯温度を460°C
に保つようにした。ダミーo1オ。ヤTゆ出。より15
 ’yes @ヤ内よ押、込え。
Example 4 In this example, an outer bar made of 99.9% zinc and having a diameter of 12+o+ was continuously cast using vertical downward drawing type continuous casting. The mold used was silicon carbide made by the same company, with a diameter of 12 mm and a height of 40 mm, and a nickel-chromium wire was attached around it to serve as a heating element for heating the mold. For dummy ingot @ diameter IL5rnM
Using a round bar made of 99.9% zinc, its tip is 5 rrm.
f It was made into a conical shape. In addition, a horizontal hole was made at the 30th position from the tip of the dummy ingot, and an alumel-chromel thermocouple was inserted therein for identification, and the dummy ingot temperature was recorded. The output of the @-type heating element was set to 250W, and the temperature of Jokin Kaede's molten metal was set to 460°C.
I tried to keep it at . Dummy o1o. Ya T Yude. more than 15
'yes @ Yauchiyo push, put.

おいてm型上端入口から金属溶湯を注入し、暫時この状
態で保持した。数回の実験の後、前述のダミー鋳塊温度
が300 ’Cに達した時にダミーの鋳塊引下けを開始
すれば、押込まれた15頭のダミー鋳塊が7薦未溶解の
状態となシ、残りの8閣が溶解してダミー鋳塊と金風溶
湯とが一体連続化した状態となり、鋳塊引下げ開始時の
失敗が殆んど皆無となることが分った。なおダミー鋳塊
を鋳型白金属溶湯に接触させてから鋳造開始までに要す
る時間は約3分(9)秒であった。
Then, molten metal was injected from the upper inlet of the m-type, and this state was maintained for a while. After several experiments, if we start lowering the dummy ingot when the temperature of the dummy ingot reaches 300'C, the 15 dummy ingots pushed in will be in an unmelted state. It was found that the remaining eight pieces were melted and the dummy ingot and the molten metal were integrated into a continuous state, and there were almost no failures when starting to draw down the ingot. The time required from bringing the dummy ingot into contact with the molten white metal mold to starting casting was approximately 3 minutes (9) seconds.

実施例5 本笑施例は実施例1において、ダミー鋳塊に第2図に示
す形状のものを用いた場合、即ち、ダミー鋳塊の先端部
には99.99 %アルミニウムの直径19.5++t
m、長さ62mmの丸棒を用い、その先端7朋は円錐形
とした。又ダミー鋳塊の後端部には、外径1’9.5+
++m、内径15.5mのステンレスIQイブを用いた
Example 5 This example is based on Example 1, but uses a dummy ingot having the shape shown in Fig. 2, that is, the tip of the dummy ingot is made of 99.99% aluminum with a diameter of 19.5++t.
A round bar with a length of 62 mm was used, and its tip 7 had a conical shape. Also, the rear end of the dummy ingot has an outer diameter of 1'9.5+
A stainless steel IQ Eve with a diameter of 15.5 m and an inner diameter of 15.5 m was used.

この例によると、ダミー鋳塊を金属溶湯に接触させてか
ら鋳造開始までの時間は約3分と第1の実施例に比べて
半減した。
According to this example, the time from bringing the dummy ingot into contact with the molten metal until the start of casting was about 3 minutes, which was halved compared to the first example.

以上の実施例は垂直上剥式並びに下引式連続鋳造につい
て示したものであるが、水平横引式連続鋳造の場合につ
いても同様に本発明の方法が適用できることは明らかで
ある。
Although the above embodiments have been shown for vertical top stripping type and bottom drawing type continuous casting, it is clear that the method of the present invention can be similarly applied to horizontal horizontal drawing type continuous casting.

