JP3713332B2 - Single crystal copper target and manufacturing method thereof - Google Patents

Single crystal copper target and manufacturing method thereof Download PDF

Info

Publication number
JP3713332B2
JP3713332B2 JP18136196A JP18136196A JP3713332B2 JP 3713332 B2 JP3713332 B2 JP 3713332B2 JP 18136196 A JP18136196 A JP 18136196A JP 18136196 A JP18136196 A JP 18136196A JP 3713332 B2 JP3713332 B2 JP 3713332B2
Authority
JP
Japan
Prior art keywords
copper
target
single crystal
wiring
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18136196A
Other languages
Japanese (ja)
Other versions
JPH108244A (en
Inventor
勇 西野
長寿 永田
諭 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP18136196A priority Critical patent/JP3713332B2/en
Publication of JPH108244A publication Critical patent/JPH108244A/en
Application granted granted Critical
Publication of JP3713332B2 publication Critical patent/JP3713332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信頼性を高めた半導体素子配線膜形成用ターゲットおよび超LSIの内部配線に使用される銅配線に関するものである。従来より、超LSI配線材料としては、電気抵抗が低く、Siとの密着性の高いΑl合金が一般的に用いられていた。しかしながら、LSIの高集積化による配線の微細化にともない、エレクトロマイグレーション(EM),ストレスマイグレーション(SM)などに起因した断線による素子の信頼性低下が問題となるに至っている。
【0002】
この問題を解決するために、Al合金に代わる配線材料の開発が検討されその内の1種として銅材が使用されるようになった。銅は電気抵抗がAlの2/3と低い為、Αlに比較して電流密度を大きくでき、また融点もΑlに比較して400℃以上高いことから、超LSI用内部配線として使用した場合、エレクトロマイグレーシヨン(EM)、ストレスマイグレーシヨン(SM)にも強い配線材料として有力視されている。
【0003】
【従来の技術】
その結果、無酸素銅あるいは、電解銅より作られたスパッタリング・ターゲットを用いて、銅配線が形成されるようになったが、これらの銅材は純度が99.99%程度である為、得られる薄膜の純度も同程度の粗悪なものであった。この様な低純度の配線材料を用いて行なわれた試験においては、銅のメリットである耐EM性や耐SM性は失われ、耐腐食性の低さが問題となり、問題を解決する方策として次の様な方法が提案されている。
【0004】
たとえば、特開平5−311424号公報に記載されている様に、純度6N(99.9999%)以上の高純度銅を原料として、Ti(チタン)、Zn(亜鉛)を微量元素として添加する方法が考案された。しかしながら、この方法は原料鋳塊の製造工程が複雑になるため、ターゲットの製品コストを上昇させる結果となった。また、特開平3−166731号公報に記載されている様に、熱処理により、銅配線の結晶粒を粗大化させて酸化の進行経路となる結晶粒界を減少させ、耐酸化性を向上させる方法が考案されたが、この方法は、成膜後熱処埋を行なう為、LSIのプロセスコストが上昇するという問題があった。
【0005】
また、配線幅の減少にともない、成膜中の異常放電による配線欠陥や、ピンホールと呼ばれる穴の発生も深刻な問題となった。この原因について、鋭意研究をおこなった結果、従来のターゲットを製造する工程に、ターゲットの品質を低下させる原因があったことが判明した。以下に、従来の銅ターゲットの製造工程を説明する。
▲1▼原料となる銅の鋳塊を鍛造および圧延により所定の寸法まで機械加工する。この時、鋳塊に強加工を施すことにより鋳造組織を破壊し、配向性の無い、lmm以下の微細な集合組織の圧延板とする。
▲2▼圧延板は、必要に応じて熱処理を施し、表面研削、外形加工、洗浄を行なった後、ターゲットとなる。この様にして加工されたターゲットにおいては、加工により組織が、1mm以下の微細な結晶の集合となっている為、結晶粒界には、加工中に発生した、酸化物、硫化物、あるいは、不純物が凝集して存在している。こうした純度の低い粗悪なターゲットを用いて成膜を行なうと、膜中に混入した酸化物や硫化物が腐食の原因となる。また、結晶粒界に電界が集中し、異常放電を起し、粒界部より粒状の銅(以下、パーティクルと呼ぶ)が放出され、成膜面に付着する。こうした付着物は薄膜配線のピンホールとなり、配線間を短絡させる原因となる。こうした理由から、従来技術においては、銅のメリットである耐EM性や耐SM性等の優れた特徴を充分に生かす事ができなかった。
【0006】
【発明が解決しようとする課題】
上述のように超LSI配線に使用される銅配線材料には、極めて高い純度が要求される。特に、不純物として、ナトリウムやカリウムなどのアルカリ金属が配線中に存在すると、酸化膜耐圧劣化の原因となり素子の信頼性を著しく低下させることとなる。こうした観点から、電解精製やゾーン精製法を用いて製造された高純度銅を原料とするスパッタリングターゲットが製造され、成膜材料として検討されてきた。しかし、加工工程における汚染を完全に排除することができないばかりでなく、加工組織である結晶粒界に酸化物、硫化物、不純物が濃縮蓄積される問題が残されていた。
【0007】