尚、本発明の方法は加熱鋳型式連続鋳造において、0数
の鋳塊を同時に鋳造しようとする際には、特に効果を発
揮する。即ち、ダミー鋳塊の先端が成る範囲内で溶解す
るには時間がかかるため、複数の鋳塊の四時引出し開始
のためのコントロールが憶めて各局となる。
Incidentally, the method of the present invention is particularly effective when attempting to cast zero ingots at the same time in heated mold continuous casting. That is, since it takes time to melt within the range of the tip of the dummy ingot, the control for starting the four-time withdrawal of a plurality of ingots is stored in each station.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明加熱鋳型式連続鋳造法における鋳塊鋳造
開始法の一実施例を示す説明図、第2図、第3図はそれ
ぞれダミー鋳塊の態様を示す断油図である。 1・・・溶湯保持炉、2・・・全域溶湯、3・・・鋳型
、4・・・固定機栴、5・・・発熱体、6・・・熱電対
、7・・・ダミー鋳塊、8・・・鋳塊冷却装置、9・・
・流入口、10・・・=出口、11・・・ピンチローラ
−112,14・・・ダミー鋳塊の先端部、16・・・
断熱性のリング 特許出願人 株式会社 オー、シー、シー同 日本軽金
属株式会社 第1図 自発手続補正書 昭和59年4月10日 昭和59年特 許 願 第46930号2、発明の名称 加熱鋳型式連続鋳造法における鋳塊鋳造法4、代理人 特許請求の範囲の欄 8、補正の内容 別紙のとふ・り 補 正 書 特願昭59−46930 特許請求の範囲を下肥の辿り補正する。 1、 鋳塊引出用の出口と溶湯供給のための入口とを有
し、少くとも出口内壁温度を鋳造しようとする金属の凝
固温度以上の温度に保持した鋳型の入口端より鋳型内忙
金属溶湯を供給し、この溶湯な出口端より鋳型内に挿入
したダミー鋳塊の先端と接解させ、暫時保持することに
よってダミー鋳塊先端付近を溶解させた後練ダミー鋳塊
を鋳型出口より引出すことを特徴とする加熱鋳型式連続
鋳造法における鋳塊鋳造法。 2、 ダミー鋳塊の先端部分の材料を鋳造しようとする
金属とほぼ同一の融点を有する金属材料とした特許請求
の範囲第1項記載の加熱鋳型式連続鋳造法における鋳塊
鋳造法◎ 3、 ダミー鋳塊の先端部分の材料を鋳造しようとする
金属とほぼ同一組成の金N拐料とした特許請求の範囲第
1項記載の加熱鋳型式連続鋳造法における鋳塊製造法。 4、 ダミー鋳塊の先端から後端に向っての熱伝達を低
下させるようにした特許請求の範囲第1〜3項Ω入二ず
t仁か二り項−配替の加熱鋳型式連続−進法における鋳
塊鋳造法。 5、 鋳型加熱用発熱体の発熱量を一定としつつ鋳型出
口端近傍温度が予め鋳込むべき金属の種類、′鋳塊の断
面形状、ダミー鋳塊の形状、鋳型の形状及び鋳型の材質
によって定められた標準値に達したことを検知すること
により、該ダミー鋳塊の先端が溶解したことを検出する
特許請求の範囲第1〜4項QΔヱゴiか」−項一記載の
加熱鋳型式連続鋳造法におゆる鋳塊鋳造法。 6、 鋳型WO端内壁近傍温度が予め鋳込むべき金属の
種類、鋳塊の断面形状、ダミー鋳塊の形状、鋳型の形状
及び鋳型の材質によって定められた値となるように鋳型
加熱用発熱体の発熱量を制御しつつ、それに要する該発
熱量が予め鋳込むべき金属の種類、鋳塊の断面形状、ダ
ミー鋳塊の形状、鋳型の形状及び鋳型の材質によって定
められた標準値に達したことを検知すること忙より、該
ダミー鋳塊の先端が溶解したことを検出する壽許請求の
範囲第1〜4項のいずれか1項記載の加熱鋳型式連続鋳
造法におゆる鋳塊鋳造法。 7、 ダミー鋳塊形状が、予め鋳込むべき金属の種類、
鋳塊の断面形状、ダミー鋳功の形状及びダミー鋳塊にお
ける温度検出位置によって定められた標準値に達したこ
とを検知することにより、該ダミー鋳塊の先端が溶解し
たことを検出する特許請求の範囲第1〜4項の〜・ずれ
か1項記載の加熱鋳型式連続鋳造法における鋳塊鋳造法
。 8、鰭型内溶湯温度が予め鋳込むべき金属の種類、鋳塊
の断面形状、ダミー鋳塊形状、鋳型の形状、鋳型の材質
、鋳型自溶湯温度検出位置及び一定としつつある鋳型加
熱用発熱体の発熱量又は一定に制御されつつある鋳型出
口端内壁近傍温度によって定められた標準値に達したこ
とを検知することにより、該ダミー鋳塊の先端が溶解し
たことを検出する竹許請特許出願人 日本軽金篇株式会
社 同 株式会社 オー。シー、シー
FIG. 1 is an explanatory view showing an embodiment of the method for starting ingot casting in the heated mold continuous casting method of the present invention, and FIGS. 2 and 3 are oil-cut diagrams showing aspects of a dummy ingot, respectively. 1... Molten metal holding furnace, 2... Molten metal throughout the area, 3... Mold, 4... Fixed machine hole, 5... Heating element, 6... Thermocouple, 7... Dummy ingot , 8... Ingot cooling device, 9...
・Inlet, 10... = outlet, 11... pinch roller - 112, 14... tip of dummy ingot, 16...
Insulating ring patent applicant O.C.C. Co., Ltd. Nippon Light Metal Co., Ltd. Figure 1 Voluntary procedure amendment April 10, 1980 Patent application No. 46930 2, name of invention Heat mold type Ingot casting method 4 in the continuous casting method, Column 8 of the agent's claims, Contents of the amendment, Attached document, Patent Application No. 1982-46930, Claims are amended to follow the lower manure. 1. The molten metal inside the mold is accessed from the inlet end of the mold, which has an outlet for drawing out the ingot and an inlet for supplying the molten metal, and the temperature of the inner wall of the outlet is maintained at least at a temperature higher than the solidification temperature of the metal to be cast. The molten metal is supplied to the tip of the dummy ingot inserted into the mold from the outlet end, and held for a while to melt the vicinity of the tip of the dummy ingot, and then the dummy ingot is pulled out from the mold outlet. An ingot casting method in the heating mold continuous casting method characterized by the following. 