こうした不純物は、LSIのパッケージの外部より侵入してくる水分等との反応により腐食の原因となる。成膜中に放出される微量な酸素は、膜を酸化させ抵抗率を上昇させるとともに、酸化による腐食発生の起源となる。また、粒界を起点として、発生する異常放電により、パーティクルが発生し配線間を短絡させる原因となっていた。本発明は、上記事情に鑑みてなされたもので、スパッタリング法によって、高純度銅をターゲットとして配線を形成する場合、耐EM性、耐SM性、耐酸化性および耐腐食性に優れた、銅薄膜配線を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らはかかる課題を解決するために鋭意研究したところ、純度99.9999wt%以上の高純度銅を基体金属として、酸素濃度が0.1ppm以下の雰囲気にて溶解凝固させて得た高純度銅単結晶体を用いることによって、これらの課題が解決できることを見出し本発明を達成することができた。すなわち本発明の第1は純度99.9999wt%以上の単結晶銅からなるスパッタリングターゲットであり;第2は上記単結晶銅は、酸素が0.05ppm以下、水素が0.2ppm以下、窒素が0.5ppm以下、炭素が0.01ppm以下で、純度が99.9999wt%以上であることを特徴とする上記第1記載のスパッタリングターゲットであり;第3は純度99.9999wt%以上の単結晶銅を(111)方向に切断した後、研磨加工を行ってターゲット材とすることを特徴とするスパッタリングターゲットの製造方法である。
【0009】
【発明実施の形態】
本発明で半導体素子の配線用スパッタリングターゲットとして使用する高純度銅単結晶体は、出発原料として銀と硫黄の合計含有量が0.5ppm 以下である純度99.9999wt%以上の高純度銅を用い、真空炉内の原料るつぼに入れた後、真空度1×10-3Torr以下、炉内温度1085℃以上で加熱溶解(第1工程)したものを、上記原料るつぼ底部と溶解滴下孔を介して接続する単結晶鋳型に流し込んだ後、順次、該単結晶鋳型を冷却することによってO2 ガス成分およびN2 ガス成分が合計で1ppm 以下である内径4インチの高純度銅単結晶体である。
【0010】
この単結晶体を(111)方向に切断した後鏡面研磨を行ってターゲットとするが、この単結晶体の溶存ガス成分について分析したところ、酸素(O)は、<0.03ppm 、硫黄(S)は<0.01ppm 、水素(H)は<0.2ppm 、窒素は0.5ppm 以下であった。次いで上記組成からなるターゲットを用い、RFスパッター法によりArガス圧力、1×10-2Torr以下、好ましくは3×10-3Torr、放電電力を200〜800Wで放電試験を行い、Si基板上にバリア膜としてTiN膜を被覆させた後、0.5〜1.0μm厚の銅配線を形成した後、保護膜としてSiN膜を堆積させて半導体素子とした。
【0011】
このように本発明の銅薄膜形成用単結晶スパッタリングターゲットは、スパッタリング法により銅配線として使用される銅薄膜を形成するが、従来法に比較して耐食性が高く、耐EM性、耐SM性に優れており、今後の半導体素子等の配線の微細化を担う有望な材料となっている。以下、実施例を以て詳細に説明するが、本発明の範囲はこれらに限定されるものではない。
【0012】
【実施例1】
図1に示す製造装置を用いて高純度銅単結晶体を得た。先ず出発原料として銀と硫黄の合計含有量が0.1ppm 以下である純度99.9999wt%以上の高純度銅10kgを原料るつぼ5内に入れ、炉内真空度を4×10-4Torrとし、温度1150℃一定でるつぼ内の原料を溶解した。溶解された銅は、るつぼ底部に設けられた溶解滴下孔4から下方の単結晶鋳型6に滴下するが下部ヒーター12を1000℃までは0.5℃/分の割合で、1000℃からは15℃/分の割合で温度を下げて、4インチ口径の単結晶体10kgを得た。次いで得られた単結晶体を、X線カット面検査装置で(111)方向に切断した後鏡面研磨を行い直径6インチ、厚さ5mmのターゲットを作製した。このターゲットの不純物分析をグロー放電質量分析法により行ったところ、不純物金属成分は原料の分析値と同一であるが、ガス不純物の分析値は表に示す通りであった。
【0013】
【表1】

Figure 0003713332
この場合ガス成分中炭素(C)および酸素(O)の分析は住友重機製サイクロトロンCYPRIS370を用いて荷電粒子放射化分析で行い、窒素(N)はLECO社製RH−IEで、また水素(H)は、LECO社製TC−486を用いて燃焼熱伝導度法で求めた。このようにして得られた、6N−銅単結晶ターゲットを希硝酸を用いて、エッチングをおこなつたが、結晶粒界は観察されず、加工を経ても単結晶が維持されたままであることが確認された。このターゲットについて、2結晶X線回折装置によりX線ロッキングカーブを測定した。その結果、ロッキングカーブの半値幅は、40秒であった。
【0014】
次に、このターゲットを用いて、RFスパッター法により、Arガス圧力3×10-3Torr、放電電力それぞれ250W、500Wとし放電試験を行なった。この場合、成膜中の放電状態は、マルチチャンネルホトディテクターにより観察し、放出ガス、異常放電の発性を記録した。その結果を表2に示した。
【0015】
【表2】
Figure 0003713332
また、パーティクルの測定は、Si基板上にバリア膜としてTiN膜を被覆させ、0.8μm厚の銅薄膜を堆積させた後、銅薄膜の表面を電球にて照らし、薄膜表面のパーティクルの付着の有無を顕微鏡にて目視観察する事により評価した。その結果を表3に示した。
【0016】
【表3】
Figure 0003713332
また、放電中のプラズマ分光測定の結果、ターゲットよりの放出ガスは確認されなかった。
【0017】
次に、この(111)方位の6N−銅単結晶ターゲットを用いて、RFスパッター法により、幅0.3μm、厚さ0.8μmの銅配線を形成した。この時の成膜条件は、Arガス圧力3×10-3Torr、放電電力250Wとし、Si基板上に堆積させた。得られた薄膜について、2結晶X線回折装置により結晶性を評価したところ、(111)に配向し、半値幅は、100秒とほぼ単結晶に近い薄膜であった。
【0018】
次いで、保護膜として、CVD法により、厚さ0.8μmのSiN膜を堆積させて所望の半導体素子とした。この場合、加速試験に先立ち、成膜中に生じたピンホール等に起因する初期断線率を調べたところ、0.09%であった。次いで、初期断線を除外した試料について電流密度1×106 A/cm2 、雰囲気温度200℃にて、2000時間の加速試験を行ない断線不良率を測定した。その結果、断線不良率は、1.0%と低かった。
【0019】
【実施例2】
出発原料として7N高純度銅を用いたほかは、実施例1と同一の条件で4インチ口径の7N高純度銅単結晶体を得、X線カット面検査装置を用いて(111)方向に切断した後、鏡面研磨を行い直径6インチ、厚さ5mmのターゲットを作製した。このターゲットの不純物分折をグロー放電質量分折法により行ったところ、不純物金属成分は、原料の分折値と同一であるが、ガス不純物の分折値は、表4に示す通りであった。
【0020】
【表4】
Figure 0003713332
この様にして得られた7N−単結晶ターゲットを希硝酸を用いてエッチングをおこなったが、結晶粒界は観察されず加工を経ても単結晶が維持されたままであることが確認された。このターゲットについて、2結晶X線回折装置によりX線ロッキングカーブを測定したところ、ロッキングカーブの半値幅は40秒であった。
【0021】