2. An ingot casting method in the heated mold continuous casting method according to claim 1, in which the material of the tip of the dummy ingot is a metal material having almost the same melting point as the metal to be cast. 2. A method for producing an ingot in a heated mold continuous casting method according to claim 1, wherein the material for the tip of the dummy ingot is a gold powder having substantially the same composition as the metal to be cast. 4. Claims 1 to 3 that reduce heat transfer from the front end to the rear end of the dummy ingot - Replacement heating mold type continuous - Ingot casting method in Shinpo. 5. While keeping the calorific value of the heating element for heating the mold constant, the temperature near the mold outlet end is determined in advance by the type of metal to be cast, the cross-sectional shape of the ingot, the shape of the dummy ingot, the shape of the mold, and the material of the mold. The heating mold method according to Claims 1 to 4, wherein melting of the tip of the dummy ingot is detected by detecting that the tip of the dummy ingot has reached a set standard value. Ingot casting method is a continuous casting method. 6. A heating element for heating the mold so that the temperature near the inner wall of the mold WO end becomes a value determined in advance according to the type of metal to be cast, the cross-sectional shape of the ingot, the shape of the dummy ingot, the shape of the mold, and the material of the mold. While controlling the calorific value of the metal, the calorific value required for this has reached a standard value predetermined by the type of metal to be cast, the cross-sectional shape of the ingot, the shape of the dummy ingot, the shape of the mold, and the material of the mold. According to the heating mold type continuous casting method according to any one of claims 1 to 4, any ingot casting method may be used. Law. 7. The dummy ingot shape is based on the type of metal to be cast in advance,
A patent claim that detects that the tip of the dummy ingot has melted by detecting that a standard value determined by the cross-sectional shape of the ingot, the shape of the dummy ingot, and the temperature detection position in the dummy ingot has been reached. The ingot casting method in the heated mold continuous casting method according to any one of the ranges 1 to 4. 8. The temperature of the molten metal in the fin mold is in advance the type of metal to be cast, the cross-sectional shape of the ingot, the shape of the dummy ingot, the shape of the mold, the material of the mold, the temperature detection position of the self-molten metal in the mold, and the heat generation for mold heating that is becoming constant. A patent granted by Bamboo that detects that the tip of the dummy ingot has melted by detecting that it has reached a standard value determined by the calorific value of the body or the temperature near the inner wall of the mold outlet end, which is being controlled at a constant level. Applicant Nippon Light Metal Co., Ltd. O Co., Ltd. See, see

Claims (1)

【特許請求の範囲】 1、@域別出用の出口と溶湯供給のための入口とを有し
、少くとも出口内壁温度を鋳造しようとする金属の凝固
温度以上の温度に保持した鋳型の入口端より鋳型内に金
属溶湯を供給し、この溶湯を出口端よシ鋳型内に挿入し
たダミー鋳型の先端と接触させ、暫時保持することによ
ってダミー鋳塊先端付近を溶解させた後練ダミー鋳塊を
鋳型出口よシ引出すことを特徴とする加熱鋳型式連続鋳
造法における鋳塊鋳造法。 2、ダミー鋳塊の先端部分の材料を鋳造しようとする金
属とほぼ同一の融点を有する金属材料とした。IFF開
求0範囲第1項記載の加熱鋳型式連続鋳造法における鋳
塊鋳造法。 3、ダミー鋳塊の先端部分の材料を鋳造しようとする金
属とt丘は同一組成の金属材料とした特許請求の範囲第
1項記載の加熱鋳型式連続鋳造法における鋳塊製造法。 4、ダミー鋳塊の先端から後端に向っての熱伝達を低下
させるようにした特許請求の範囲第1〜3項記販の加熱
鋳型式連続鋳造法における鋳塊鋳造法。 5、鋳型加熱用発熱体の発熱量を一定としつつ鋳型用口
端近傍温度が予め鋳込むべき金属の種類、鋳塊の断面形
状、ダミー鋳塊の形状、@型の形状及び鋳型の材質によ
ってにめられた標#l(iに達したこと全検知すること
によシ、眼ダミー鋳塊の先端が溶解したことを検出する
請求の範囲第1〜4項記載の加熱鋳型式連続鋳造法にお
ける鋳塊鋳造法。 6、鋳型出口端内壁近傍温度が予め鋳込むべき金属の1
1i1類、鋳塊の断面形状、ダミー鋳塊の形状、鋳型の
形状及び@型の材質によって尾められた埴となるように
鋳型加熱用発熱体の発熱量を制御しつつそれに悲する該
発熱量が予め鋳込むべき金属の種類、鋳塊の断面形状、
ダミー鋳塊の形状、鋳型の形状及び鋳型の材質によって
定められた標準値に達したことを検知することにより、
該ダミー鋳塊の先端が溶解したことを検出する特許請求
の範囲第1〜4項記載の加熱鋳型式連続鋳造法における
鋳塊鋳造法。 7、ダミー鋳塊温度が、予め鋳込むべき金属のa1類、
鋳塊の断面形状、ダミー鋳塊の形状及びダミー鋳塊にお
ける温度検出位置によって定められた標準値に達したこ
とを検知することによシ、該ダミー鋳塊の先端が溶解し
たことを検出する特許請求の範囲第1〜4項記載の加熱
鋳型式連続鋳造法における鋳塊鋳造法。 8、鋳型内溶湯温度が予め鋳込むべき金属の種類、鋳塊
の断面形状、ダミー鋳塊形状、鋳型の形状の材質、@型
内溶湯温度検出位置及び一定としつつある鋳、型加熱用
発熱体の発熱量又は一定に制御されつつある鋳型出口端
内壁近傍温度によって定められた標準値に達したことを
検知することによ、シ、該ダミー鋳塊の先端が溶解した
ことを検出する%許請求の範囲第1〜4項記戦の加熱鋳
型式連続鋳造法における鋳塊鋳造法。 9、ダミー鋳塊の先端から後端に向っての熱伝達を低下
させるようにした特許請求の範囲第1〜8項記載の加熱
@型式連続鋳造法における鋳塊鋳造法。 10、熱伝達低下手段としてダミー鋳塊の先端を除く部
分に断熱材を使用した特許請求の範囲第9項記載の加熱
調型式連続鋳造法における鋳塊鋳造法。 11、熱伝達低下手段としてダミー鋳塊の先端を除く部
分を中空とした特許請求の範囲第9項記載の加熱@型式
連続鋳造法における鋳塊鋳造法。 12、熱伝達低下手段としてダミー鋳塊の先端を除く部
分にダミー鋳塊先端に使用する金塊材料よシ熱体達性の
低い全組材料を使用した特許請求の範囲第9項記載の加
熱@型式連続鋳造法における鋳塊鋳造法。
[Scope of Claims] 1. An inlet of a mold having an outlet for discharging by zone and an inlet for supplying molten metal, and maintaining the inner wall temperature of the outlet at least at a temperature higher than the solidification temperature of the metal to be cast. Molten metal is supplied into the mold from the end, and the molten metal is brought into contact with the tip of a dummy mold inserted into the mold from the outlet end, and held for a while to melt the vicinity of the tip of the dummy ingot. An ingot casting method in the heated mold continuous casting method, which is characterized by drawing out the ingot from the mold outlet. 2. The material for the tip of the dummy ingot was a metal material having almost the same melting point as the metal to be cast. An ingot casting method in the heated mold continuous casting method described in IFF 0 range item 1. 3. The ingot manufacturing method in the heated mold continuous casting method according to claim 1, wherein the metal to be cast as the material of the tip portion of the dummy ingot and the t-hill have the same metal composition. 4. An ingot casting method in the heated mold continuous casting method as set forth in claims 1 to 3, in which heat transfer from the front end of the dummy ingot toward the rear end is reduced. 5. While keeping the calorific value of the heating element for heating the mold constant, the temperature near the mouth end of the mold is determined in advance depending on the type of metal to be cast, the cross-sectional shape of the ingot, the shape of the dummy ingot, the shape of the @ mold, and the material of the mold. The heated mold continuous casting method according to claims 1 to 4, wherein melting of the tip of the eye dummy ingot is detected by completely detecting that the tip of the eye dummy ingot has been reached. Ingot casting method in 6. The temperature near the inner wall of the mold outlet end is 1