次いで、このターゲットを用いて、RFスパッター法によりArガス圧力3×10-3Torr、放電電力250W、500Wとして放電試験を行ない、異常放電回数およびパーティクルの発生状況を調べた。その結果、実施例1に記載した表2および表3と同様の結果となった。また、プラズマ分光の結果、ターゲットよりの放出ガスと思われるものは検出されなかった。
【0022】
次に、この(111)方位の7N−単結晶銅ターゲットを用いて、RFスパッター法により、幅0.3μm、厚さ0.8μmの銅配線を形成した。この時の成膜条件は、Arガス圧力3×10-3Torr、放電電力500Wとし、Si基板上に堆積させた。得られた薄膜について、2結晶X線回折装置により結晶性を評価したところ、(111)に配向し、半値幅は、85秒とほぼ単結晶に近い薄膜であった。
【0023】
次いで、保護膜として、CVD法により、厚さ0.8μmのSiN膜を堆積させ所望の半導体素子とした。この場合、加速試験に先立ち、成膜中に生じたピンホール等に起因した初期断線率を調べたところ、0.09%であった。
次いで、初期断線を除外した試料について電流密度1×106 A/cm2 、雰囲気温度200℃にて、2000時間の加速試験を行ない断線不良率を測定したところ断線不良率は0.5%と低かった。
【0024】
【比較例】
実施例1で得た6N高純度銅単結晶体を原料として、図2に示すフローシートに従って鍛造により厚さ3cmまで加工を施して、単結晶鋳塊の組織を微細な多結晶とした。次いで、硝酸によりエッチングを行なった後、加工歪を除去する目的で、高純度アルゴン雰囲気にて約135℃、30分の焼鈍を行なった。焼鈍後の結晶粒径は、1mm以下であった。次に、クロス圧延により、板厚7mmとした。圧延板は、表面研削および外形加工により、直径6インチ、厚さ5mmの円盤となしこれを有機洗浄後、希硝酸によるエッチングを行なって、ターゲットとした。
【0025】
ターゲットの不純物分折を、グロー放電質量分折法によりおこなったところ、不純物金属成分は、原料の分折値と同一であるが、ガス不純物については表1に示すように実施例1および実施例2に比較して相当高かった。
【0026】
このターゲットについて、X線回折パターンを測定したところ、複数の回折線が得られたことから、特定な方位への配向は確認されなかった。次いで、このターゲットを用いて、RFスパッター法により、Arガス圧力3×10-3Torr、放電電力250W、500Wとし放電試験を行なった。異常放電回数およびパーティクルの発生状況は、実施例1および実施例2に準じて行ない、その結果を表5および表6に示したが、実施例1に比較して異常放電回数やパーティクル発生枚数が多いことが明白である。
【0027】
【表5】
Figure 0003713332
【0028】
【表6】
Figure 0003713332
尚、プラズマ分光分折の結果、多結晶ターゲットをスパッターした場合、成膜中に、アルゴンガスと共に、O、CO、COx 等のガス成分の存在が確認された。また、500時間の放電試験後に、ターゲットの表面を観察したところ、結晶粒界の割れ(空隙)の部分に、電界集中が発生し異常放電したと思われる変色が観測された。
【0029】
次にこの6N−高純度銅多結晶ターゲットを用いて、RFスパッター法により、幅0.3μm、厚さ0.8μmの銅配線を形成した。この時の成膜条件は、Arガス圧力3×10-3Torr、放電電力500Wとし、Si基板上にバリア膜としてTiN膜を被覆させた後、堆積させたが、この時の銅配線の結晶粒径は0.06μmから0.lμm程度と微細なものであった。X線回折パターンも、多結晶特有の複数の回折線を示し、配向は認められなかった。
【0030】
次に、保護膜としてCVD法により、厚さ0.8μmのSiN膜を堆積させた。加速試験に先立ち、成膜中に生じたピンホール等に起因した初期断線率を調べたところ、0.8%であった。次に、初期断線を除外した試料について電流密度1×106 A/cm2 、雰囲気温度200℃にて、2000時間の加速試験を行い断線不良率を測定したところ、断線不良率は2.5%と実施例1に比較しても多かった。
【0031】
【発明の効果】
本発明は上述のように新規な高純度銅単結晶体を加工して得られたスパッタリングターゲート並びに該タゲーットを用いて成膜した配線を有する半導体素子であり従来品に比較して初期断線率や断線不良率の低い超LSI向け銅配線を得ることができるものである。
【図面の簡単な説明】
【図1】本発明ターゲット材料の製造装置の概略構造を示す模式図である。
【図2】比較例および従来のターゲットの製造工程を示すフローシートである。
【符号の説明】
1 電気炉
2 真空排気装置
3 石英外筒
4 溶解滴下孔
5 原料るつぼ
6 単結晶鋳型
7 水冷フランジ
8 断熱トラップ
9 冷却水
10 上部ヒーター
11 中部ヒーター
12 下部ヒーター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device wiring film forming target with improved reliability and a copper wiring used for an internal wiring of a VLSI. Conventionally, as a VLSI wiring material, a metal alloy having low electrical resistance and high adhesion to Si has been generally used. However, along with the miniaturization of wiring due to high integration of LSIs, the reliability of elements due to disconnection due to electromigration (EM), stress migration (SM), etc. has become a problem.
[0002]
In order to solve this problem, development of a wiring material to replace the Al alloy has been studied, and a copper material has been used as one of them. Since copper has a low electrical resistance of 2/3 that of Al, the current density can be increased compared to Αl, and the melting point is higher than 400 ℃ compared to Αl, so when used as internal wiring for VLSI, It is regarded as a promising wiring material for electro migration (EM) and stress migration (SM).