Class 1i1, the heat generated by controlling the calorific value of the heating element for heating the mold so that it becomes a clay shaped by the cross-sectional shape of the ingot, the shape of the dummy ingot, the shape of the mold, and the material of the mold. The amount depends on the type of metal to be cast in advance, the cross-sectional shape of the ingot,
By detecting that the standard value determined by the shape of the dummy ingot, the shape of the mold, and the material of the mold has been reached,
An ingot casting method in a heated mold continuous casting method according to claims 1 to 4, wherein melting of the tip of the dummy ingot is detected. 7. The dummy ingot temperature is the A1 type of the metal to be cast in advance,
By detecting that a standard value determined by the cross-sectional shape of the ingot, the shape of the dummy ingot, and the temperature detection position on the dummy ingot has been reached, it is detected that the tip of the dummy ingot has melted. An ingot casting method in the heated mold continuous casting method according to claims 1 to 4. 8. The temperature of the molten metal in the mold is in advance the type of metal to be cast, the cross-sectional shape of the ingot, the shape of the dummy ingot, the material of the mold shape, the detection position of the molten metal temperature in the mold, the casting that is becoming constant, and the heat generation for mold heating. By detecting that a standard value determined by the calorific value of the body or the temperature near the inner wall of the mold outlet end, which is being controlled at a constant level, has reached a standard value, it is detected that the tip of the dummy ingot has melted. An ingot casting method in the heated mold continuous casting method according to claims 1 to 4. 9. An ingot casting method in the heating@type continuous casting method according to claims 1 to 8, wherein heat transfer from the front end to the rear end of the dummy ingot is reduced. 10. The ingot casting method in the heat-adjustable continuous casting method according to claim 9, wherein a heat insulating material is used in the portion of the dummy ingot other than the tip as a heat transfer reducing means. 11. The ingot casting method in the heating@type continuous casting method according to claim 9, wherein the dummy ingot is hollow except for the tip thereof as a heat transfer reducing means. 12. Heating according to claim 9, in which the heat transfer reducing means uses a whole set material with lower thermal conductivity than the gold ingot material used for the tip of the dummy ingot, except for the tip of the dummy ingot. Ingot casting method in type continuous casting method.
JP4693084A 1984-03-12 1984-03-12 Casting method of casting ingot in heated mold type continuous casting method Pending JPS60191640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4693084A JPS60191640A (en) 1984-03-12 1984-03-12 Casting method of casting ingot in heated mold type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4693084A JPS60191640A (en) 1984-03-12 1984-03-12 Casting method of casting ingot in heated mold type continuous casting method