[0003]
[Prior art]
As a result, copper wiring has been formed using a sputtering target made of oxygen-free copper or electrolytic copper, but since these copper materials have a purity of about 99.99%, they can be obtained. The purity of the resulting thin film was also inferior. In tests conducted using such low-purity wiring materials, EM resistance and SM resistance, which are the merits of copper, are lost, and low corrosion resistance becomes a problem. The following methods have been proposed.
[0004]
For example, as described in JP-A-5-31424, a method of adding high purity copper having a purity of 6N (99.9999%) or more as a raw material and adding Ti (titanium) and Zn (zinc) as trace elements Was devised. However, this method complicates the manufacturing process of the raw material ingot, resulting in an increase in the target product cost. Further, as described in JP-A-3-166673, a method for improving the oxidation resistance by coarsening the crystal grains of the copper wiring and reducing the crystal grain boundaries that become the progress path of oxidation by heat treatment. However, this method has a problem that the process cost of the LSI increases because the thermal treatment is performed after the film formation.
[0005]
As the wiring width is reduced, wiring defects due to abnormal discharge during film formation and the generation of holes called pinholes have become serious problems. As a result of diligent research on this cause, it has been found that the process of manufacturing a conventional target had a cause of reducing the quality of the target. Below, the manufacturing process of the conventional copper target is demonstrated.
(1) A copper ingot as a raw material is machined to a predetermined size by forging and rolling. At this time, the cast structure is destroyed by subjecting the ingot to strong processing to obtain a rolled sheet having a fine texture of 1 mm or less and having no orientation.
{Circle around (2)} The rolled plate is subjected to heat treatment as necessary, and after being subjected to surface grinding, outer shape processing and cleaning, it becomes a target. In the target processed in this way, the structure is a collection of fine crystals of 1 mm or less by processing, so the crystal grain boundary has oxide, sulfide, or Impurities are present in aggregate. When film formation is performed using such a poor target with low purity, oxides and sulfides mixed in the film cause corrosion. In addition, the electric field concentrates on the crystal grain boundary, causing abnormal discharge, and granular copper (hereinafter referred to as particles) is released from the grain boundary part and adheres to the film formation surface. Such deposits become pinholes in the thin film wiring and cause a short circuit between the wirings. For these reasons, in the prior art, it was not possible to make full use of excellent features such as EM resistance and SM resistance, which are merits of copper.
[0006]
[Problems to be solved by the invention]
As described above, the copper wiring material used for the VLSI wiring is required to have extremely high purity. In particular, when an alkali metal such as sodium or potassium is present in the wiring as an impurity, the breakdown voltage of the oxide film is deteriorated and the reliability of the device is remarkably lowered. From such a viewpoint, a sputtering target using high-purity copper produced by electrolytic purification or zone purification as a raw material has been manufactured and studied as a film forming material. However, not only the contamination in the processing process cannot be completely eliminated, but also a problem that oxides, sulfides, and impurities are concentrated and accumulated at the grain boundaries as the processing structure.
[0007]
Such impurities cause corrosion due to reaction with moisture or the like entering from the outside of the LSI package. The trace amount of oxygen released during film formation oxidizes the film to increase the resistivity, and causes the occurrence of corrosion due to oxidation. In addition, due to abnormal discharge that occurs from the grain boundary as a starting point, particles are generated, causing a short circuit between the wirings. The present invention has been made in view of the above circumstances. When a wiring is formed by sputtering using high-purity copper as a target, the copper is excellent in EM resistance, SM resistance, oxidation resistance, and corrosion resistance. A thin film wiring is provided.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve such problems. As a result, a high purity copper obtained by dissolving and solidifying in an atmosphere having an oxygen concentration of 0.1 ppm or less using high purity copper having a purity of 99.9999 wt% or more as a base metal. It has been found that these problems can be solved by using a pure copper single crystal, and the present invention has been achieved. That is, the first of the present invention is a sputtering target made of single crystal copper having a purity of 99.9999 wt% or more; the second is that the single crystal copper has oxygen of 0.05 ppm or less, hydrogen of 0.2 ppm or less, and nitrogen of 0. .5 ppm or less, carbon is 0.01 ppm or less, and the purity is 99.9999 wt% or more. The third is the sputtering target according to the first aspect; the third is a single crystal copper having a purity of 99.9999 wt% or more. A method of manufacturing a sputtering target, comprising cutting the substrate in a (111) direction and performing a polishing process to obtain a target material.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The high-purity copper single crystal used as a sputtering target for wiring of a semiconductor element in the present invention uses high-purity copper having a purity of 99.9999 wt% or more with a total content of silver and sulfur being 0.5 ppm or less as a starting material. After being put in the raw material crucible in the vacuum furnace, heated and melted (first step) at a vacuum degree of 1 × 10 −3 Torr or lower and a furnace temperature of 1085 ° C. or higher through the bottom of the raw material crucible and the melting dropping hole. After flowing into the single crystal template to be connected, the single crystal template is sequentially cooled to obtain a high-purity copper single crystal having an inner diameter of 4 inches in which O 2 gas component and N 2 gas component are 1 ppm or less in total. .
[0010]
This single crystal is cut in the (111) direction and then mirror-polished to obtain a target. When the dissolved gas component of this single crystal is analyzed, oxygen (O) is <0.03 ppm, sulfur (S ) Was <0.01 ppm, hydrogen (H) was <0.2 ppm, and nitrogen was 0.5 ppm or less. Next, using a target having the above composition, an RF sputtering method is used to perform a discharge test at an Ar gas pressure of 1 × 10 −2 Torr or less, preferably 3 × 10 −3 Torr, and a discharge power of 200 to 800 W. After coating a TiN film as a barrier film, a copper wiring having a thickness of 0.5 to 1.0 μm was formed, and then a SiN film was deposited as a protective film to obtain a semiconductor element.
[0011]
As described above, the single crystal sputtering target for forming a copper thin film of the present invention forms a copper thin film used as a copper wiring by a sputtering method, but has higher corrosion resistance, EM resistance, and SM resistance than the conventional method. It is excellent and has become a promising material for miniaturization of wiring of future semiconductor elements and the like. Hereinafter, although an Example demonstrates in detail, the scope of the present invention is not limited to these.
[0012]
[Example 1]
A high-purity copper single crystal was obtained using the manufacturing apparatus shown in FIG. First, 10 kg of high-purity copper having a purity of 99.9999 wt% or more having a total content of silver and sulfur of 0.1 ppm or less as a starting material is placed in the raw material crucible 5, and the degree of vacuum in the furnace is set to 4 × 10 −4 Torr. The raw material in the crucible was melted at a constant temperature of 1150 ° C. The dissolved copper is dropped into the single crystal mold 6 below from the melting dropping hole 4 provided at the bottom of the crucible, but the lower heater 12 is heated to 1000 ° C. at a rate of 0.5 ° C./min, and from 1000 ° C. to 15 ° C. The temperature was lowered at a rate of ° C./min to obtain 10 kg of a single crystal having a 4 inch diameter. Next, the obtained single crystal was cut in the (111) direction with an X-ray cut surface inspection apparatus and then mirror-polished to prepare a target having a diameter of 6 inches and a thickness of 5 mm. When the impurity analysis of this target was performed by glow discharge mass spectrometry, the impurity metal component was the same as the analysis value of the raw material, but the analysis value of the gas impurity was as shown in the table.