Publications (1)

Publication Number Publication Date
JPS60191640A true JPS60191640A (en) 1985-09-30

Family

ID=12761042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4693084A Pending JPS60191640A (en) 1984-03-12 1984-03-12 Casting method of casting ingot in heated mold type continuous casting method

Country Status (1)

Country Link
JP (1) JPS60191640A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287512A (en) * 1986-06-06 1987-12-14 古河電気工業株式会社 Conductor for mobile cable
JPH01313149A (en) * 1988-06-10 1989-12-18 Nippon Mining Co Ltd Manufacture of zn alloy wire and its use
JP2015027692A (en) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 Pull-up continuous casting device, and pull-up continuous casting method
CN104907517A (en) * 2014-03-10 2015-09-16 丰田自动车株式会社 Up-drawing continuous casting apparatus and up-drawing continuous casting method
CN105964965A (en) * 2016-06-02 2016-09-28 高原 Continuous-casting one-step forming process of lock bodies
CN108907122A (en) * 2018-07-11 2018-11-30 尚成荣 A kind of Copper fabrication cold water hydraulic pressure automatic control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287512A (en) * 1986-06-06 1987-12-14 古河電気工業株式会社 Conductor for mobile cable
JPH01313149A (en) * 1988-06-10 1989-12-18 Nippon Mining Co Ltd Manufacture of zn alloy wire and its use
JP2015027692A (en) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 Pull-up continuous casting device, and pull-up continuous casting method
CN105408038A (en) * 2013-07-30 2016-03-16 丰田自动车株式会社 Hoisting-type continuous casting device and hoisting-type continuous casting method
CN104907517A (en) * 2014-03-10 2015-09-16 丰田自动车株式会社 Up-drawing continuous casting apparatus and up-drawing continuous casting method
CN105964965A (en) * 2016-06-02 2016-09-28 高原 Continuous-casting one-step forming process of lock bodies
CN108907122A (en) * 2018-07-11 2018-11-30 尚成荣 A kind of Copper fabrication cold water hydraulic pressure automatic control device

Similar Documents

Publication Publication Date Title
JP2009541062A (en) Continuous casting apparatus and method using molten mold flux
JPH0688106B2 (en) Horizontal continuous casting method for strip-shaped metal ingot and its equipment
JPS60191640A (en) Casting method of casting ingot in heated mold type continuous casting method
US3460609A (en) Nozzle for supplying melt to a mould in a continuous casting machine
US3210812A (en) Continuous casting mold
US4036280A (en) Method of starting the casting of a strand in a continuous casting installation
US3752215A (en) Continuous casting apparatus for shaped metal bodies
JP6070080B2 (en) Continuous casting method of Cu-Zn-Si alloy
JP2006305618A (en) Semi-solid casting method
JPS5942161A (en) Production of amorphous alloy light-gauge strip
JP4273045B2 (en) Method of melting metal material in metal forming machine
US4115654A (en) Introduction of starting molten flux from the top of a crucible
JPH0491849A (en) Mold device for continuous casting
NO161042B (en) PROCEDURE AND CONTROL FOR CONTINUOUS CASTING OF COATING MATERIAL.
JP2003528730A (en) Method and apparatus for automatically starting a continuous casting plant
JP3068153B2 (en) Continuous casting equipment for hollow slabs
JPS60191641A (en) Horizontal and continuous casting method of metal
JPH04172151A (en) Casting starting method in horizontal continuous casting
JPS6087956A (en) Continuous casting method of metal
JPS62168644A (en) Method and apparatus for continuous casting
JPH04125046U (en) Horizontal continuous casting equipment for strip metal ingots
JPH02137652A (en) Method for continuous casting of ingot having small section
JPS58187243A (en) Method and device for diagonal upward type continuous casting of metallic molding
JPS5858960A (en) Production of hollow steel ingot
JP3238781B2 (en) Stable casting method for metal strip