[0013]
[Table 1]
Figure 0003713332
In this case, analysis of carbon (C) and oxygen (O) in the gas component is performed by charged particle activation analysis using a cyclotron CYPRIS370 manufactured by Sumitomo Heavy Industries, and nitrogen (N) is RH-IE manufactured by LECO, and hydrogen (H ) Was determined by the combustion thermal conductivity method using TC-486 manufactured by LECO. The 6N-copper single crystal target thus obtained was etched using dilute nitric acid, but the crystal grain boundary was not observed, and the single crystal was maintained even after processing. confirmed. For this target, an X-ray rocking curve was measured with a two-crystal X-ray diffractometer. As a result, the full width at half maximum of the rocking curve was 40 seconds.
[0014]
Next, using this target, a discharge test was performed by an RF sputtering method at an Ar gas pressure of 3 × 10 −3 Torr and a discharge power of 250 W and 500 W, respectively. In this case, the discharge state during film formation was observed with a multi-channel photo detector, and the emitted gas and the occurrence of abnormal discharge were recorded. The results are shown in Table 2.
[0015]
[Table 2]
Figure 0003713332
In addition, the measurement of particles is performed by coating a TiN film as a barrier film on a Si substrate, depositing a 0.8 μm thick copper thin film, illuminating the surface of the copper thin film with a light bulb, and The presence or absence was evaluated by visual observation with a microscope. The results are shown in Table 3.
[0016]
[Table 3]
Figure 0003713332
Further, as a result of plasma spectroscopic measurement during discharge, no gas released from the target was confirmed.
[0017]
Next, a copper wiring having a width of 0.3 μm and a thickness of 0.8 μm was formed by RF sputtering using this (111) -oriented 6N-copper single crystal target. The film formation conditions at this time were an Ar gas pressure of 3 × 10 −3 Torr and a discharge power of 250 W, which were deposited on the Si substrate. When the crystallinity of the obtained thin film was evaluated by a two-crystal X-ray diffractometer, the film was oriented to (111) and the half-value width was 100 seconds, which was almost a single crystal.
[0018]
Next, as a protective film, a SiN film having a thickness of 0.8 μm was deposited by a CVD method to obtain a desired semiconductor element. In this case, when the initial disconnection rate due to pinholes or the like generated during the film formation was examined prior to the acceleration test, it was 0.09%. Next, an accelerated test for 2000 hours was performed at a current density of 1 × 10 6 A / cm 2 and an ambient temperature of 200 ° C. for the sample excluding the initial disconnection, and the disconnection failure rate was measured. As a result, the disconnection failure rate was as low as 1.0%.
[0019]
[Example 2]
A 7N high purity copper single crystal having a 4 inch diameter was obtained under the same conditions as in Example 1 except that 7N high purity copper was used as a starting material, and was cut in the (111) direction using an X-ray cut surface inspection device. Then, mirror polishing was performed to prepare a target having a diameter of 6 inches and a thickness of 5 mm. When the impurity analysis of this target was performed by the glow discharge mass spectrometry, the impurity metal component was the same as the analysis value of the raw material, but the analysis value of the gas impurity was as shown in Table 4. .
[0020]
[Table 4]
Figure 0003713332
The 7N-single crystal target thus obtained was etched using dilute nitric acid, but no crystal grain boundary was observed, and it was confirmed that the single crystal was maintained even after processing. When the X-ray rocking curve of this target was measured with a two-crystal X-ray diffractometer, the half-width of the rocking curve was 40 seconds.
[0021]
Next, using this target, a discharge test was conducted by RF sputtering with Ar gas pressure of 3 × 10 −3 Torr, discharge power of 250 W, and 500 W, and the number of abnormal discharges and the state of generation of particles were examined. As a result, the same results as in Table 2 and Table 3 described in Example 1 were obtained. As a result of plasma spectroscopy, no gas that seems to be emitted from the target was detected.
[0022]
Next, a copper wiring having a width of 0.3 μm and a thickness of 0.8 μm was formed by RF sputtering using the (111) -oriented 7N-single-crystal copper target. The film formation conditions at this time were an Ar gas pressure of 3 × 10 −3 Torr and a discharge power of 500 W, which were deposited on the Si substrate. When the crystallinity of the obtained thin film was evaluated by a two-crystal X-ray diffractometer, it was oriented to (111) and the half-value width was 85 seconds, which was a thin film almost similar to a single crystal.
[0023]
Then, a SiN film having a thickness of 0.8 μm was deposited as a protective film by a CVD method to obtain a desired semiconductor element. In this case, when the initial disconnection rate due to pinholes and the like generated during the film formation was examined prior to the acceleration test, it was 0.09%.
Next, the sample with the initial disconnection excluded was subjected to an accelerated test for 2000 hours at a current density of 1 × 10 6 A / cm 2 and an atmospheric temperature of 200 ° C., and the disconnection failure rate was measured to be 0.5%. It was low.
[0024]
[Comparative example]
The 6N high-purity copper single crystal obtained in Example 1 was used as a raw material and processed to a thickness of 3 cm by forging according to the flow sheet shown in FIG. 2 to make the structure of the single crystal ingot a fine polycrystal. Next, after etching with nitric acid, annealing was performed at about 135 ° C. for 30 minutes in a high purity argon atmosphere for the purpose of removing processing strain. The crystal grain size after annealing was 1 mm or less. Next, the plate thickness was set to 7 mm by cross rolling. The rolled plate was formed into a disk having a diameter of 6 inches and a thickness of 5 mm by surface grinding and outer shape processing, and this was subjected to organic cleaning, followed by etching with dilute nitric acid to obtain a target.
[0025]
When impurity analysis of the target was performed by glow discharge mass spectrometry, the impurity metal component was the same as the analysis value of the raw material, but for gas impurities, as shown in Table 1, Example 1 and Example It was considerably higher than 2.
[0026]
When an X-ray diffraction pattern was measured for this target, a plurality of diffraction lines were obtained, and no orientation in a specific direction was confirmed. Next, using this target, a discharge test was performed by an RF sputtering method with an Ar gas pressure of 3 × 10 −3 Torr, a discharge power of 250 W, and 500 W. The number of abnormal discharges and the occurrence state of particles were performed in accordance with Example 1 and Example 2, and the results are shown in Tables 5 and 6. Compared to Example 1, the number of abnormal discharges and the number of particles generated are different. It is clear that there are many.
[0027]
[Table 5]
Figure 0003713332
[0028]
[Table 6]
Figure 0003713332
As a result of plasma spectroscopic analysis, when a polycrystalline target was sputtered, the presence of gas components such as O, CO, and CO x along with argon gas was confirmed during film formation. Further, when the surface of the target was observed after the discharge test for 500 hours, discoloration that was thought to be caused by abnormal electric discharge due to electric field concentration was observed at the crack (void) portion of the crystal grain boundary.
[0029]
Next, a copper wiring having a width of 0.3 μm and a thickness of 0.8 μm was formed by RF sputtering using this 6N-high purity copper polycrystalline target. The film formation conditions at this time were an Ar gas pressure of 3 × 10 −3 Torr and a discharge power of 500 W, and a TiN film was deposited as a barrier film on the Si substrate, and then deposited. The particle size is 0.06 μm to 0. It was as fine as about 1 μm. The X-ray diffraction pattern also showed a plurality of diffraction lines peculiar to polycrystals, and no orientation was observed.
[0030]
Next, a SiN film having a thickness of 0.8 μm was deposited as a protective film by a CVD method. Prior to the acceleration test, the initial disconnection rate due to pinholes and the like generated during film formation was examined and found to be 0.8%. Next, a sample with the initial disconnection excluded was subjected to an accelerated test for 2000 hours at a current density of 1 × 10 6 A / cm 2 and an ambient temperature of 200 ° C., and the disconnection failure rate was measured. % And even in comparison with Example 1.
[0031]
【The invention's effect】
The present invention is a semiconductor element having a sputtering gate obtained by processing a novel high-purity copper single crystal as described above, and a wiring formed using the taggate, and has an initial disconnection rate as compared with a conventional product. In addition, a copper wiring for a VLSI with a low disconnection failure rate can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a schematic structure of an apparatus for producing a target material of the present invention.
FIG. 2 is a flow sheet showing a manufacturing process of a comparative example and a conventional target.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric furnace 2 Vacuum exhaust apparatus 3 Quartz outer cylinder 4 Melting dripping hole 5 Raw material crucible 6 Single crystal mold 7 Water cooling flange 8 Heat insulation trap 9 Cooling water 10 Upper heater 11 Middle heater 12 Lower heater

Claims (3)

純度99.9999wt%以上の単結晶銅からなるスパッタリングターゲット。  A sputtering target made of single crystal copper having a purity of 99.9999 wt% or more. 上記単結晶銅は、酸素が0.05ppm以下、水素が0.2ppm以下、窒素が0.5ppm以下、炭素が0.01ppm以下で、純度が99.9999wt%以上であることを特徴とする請求項1記載のスパッタリングターゲット。  The single crystal copper is characterized in that oxygen is 0.05 ppm or less, hydrogen is 0.2 ppm or less, nitrogen is 0.5 ppm or less, carbon is 0.01 ppm or less, and purity is 99.9999 wt% or more. Item 2. The sputtering target according to Item 1. 純度99.9999wt%以上の単結晶銅を(111)方向に切断した後、研磨加工を行ってターゲット材とすることを特徴とするスパッタリングターゲットの製造方法。  A method for producing a sputtering target, comprising: cutting a single crystal copper having a purity of 99.9999 wt% or more in a (111) direction and then performing a polishing process to obtain a target material.
JP18136196A 1996-06-21 1996-06-21 Single crystal copper target and manufacturing method thereof Expired - Lifetime JP3713332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18136196A JP3713332B2 (en) 1996-06-21 1996-06-21 Single crystal copper target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18136196A JP3713332B2 (en) 1996-06-21 1996-06-21 Single crystal copper target and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005212483A Division JP4206403B2 (en) 2005-07-22 2005-07-22 Manufacturing method of semiconductor internal wiring

Publications (2)

Publication Number Publication Date
JPH108244A JPH108244A (en) 1998-01-13
JP3713332B2 true JP3713332B2 (en) 2005-11-09

Family

ID=16099388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18136196A Expired - Lifetime JP3713332B2 (en) 1996-06-21 1996-06-21 Single crystal copper target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3713332B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725621B2 (en) * 1996-06-21 2005-12-14 同和鉱業株式会社 High-purity silver wire for recording or sound or image transmission
US6627149B1 (en) 1996-06-21 2003-09-30 Dowa Mining Co., Ltd. High-purity silver wires for use in recording, acoustic or image transmission applications
JP3727115B2 (en) * 1996-08-16 2005-12-14 同和鉱業株式会社 Manufacturing method of sputtering target
JP3403918B2 (en) * 1997-06-02 2003-05-06 株式会社ジャパンエナジー High purity copper sputtering target and thin film
US6569270B2 (en) 1997-07-11 2003-05-27 Honeywell International Inc. Process for producing a metal article
JP4058777B2 (en) * 1997-07-31 2008-03-12 日鉱金属株式会社 High purity ruthenium sintered compact sputtering target for thin film formation and thin film formed by sputtering the target
JP3872233B2 (en) * 1999-06-29 2007-01-24 京セラ株式会社 Silicon casting method
US6878250B1 (en) 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US7517417B2 (en) 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
JP2001240949A (en) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp Method of manufacturing for worked billet of high- purity copper having fine crystal grain
WO2001094660A2 (en) * 2000-06-02 2001-12-13 Honeywell International Inc. Sputtering target
JP2002129313A (en) * 2000-10-20 2002-05-09 Nikko Materials Co Ltd High purity copper sputtering target generating reduced particles
JP4421335B2 (en) * 2004-03-05 2010-02-24 株式会社東芝 Method for producing sputtering target and method for producing copper wiring film
JP4505731B2 (en) * 2004-07-27 2010-07-21 三菱マテリアル株式会社 Method for producing high purity copper ingot with low carbon content
JP4421586B2 (en) * 2006-09-21 2010-02-24 株式会社東芝 Method for producing sputtering target and method for producing copper wiring film
WO2010038641A1 (en) 2008-09-30 2010-04-08 日鉱金属株式会社 High-purity copper and process for electrolytically producing high-purity copper
WO2010038642A1 (en) * 2008-09-30 2010-04-08 日鉱金属株式会社 High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film
JP5638697B2 (en) * 2012-01-25 2014-12-10 Jx日鉱日石金属株式会社 High purity copper chrome alloy sputtering target
KR20140138111A (en) * 2012-03-09 2014-12-03 후루카와 덴키 고교 가부시키가이샤 Sputtering target
JP6182296B2 (en) * 2012-03-09 2017-08-16 古河電気工業株式会社 Sputtering target and manufacturing method thereof
DE112015006364T5 (en) * 2015-03-23 2017-11-30 Pusan National University Industrial-University Cooperation Foundation A method of producing a copper thin film by using a single crystal copper target
JP6066007B1 (en) 2016-05-10 2017-01-25 日立金属株式会社 Method for producing purified copper and method for producing electric wire
JP6066010B1 (en) * 2016-06-28 2017-01-25 日立金属株式会社 Method for producing purified copper and electric wire
CN112845838A (en) * 2020-11-25 2021-05-28 长沙理工大学 High-temperature forming device for imperfect monocrystalline germanium wafer
CN112795876B (en) * 2020-12-31 2023-08-08 松山湖材料实验室 Copper target and preparation method thereof

Also Published As

Publication number Publication date
JPH108244A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP3713332B2 (en) Single crystal copper target and manufacturing method thereof
KR100338796B1 (en) High-purity copper sputtering targets and thin films
JP3727115B2 (en) Manufacturing method of sputtering target
EP0915177B1 (en) Highly purified hafnium and sputtering target using the same
JP4223511B2 (en) Copper alloy sputtering target, method of manufacturing the same, and semiconductor element wiring
JPH1180942A (en) Ta sputtering target, its production and assembled body
JP3413782B2 (en) Titanium target for sputtering and method for producing the same
JP2009149996A (en) Sputter target
JP2015061943A (en) High-purity copper manganese alloy sputtering target
Moon et al. Observed correlation of Sn oxide film to Sn whisker growth in Sn-Cu electrodeposit for Pb-free solders
JP2005330591A (en) Sputtering target
JP3974945B2 (en) Titanium sputtering target
JP2000034562A (en) Sputtering target and part used in apparatus for forming thin film
JP3819487B2 (en) Manufacturing method of semiconductor device
TWI525207B (en) Cu alloy thin film forming sputtering target and its manufacturing method
JP4206403B2 (en) Manufacturing method of semiconductor internal wiring
JP2921799B2 (en) Method for manufacturing high-purity sputter target for semiconductor element formation
JP2015203148A (en) Copper alloy material, ceramic wiring board and production method of ceramic wiring board
Chin et al. Effect of the tantalum barrier layer on the electromigration and stress migration resistance of physical-vapor-deposited copper interconnect
TW202246534A (en) Ag alloy film, and Ag alloy sputtering target
WO2013133353A1 (en) Sputtering target
JP3228660B2 (en) Method for producing high-purity metal material for semiconductor element formation
TW201504462A (en) High-purity copper-cobalt alloy sputtering target
JP4555797B2 (en) Semiconductor element
JPH0813141A (en) Sputtering target and its production

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term